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Abstract—In this paper, a semantic communication framework
is proposed for wireless networks. In the proposed framework, a
base station (BS) extracts the semantic information from textual
data, and, transmits it to each user. This semantic information
is modeled by a knowledge graph (KG) and hence, the semantic
information consists of a set of semantic triples. After receiving
the semantic information, each user recovers the original text
using a graph-to-text generation model. To measure the perfor-
mance of the studied semantic communication system, a metric
of semantic similarity (MSS) that jointly captures the semantic
accuracy and completeness of the recovered text is proposed. Due
to wireless resource limitations, the BS can only transmit partial
semantic information to each user so as to satisfy the transmission
delay constraint. Hence, the BS must select an appropriate
resource block for each user and determine partial semantic
information to be transmitted. This problem is formulated as an
optimization problem whose goal is to maximize the total MSS
by optimizing the resource allocation policy and determining the
partial semantic information to be transmitted. To solve this
problem, a policy gradient-based reinforcement learning (RL)
algorithm integrated with the attention network is proposed. The
proposed algorithm can evaluate the importance of each triple in
the semantic information using an attention network and then,
build a relationship between the importance distribution of the
triples in the semantic information and the total MSS. Simulation
results demonstrate that the proposed semantic communication
framework can reduce the size of data that the BS needs to
transmit by up to 46% and yield a two-fold improvement in the
total MSS compared to a standard communication network that
does not consider semantic communications.

I. INTRODUCTION

The emergence of new wireless applications such as tactile
Internet, interactive hologram, and intelligent humanoid robot
is generating unprecedented amounts of data (at zetta-bytes
scale) that will strain the capacity of modern-day wireless
networks [1]. In order to support these human-centered ser-
vices and applications, wireless networks must be carefully
designed based on the contents, human-related requirements,
human-related knowledge, and experience-based metrics [2].
These challenges can be addressed by a novel paradigm,
called semantic communication, which allows the meaning of
the data (behind digital bits) to be extracted and exploited
during communication. Therefore, semantic communication
has recently attracted significant interest due to its naturally
advantages in terms of providing human-oriented services
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and improving communication efficiency. However, deploying
semantic communications in wireless networks faces several
challenges including the extraction of the data semantics,
semantic-oriented resource allocation, and the measurement
of semantic communication performance.

Recently, several works in [3]–[6] studied a number of
problems related to semantic communications. The authors
in [3] proposed a deep learning approach to semantic com-
munications that seeks to maximize the mutual information
between the original and decoded signals. In [4], the authors
developed a distributed semantic communication system for
capacity-limited Internet of Things devices. The works in [3]
and [4] considered the features extracted by deep learning
models as the meaning of the data. However, the features
extracted by deep learning models are unexplainable and do
not have any physical meaning. Therefore, they may not be
able to represent the actual meaning of the data. The authors
in [5] provided an overview on the use of semantic detection
and knowledge modeling technology for semantic information
extraction. The work in [6] optimized the policies of trans-
mitting the meaning of the codewords over a noisy channel
so as to minimize the error between the intended meaning
and the recovered message. However, none of these existing
works in [3]–[6] designed a mathematical model for semantic
communication-driven wireless networks. Meanwhile, they did
not consider the design of a performance metric that can jointly
capture the semantic communication performance and wireless
communication performance.

The main contribution of this work is a novel framework
that enables a wireless base station (BS) to communicate with
the users using semantic communication techniques. The key
contributions are summarized as follows:
• We proposed a semantic communication framework that

enables a BS to transmit the meaning of the text data
to its associated users. The meaning of the text data is
defined as the semantic information and modeled by a
knowledge graph (KG). Based on the received semantic
information, the users can recover the original text using
a graph-to-text generation model.

• To measure the performance of semantic communica-
tions, we propose a mathematical metric of semantic sim-
ilarity (MSS) that jointly captures the semantic accuracy
and completeness of the recovered text.

• Due to wireless resource limitations, the BS must de-



termine the partial semantic information (i.e., a subset
of semantic tripes) to be transmitted and optimize the
resource allocation for each user so as to satisfy the delay
constraint. The problem is formulated as an optimization
problem whose goal is to maximize the total MSS by
optimizing the resource allocation and determining the
partial semantic information to be transmitted.

• To solve this problem, we propose an attention policy
gradient (APG) algorithm that can evaluate the impor-
tance of each triple in the semantic information. Then, the
proposed algorithm can analyze the relationship between
the importance distribution of the triples in the semantic
information and the total MSS, thus finding the effective
policies for resource allocation and semantic information
transmission.

Simulation results show that, compared to a standard commu-
nication network that does not consider semantic communi-
cation, the proposed APG algorithm can reduce 46% size of
data that the BS needs to transmit and yield a two-fold im-
provement in the total MSS. To our knowledge, this is the first
work that introduces a mathematical model for semantic com-
munication enabled wireless networks and optimizes resource
allocation and semantic information transmission to improve
the performance of semantic-driven wireless networks.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a cellular network in which a BS transmits text
data to a set U of U users using semantic communication
techniques. Semantic communication techniques enable the BS
to transmit the meaning of the text to each user so as to reduce
the size of the data transmitted over wireless links. Hereinafter,
the meaning of the text transmitted over wireless links is called
semantic information. To achieve semantic communication,
the BS must extract the semantic information from the original
text and send it to the corresponding user 1. Then, each user
recovers the text based on the received semantic informa-
tion. In particular, the procedure of the considered semantic
communication consists of three phases (shown in Fig. 1):
a) semantic information extraction, b) semantic information
transmission, and c) original text data recovery. Next, we
first introduce the process of the semantic communications.
Then, we introduce a semantic similarity model to measure
the quality of semantic communications.

A. Semantic Information Extraction

In the studied model, we use wi,n to represent a word, a
symbol, or a punctuation in the text data. Hereinafter, wi,n

is called a token. Hence, the text data that the BS needs to
transmit to user i consists of a sequence of tokens, as follows:

Li = {wi,1, wi,2, · · · , wi,n, · · · , wi,Ni
},∀wi,n ∈ V, (1)

where V is the vocabulary and Ni is the number of tokens
in Li. For example, we assume that the text data required to

1In this work, we only consider the text data transmission. One can easily
extend the proposed model to other types of data such as audio data and
image data.

Fig. 1: The semantic communication technique-enabled wire-
less network.

transmit to user i is “How are you?”. Hence, we have Li =
{[how], [are], [you], [?]}, where wi,1 = [how], wi,2 = [are],
wi,3 = [you], and wi,4 = [?].

In our model, the semantic information extracted from a text
data is modeled by a KG [7]. Hence, the semantic information
consists of a set of nodes and a set of edges, as shown in
Fig. 2. In particular, each node in the semantic information is
an entity that refers to an object or a concept in the real word.
Hereinafter, we define entity j in text Li as ei,j that consists
of a subsequence of tokens in text Li. For example, in Fig. 2,
“stochastic lexicon model” is an entity that consists of three
tokens in the original text. An information extraction system
such as the scientific information extractor in [8] can be used
to recognize the set Ei of Ei entities in text Li.

Edges are the relations between each pair of entities. Given
a pair of recognized entities (ei,j , ei,k), j 6= k, the BS must
find the relation ri,jk ∈ Ri between them, where Ri is the set
of Ri relations involved in text Li. For example, in Fig. 2,
the relation between entity “stochastic lexicon model” and
“speech recognizer” can be formulated as “used for”. Note
that the relations (i.e., the edges of the semantic information)
are directional and hence, we have ri,jk 6= ri,kj . We assume
that the set R that includes all relations in the texts of all users
is predefined and each relation is a two-token sequence such
as “part of ” and “used for”, as done in [8]. Hence, given ei,j
and ei,k in the original text Li, the relation ri,jk between ei,j
and ei,k can be obtained by classification algorithms such as
convolutional neural networks [9].

Based on the recognized entities and the extracted relations,
the semantic information of text Li can be expressed as

Gi ={ε1i , · · · , ε
g
i , · · · , ε

Gi
i }, (2)

where εgi = (egi,j , r
g
i,jk, e

g
i,k),∀egi,j , e

g
i,k ∈ Ei, j 6= k, ∀rgi,jk ∈

Ri is a semantic triple and Gi is the number of seman-
tic triples in Gi. Since either each entity (e.g., egi,j or
egi,k) or each relation rgi,jk consists of a sequence of to-
kens (e.g., ei,j = {[stochastic], [lexicon], [model]}, ei,k =
{[speech], [recognizer]}, and ri,jk ={[used], [for]}), triple εgi
can be expressed as εgi = {vgi,1, · · · v

g
i,b, · · · v

g
i,Bg

i
}, where



Fig. 2: An example of an original text and the extracted
semantic information.

vgi,b ∈ V is token b in semantic triple εgi and Bg
i =

Sg
i,j + Sg

i,k + 2 with Sg
i,j being the number of tokens in entity

egi,j . The number of tokens in semantic information Gi is

Z(Gi) =

Gi∑
g=1

(
Sg
i,j + Sg

i,k + 2
)
. (3)

From Fig. 2, we see that the data size of the extracted semantic
information is much smaller than the data size of the original
text (i.e., Z(Gi)� Ni). This is because the two-token relations
between the entity pairs in Gi can reduce the redundant context
in original text Li.

B. Transmission Model
We assume that an orthogonal frequency division multiple

access (OFDMA) technique is adopted. The BS has a set Q of
Q 6 U downlink orthogonal resource blocks (RBs) that can be
allocated to serve the users. The RB allocation vector of user i
is αi = [αi,1, · · · , αi,q, · · · , αi,Q], where αi,q ∈ {0, 1}. Here,
αi,q = 1 implies that RB q is allocated to user i; otherwise,
we have αi,q = 0. In our model, we assume that each user
can only occupy one RB and each RB can only be allocated
to one user [10]. Then, we have

Q∑
q=1

αi,q 6 1,∀i ∈ U ;
U∑
i=1

αi,q 6 1,∀q ∈ Q. (4)

The downlink channel capacity of the BS transmitting seman-
tic information Gi to user i is given as

ci(αi) =

Q∑
q=1

αi,qW log2

(
1 +

Pri
Iq +WN0

)
(5)

where W is the bandwidth of each RB, P is the transmit
power of the BS, Iq represents the interference caused by BSs
that are located in other service areas and use RB q, N0 is the
noise power spectral density, and ri = γidi

−2 is the channel
gain between the BS and user i with γi being the Rayleigh
fading parameters and di being the distance between the BS
and user i. We assume that the transmission delay between
the BS and each user i is limited to T . Hence, the BS must
select partial semantic information (i.e., a subset of triples) to
transmit so as to satisfy the transmission delay constraint.

C. Text Recovery
The partial semantic information that the BS needs to

transmit to user i is given as

G′i ={ε′1i , · · · , ε′
h
i , · · · , ε′

Hi

i } ⊂ Gi, (6)

where ε′
h
i = (e′

h
i,j , r

′h
i,jk, e

′h
i,k) and Hi is the number of

selected semantic triples in G′i. Given the transmission delay
threshold T , the selected semantic information G′i should
satisfy the delay constraint as follows:

Z(G′i)R
ci(αi)

6 T, (7)

where Z(G′i)=
Hi∑
h=1

(
Sh
i,j + Sh

i,k + 2
)

and R is the number of

bits used to represent each token. After each user i receives
the semantic information G′i, a graph-to-text generation model,
such as the graph transformer in [11], can be used to recover
the coherent multi-sentence text from G′i. We assume that the
graph-to-text generation model [11] is well-trained and shared
among all users. The text recovered by user i based on G′i is

L′i(αi,G′i) = {w′i,0, w′i,1, · · · , w′i,m, · · · , w′i,Mi
}, (8)

where Mi is the number of tokens in the recovered text L′i.

D. Semantic Similarity Model
To measure the quality of the semantic communication,

we proposed a metric of semantic similarity (MSS). Different
from the existing metric of BLEU [12] that is only focus on
the semantic accuracy of the recovered text, the proposed MSS
jointly capture the semantic accuracy and completeness of the
recovered text compared to the original text. The semantic
accuracy of recovered text L′i(αi,G′i) is defined as [12]

Ai(αi,G′i)=

Mi∑
m=1

min
(
σ
(
L′i(αi,G′i), w′i,m

)
,σ(Li, w

′
i,m)
)

Mi∑
m=1

σ
(
L′i(αi,G′i), w′i,m

) , (9)

where σ(L′i(αi,G′i)i, w′i,m) is the number of occurrences of
w′i,m in recovered text L′i(αi,G′i), σ(Li, w

′
i,m) is the number

of occurrences of w′i,m in original text Li. The semantic
completeness of the recovered text is defined as [13]

Ri(αi,G′i)=

Mi∑
m=1

min
(
σ
(
L′i(αi,G′i), w′i,m

)
,σ(Li, w

′
i,m)
)

Mi∑
m=1

σ(Li, w′i,m)

. (10)

Next, we use an example to explain the differences be-
tween the semantic accuracy and the semantic completeness
more clearly. For example, Li = {[how], [are], [you], [?]}
and L′i(αi,G′i) = {{[how], [do], [you], [do], [?]}. We have
σ(Li, [how]) = 1, σ(L′i(αi,G′i), [how]) = 1, σ(Li, [do]) = 0,
and σ(L′i(αi,G′i), [do]) = 2. From (9) and (10), we can
obtain Ai(αi,G′i) = 1+0+1+0+1

1+2+1+2+1 = 3
7 and Ri(αi,G′i) =

1+0+1+0+1
1+0+1+0+1 = 1, respectively. Based on (9) and (10), the MSS
of recovered text L′i(αi,G′i) can be given as

Ei(αi,G′i) = θi
Ai(αi,G′i)Ri(αi,G′i)

ϕAi(αi,G′i) + (1−ϕ)Ri(αi,G′i)
, (11)



where ϕ ∈ (0, 1) is a parameter used to adjust the contribu-
tions of semantic accuracy and completeness to the MSS. In
particular, increasing the value of ϕ will increase the effect of
semantic accuracy on the MSS. θi is an additional penalty for
short text and can be represented by [12]

θi =

{
1, Mi > Ni,

e
1− Ni

Mi ,Mi < Ni.
(12)

Using θi, the recovered text with more tokens can result in
a higher MSS. From (11), we see that the proposed MSS
used to evaluate the recovered text can control the tradeoff
between the semantic accuracy and the semantic completeness.
In particular, for each token w′i,m in the recovered text
L′i(αi,G′i), if it appears more times in L′i(αi,G′i) than Li,
then Ai(αi,G′i) decreases; otherwise, Ri(αi,G′i) decreases.

E. Problem Formulation
Given the defined system model, our goal is to maximize

the total MSS of all the texts recovered by the users while
satisfying the transmission delay requirement. This maxi-
mization problem includes optimizing the RB allocation and
determining the partial semantic information transmitted to
each user. The MSS maximization problem is formulated as
follows:

max
αi,G′

i

U∑
i=1

Ei(αi,G′i), (13)

s.t. αi,q ∈ {0, 1},∀i ∈ U ,∀q ∈ Q, (13a)
Q∑

q=1

αi,q 6 1,∀i ∈ U , (13b)

U∑
i=1

αi,q 6 1,∀q ∈ Q, (13c)

Zi(G′i)R
ci(αi)

6 T, ∀i ∈ U , (13d)

where (13a), (13b), and (13c) guarantee that each user can
only occupy one RB and each RB can only be allocated to one
user for semantic information transmission. (13d) is the delay
requirement of semantic information transmission. From (13),
we see that the MSS jointly depends on the selected subset
G′i of the semantic information and the RB allocation αi.
However, the objective function of problem (13) is non-convex
and depends on the text generation model used to recover
the text. Hence, (13) cannot be solved by the traditional
optimization algorithms. To solve (13), we use a reinforcement
learning (RL) algorithm [14] with an attention network that
can evaluate the importance of each semantic triple so as to
build the relationship between the importance of the triples in
the semantic information and the total MSS of the recovered
texts.

III. ATTENTION RL FOR SEMANTIC INFORMATION
SELECTION AND RESOURCE ALLOCATION

Next, we introduce a policy gradient-based RL algorithm
[15] integrated with an attention network [16], called attention

policy gradient (APG), that can effectively solve problem (13).
First, for each semantic triple εgi , we use an attention network
to calculate its corresponding importance value. Here, the
importance of a semantic triple is defined as the correlation
between the triple and the original text. Hereinafter, we use
an importance vector fi(Gi) to represent the importance
distribution of the triples in each semantic information Gi.
Based on the importance evaluation, the proposed APG al-
gorithm enables the BS to analyze the relationship between
the importance distribution fi(Gi) and the total MSS so as to
optimize the semantic information selection and RB allocation
for the total MSS improvement. Next, we first introduce the
use of an attention network to calculate the importance of
the triples in each semantic information. Then, we show the
components of the APG algorithm. Finally, we explain the
entire procedure of using our APG algorithm to determine the
partial semantic information to be transmitted and optimize
RB allocation for each user.

A. Attention Network for Importance Evaluation

The input of an attention network is a triple εgi and the
original text Li. To obtain the importance of each triple εgi ,
the BS first needs to vectorize the tokens in εgi and Li as done
in [16]. Then, we define the vector used to represent token vgi,b
as xg

i,b ∈ RDx and the vector used to represent token wi,n as
xi,n ∈ RDx , where Dx is the dimension of each token vector.
Given the token vectors, the correlation between triple εgi and
token wi,n in Li can be given as

βg
i (wi,n) =

Bg
i∑

b=1

(Wtrix
g
i,b)

T(Wtokxi,n)

Bg
i

, (14)

where Bg
i is the number of tokens in triple εgi , Wtri ∈

RDa×Dx and Wtok ∈ RDa×Dx are both parameter matrices
of the attention network with Da ×Dx being the size of the
parameter matrices. Using the trained parameters, an attention
network can calculate (Wtrix

g
i,b)

T(Wtokxi,n) which indicates
the correlation between token vgi,b in triple εgi and token wi,n

in the original text Li. The importance of εgi that is defined
as the correlation between triple εgi and text Li is given as

ωg
i =

Ni∑
n=1

βg
i (wi,n). (15)

The importance distribution of semantic information Gi is

f(Gi) =
eωi

Gi∑
g=1

eωg

, (16)

where ωi = [ω1
i , · · · , ω

g
i , · · · , ω

Gi
i ].

B. Components of APG Algorithm

An APG algorithm consists of six components: a) agent,
b) environment, c) actions, d) states, e) policy, and f) reward,
which are specified as follows
• Agent: Our agent is the BS that must determine the RB

allocation and the semantic information selection.



Algorithm 1 APG algorithm for RB allocation and semantic
information selection.
1: Input: Original text Li for each user, transmission delay threshold T .
2: Initialize: Parameters θ generated randomly, interference Iq of each RB,

task learning rate δ, and number of iterations E.
3: Calculate the importance distribution f(Gi) based on (16).
4: for i = 1→ E do
5: Collect D trajectories D = {α1, · · · ,αD} using πθ .
6: Update the parameters of the policy based on (19).
7: end for

• Actions: Each action of the agent is a vector α =
[α1, · · · ,αU ]. Here, once the BS determines the RB
allocation, the semantic information G′i that consists the
most important triples in Gi while satisfying Zi(G′

i)R
ci(αi)

6 T
can be determined. The action space A is the set of all
optional actions that satisfy the constraints in (13).

• States: The state is defined as s = [f(G1), · · · ,f(GU )].
• Policy: The policy is the probability of the agent choosing

each action given state s. The APG algorithm uses a deep
neural network (DNN) parameterized by θ to build the
relationship between the importance distributions and the
total MSS. Hence, the trained DNN can map the input
state to the output policy that maximizes the total MSS.
Then, the policy can be expressed as πθ(s,α) = P (α|s).

• Reward: The reward of choosing action α based on state

s is R(α|s) =
U∑
i=1

Ei(αi,G′i) which is equivalent to

the objective function of problem (13). Here, each G′i is
determined based on the selected action α.

C. APG for Total MSS Maximization
Next, we introduce the entire procedure of training the

proposed APG algorithm for solving problem (13). To solve
problem (13), the agent first samples D actions according to
an initial policy πθ. The set of collected actions is D =
{α1, · · · ,αd, · · · ,αD}. To evaluate the policy πθ for the
total MSS maximization, we define the expected reward of
the actions in D as

J̄(θ) =

D∑
d=1

R(αd|s)πθ(s,αd). (17)

The goal of optimizing the policy πθ is to maximize the total
MSS of the texts recovered by all users, that is

max
θ

J̄(θ). (18)

Then, the policy πθ can be updated using the standard gradient
ascent method

θ ← θ + δ∇θJ̄(θ), (19)
where α is the learning rate and ∇θJ̄(θ) is the gradient of
parameter θ.

By iteratively running the policy updating step, the parame-
ter θ of the policy can find the relation between the importance
distributions of all semantic information and the total MSS.
Hence, the policy for RB allocation and semantic information
selection that can achieve maximum total MSS of all recovered
texts can be obtained [17]. The specific training process of the
proposed APG algorithm is summarized in Algorithm 1.

TABLE I: System Parameters

Parameters Value Parameters Value
Q 10 W 20 MHz
P 1 W N0 -174 dBm/Hz
T 20 ms R 80 bit
ϕ 0.5 D 100
Da 64 Dx 500

Fig. 3: An example of the original text, the transmitted
semantic information, and the recovered text.

IV. SIMULATION RESULTS AND ANALYSIS

In our simulations, a circular network is considered with one
BS and U = 10 uniformly distributed users. Other parameters
are listed in Table I. We use the semantic information extrac-
tion model in [8] and the text recovery model in [11]. The
text dataset used to train the proposed APG algorithm is the
abstract generation dataset (AGENDA) [18] that consists of
40 thousand paper titles and abstracts from the proceedings
of 12 top artificial intelligence conferences. For comparison
purposes, we consider two baselines: a) the traditional policy
gradient algorithm that learns a policy for RB allocation and
selects G′i randomly, and b) the traditional symbols-based
wireless communication scheme that directly transmits the
original text data.

Fig. 3 shows an example of using proposed semantic
communication framework for text data transmission. In par-
ticular, Fig. 3 shows the original text, the transmitted semantic
information, and the recovered text. In Fig. 3, we use different
colors to represent the correlation between the semantic triple
“(stochastic lexicon model, used for, speech recognize)”) and
different tokens in the original text. In particular, as the
correlations between the semantic triple “(stochastic lexicon
model, used for, speech recognize)”) and the tokens in the
original text increase, the color used to mark the tokens
changes from white to blue. In Fig. 3, the importance of the
triple “(stochastic lexicon model, used for, speech recognize)”
is shown as the sum of correlations. According to the order
of importance of the triples, the selected partial semantic
information to be transmitted is listed in Fig. 3. Fig. 3 also
shows that the text recovered by the user covers the main
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Fig. 4: The total MSS as the number of RBs varies.

meaning of the original text. This is because the BS selects the
most important semantic information based on the importance
evaluation and transmits it to the user. From Fig. 3, we also see
that, using our proposed semantic communication framework,
the BS needs to only transmit 58 tokens of the semantic
information instead of 108 worlds of the original text data to
the user. Therefore, the proposed framework can reduce 46%
data transmitted over wireless links.

Fig. 4 shows how the total MSS changes as the number
of RBs varies. In Fig. 4, we can see that, as the number of
RBs increases, the total MSS increases. This is because as the
number of RBs increases, the number of users that receive the
semantic information from the BS increases. Fig. 4 also shows
that the proposed APG algorithm can achieve up to 13.2% and
101.8% gains in terms of the total MSS compared to baselines
a) and b). This is because the proposed APG algorithm can
optimize the RB allocation and determine the partial semantic
information to be transmitted.

V. CONCLUSION

In this paper, we have developed a novel semantic communi-
cation framework for wireless networks. We have modeled the
meaning of the text data by a KG. To measure the performance
of the semantic communications, we have introduced the MSS
that captures the semantic similarity between the original text
and the recovered text. We have jointly considered the wireless
resource limitations and the performance of the semantic com-
munications and formulated an optimization problem whose
goal is to maximize the total MSS by optimizing the RB
allocation and semantic information transmission. To solve
this problem, we have developed an APG algorithm that can
obtain the importance distribution of the triples in the semantic
information and then build the relationship between the im-
portance distribution and the total MSS. Hence, the proposed
APG algorithm enables the BS to find the policies for RB
allocation and semantic information selection for maximizing
the total MSS. Simulation results have demonstrated that,
compared with a standard communication network that does

not consider semantic communication, the proposed semantic
communication framework can significantly reduce the size of
data required to transmit and increase the total MSS.
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