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Abstract: Neuromorphic photonics exploit optical device physics for neuron models, and optical 
interconnects for distributed, parallel, and analog processing for high-bandwidth, low-latency and 

low switching energy applications in artificial intelligence and neuromorphic computing. 
 OCIS codes: (200.3050) Information processing; (200.4700) Optical neural systems; (250.5300) Photonic 
integrated circuits. 

Neural networks have enjoyed renewed popularity over the last decade under the appellation of “deep learning”[1], 
[2]. The idea of mimicking the brain to process information, however, can be traced back half a century prior to 
Rosenblatt’s perceptron [3], and the first experimental models of biological neurons to Hodgkin and Huxley a few 
years prior [4]. The artificial neurons that make up neural networks take many forms, some more closely related to 
this biological inspiration. Yet all neural networks take the form of simple nodes that (a) perform a linear operation 
on multiple other neurons’ outputs, (b) integrate the resulting signals, and (c) perform a nonlinear transformation on 
the summed, weighted inputs. Various interconnection topologies – feedforward, feedback (recurrent), close-neighbor 
translationally-invariant (convolutional), etc. – endow the network with different computational properties. 

Such an asynchronous, parallel framework is at odds with the digital von Neumann architecture that 
electronic microprocessors often employ for their emulation. This mismatch was recognized early on, leading to 
pioneering work by VLSI engineers starting in the 1980’s to map the physics of transistors to neuronal models for 
gains in computational density, energy efficiency, and speed [5]. However, Moore’s Law and Dennard scaling kept 
such “neuromorphic” architecture outside of the limelight in favor of general-purpose digital processors. Today, this 
scaling nears its end, and researchers turn to ever more specialized hardware such as graphical processing units [6], 
tensor processing units [7] and specially configured field-programmable gate arrays [8] to run demanding neural 
network models. This is renewing interest in neuromorphic application-specific integrated circuits (ASICs), the 
extrapolated conclusion of this trend. 

Since the requirements of neuromorphic hardware differ from von Neumann digital computing, it is not 
obvious that silicon microelectronics must provide the best substrate for neuromorphic ASICs [9], [10]. The reliance 
of neural networks on simple networked nodes suggests that a platform suited for communications, such as photonics, 
might have an advantage. This was recognized in the 80’s [11], yet the lack of integrability limited investigations at 
the time. The commercial silicon photonic platforms that have arisen over the last few years, however, now offer high 
index contrast, low-loss waveguides integrated with high bandwidth optoelectronics for signal modulation and 
detection [12]. Furthermore, the reuse of materials and processes from microelectronics allows the platform to enjoy 
its economies of scale. This, combined with the intrinsic appeal of photonics to emulate neural models, is one of the 
reasons that the newly termed field of neuromorphic photonics has attracted considerable attention [13]-[22]. 

In this talk, we will provide an overview of current neuromorphic silicon photonics architectures including 
coherent approaches based on Mach-Zehnder interferometers [15], [23] and incoherent (multiwavelength) 
optoelectronic approaches based on microring resonators [16], [17], [24]. We also describe several real-world 
applications for control and deep learning inference. Lastly, we will discuss scalability in the context of designing a 
full-scale neuromorphic photonic processing system, considering aspects such as signal integrity, noise, and hardware 
fabrication platforms [3]. 
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