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Preface

Dr. Melik: This morning for breakfast he requested something called
“wheat germ, organic honey, and tiger’s milk.”
Dr. Aragon: [chuckling] Oh, yes. Those are the charmed substances that
some years ago were thought to contain life-preserving properties.
Dr. Melik: You mean there was no deep fat? No steak or cream pies or
... hot fudge?
Dr. Aragon: Those were thought to be unhealthy . . . precisely the opposite
of what we now know to be true.
Dr. Melik: Incredible.
Dialogue from Sleeper, 1973 film by
Woody Allen set 200 years in the future

When Sleeper filled theaters in 1973, stick margarine was widely advertised
as the healthier alternative to butter. In just a couple of decades, evidence
began to accumulate that partially hydrogenated (trans) fats found in hard
margarines were worse for heart health than the saturated fat found in
butter (not that either is particularly heart healthy). More recently, adults
who for years have been ingesting daily doses of baby aspirin, with the aim
of reducing the risk of heart attack, are now being advised not to bother.
The latest studies failed to confirm earlier findings that had suggested real
benefits from daily aspirin. Perhaps we should caution Woody Allen’s Dr.
Aragon to be a little less certain of “what we now know to be true.”
Science is based on a conviction that the natural world adheres to
certain principles, grounded in an underlying and consistent reality. How-
ever, human capacity to discern those truths of nature, including human

XU

Copyright National Academy of Sciences. All rights reserved.



Reproducibility and Replicability in Science

xvi PREFACE

behavior, is imperfect. We rely on science to reveal what is knowable of
nature, and typically, that knowledge has some level of uncertainty attached
to it. Repeated findings of comparable results tend to confirm the verac-
ity of an original scientific conclusion, and, by the same token, repeated
failures to confirm throw the original conclusions into doubt. When a sci-
entific study becomes the basis of policy or has a direct or indirect impact
on human well-being, scientific reliability becomes more than an academic
question.

This Consensus Study was prompted by concerns about the reproduc-
ibility and replicability of scientific research. The National Science Foun-
dation (NSF) had entered into discussions with the National Academies of
Sciences, Engineering, and Medicine about a study on reproducibility and
replicability in the social sciences when Congress enacted a provision of
law that expanded the scope of the study to all science and engineering.
The Alfred P. Sloan Foundation then joined in support of this work, with
special interest in the efficiency of scientific research, and aided in the dis-
semination of the findings, conclusions, and recommendations of the study.

To carry out the task, the National Academies appointed a committee
of 15 members representing a wide range of expertise: methodology and
statistics, philosophy of science, science communication, behavioral and
social sciences, earth and life sciences, physical sciences, computational
science, engineering, academic leadership, journal editors, and industry
expertise in quality control. Individuals with expertise pertaining to re-
producibility and replicability of research results across a variety of fields
were included as well. In conducting its study, the committee reviewed the
research literature on reproducibility and replicability, held 12 meetings at
which it heard from a wide range of stakeholders in the research enterprise
and deliberated to reach the findings, conclusions, and recommendations
presented in this report.

I have had the privilege of chairing this diverse panel of experts, and
I thank all of the members of the committee for their intensive effort and
collaborative spirit in crafting this report. We were aided by a remarkably
talented study director, Jennifer Heimberg, and an able group of staff,
including Thomas Arrison, Adrienne Stith Butler, Michelle Schwalbe, Tina
Winters, Michael Cohen, Rebecca Morgan, Thelma Cox, Lesley Webb,
and Garret Tyson. We also offer special thanks to Erin Hammers Forstag,
who served as consultant writer on this project, and Eugenia Grohman,
who edited earlier versions of this manuscript. We are most grateful to
NSF and to the Alfred P. Sloan Foundation for their generous support of
this undertaking.

Copyright National Academy of Sciences. All rights reserved.



Reproducibility and Replicability in Science

PREFACE xvii

We hope the ideas and guidance offered here prove useful to Congress,
public and private funders of scientific research, scientists and research
institutions, journal editors and authors, and the interested public. Science
and technology shape our world in both dramatic and mundane ways. We
all have a stake in ensuring that scientists adhere to the highest standards
of practice, understand and express the uncertainty inherent in their con-
clusions, and continue to strengthen the interconnected web of scientific
knowledge—the principal driver of progress in the modern world.

Harvey V. Fineberg, Chair
Committee on Reproducibility and Replicability in Science
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Executive Summary

When scientists cannot confirm the results from a published study, to
some it is an indication of a problem, and to others, it is a natural part
of the scientific process that can lead to new discoveries. As directed by
Congress, the National Science Foundation (NSF) tasked this committee
to define what it means to reproduce or replicate a study, explore issues
related to reproducibility and replicability across science and engineering,
and assess any impact of these issues on the public’s trust in science.

Various scientific disciplines define and use the terms “reproducibility”
and “replicability” in different and sometimes contradictory ways. After
considering the state of current usage, the committee adopted definitions
that are intended to apply across all fields of science and help untangle the
complex issues associated with reproducibility and replicability. Thinking
about these topics across fields of science is uneven and evolving rapidly,
and the report’s proposed steps for improvement are intended to serve as a
roadmap for the continuing journey toward scientific progress.

We define reproducibility to mean computational reproducibility—
obtaining consistent computational results using the same input data, com-
putational steps, methods, code, and conditions of analysis; and replicability
to mean obtaining consistent results across studies aimed at answering the
same scientific question, each of which has obtained its own data. In short,
reproducibility involves the original data and code; replicability involves
new data collection and similar methods used by previous studies. A third
concept, generalizability, refers to the extent that results of a study apply

Copyright National Academy of Sciences. All rights reserved.
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2 REPRODUCIBILITY AND REPLICABILITY IN SCIENCE

in other contexts or populations that differ from the original one.! A single
scientific study may entail one or more of these concepts.

Our definition of reproducibility focuses on computation because of its
large and increasing role in scientific research. Science is now conducted us-
ing computers and shared databases in ways that were unthinkable even at
the turn of the 21st century. Fields of science focused solely on computation
have emerged or expanded. However, the training of scientists in best com-
putational research practices has not kept pace, which likely contributes
to a surprisingly low rate of computational reproducibility across studies.
Reproducibility is strongly associated with transparency; a study’s data
and code have to be available in order for others to reproduce and confirm
results. Proprietary and nonpublic data and code add challenges to meeting
transparency goals. In addition, many decisions related to data selection
or parameter setting for code are made throughout a study and can affect
the results. Although newly developed tools can be used to capture these
decisions and include them as part of the digital record, these tools are not
used by the majority of scientists. Archives to store digital artifacts linked
to published results are inconsistently maintained across journals, academic
and federal institutions, and disciplines, making it difficult for scientists to
identify archives that can curate, store, and make available their digital
artifacts for other researchers.

To help remedy these problems, NSF should, in harmony with other
funders, endorse or create code and data repositories for the long-term
preservation of digital artifacts. In line with its expressed goal of “harness-
ing the data revolution,” NSF should consider funding tools, training, and
activities to promote computational reproducibility. Journal editors should
consider ways to ensure reproducibility for publications that make claims
based on computations, to the extent ethically and legally possible.

While one expects in many cases near bitwise agreement in reproduc-
ibility, the replicability of study results is more nuanced. Non-replicability
occurs for a number of reasons that do not necessarily reflect that some-
thing is wrong. Some occurrences of non-replicability may be helpful to
science—for example, discovering previously unknown effects or sources of
variability—while others, ranging from simple mistakes to methodological
errors to bias and fraud, are not helpful. It is easy to say that potentially
helpful sources should be capitalized on, while unhelpful sources must
be minimized. But when a result is not replicated, further investigation is
required to determine whether the sources of that non-replicability are of
the helpful or unhelpful variety or some of both. This requires time and
resources and is often not a trivial undertaking.

! The same definition of generalizability as used by NSF (Bollen et al., 2015).

Copyright National Academy of Sciences. All rights reserved.



Reproducibility and Replicability in Science

EXECUTIVE SUMMARY 3

A variety of standards are used in assessing replicability, and the choice
of standards can affect the assessment outcome. We identified a set of
assessment criteria that apply across sciences, highlighting the need to
adequately report uncertainties in results. Importantly, the assessment of
replicability may not result in a binary pass/fail answer; rather, the answer
may best be expressed as the degree to which one result replicates another.

One type of scientific research tool, statistical inference, has had an
outsized role in replicability discussions due to the frequent misuse of sta-
tistics such as the p-value and threshold for determining statistical signifi-
cance. Inappropriate reliance on statistical significance can lead to biases
in research reporting and publication, although publication and research
bias are not restricted to studies involving statistical inference. A variety of
ongoing efforts are aimed at minimizing these biases and other unhelpful
sources of non-replicability.

Researchers should take care to estimate and explain the uncertainty in-
herent in their results, make proper use of statistical methods, and describe
their methods and data in a clear, accurate, and complete way. Academic
institutions, journals, scientific and professional associations, conference
organizers, and funders can take a range of steps to improve replicability
of research. We propose a set of criteria to help determine when testing
replicability may be warranted. It is important for everyone involved in
science to endeavor to maintain public trust in science based on a proper
understanding of the contributions and limitations of scientific results.

A predominant focus on the replicability of individual studies is an inef-
ficient way to assure the reliability of scientific knowledge. Rather, reviews
of cumulative evidence on a subject, to assess both the overall effect size
and generalizability, is often a more useful way to gain confidence in the
state of scientific knowledge.
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Summary

One of the pathways by which scientists confirm the validity of a new
finding or discovery is by repeating the research that produced it. When a
scientific effort fails to independently confirm the computations or results
of a previous study, some argue that the observed inconsistency may be an
important precursor to new discovery while others fear it may be a symp-
tom of a lack of rigor in science. When a newly reported scientific study
has far-reaching implications for science or a major potential impact on
the public, the question of its reliability takes on heightened importance.
Concerns over reproducibility and replicability have been expressed in both
scientific and popular media.

As these concerns increased in recent years, Congress directed the Na-
tional Science Foundation (NSF) to contract with the National Academies
of Sciences, Engineering, and Medicine to undertake a study to assess re-
producibility and replicability in scientific and engineering research and to
provide findings and recommendations for improving rigor and transpar-
ency in research.

THE ROLE OF REPRODUCIBILITY AND
REPLICABILITY IN SCIENCE

To gain knowledge about the world and to seek new discoveries through
scientific inquiry, scientists often first perform exploratory research. This
kind of work is only the start toward establishing new knowledge. The
path from a new discovery reported by a single scientist (or single group of
scientists) to adoption by others involves confirmatory research (i.e., testing

S
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and confirmation), an examination of the limits of the original result (by
the original researchers or others), and development of new or expansion
of existing scientific theory. This process may confirm and extend exist-
ing knowledge, or it may upend previous knowledge and replace it with
more accurate scientific understanding of the natural world. The scientific
enterprise depends on the ability of the scientific community to scrutinize
scientific claims and to gain confidence over time in results and inferences
that have stood up to repeated testing.

Important throughout this process is the sharing of data and methods
and the estimation, characterization, and reporting of uncertainty. Report-
ing of uncertainty in scientific results is a central tenet of the scientific
process, and it is incumbent on scientists to convey the appropriate degree
of uncertainty to accompany original claims.

Because of the intrinsic variability of nature and limitations of mea-
surement devices, results are assessed probabilistically, with the scientific
discovery process unable to deliver absolute truth or certainty. Instead,
scientific claims earn a higher or lower likelihood of being true depending
on the results of confirmatory research. New research can lead to revised
estimates of this likelihood.

DEFINITIONS

The terms reproducibility and replicability have different meanings
and uses across science and engineering, which has led to confusion in col-
lectively understanding problems in reproducibility and replicability. The
committee adopted specific definitions for the purpose of this report to
clearly differentiate between the terms, which are otherwise interchangeable
in everyday discourse.

Reproducibility is obtaining consistent results using the same input
data; computational steps, methods, and code; and conditions of analysis.
This definition is synonymous with “computational reproducibility,” and
the terms are used interchangeably in this report.

Replicability is obtaining consistent results across studies aimed at
answering the same scientific question, each of which has obtained its own
data. Two studies may be considered to have replicated if they obtain con-
sistent results given the level of uncertainty inherent in the system under
study.

Generalizability, another term frequently used in science, refers to the
extent that results of a study apply in other contexts or populations that
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differ from the original one.! A single scientific study may include elements
or any combination of these concepts.

In short, reproducibility involves the original data and code; replicabil-
ity involves new data collection to test for consistency with previous results
of a similar study. These two processes also differ in the type of results that
should be expected. In general, when a researcher transparently reports
a study and makes available the underlying digital artifacts, such as data
and code, the results should be computationally reproducible. In contrast,
even when a study was rigorously conducted according to best practices,
correctly analyzed, and transparently reported, it may fail to be replicated.

REPRODUCIBILITY

The committee’s definition of reproducibility is focused on computa-
tion because of its major and increasing role in science. Most scientific and
engineering research disciplines use computation as a tool. The abundance
of data and widespread use of computation have transformed many disci-
plines, but this revolution is not yet uniformly reflected in how scientists de-
velop and use software and how scientific results are published and shared.
These shortfalls have implications for reproducibility, because scientists
who wish to reproduce research may lack the information or training they
need to do so.

When results are produced by complex computational processes using
large volumes of data, the methods section of a scientific paper is insuf-
ficient to convey the necessary information for others to reproduce the
results. Additional information related to data, code, models, and com-
putational analysis is needed for others to computationally reproduce the
results.

RECOMMENDATION 4-1: To help ensure the reproducibility of
computational results, researchers should convey clear, specific, and
complete information about any computational methods and data
products that support their published results in order to enable other
researchers to repeat the analysis, unless such information is restricted
by nonpublic data policies. That information should include the data,
study methods, and computational environment:

e the input data used in the study either in extension (e.g., a text file
or a binary) or in intension (e.g., a script to generate the data),
as well as intermediate results and output data for steps that are
nondeterministic and cannot be reproduced in principle;

I'The same definition of generalizability as used by NSF (Bollen et al., 2015).
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e a detailed description of the study methods (ideally in execut-
able form) together with its computational steps and associated
parameters; and

¢ information about the computational environment where the study
was originally executed, such as operating system, hardware archi-
tecture, and library dependencies. (Library dependency,? in the con-
text of research software as used here, is the relationship of pieces
of software that are needed for another software to run. Problems
often occur when installed software has dependencies on specific
versions of other software.)

Some fields of scientific inquiry, such as geoscience, involve complex
data gathering from multiple sensors, modeling, and algorithms that cannot
all be readily captured and made available for other investigators to repro-
duce. Some research involves nonpublic information that cannot legally be
shared, such as patient records or human subject data. Other research may
involve instrumentation with internal data processing algorithms that are
not directly accessible to the investigator due to proprietary restrictions.
The committee acknowledges such circumstances. However, when feasible
to collect and share the necessary information, computational results are
expected to be reproducible.

Expected Results from Attempts to Reproduce Research

If sufficient data, code, and methods description are available and a
second researcher follows the methods described by the first researcher, one
expects in many cases full bitwise reproduction of the original results—that
is, obtaining the same exact numeric values. For some research questions,
bitwise reproducibility may be relaxed and reproducible results could be
obtained within an accepted range of variation. Understanding the range
of variation and the limits of computational reproducibility in increasingly
complex computational systems, such as artificial intelligence, high-
performance computing, and deep learning, is an active area of research.

RECOMMENDATION 4-2: The National Science Foundation
should consider investing in research that explores the limits
of computational reproducibility in instances in which bitwise
reproducibility is not reasonable in order to ensure that the
meaning of consistent computational results remains in step with the
development of new computational hardware, tools, and methods.

2 This definition was corrected during copy editing between release of the prepublication
version and this final, published version.
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Exact reproducibility does not guarantee the correctness of the compu-
tation. For example, if an error in code goes undetected and is reapplied,
the same erroneous result may be obtained.

The Extent of Non-Reproducibility in Research

Reproducibility studies can be grouped into one of two kinds: (1) direct,
which regenerate computationally consistent results; and (2) indirect, which
assess the transparency of available information to allow reproducibility.

Direct assessments of reproducibility, replaying the computations to
obtain consistent results, are rare in comparison to indirect assessments
of transparency, that is, checking the availability of data and code. Direct
assessments of computational reproducibility are more limited in breadth
and often take much more time and resources than indirect assessments of
transparency.

The standards for success of direct and indirect computational repro-
ducibility assessments are neither universal nor clear-cut. Additionally,
the evidence base of computational non-reproducibility® across science is
incomplete. Thus, determining the extent of issues related to computational
reproducibility across fields or within fields of science would be a massive
undertaking with a low probability of success. Notably, however, a number
of systematic efforts to reproduce computational results across a variety of
fields have failed in more than one-half of the attempts made, mainly due
to insufficient detail on digital artifacts, such as data, code, and computa-
tional workflow.

REPLICABILITY

Unlike the typical expectation of reproducibility between two compu-
tations, expectations about replicability are more nuanced. A successful
replication does not guarantee that the original scientific results of a study
were correct, nor does a single failed replication conclusively refute the
original claims. Furthermore, a failure to replicate can be due to any num-
ber of factors, including the discovery of new phenomena, unrecognized
inherent variability in the system, inability to control complex variables,
and substandard research practices, as well as misconduct.

3 “Non-reproducible” and “irreproducible” are both used in scientific work and are
synonymous.
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The Extent of Non-Replicability in Research

The committee was asked to assess what is known about the extent of
non-replicability in science and, if necessary, to identify areas that may need
more information to ascertain it. One challenge in assessing the extent of
non-replicability across science is that different types of scientific studies
lead to different or multiple criteria for determining a successful replication.
The choice of criteria can affect the apparent rate of non-replication and
calls for judgment and explanation. Therefore, comparing results across
replication studies may be compromised because different replication stud-
ies may test different study attributes and rely on different standards and
measures for a successful replication.

Another challenge is that there is no standard across science for assess-
ing replication between two results. The committee outlined a number of
criteria central to such comparisons and highlights issues with misinterpre-
tation of replication results using statistical inference. A number of parametric
and nonparametric methods may be suitable for assessing replication across
studies. However, it is restrictive and unreliable to accept replication only
when the results in both studies have attained “statistical significance,” that
is, when the p-values in both studies have exceeded a selected threshold.
Rather, in determining replication, it is important to consider the distribu-
tions of observations and to examine how similar these distributions are.
This examination would include summary measures, such as proportions,
means, standard deviations (uncertainties), and additional metrics tailored
to the subject matter.

The issue of uncertainty merits particular attention. Scientific studies
have irreducible uncertainties, whether due to random processes in the
system under study, limits to scientific understanding or ability to control
that system, or limitations in the precision of measurement. It is the job
of scientists to identify and characterize the sources of uncertainty in their
results. Quantification of uncertainty allows scientists to compare their re-
sults (i.e., to assess replicability), identify contributing factors and other
variables that may affect the results, and assess the level of confidence one
should have in the results. Inadequate consideration of these uncertainties
and limitations when designing, conducting, analyzing, and reporting the
study can introduce non-replicability.

RECOMMENDATION 5-1: Researchers should, as applicable to the
specific study, provide an accurate and appropriate characterization
of relevant uncertainties when they report or publish their research.
Researchers should thoughtfully communicate all recognized uncer-
tainties and estimate or acknowledge other potential sources of uncer-
tainty that bear on their results, including stochastic uncertainties and
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uncertainties in measurement, computation, knowledge, modeling, and
methods of analysis.

An added challenge in assessing the extent of non-replicability is that
many replication studies are not reported. Because many scientists routinely
conduct replication tests as part of a follow-on experiment and do not
report replication results separately, the evidence base of non-replicability
across all science and engineering research is incomplete.

Finally, non-replicability may be due to multiple sources, some of which
are beneficial to the progression of science, and some of which are not. The
overall extent of non-replicability is an inadequate indicator of the health
of science.

Recognizing these limitations, the committee examined replication
studies in the natural and clinical sciences (e.g., general biology, genetics,
oncology, chemistry) and social sciences (e.g., economics, psychology) that
report frequencies of replication ranging from fewer than one of five studies
to more than three of four studies.

Sources of Non-Replicability in Research

In an attempt to tease apart factors that contribute to non-replicability,
the committee classified sources of non-replicability into those that are po-
tentially helpful to gaining knowledge and those that are unhelpful.

Potentially helpful sources of non-replicability. Potentially helpful
sources of non-replicability include inherent but uncharacterized uncer-
tainties in the system under study. These sources are a normal part of the
scientific process, due to the intrinsic variation and complexity of nature,
scope of current scientific knowledge, and limits of our current technolo-
gies. They are not indicative of mistakes; rather, they are consequences of
studying complex systems with imperfect knowledge and tools.

These sources also include deliberate choices made by researchers
that may increase the occurrence of non-replicable results. For example,
reasonable decisions made by one researcher on the cleaning of a data
collection may result in a different final dataset that would affect the
study’s results. Or a study that has a higher chance of discovering new
effects may also have a higher chance of producing non-replicable results
due to unknown aspects of the system and methods used in the discovery.
Researchers may choose to accept a higher false-positive rate for initial
(i.e., exploratory) research. A researcher may also opt to allow some
potential sources of non-replicability—for example, a lower number of
study participants—because of considerations of time or resources.

Attributes of a particular line of scientific inquiry within any discipline
can be associated with higher or lower rates of non-replicability. Suscepti-
bility to non-replicability depends on
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¢ the complexity of the system under study;

e the number and relationship of variables within the system under
study;

e the ability to control the variables;
levels of noise within the system (or signal to noise ratios);
a mismatch of scale of the phenomena and the scale at which it can
be measured;
stability across time and space of the underlying principles;
fidelity of the available measures to the underlying construct at
study (e.g., direct versus indirect measurements); and

e the a priori probability (pre-experimental plausibility) of the scien-
tific hypothesis.

Unhelpful sources of non-replicability. In some cases, non-replicability
is due to shortcomings in the design, conduct, and communication of a
study. Whether arising from lack of knowledge, perverse incentives, slop-
piness, or bias, these sources of non-replicability reduce the efficiency of
scientific progress; time spent resolving non-replicability issues that are
found to be caused by these sources is time not spent expanding scientific
understanding.

These sources of non-replicability can be minimized through initiatives
and practices aimed at improving design and methodology through train-
ing and mentoring, repeating experiments before publication, rigorous peer
review, utilizing tools for checking analysis and results, and better transpar-
ency in reporting. Efforts to minimize avoidable and unhelpful sources of
non-replicability warrant continued attention.

Researchers who knowingly use questionable research practices with
the intent to deceive are committing misconduct or fraud. It can be dif-
ficult in practice to differentiate between honest mistakes and deliberate
misconduct because the underlying action may be the same while the intent
is not. Scientific misconduct in the form of misrepresentation and fraud is
a continuing concern for all of science, even though it accounts for a very
small percentage of published scientific papers.

Improving Reproducibility and Replicability in Research

The committee reviewed current and proposed efforts to improve re-
producibility and replicability across science. Efforts to strengthen research
practices will improve both. Some efforts are primarily focused on com-
putational reproducibility and others are more focused on replicability,
although improving one may also improve the other.

Rigorous research practices were important long before reproducibil-
ity and replicability emerged as notable issues in science, but the recent
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emphasis on transparency in research has brought new attention to these
issues. Broad efforts to improve research practices through education and
stronger standards are a response to changes in the environment and prac-
tice of science, such as the near ubiquity of advanced computation and the
globalization of research capabilities and collaborations.

RECOMMENDATION 6-1: All researchers should include a clear, spe-
cific, and complete description of how the reported result was reached.
Different areas of study or types of inquiry may require different kinds
of information.

Reports should include details appropriate for the type of research,
including:

e a clear description of all methods, instruments, materials, proce-
dures, measurements, and other variables involved in the study;

e a clear description of the analysis of data and decisions for exclu-
sion of some data and inclusion of other;

e for results that depend on statistical inference, a description of
the analytic decisions and when these decisions were made and
whether the study is exploratory or confirmatory;

e a discussion of the expected constraints on generality, such as
which methodological features the authors think could be varied
without affecting the result and which must remain constant;

e reporting of precision or statistical power; and

e a discussion of the uncertainty of the measurements, results, and
inferences.

RECOMMENDATION 6-2: Academic institutions and institutions
managing scientific work such as industry and the national laboratories
should include training in the proper use of statistical analysis and in-
ference. Researchers who use statistical inference analyses should learn
to use them properly.

Improving reproducibility will require efforts by researchers to more
completely report their methods, data, and results, and actions by multiple
stakeholders across the research enterprise, including educational institu-
tions, funding agencies and organizations, and journals. One area where
improvements are needed is in education and training. The use of data and
computation is evolving, and the ubiquity of research aided by computation
is such that a competent scientist today needs a sophisticated understand-
ing of computation. While researchers want and need to use these tools
and methods, their education and training have often not prepared them
to do so.
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RECOMMENDATION 6-3: Funding agencies and organizations
should consider investing in research and development of open-source,
usable tools and infrastructure that support reproducibility for a broad
range of studies across different domains in a seamless fashion. Concur-
rently, investments would be helpful in outreach to inform and train
researchers on best practices and how to use these tools.

The scholarly record includes many types of objects that underlie a

scientific study, including data and code. Ensuring the availability of the
complete scholarly record in digital form presents new challenges, including
establishing links between related digital objects, making decisions on lon-
gevity of storage or access, and enabling the use of stored objects through
improved discovery tools (e.g., searches). Many journals and funders do
not currently enforce policies to improve the coherence and completeness
of objects that are part of the scholarly record.

RECOMMENDATION 6-4: Journals should consider ways to en-
sure computational reproducibility for publications that make claims
based on computations, to the extent ethically and legally possible.
Although ensuring such reproducibility prior to publication presents
technological and practical challenges for researchers and journals,
new tools might make this goal more realistic. Journals should make
every reasonable effort to use these tools, make clear and enforce their
transparency requirements, and increase the reproducibility of their
published articles.

RECOMMENDATION 6-5: In order to facilitate the transparent shar-
ing and availability of digital artifacts, such as data and code, for its
studies, the National Science Foundation (NSF) should

e develop a set of criteria for trusted open repositories to be used by
the scientific community for objects of the scholarly record;

e seek to harmonize with other funding agencies the repository cri-
teria and data management plans for scholarly objects;

¢ endorse or consider creating code and data repositories for long-
term archiving and preservation of digital artifacts that support
claims made in the scholarly record based on NSF-funded research.
These archives could be based at the institutional level or be part of,
and harmonized with, the NSF-funded Public Access Repository;

¢ consider extending NSF’s current data management plan to include
other digital artifacts, such as software; and

e work with communities reliant on nonpublic data or code to
develop alternative mechanisms for demonstrating reproducibility.
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Through these repository criteria, NSF would enable discoverability
and standards for digital scholarly objects and discourage an undue
proliferation of repositories, perhaps through endorsing or providing
one go-to website that could access NSF-approved repositories.

RECOMMENDATION 6-6: Many stakeholders have a role to play in
improving computational reproducibility, including educational institu-
tions, professional societies, researchers, and funders.

e  Educational institutions should educate and train students and fac-
ulty about computational methods and tools to improve the quality
of data and code and to produce reproducible research.

e Professional societies should take responsibility for educating the
public and their professional members about the importance and
limitations of computational research. Societies have an important
role in educating the public about the evolving nature of science
and the tools and methods that are used.

e Researchers should collaborate with expert colleagues when their
education and training are not adequate to meet the computational
requirements of their research.

e In line with its priority for “harnessing the data revolution,” the
National Science Foundation (and other funders) should consider
funding of activities to promote computational reproducibility.

The costs and resources required to support computational reproduc-
ibility for all of science are not known. With respect to previously com-
pleted studies, retroactively ensuring computational reproducibility may
be prohibitively costly in time and resources. As new computational tools
become available to trace and record data, code, and analytic steps, and as
the cost of massive digital storage continues to decline, the ideal of compu-
tational reproducibility for science may become more affordable, feasible,
and routine in the conduct of scientific research.

As with reproducibility, efforts to improve replicability need to be un-
dertaken by individual researchers as well as multiple stakeholders in the
research enterprise. Different stakeholders can leverage change in different
ways. For example, journals can set publication requirements, and funders
can make funding contingent on researchers following certain practices.

RECOMMENDATION 6-7: Journals and scientific societies requesting
submissions for conferences should disclose their policies relevant to
achieving reproducibility and replicability. The strength of the claims
made in a journal article or conference submission should reflect the
reproducibility and replicability standards to which an article is held,
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with stronger claims reserved for higher expected levels of reproduc-
ibility and replicability. Journals and conference organizers are encour-
aged to:

¢ set and implement desired standards of reproducibility and replica-
bility and make this one of their priorities, such as deciding which
level they wish to achieve for each Transparency and Openness
Promotion guideline and working toward that goal;

¢ adopt policies to reduce the likelihood of non-replicability, such as
considering incentives or requirements for research materials trans-
parency, design, and analysis plan transparency, enhanced review
of statistical methods, study or analysis plan preregistration, and
replication studies; and

® require as a review criterion that all research reports include a
thoughtful discussion of the uncertainty in measurements and
conclusions.

RECOMMENDATION 6-8: Many considerations enter into decisions
about what types of scientific studies to fund, including striking a
balance between exploratory and confirmatory research. If private or
public funders choose to invest in initiatives on reproducibility and
replication, two areas may benefit from additional funding:

e education and training initiatives to ensure that researchers have
the knowledge, skills, and tools needed to conduct research in ways
that adhere to the highest scientific standards; describe methods
clearly, specifically, and completely; and express accurately and
appropriately the uncertainty involved in the research; and

e reviews of published work, such as testing the reproducibility of
published research, conducting rigorous replication studies, and
publishing sound critical commentaries.

RECOMMENDATION 6-9: Funders should require a thoughtful dis-
cussion in grant applications of how uncertainties will be evaluated,
along with any relevant issues regarding replicability and computa-
tional reproducibility. Funders should introduce review of reproduc-
ibility and replicability guidelines and activities into their merit-review
criteria, as a low-cost way to enhance both.

The tradeoff between resources allocated to exploratory and confirma-

tory research depends on the field of research, goals of the scientist, mission
and goals of the funding agency, and current state of knowledge within a
field of study. Exploratory research is more susceptible to non-replication,
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while confirmatory research is less likely to uncover exciting new discover-
ies. Both types of research help move science forward.

RECOMMENDATION 6-10: When funders, researchers, and other
stakeholders are considering whether and where to direct resources for
replication studies, they should consider the following criteria:

e The scientific results are important for individual decision making
or for policy decisions.

e  The results have the potential to make a large contribution to basic
scientific knowledge.

e The original result is particularly surprising, that is, it is unex-
pected in light of previous evidence and knowledge.
There is controversy about the topic.
There was potential bias in the original investigation, due, for ex-
ample, to the source of funding.

e There was a weakness or flaw in the design, methods, or analysis
of the original study.

e The cost of a replication is offset by the potential value in reaffirm-
ing the original results.

e Future expensive and important studies will build on the original
scientific results.

CONFIDENCE IN SCIENCE

Replicability and reproducibility are crucial pathways to attaining
confidence in scientific knowledge, although not the only ones. Multiple
channels of evidence from a variety of studies provide a robust means for
gaining confidence in scientific knowledge over time. Research synthesis and
meta-analysis, for example, are other widely accepted and practiced meth-
ods for assessing the reliability and validity of bodies of research. Studies
of ephemeral phenomena, for which direct replications may be impossible,
rely on careful characterization of uncertainties and relationships, data
from past events, confirmation of models, curation of datasets, and data
requirements to justify research decisions and to support scientific results.
Despite the inability to replicate or reproduce results of studies of ephem-
eral phenomena, scientists have made discoveries and continue to expand
knowledge of star formation, epidemics, earthquakes, weather, formation
of the early universe, and more by following a rigorous process of gathering
and analyzing data.

A goal of science is to understand the overall effect from a set of scien-
tific studies, not to strictly determine whether any one study has replicated
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any other. Further development in and use of meta-research—that is, the
study of research practices—would facilitate learning from scientific studies.

The committee was asked to “consider if the lack of replicability and
reproducibility impacts . . . the public’s perception” of science. The commit-
tee examined public understanding of science in four relevant areas: factual
knowledge, understanding of the scientific process, awareness of scientific
consensus, and understanding of uncertainty. Based on evidence from well-
designed and long-standing surveys of public perceptions, the public largely
trusts scientists. Understanding of the scientific process and methods has
remained stable over time, though it is not widespread. NSF’s most recent
Science & Engineering Indicators survey shows that 51 percent of Ameri-
cans understand the logic of experiments and only 23 percent understand
the idea of a scientific study.

The committee was not aware of data that would indicate whether
there is any link between public perception of science and the lack of rep-
lication and reproducibility. The purported existence of a replication “cri-
sis” has been reported in several high-profile articles in mainstream media;
however, coverage in public media remains low, and it is unclear whether
this issue has registered very deeply with the general population. Neverthe-
less, scientists and journalists bear responsibility for misrepresentation in
the public’s eye when they overstate the implications of scientific research.
Finally, individuals and policy makers have a role to play.

RECOMMENDATION 7-1: Scientists should take care to avoid over-
stating the implications of their research and also exercise caution in
their review of press releases, especially when the results bear directly
on matters of keen public interest and possible action.

RECOMMENDATION 7-2: Journalists should report on scientific
results with as much context and nuance as the medium allows. In
covering issues related to replicability and reproducibility, journalists
should help their audiences understand the differences between non-
reproducibility and non-replicability due to fraudulent conduct of
science and instances in which the failure to reproduce or replicate may
be due to evolving best practices in methods or inherent uncertainty in
science. Particular care in reporting on scientific results is warranted
when:

e the scientific system under study is complex and with limited con-
trol over alternative explanations or confounding influences;

e aresult is particularly surprising or at odds with existing bodies of
research;
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e the study deals with an emerging area of science that is character-
ized by significant disagreement or contradictory results within the
scientific community; and

e research involves potential conflicts of interest, such as work funded
by advocacy groups, affected industry, or others with a stake in the
outcomes.

RECOMMENDATION 7-3: Anyone making personal or policy deci-
sions based on scientific evidence should be wary of making a serious
decision based on the results, no matter how promising, of a single
study. Similarly, no one should take a new, single contrary study as
refutation of scientific conclusions supported by multiple lines of previ-
ous evidence.
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Scientific theories are tested every time someone makes an observation or
conducts an experiment, so it is misleading to think of science as an edi-
fice, built on foundations. Rather, scientific knowledge is more like a web.
The difference couldn’t be more crucial. A tall edifice can collapse—if the
foundations upon which it was built turn out to be shaky. But a web can be
torn in several parts without causing the collapse of the whole. The dam-
aged threads can be patiently replaced and re-connected with the rest—and
the whole web can become stronger, and more intricate.

Nonsense on Stilts: How to Tell Science from Bunk, Massimo Pigliucci
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Introduction

Reproducibility and replicability are often cited as hallmarks of good
science. Being able to reproduce the computational results of another re-
searcher starting with the same data and replicate a previous study to test
its results or inferences both facilitate the self-correcting nature of science.
A newly reported discovery may prompt retesting and confirmation, exami-
nation of the limits of the original result, and reconsideration, affirmation,
or extension of existing scientific theory. However, reproducibility and
replicability are not, in and of themselves, the end goals of science, nor are
they the only way in which scientists gain confidence in new discoveries.

Concerns over reproducibility and replicability have been expressed in
both scientific and popular media. In 2013, a cover story in The Economist
invited readers to learn “How Science Goes Wrong,” and Richard Harris’s
popular 2017 book Rigor Mortis provided many examples of purported
failures in science. An earlier essay by John Ioannidis in PLOS Medicine
carried the provocative title, “Why Most Published Research Findings Are
False” (2005). And recently, a large-scale replication study of psychologi-
cal research reported that fewer than half of the studies were successfully
replicated (Open Science Collaboration, 2015).

As these concerns about scientific research came to light, Congress re-
sponded with Section 116 of the American Innovation and Competitiveness
Act of 2017. The act directed the National Science Foundation to engage
the National Academies of Sciences, Engineering, and Medicine in a study
to assess reproducibility and replicability in scientific and engineering re-
search and to provide findings and recommendations for improving rigor
and transparency in that research. See Box 1-1 for the full statement of task.

21
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BOX 1-1
Statement of Task

The National Academies of Sciences, Engineering, and Medicine will assess
research and data reproducibility and replicability issues, with a focus on topics
that cross disciplines.

The committee will

1. provide definitions of “reproducibility” and “replicability” accounting for
the diversity of fields in science and engineering;

2. assess what is known and, if necessary, identify areas that may need
more information to ascertain the extent of the issues of replication and
reproducibility in scientific and engineering research;

3. consider if the lack of replicability and reproducibility impacts the overall
health of science and engineering as well as the public’s perception of
these fields;

4. review current activities to improve reproducibility and replicability;

5. examine (a) factors that may affect reproducibility or replicability includ-
ing incentives, roles and responsibilities within the scientific enterprise,
methodology and experimental design, and intentional manipulation;
(b) as well as studies of conditions or phenomena that are difficult to
replicate or reproduce;

6. consider a range of scientific methodologies as they explore research
and data reproducibility and replicability issues; and

7. draw conclusions and make recommendations for improving rigor and
transparency in scientific and engineering research and will identify and
highlight compelling examples of good practices.

The National Academies appointed a committee of 15 experts to carry
out this evaluation, representing a wide range of expertise and backgrounds:
methodology and statistics, history and philosophy of science, science com-
munication, behavioral and social sciences (including experts in the social
and behavioral factors that influence the reproducibility and replicability of
research results), earth and life sciences, physical sciences, computational
science, engineering, academic leadership, journal editors, and industry
experts in quality control. In addition, individuals with expertise pertaining
to reproducibility and replicability of research results across a variety of
fields were selected. Biographical sketches of the committee members are
in Appendix A.!

I'Two committee members resigned during the course of the study.
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While the committee may consider what can be learned from past and on-
going efforts to improve reproducibility and replication in biomedical and clinical
research, the recommendations in the report will focus on research in the areas
of science, engineering, and learning that fall within the scope of the National
Science Foundation.

In addressing the tasking above, the committee may consider the following
questions:

e  Using definitions of “reproducibility” and “replicability” endorsed by the
committee, explore what it means to successfully reproduce/replicate
in different fields. Which issues (e.g., perhaps pressures to publish,
inadequate training) are common across all or most fields when there
are failures to replicate results?

e  What is the extent of the absence of reproducibility and replicability? Is
there a framework that outlines the various reasons for lack of reproduc-
ibility and replicability of a study?

e What strategies have scientists employed other than reproducing/
replicating findings to gain confidence in scientific findings (e.g., in
situations where reproducing/replicating is not possible, such as studies
of ephemeral phenomena), and what are the advantages/shortcomings
of those approaches?

e What cost-effective reforms could be applied? Where would they be
best applied? What would their anticipated impact be?

Early in the process and throughout the study, scientific and engineering
societies, communication experts, scientific tool developers, and other stakehold-
ers will be engaged in the work of the committee as part of the data-gathering
process. These same stakeholder groups will be tapped at the end of the study in
the planned release event to ensure a wide distribution of the report.

The committee held 12 meetings, beginning in December 2017 and
ending in March 2018, to gather information for this study and prepare
this report. At these meetings, the committee heard from scientific society
presidents and their representatives, representatives from funding agen-
cies, science editors and reporters from different media outlets, researchers
across a variety of sciences and engineering, experts (e.g., scientific journal
editors and researchers) focused on reproducibility and replicability issues,
and those with international perspectives. The agendas of the committee’s
open meetings are in Appendix B.

The scope of the committee’s task—to review reproducibility and rep-
licability issues across science and engineering—is broad, and the time to
conduct the study was limited. Therefore, the committee sought to iden-
tify high-level, common aspects of potential problems and solutions re-
lated to reproducibility and replicability of research results across scientific
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disciplines. The committee interpreted “engineering” to refer to engineering
research rather than engineering practice and “topics that cross disciplines”
as topics that are broadly applicable to many disciplines rather than topics
focused on intersections of two or more disciplines. The committee intends
its findings, conclusions, and recommendations to be broadly applicable
across many scientific and engineering disciplines, although it was not
able to deeply investigate any particular field of science. In assessing and
examining the extent of replicability issues across science and engineering,
the committee focused on identifying characteristics of studies that may be
more susceptible to non-replicability of results.?

This report is comprised of seven chapters following this introduction.
Chapter 2 introduces concepts central to scientific inquiry and outlines how
scientists accumulate scientific knowledge through discovery, confirmation,
and correction.

Chapter 3 provides the committee’s definitions of reproducibility and
replicability; it highlights the scope and expression of the problems of non-
reproducibility and non-replicability (refer to Task 1 in Box 1-1).

Chapter 4 focuses on the factors that contribute to the lack of repro-
ducibility (see Task 5(a)). In accordance with the committee’s definitions
(see Chapter 3), reproducibility relates strictly to computational repro-
ducibility and non-reproducibility. Non-reproducibility can refer to the
absence of adequate information to reconstruct the computed results or, in
the presence of adequate information, can mean the failure to obtain the
same result within the limits of computational precision. In this chapter,
the committee assesses the extent of non-reproducibility and discusses its
implications (see Task 2).

Chapter 5 focuses on replicability and reviews the diverse issues that
bear on non-replicability in scientific results. Replicability is a subtle and
nuanced topic, ranging from efforts to repeat a previous study to studies
that confirm or build on the results obtained or the inferences drawn from
a previous study. This chapter reviews evidence to assess the extent of non-
replicability (see Tasks 2 and 5(a)).

Chapter 6 reviews efforts to improve reproducibility and reduce un-
helpful sources of non-replicability (see Task 4).

Chapter 7 examines the larger context of how various fields of science
validate new scientific knowledge. While reproducibility and replicability
are important components in the ongoing task of validating new scientific

2 Because the terms used to describe similar activities across science and engineering differ,
the committee selected generic terms to describe the components of scientific work, and they
are used consistently throughout the report: “study” refers to work on a specific scientific
question; “results” refer to the output of a study but does not include conclusions that are
derived based on the results.
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knowledge, other approaches, such as syntheses of available evidence on a
scientific question, predictive modeling, and convergent lines of evidence,
are prominent features in a variety of sciences (see Tasks 5(b) and 6). The
chapter concludes with a focus on public understanding and confidence in
science (see Task 3).

We highlight instructive examples of good practices for improving rigor
and transparency throughout the report in boxes (see Task 7).

Finally, in addition to Appendixes A and B, noted above, Appendix C
presents the committee’s recommendations grouped by stakeholder, and
Appendixes D and E elaborate on specific aspects of the report. There is
also an electronic archive of the set of background papers commissioned
by the committee.3

3 The papers are available at https://www.nap.edu/catalog/25303.
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Scientific Methods and Knowledge

The specific questions posed about reproducibility and replicabil-
ity in the committee’s statement of task are part of the broader
question of how scientific knowledge is gained, questioned, and
modified. In this chapter, we introduce concepts central to scien-
tific inquiry by discussing the nature of science and outlining core
values of the scientific process. We outline how scientists accu-
mulate scientific knowledge through discovery, confirmation, and
correction and highlight the process of statistical inference, which
has been a focus of recently publicized failures to confirm original
results.

WHAT IS SCIENCE?

Science is a mode of inquiry that aims to pose questions about the
world, arriving at the answers and assessing their degree of certainty
through a communal effort designed to ensure that they are well ground-
ed.! “World,” here, is to be broadly construed: it encompasses natural
phenomena at different time and length scales, social and behavioral phe-
nomena, mathematics, and computer science. Scientific inquiry focuses on
four major goals: (1) to describe the world (e.g., taxonomy classifications),

! Many different definitions of “science” exist. In line with the committee’s task, we aim for
this description to apply to a wide variety of scientific and engineering studies.
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(2) to explain the world (e.g., the evolution of species), (3) to predict what
will happen in the world (e.g., weather forecasting), and (4) to intervene
in specific processes or systems (e.g., making solar power economical or
engineering better medicines).

Human interest in describing, explaining, predicting, and intervening in
the world is as old as humanity itself. People across the globe have sought
to understand the world and use this understanding to advance their inter-
ests. Long ago, Pacific Islanders used knowledge of the stars to navigate the
seas; the Chinese developed earthquake alert systems; many civilizations do-
mesticated and modified plants for farming; and mathematicians around the
world developed laws, equations, and symbols for quantifying and measur-
ing. With the work of such eminent figures as Copernicus, Kepler, Galileo,
Newton, and Descartes, the scientific revolution in Europe in the 16th and
17th centuries intensified the growth in knowledge and understanding of
the world and led to ever more effective methods for producing that very
knowledge and understanding.

Over the course of the scientific revolution, scientists demonstrated the
value of systematic observation and experimentation, which was a major
change from the Aristotelian emphasis on deductive reasoning from os-
tensibly known facts. Drawing on this work, Francis Bacon (1889 [1620])
developed an explicit structure for scientific investigation that emphasized
empirical observation, systematic experimentation, and inductive reasoning
to question previous results. Shortly thereafter, the concept of communi-
cating a scientific experiment and its result through a written article was
introduced by the Royal Society of London.? These contributions created
the foundations for the modern practice of science—the investigation of
a phenomenon through observation, measurement, and analysis and the
critical review of others through publication.

The American Association for the Advancement for Science (AAAS)
describes approaches to scientific methods by recognizing the common
features of scientific inquiry across the diversity of scientific disciplines and
the systems each discipline studies (Rutherford and Ahlgren, 1991, p. 2):

Scientific inquiry is not easily described apart from the context of par-
ticular investigations. There simply is no fixed set of steps that scientists
always follow, no one path that leads them unerringly to scientific knowl-
edge. There are, however, certain features of science that give it a distinc-
tive character as a mode of inquiry.

Scientists, regardless of their discipline, follow common principles to
conduct their work: the use of ideas, theories, and hypotheses; reliance on

2 See http://blog.efpsa.org/2013/04/30/the-origins-of-scientific-publishing.
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evidence; the use of logic and reasoning; and the communication of results,
often through a scientific article. Scientists introduce ideas, develop theo-
ries, or generate hypotheses that suggest connections or patterns in nature
that can be tested against observations or measurements (i.e., evidence).
The collection and characterization of evidence—including the assessment
of variability (or uncertainty)—is central to all of science. Analysis of the
collected data that leads to results and conclusions about the strength of a
hypothesis or proposed theory requires the use of logic and reasoning, in-
ductive, deductive, or abductive. A published scientific article allows other
researchers to review and question the evidence, the methods of collection
and analysis, and the scientific results.

While these principles are common to all scientific and engineering
research disciplines, different scientific disciplines use specific tools and
approaches that have been designed to suit the phenomena and systems
that are particular to each discipline. For example, the mathematics taught
to graduate students in astronomy will be different from the mathematics
taught to graduate students studying zoology. Laboratory equipment and
experimental methods for studying biology will likely differ from those for
studying materials science (Rutherford and Ahlgren, 1991). In general, one
may say that different scientific disciplines are distinguished by the nature
of the phenomena of interest to the field, the kinds of questions asked, and
the types of tools, methods, and techniques used to answer those ques-
tions. In addition, scientific disciplines are dynamic, regularly engender-
ing subfields and occasionally combining and reforming. In recent years,
for example, what began as an interdisciplinary interest of biologists and
physicists emerged as a new field of biophysics, while psychologists and
economists working together defined a field of behavioral economics. There
have been similar interweavings of questions and methods for countless
examples over the history of science.

No matter how far removed one’s daily life is from the practice of sci-
ence, the concrete results of science and engineering are inescapable. They
are manifested in the food people eat, their clothes, the ways they move
from place to place, the devices they carry, and the fact that most people
will outlive by decades the average human born before the last century. So
ubiquitous are these scientific achievements that it is easy to forget that
there was nothing inevitable about humanity’s ability to achieve them.

Scientific progress is made when the drive to understand and control
the world is guided by a set of core principles and scientific methods. While
challenges to previous scientific results may force researchers to examine
their own practices and methods, the core principles and assumptions un-
derlying scientific inquiry remain unchanged. In this context, the consider-
ation of reproducibility and replicability in science is intended to maintain
and enhance the integrity of scientific knowledge.
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CORE PRINCIPLES AND ASSUMPTIONS
OF SCIENTIFIC INQUIRY

Science is inherently forward thinking, seeking to discover unknown
phenomena, increase understanding of the world, and answer new ques-
tions. As new knowledge is found, earlier ideas and theories may need to be
revised. The core principles and assumptions of scientific inquiry embrace
this tension, allowing science to progress while constantly testing, check-
ing, and updating existing knowledge. In this section, we explore five core
principles and assumptions underlying science:

1. Nature is not capricious.

2. Knowledge grows through exploration of the limits of existing
rules and mutually reinforcing evidence.

3. Science is a communal enterprise.

4. Science aims for refined degrees of confidence, rather than complete
certainty.

5. Scientific knowledge is durable and mutable.

Nature Is Not Capricious

A basic premise of scientific inquiry is that nature is not capricious.
“Science . . . assumes that the universe is, as its name implies, a vast
single system in which the basic rules are everywhere the same. Knowledge
gained from studying one part of the universe is applicable to other parts”
(Rutherford and Ahlgren, 1991, p. 5). In other words, scientists assume that
if a new experiment is carried out under the same conditions as another
experiment, the results should replicate. In March 1989, the electrochemists
Martin Fleischmann and Stanley Pons claimed to have achieved the fusion
of hydrogen into helium at room temperature (i.e., “cold fusion”). In an
example of science’s capacity for self-correction, dozens of laboratories
attempted to replicate the result over the next several months. A consensus
soon emerged within the scientific community that Fleischmann and Pons
had erred and had not in fact achieved cold fusion.

Imagine a fictional history, in which the researchers responded to the
charge that their original claim was mistaken, as follows: “While we are
of course disappointed at the failure of our results to be replicated in other
laboratories, this failure does nothing to show that we did not achieve
cold fusion in our own experiment, exactly as we reported. Rather, what it
demonstrates is that the laws of physics or chemistry, on the occasion of our
experiment (i.e., in that particular place, at that particular time), behaved
in such a way as to allow for the generation of cold fusion. More exactly,
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it is our contention that the basic laws of physics and chemistry operate
one way in those regions of space and time outside of the location of our
experiment, and another way within that location.”

It goes without saying that this would be absurd. But why, exactly?
Why, that is, should scientists not take seriously the fictional explana-
tion above? The brief answer, sufficient for our purposes, is that scientific
inquiry (indeed, almost any sort of inquiry) would grind to a halt if one
took seriously the possibility that nature is capricious in the way it would
have to be for this fictional explanation to be credible. Science operates
under a standing presumption that nature follows rules that are consistent,
however subtle, intricate, and challenging to discern they may be. In some
systems, these rules are consistent across space and time—for example, a
physics study should replicate in different countries and in different cen-
turies (assuming that differences in applicable factors, such as elevation or
temperature, are accounted for). In other systems, the rules may be limited
to specific places or times; for example, a rule of human behavior that is
true in one country and one time period may not be true in a different time
and place. In effect, all scientific disciplines seek to discover rules that are
true beyond the specific context within which they are discovered.

Knowledge Grows Through Exploration of the Limits
of Existing Rules and Mutually Reinforcing Evidence

Scientists seek to discover rules about relationships or phenomena that
exist in nature, and ultimately they seek to describe, explain, and predict.
Because nature is not capricious, scientists assume that these rules will
remain true as long as the context is equivalent. And because knowledge
grows through evidence about new relationships, researchers may find
it useful to ask the same scientific questions using new methods and in
new contexts, to determine whether and how those relationships persist
or change. Most scientists seek to find rules that are not only true in one
specific context but that are also confirmable by other scientists and are
generalizable—that is rules that remain true even if the context of a sepa-
rate study is not entirely the same as the original. Scientists thus seek to
generalize their results and to discover the limits of proposed rules. These
limits can often be a rich source of new knowledge about the system under
study. For example, if a particular relationship was observed in an older
group but not a younger group, this suggests that the relationship may be
affected by age, cohort, or other attributes that distinguish the groups and
may point the researcher toward further inquiry.
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Science Is a Communal Enterprise

Robert Merton (1973) described modern science as an institution of
“communalism, universalism, disinterestedness, and organized skepticism.”
Science is an ongoing, communal conversation and a joint problem-solving
enterprise that can include false starts and blind alleys, especially when tak-
ing risks in the quest to find answers to important questions. Scientists build
on their own research as well as the work of their peers, and this building
can sometimes span generations. Scientists today still rely on the work of
Newton, Darwin, and others from centuries past.

Researchers have to be able to understand others’ research in order to
build on it. When research is communicated with clear, specific, and com-
plete accounting of the materials and methods used, the results found, and
the uncertainty associated with the results, other scientists can know how to
interpret the results. The communal enterprise of science allows scientists to
build on others’ work, develop the necessary skills to conduct high quality
studies, and check results and confirm, dispute, or refine them.

Scientific results should be subject to checking by peers, and any scien-
tist competent to perform such checking has the standing to do so. Confirm-
ing the results of others, for example, by replicating the results, serves as
one of several checks on the processes by which researchers produce knowl-
edge. The original and replicated results are ideally obtained following well-
recognized scientific approaches within a given field of science, including
collection of evidence and characterization of the associated sources and
magnitude of uncertainties. Indeed, without understanding uncertainties
associated with a scientific result (as discussed throughout this report), it is
difficult to assess whether or not it has been replicated.

Science Aims for Refined Degrees of Confidence,
Rather Than Complete Certainty

Uncertainty is inherent in all scientific knowledge, and many types of
uncertainty can affect the reliability of a scientific result. It is important that
researchers understand and communicate potential sources of uncertainty in
any system under study. Decision makers looking to use study results need
to be able to understand the uncertainties associated with those results. Un-
derstanding the nature of uncertainty associated with an analysis can help
inform the selection and use of quantitative measures for characterizing the
results (see Box 2-1). At any stage of growing scientific sophistication, the
aim is both to learn what science can now reveal about the world and to
recognize the degree of uncertainty attached to that knowledge.
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BOX 2-1
Scientific Uncertainty and Its Importance
in Measurement Science

Dictionary definitions of the term uncertainty refer to the condition of being
uncertain (unsure, doubtful, not possessing complete knowledge). It is a subjec-
tive condition because it pertains to the perception or understanding that one
has about the value of some property of an object of interest. In measurement
science, measurement uncertainty represents the doubt about the true value of
a particular quantity subject to measurement (the “measurand”), and quantifying
this uncertainty is fundamental to precise measurements.

Uncertainty in measurement is a unifying principle of measurement sci-
ence; it is a key factor in the work of the national metrology institutes, including
the National Institute of Standards and Technology (NIST). NIST and its more
than 100 sister laboratories in other countries quantify uncertainties as a way of
qualifying measurements. This practice guarantees the comparability of measure-
ment results worldwide. The work in metrology at national laboratories affects
international trade and regulations that assure safety and quality of products,
advances technologies to stimulate innovation and to facilitate the translation
of discoveries into efficiently manufactured products, and, in general, serves to
improve the quality of life.

The concepts and technical devices that are used to characterize measure-
ment uncertainty evolve continuously to address emerging challenges as an
expanding array of disciplines and subdisciplines in chemistry, physics, materials
science, and biology.

SOURCE: Adapted from Plant and Hanisch (2018).

Scientific Knowledge Is Durable and Mutable

As researchers explore the world through new scientific studies and ob-
servations, new evidence may challenge existing and well-known theories.
The scientific process allows for the consideration of new evidence that, if
credible, may result in revisions or changes to current understanding. Test-
ing of existing models and theories through the collection of new data is
useful in establishing their strength and their limits (i.e., generalizability), and
it ultimately expands human knowledge. Such change is inevitable as scientists
develop better methods for measuring and observing the world. The advent of
new scientific knowledge that displaces or reframes previous knowledge should
not be interpreted as a weakness in science. Scientific knowledge is built on
previous studies and tested theories, and the progression is often not linear.
Science is engaged in a continuous process of refinement to uncover ever-
closer approximations to the truth.
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CONCLUSION 2-1: The scientific enterprise depends on the ability of
the scientific community to scrutinize scientific claims and to gain confi-
dence over time in results and inferences that have stood up to repeated
testing. Reporting of uncertainties in scientific results is a central tenet
of the scientific process. It is incumbent on scientists to convey the ap-
propriate degree of uncertainty in reporting their claims.

STATISTICAL INFERENCE AND HYPOTHESIS TESTING

Many scientific studies seek to measure, explain, and make predictions
about natural phenomena. Other studies seek to detect and measure the ef-
fects of an intervention on a system. Statistical inference provides a concep-
tual and computational framework for addressing the scientific questions
in each setting. Estimation and hypothesis testing are broad groupings of
inferential procedures. Estimation is suitable for settings in which the main
goal is the assessment of the magnitude of a quantity, such as a measure
of a physical constant or the rate of change in a response corresponding
to a change in an explanatory variable. Hypothesis testing is suitable for
settings in which scientific interest is focused on the possible effect of a
natural event or intentional intervention, and a study is conducted to assess
the evidence for and against this effect. In this context, hypothesis test-
ing helps answer binary questions. For example, will a plant grow faster
with fertilizer A or fertilizer B? Do children in smaller classes learn more?
Does an experimental drug work better than a placebo? Several types of
more specialized statistical methods are used in scientific inquiry, including
methods for designing studies and methods for developing and evaluating
prediction algorithms.

Because hypothesis testing has been involved in a major portion of
reproducibility and replicability assessments, we consider this mode of
statistical inference in some detail. However, considerations of reproduc-
ibility and replicability apply broadly to other modes and types of statistical
inference. For example, the issue of drawing multiple statistical inferences
from the same data is relevant for all hypothesis testing and in estimation.

Studies involving hypothesis testing typically involve many factors that
can introduce variation in the results. Some of these factors are recognized,
and some are unrecognized. Random assignment of subjects or test objects
to one or the other of the comparison groups is one way to control for the
possible influence of both unrecognized and recognized sources of varia-
tion. Random assignment may help avoid systematic differences between
groups being compared, but it does not affect the variation inherent in the
system (e.g., population or an intervention) under study.

Scientists use the term null hypothesis to describe the supposition that
there is no difference between the two intervention groups or no effect of
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a treatment on some measured outcome (Fisher, 1935). A commonly used
formulation of hypothesis testing is based on the answer to the following
question: If the null hypothesis is true, what is the probability of obtaining
a difference at least as large as the observed one? In general, the greater the
observed difference, the smaller the probability that a difference at least as
large as the observed would be obtained when the null hypothesis is true.
This probability of obtaining a difference at least as large as the observed
when the null hypothesis is true is called the “p-value.”® As traditionally
interpreted, if a calculated p-value is smaller than a defined threshold, the
results may be considered statistically significant. A typical threshold may
be p = 0.05 or, more stringently, p < 0.01 or p < 0.005.* In a statement is-
sued in 2016, the American Statistical Association Board (Wasserstein and
Lazar, 2016, p. 129) noted:

While the p-value can be a useful statistical measure, it is commonly
misused and misinterpreted. This has led to some scientific journals dis-
couraging the use of p-values, and some scientists and statisticians recom-
mending their abandonment, with some arguments essentially unchanged
since p-values were first introduced.

More recently, it has been argued that p-values, properly calculated
and understood, can be informative and useful; however, a conclusion of
statistical significance based on an arbitrary threshold of probability (even
a familiar one such as p =< 0.05) is unhelpful and frequently misleading
(Wasserstein et al., 2019; Amrhein et al., 2019b).

Understanding what a p-value does not represent is as important as
understanding what it does indicate. In particular, the p-value does not
represent the probability that the null hypothesis is true. Rather, the p-value
is calculated on the assumption that the null hypothesis is true. The prob-
ability that the null hypothesis is true, or that the alternative hypothesis is
true, can be based on calculations informed in part by the observed results,
but this is not the same as a p-value.

In scientific research involving hypotheses about the effects of an in-
tervention, researchers seek to avoid two types of error that can lead to
non-replicability:

3Text modified December 2019. In discussions related to the p-value, the original report
used “likelihood” rather than “probability” and failed to note that the p-value includes the
observed “and more extreme” results (See Section 3.2, Principles of Statistical Inference, Cox,
2006). Although the words probability and likelihood are interchangeable in everyday English,
they are distinguished in technical usage in statistics.

4The threshold for statistical significance is often referred to as p “less than” 0.05; we refer
to this threshold as “less than or equal to.”
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e Type I error—a false positive or a rejection of the null hypothesis
when it is correct

e Type II error—a false negative or failure to reject a false null hy-
pothesis, allowing the null hypothesis to stand when an alternative
hypothesis, and not the null hypothesis, is correct

Ideally, both Type I and Type II errors would be simultaneously re-
duced in research. For example, increasing the statistical power of a study
by increasing the number of subjects in a study can reduce the likelihood
of a Type II error for any given likelihood of Type I error.’ Although the
increase in data that comes with higher powered studies can help reduce
both Type I and Type II errors, adding more subjects typically means more
time and cost for a study.

Researchers are often forced to make tradeoffs in which reducing the
likelihood of one type of error increases the likelihood of the other. For
example, when p-values are deemed useful, Type I errors may be mini-
mized by lowering the significance threshold to a more stringent level (e.g.,
by lowering the standard p < 0.05 to p =< 0.005). However, this would
simultaneously increase the likelihood of a Type II error. In some cases, it
may be useful to define separate interpretive zones, where p-values above
one significance threshold are not deemed significant, p-values below a
more stringent significance threshold are deemed significant, and p-values
between the two thresholds are deemed inconclusive. Alternatively, one
could simply accept the calculated p-value for what it is—the probability
of obtaining the observed result or one more extreme if the null hypothesis
were true—and refrain from further interpreting the results as “significant”
or “not significant.” The traditional reliance on a single threshold to deter-
mine significance can incentivize behaviors that work against scientific
progress (see the Publication Bias section in Chapter 5).

Tension can arise between replicability and discovery, specifically, be-
tween the replicability and the novelty of the results. Hypotheses with low
a priori probabilities are less likely to be replicated. In this vein, Wilson
and Wixted (2018) illustrated how fields that are investigating potentially
ground-breaking results will produce results that are less replicable, on
average, than fields that are investigating highly likely, almost-established
results. Indeed, a field could achieve near-perfect replicability if it limited
its investigations to prosaic phenomena that were already well known. As
Wilson and Wixted (2018, p. 193) state, “We can imagine pages full of find-
ings that people are hungry after missing a meal or that people are sleepy
after staying up all night,” which would not be very helpful “for advancing

3 Statistical power is the probability that a test will reject the null hypothesis when a specific
alternative hypothesis is true.

Copyright National Academy of Sciences. All rights reserved.



Reproducibility and Replicability in Science

SCIENTIFIC METHODS AND KNOWLEDGE 37

understanding of the world.” In the same vein, it would not be helpful for
a field to focus solely on improbable, outlandish hypotheses.

The goal of science is not, and ought not to be, for all results to be
replicable. Reports of non-replication of results can generate excitement
as they may indicate possibly new phenomena and expansion of current
knowledge. Also, some level of non-replicability is expected when scientists
are studying new phenomena that are not well established. As knowledge of
a system or phenomenon improves, replicability of studies of that particular
system or phenomenon would be expected to increase.

Assessing the probability that a hypothesis is correct in part based on
the observed results can also be approached through Bayesian analysis. This
approach starts with a priori (before data observation) assumptions, known
as prior probabilities, and revises them on the basis of the observed data
using Bayes’ theorem, sometimes described as the Bayes formula.

Appendix D illustrates how a Bayesian approach to inference can,
under certain assumptions on the data generation mechanism and on the a
priori probability of the hypothesis, use observed data to estimate the prob-
ability that a hypothesis is correct. One of the most striking lessons from
Bayesian analysis is the profound effect that the pre-experimental odds have
on the post-experimental odds. For example, under the assumptions shown
in Appendix D, if the prior probability of an experimental hypothesis was
only 1 percent and the obtained results were statistically significant at the
p <0.01 level, only about one in eight of such conclusions that the hypoth-
esis was true would be correct. If the prior probability was as high as 25
percent, then more than four of five such studies would be deemed correct.
As common sense would dictate and Bayesian analysis can quantify, it is
prudent to adopt a lower level of confidence in the results of a study with a
highly unexpected and surprising result than in a study for which the results
were a priori more plausible (e.g., see Box 2-2).

Highly surprising results may represent an important scientific break-
through, even though it is likely that only a minority of them may turn out
over time to be correct. It may be crucial, in terms of the example in the
previous paragraph, to learn which of the eight highly unexpected (prior
probability, 1%) results can be verified and which one of the five moder-
ately unexpected (prior probability, 25%) results should be discounted.

Keeping the idea of prior probability in mind, research focused on
making small advances to existing knowledge would result in a high repli-
cation rate (i.e., a high rate of successful replications) because researchers
would be looking for results that are very likely correct. But doing so would
have the undesirable effect of reducing the likelihood of making major
new discoveries (Wilson and Wixted, 2018). Many important advances in
science have resulted from a bolder approach based on more speculative
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BOX 2-2
Pre-Experimental Probability: An Example

The importance of pre-experimental probability can be illustrated by con-
sidering a hypothetical case of an experiment involving homeopathy. Suppose a
homeopathic practitioner is convinced of the basic principle of homeopathy —that
is, extremely dilute solutions of a substance can effectively treat ailments related
to the substance. His theory is that when homeopathy fails, it is either because
the treatment solution has been adulterated (e.g., by using imperfectly distilled
water) or it is not sufficiently dilute to produce the desired effect. He designs an
experiment to test the efficacy of a 1 percent solution that is then diluted 1 to 100,
and then each subsequent dilution similarly diluted by 1 to 100 for a total of 1,000
dilutions. To avoid possible bias in the conduct of the experiment, the homeopathic
practitioner enlists a researcher who, like the patients in the study, is unaware of
whether any particular patient is receiving the dilution or pure distilled water (so-
called double-masked or double-blind study design).

The study comparing this final dilution to pure distilled water finds a differ-
ence favoring the dilution. The practitioner believes it was plausible, even likely,
because he was predisposed to that conclusion. For a chemist schooled in the
physical reality of her discipline, the theory is unfounded and the experimental
result would barely affect her conclusion that the likelihood that the conclusion is
true is close to zero. The practitioner and the chemist may agree on every aspect
of the study and its analysis yet reach diametrically different estimates of the
likelihood that the scientific conclusion is correct based on their prior beliefs and
assumptions, independent of this study.

These differing conclusions illustrate the importance of considering the re-
sults of any single study in the context of other results, particularly if the results are
inherently surprising. This is an important step toward building a body of evidence
on which to make a conclusion and not being swayed by one novel, and perhaps
unreliable, result.

hypotheses, although this path also leads to dead ends and to insights that
seem promising at first but fail to survive after repeated testing.

The “safe” and “bold” approaches to science have complementary
advantages. One might argue that a field has become too conservative if
all attempts to replicate results are successful, but it is reasonable to expect
that researchers follow up on new but uncertain discoveries with replication
studies to sort out which promising results prove correct. Scientists should
be cognizant of the level of uncertainty inherent in speculative hypotheses
and in surprising results in any single study.
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Understanding Reproducibility
and Replicability

In 2013, the cover story of The Economist, “How Science Goes
Wrong,” brought public attention to issues of reproducibility and
replicability across science and engineering. In this chapter, we
discuss how the practice of science has evolved and how these
changes have introduced challenges to reproducibility and replica-
bility. Because the terms reproducibility and replicability are used
differently across different scientific disciplines, introducing confu-
sion to a complicated set of challenges and solutions, the committee
also details its definitions and highlights the scope and expression
of the problems of non-reproducibility and non-replicability across
science and engineering research.

THE EVOLVING PRACTICES OF SCIENCE

Scientific research has evolved from an activity mainly undertaken by
individuals operating in a few locations to many teams, large communities,
and complex organizations involving hundreds to thousands of individuals
worldwide. In the 17th century, scientists would communicate through let-
ters and were able to understand and assimilate major developments across
all the emerging major disciplines. In 2016—the most recent year for which
data are available—more than 2,295,000 scientific and engineering research
articles were published worldwide (National Science Foundation, 2018e).

39
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In addition, the number of scientific and engineering fields and subfields
of research is large and has greatly expanded in recent years, especially in
fields that intersect disciplines (e.g., biophysics); more than 230 distinct
fields and subfields can now be identified. The published literature is so
voluminous and specialized that some researchers look to information re-
trieval, machine learning, and artificial intelligence techniques to track and
apprehend the important work in their own fields.

Another major revolution in science came with the recent explosion of
the availability of large amounts of data in combination with widely avail-
able and affordable computing resources. These changes have transformed
many disciplines, enabled important scientific discoveries, and led to major
shifts in science. In addition, the use of statistical analysis of data has ex-
panded, and many disciplines have come to rely on complex and expensive
instrumentation that generates and can automate analysis of large digital
datasets.

Large-scale computation has been adopted in fields as diverse as
astronomy, genetics, geoscience, particle physics, and social science, and
has added scope to fields such as artificial intelligence. The democratiza-
tion of data and computation has created new ways to conduct research;
in particular, large-scale computation allows researchers to do research that
was not possible a few decades ago. For example, public health researchers
mine large databases and social media, searching for patterns, while earth
scientists run massive simulations of complex systems to learn about the
past, which can offer insight into possible future events.

Another change in science is an increased pressure to publish new
scientific discoveries in prestigious and what some consider high-impact
journals, such as Nature and Science.! This pressure is felt worldwide,
across disciplines, and by researchers at all levels but is perhaps most acute
for researchers at the beginning of their scientific careers who are trying
to establish a strong scientific record to increase their chances of obtaining
tenure at an academic institution and grants for future work. Tenure
decisions have traditionally been made on the basis of the scientific record
(i.e., published articles of important new results in a field) and have given
added weight to publications in more prestigious journals. Competition for
federal grants, a large source of academic research funding, is intense as
the number of applicants grows at a rate higher than the increase in federal
research budgets. These multiple factors create incentives for researchers

1“High-impact” journals are viewed by some as those which possess high scores according
to one of the several journal impact indicators such as Citescore, Scimago Journal Ranking
(SJR), Source Normalized Impact per Paper (SNIP)—which are available in Scopus—and
Journal Impact Factor (IF), Eigenfactor (EF), and Article Influence Score (AIC)—which can
be obtained from the Journal Citation Report (JCR).
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to overstate the importance of their results and increase the risk of bias—
either conscious or unconscious—in data collection, analysis, and reporting.

In the context of these dynamic changes, the questions and issues
related to reproducibility and replicability remain central to the develop-
ment and evolution of science. How should studies and other research
approaches be designed to efficiently generate reliable knowledge? How
might hypotheses and results be better communicated to allow others to
confirm, refute, or build on them? How can the potential biases of scientists
themselves be understood, identified, and exposed in order to improve ac-
curacy in the generation and interpretation of research results? How can
intentional misrepresentation and fraud be detected and eliminated??

Researchers have proposed approaches to answering some of the ques-
tions over the past decades. As early as the 1960s, Jacob Cohen surveyed
psychology articles from the perspective of statistical power to detect effect
sizes, an approach that launched many subsequent power surveys (also
known as meta-analyses) in the social sciences in subsequent years (Cohen,
1988).

Researchers in biomedicine have been focused on threats to validity
of results since at least the 1970s. In response to the threat, biomedical
researchers developed a wide variety of approaches to address the concern,
including an emphasis on randomized experiments with masking (also
known as blinding), reliance on meta-analytic summaries over individual
trial results, proper sizing and power of experiments, and the introduction
of trial registration and detailed experimental protocols. Many of the same
approaches have been proposed to counter shortcomings in reproducibility
and replicability.

Reproducibility and replicability as they relate to data and
computation-intensive scientific work received attention as the use of
computational tools expanded. In the 1990s, Jon Claerbout launched the
“reproducible research movement,” brought on by the growing use of
computational workflows for analyzing data across a range of disciplines
(Claerbout and Karrenbach, 1992). Minor mistakes in code can lead
to serious errors in interpretation and in reported results; Claerbout’s
proposed solution was to establish an expectation that data and code will
be openly shared so that results could be reproduced. The assumption was
that reanalysis of the same data using the same methods would produce
the same results.

In the 2000s and 2010s, several high-profile journal and general media
publications focused on concerns about reproducibility and replicability
(see, e.g., loannidis, 2005; Baker, 2016), including the cover story in The

2 See Chapter 5, Fraud and Misconduct, which further discusses the association between
misconduct as a source of non-replicability, its frequency, and reporting by the media.
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Economist (“How Science Goes Wrong,” 2013) noted above. These articles
introduced new concerns about the availability of data and code and high-
lighted problems of publication bias, selective reporting, and misaligned
incentives that cause positive results to be favored for publication over
negative or nonconfirmatory results.> Some news articles focused on issues
in biomedical research and clinical trials, which were discussed in the gen-
eral media partly as a result of lawsuits and settlements over widely used
drugs (Fugh-Berman, 2010).

Many publications about reproducibility and replicability have focused
on the lack of data, code, and detailed description of methods in individual
studies or a set of studies. Several attempts have been made to assess non-
reproducibility or non-replicability within a field, particularly in social
sciences (e.g., Camerer et al., 2018; Open Science Collaboration, 2015). In
Chapters 4, 5, and 6, we review in more detail the studies, analyses, efforts
to improve, and factors that affect the lack of reproducibility and replicabil-
ity. Before that discussion, we must clearly define these terms.

DEFINING REPRODUCIBILITY AND REPLICABILITY

Different scientific disciplines and institutions use the words reproduc-
ibility and replicability in inconsistent or even contradictory ways: What
one group means by one word, the other group means by the other word.*
These terms—and others, such as repeatability—have long been used in
relation to the general concept of one experiment or study confirming the
results of another. Within this general concept, however, no terminologi-
cally consistent way of drawing distinctions has emerged; instead, conflict-
ing and inconsistent terms have flourished. The difficulties in assessing
reproducibility and replicability are complicated by this absence of standard
definitions for these terms.

In some fields, one term has been used to cover all related concepts: for
example, “replication” historically covered all concerns in political science
(King, 1995). In many settings, the terms reproducible and replicable have
distinct meanings, but different communities adopted opposing definitions
(Claerbout and Karrenbach, 1992; Peng et al., 2006; Association for Com-
puting Machinery, 2018). Some have added qualifying terms, such as meth-
ods reproducibility, results reproducibility, and inferential reproducibility
to the lexicon (Goodman et al., 2016). In particular, tension has emerged
between the usage recently adopted in computer science and the way that

3 One such outcome became known as the “file drawer problem”: see Chapter 5; also see
Rosenthal (1979).

4For the negative case, both “non-reproducible” and “irreproducible” are used in scientific
work and are synonymous.
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researchers in other scientific disciplines have described these ideas for years
(Heroux et al., 2018).

In the early 1990s, investigators began using the term “reproducible
research” for studies that provided a complete digital compendium of data
and code to reproduce their analyses, particularly in the processing of
seismic wave recordings (Claerbout and Karrenbach, 1992; Buckheit and
Donoho, 1995). The emphasis was on ensuring that a computational analy-
sis was transparent and documented so that it could be verified by other
researchers. While this notion of reproducibility is quite different from situ-
ations in which a researcher gathers new data in the hopes of independently
verifying previous results or a scientific inference, some scientific fields use
the term reproducibility to refer to this practice. Peng et al. (2006, p. 783)
referred to this scenario as “replicability,” noting: “Scientific evidence is
strengthened when important results are replicated by multiple independent
investigators using independent data, analytical methods, laboratories, and
instruments.” Despite efforts to coalesce around the use of these terms,
lack of consensus persists across disciplines. The resulting confusion is an
obstacle in moving forward to improve reproducibility and replicability
(Barba, 2018).

In a review paper on the use of the terms reproducibility and replicabil-
ity, Barba (2018) outlined three categories of usage, which she characterized
as A, B1, and B2:

A:  The terms are used with no distinction between them.

B1: “Reproducibility” refers to instances in which the original re-
searcher’s data and computer codes are used to regenerate the
results, while “replicability” refers to instances in which a re-
searcher collects new data to arrive at the same scientific findings
as a previous study.

B2: “Reproducibility” refers to independent researchers arriving at
the same results using their own data and methods, while “rep-
licability” refers to a different team arriving at the same results
using the original author’s artifacts.

B1 and B2 are in opposition of each other with respect to which term in-
volves reusing the original authors’ digital artifacts of research (“research
compendium”) and which involves independently created digital artifacts.
Barba (2018) collected data on the usage of these terms across a variety of
disciplines (see Table 3-1).°

5 See also Heroux et al. (2018) for a discussion of the competing taxonomies between com-
putational sciences (B1) and new definitions adopted in computer science (B2) and proposals
for resolving the differences.
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TABLE 3-1 Usage of the Terms Reproducibility and Replicability by
Scientific Discipline

A B1 B2

Political Science Signal Processing Microbiology, Inmunology (FASEB)

Economics Scientific Computing Computer Science (ACM)
Econometry

Epidemiology

Clinical Studies

Internal Medicine

Physiology (neurophysiology)
Computational Biology
Biomedical Research
Statistics

NOTES: See text for discussion. ACM = Association for Computing Machinery, FASEB =
Federation of American Societies for Experimental Biology.

SOURCE: Barba (2018, Table 2).

The terminology adopted by the Association for Computing Machinery
(ACM) for computer science was published in 2016 as a system for badges
attached to articles published by the society. The ACM declared that its
definitions were inspired by the metrology vocabulary, and it associated
using an original author’s digital artifacts to “replicability,” and develop-
ing completely new digital artifacts to “reproducibility.” These termino-
logical distinctions contradict the usage in computational science, where
reproducibility is associated with transparency and access to the author’s
digital artifacts, and also with social sciences, economics, clinical studies,
and other domains, where replication studies collect new data to verify the
original findings.

Regardless of the specific terms used, the underlying concepts have long
played essential roles in all scientific disciplines. These concepts are closely
connected to the following general questions about scientific results:

e  Are the data and analysis laid out with sufficient transparency and
clarity that the results can be checked?

e If checked, do the data and analysis offered in support of the result
in fact support that result?

e If the data and analysis are shown to support the original result,
can the result reported be found again in the specific study context
investigated?

e Finally, can the result reported or the inference drawn be found
again in a broader set of study contexts?
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Computational scientists generally use the term reproducibility to an-
swer just the first question—that is, reproducible research is research that
is capable of being checked because the data, code, and methods of analysis
are available to other researchers. The term reproducibility can also be used
in the context of the second question: research is reproducible if another
researcher actually uses the available data and code and obtains the same
results. The difference between the first and the second questions is one of
action by another researcher; the first refers to the availability of the data,
code, and methods of analysis, while the second refers to the act of recom-
puting the results using the available data, code, and methods of analysis.

In order to answer the first and second questions, a second researcher
uses data and code from the first; no new data or code are created by the
second researcher. Reproducibility depends only on whether the methods
of the computational analysis were transparently and accurately reported
and whether that data, code, or other materials were used to reproduce
the original results. In contrast, to answer question three, a researcher
must redo the study, following the original methods as closely as possible
and collecting new data. To answer question four, a researcher could take
a variety of paths: choose a new condition of analysis, conduct the same
study in a new context, or conduct a new study aimed at the same or similar
research question.

For the purposes of this report and with the aim of defining these terms
in ways that apply across multiple scientific disciplines, the committee has
chosen to draw the distinction between reproducibility and replicability
between the second and third questions. Thus, reproducibility includes the
act of a second researcher recomputing the original results, and it can be
satisfied with the availability of data, code, and methods that makes that
recomputation possible. This definition of reproducibility refers to the
transparency and reproducibility of computations: that is, it is synonymous
with “computational reproducibility,” and we use the terms interchange-
ably in this report.

When a new study is conducted and new data are collected, aimed at
the same or a similar scientific question as a previous one, we define it as a
replication. A replication attempt might be conducted by the same investi-
gators in the same lab in order to verify the original result, or it might be
conducted by new investigators in a new lab or context, using the same or
different methods and conditions of analysis. If this second study, aimed
at the same scientific question but collecting new data, finds consistent
results or can draw consistent conclusions, the research is replicable. If a
second study explores a similar scientific question but in other contexts or
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populations that differ from the original one and finds consistent results,
the research is “generalizable.”®

In summary, after extensive review of the ways these terms are used by
different scientific communities, the committee adopted specific definitions
for this report.

CONCLUSION 3-1: For this report, reproducibility is obtaining con-
sistent results using the same input data; computational steps, methods,
and code; and conditions of analysis. This definition is synonymous
with “computational reproducibility,” and the terms are used inter-
changeably in this report.

Replicability is obtaining consistent results across studies aimed at
answering the same scientific question, each of which has obtained its
own data.

Two studies may be considered to have replicated if they obtain con-
sistent results given the level of uncertainty inherent in the system under
study. In studies that measure a physical entity (i.e., a measurand), the
results may be the sets of measurements of the same measurand obtained
by different laboratories. In studies aimed at detecting an effect of an
intentional intervention or a natural event, the results may be the type
and size of effects found in different studies aimed at answering the same
question. In general, whenever new data are obtained that constitute the
results of a study aimed at answering the same scientific question as an-
other study, the degree of consistency of the results from the two studies
constitutes their degree of replication.

Two important constraints on the replicability of scientific results rest
in limits to the precision of measurement and the potential for altered re-
sults due to sometimes subtle variation in the methods and steps performed
in a scientific study. We expressly consider both here, as they can each have
a profound influence on the replicability of scientific studies.

PRECISION OF MEASUREMENT

Virtually all scientific observations involve counts, measurements, or
both. Scientific measurements may be of many different kinds: spatial
dimensions (e.g., size, distance, and location), time, temperature, bright-
ness, colorimetric properties, electromagnetic properties, electric current,

¢ The committee definitions of reproducibility, replicability, and generalizability are con-
sistent with the National Science Foundation’s Social, Behavioral, and Economic Sciences
Perspectives on Robust and Reliable Science (Bollen et al., 2015).
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material properties, acidity, and concentration, to name a few from the
natural sciences. The social sciences are similarly replete with counts and
measures. With each measurement comes a characterization of the margin
of doubt, or an assessment of uncertainty (Possolo and Iyer, 2017). Indeed,
it may be said that measurement, quantification, and uncertainties are core
features of scientific studies.

One mark of progress in science and engineering has been the ability to
make increasingly exact measurements on a widening array of objects and
phenomena. Many of the things taken for granted in the modern world,
from mechanical engines to interchangeable parts to smartphones, are pos-
sible only because of advances in the precision of measurement over time
(Winchester, 2018).

The concept of precision refers to the degree of closeness in measure-
ments. As the unit used to measure distance, for example, shrinks from me-
ter to centimeter to millimeter and so on down to micron, nanometer, and
angstrom, the measurement unit becomes more exact and the proximity of
one measurand to a second can be determined more precisely.

Even when scientists believe a quantity of interest is constant, they
recognize that repeated measurement of that quantity may vary because
of limits in the precision of measurement technology. It is useful to note
that precision is different from the accuracy of a measurement system, as
shown in Figure 3-1, demonstrating the differences using an archery target
containing three arrows.

In Figure 3-1, A, the three arrows are in the outer ring, not close to-
gether and not close to the bull’s eye, illustrating low accuracy and low
precision (i.e., the shots have not been accurate and are not highly precise).
In B, the arrows are clustered in a tight band in an outer ring, illustrating

P REL,

Low accuracy Low accuracy ngh accuracy Hngh accuracy
Low precision H|gh precision Low precision Hngh precision

FIGURE 3-1 Accuracy and precision of a measurement.

NOTE: See text for discussion.

SOURCE: Chemistry LibreTexts. Available: https://chem.libretexts.org/Bookshelves/
Introductory_Chemistry/Book %3A_IntroductoryChemistry_(CK-12)/03%3A_Measurements/
3.12%3A_Accuracy_and_Precision.
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low accuracy and high precision (i.e., the shots have been more precise, but
not accurate). The other two figures similarly illustrate high accuracy and
low precision (C) and high accuracy and high precision (D).

It is critical to keep in mind that the accuracy of a measurement can be
judged only in relation to a known standard of truth. If the exact location
of the bull’s eye is unknown, one must not presume that a more precise set
of measures is necessarily more accurate; the results may simply be subject
to a more consistent bias, moving them in a consistent way in a particular
direction and distance from the true target.

It is often useful in science to describe quantitatively the central ten-
dency and degree of dispersion among a set of repeated measurements of
the same entity and to compare one set of measurements with a second
set. When a set of measurements is repeated by the same operator using
the same equipment under constant conditions and close in time, me-
trologists refer to the proximity of these measurements to one another as

BOX 3-1
Terms Used in Metrology and How They Differ
from the Committee’s Definitions

Metrologists, who specialize in the science of measurement, are interested
in the precision of measurement under different conditions. They define degrees
of variation in the settings for measurement, including such elements as the
conditions of measurement, equipment, operator, and time frame, and then ask
what degree of precision can be attained as these elements vary (see Taylor
and Kuyatt, 1994). If the same laboratory makes a series of measurements of a
single entity, using particular equipment with the same operator and conditions
of observation and with repeat measurements in a short time frame, these are
considered “measurements under conditions of repeatability,” and the degree
of precision attained in these measurements is defined as “measurement re-
peatability.” If the measurements are made in two or more different labs or on
different equipment under different conditions of measurement (e.g., ambient
temperature), metrologists refer to these as “measurements under conditions
of reproducibility,” and the degree of precision attained is the “measurement
reproducibility.” If only a minor degree of variation in conditions pertains, such
as measurements in the same lab on different days, metrologists allow for “mea-
surement under intermediate conditions.” Importantly, the underlying assumption
is that all of these measurements are aimed at the same entity, and the question
is how much variation in the set of measured values is introduced under these
various repeatability, reproducibility, or intermediate conditions of measurement.

The International Vocabulary of Metrology, known as VIM (for its French
title) and approved by the International Organization for Standardization, defines
terms related to measurements as follows (Joint Committee for Guides in Metrol-
ogy, 2012):
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measurement repeatability (see Box 3-1). When one is interested in com-
paring the degree to which the set of measurements obtained in one study
are consistent with the set of measurements obtained in a second study, the
committee characterizes this as a test of replicability because it entails the
comparison of two studies aimed at the same scientific question where each
obtained its own data.

Consider, for example, the set of measurements of the physical constant
obtained over time by a number of laboratories (see Figure 3-2). For each
laboratory’s results, the figure depicts the mean observation (i.e., the central
tendency) and standard error of the mean, indicated by the error bars. The
standard error is an indicator of the precision of the obtained measurements,
where a smaller standard error represents higher precision. In comparing the
measurements obtained by the different laboratories, notice that both the
mean values and the degrees of precision (as indicated by the width of the
error bars) may differ from one set of measurements to another.

1. Measurement precision (precision): “closeness of agreement between
indications or measured quantity values obtained by replicate measure-
ments on the same or similar objects under specified conditions”; “usu-
ally expressed numerically by measures . . . such as standard deviation,
variance, or coefficient of variation” (quantifying dispersion of the data)
(§2.15).

2. Measurement reproducibility (reproducibility): “measurement precision
under reproducibility conditions of measurement” (§2.25).

3. Reproducibility condition of measurement (reproducibility condition):
“condition of measurement, out of a set of conditions that includes dif-
ferent locations, operators, measuring systems, and replicate measure-
ments on the same or similar objects” (§2.24).

In these metrology definitions, the shortened form “reproducibility” refers to pre-
cision in a set of measurements and is always reported as a numeric quantity.

These indicators in the overall precision of measurement are distinct from
the question of comparing the results obtained in one laboratory to the results
obtained by another. In the context of reproducibility and replicability in science,
the committee is focusing on just this kind of question: whether the overall results
obtained in one study are or are not replicated by a second study. In accordance
with the definitions we adopted, a comparison of the results from one laboratory
to that of a second laboratory would be a form of replication because new data
are involved.

The committee appreciates the importance in many types of scientific re-
search of identifying the overall precision of measurement when taken across
different settings (i.e., measurement reproducibility). However, this is different
from assessing the degree of similarity between one study that produces a set of
measurements and a second study that produces a set of measurements, which
in our terms is a form of replication.
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FIGURE 3-2 Evolution of scientific understanding of the fine structure constant over time.
NOTES: Error bars indicate the experimental uncertainty of each measurement. See text for
discussion.

SOURCE: Reprinted figure with permission from Peter J. Mohr, David B. Newell, and Barry
N. Taylor (2016). Reviews of Modern Physics, 88,035009. CODATA recommended values of
the fundamental physical constants: 2014. Copyright 2016 by the American Physical Society.

We may now ask what is a central question for this study: How well
does a second set of measurements (or results) replicate a first set of mea-
surements (or results)? Answering this question, we suggest, may involve
three components:

1. proximity of the mean value (central tendency) of the second set
relative to the mean value of the first set, measured both in physical
units and relative to the standard error of the estimate

2. similitude in the degree of dispersion in observed values about the
mean in the second set relative to the first set

3. likelihood that the second set of values and the first set of values

could have been drawn from the same underlying distribution

Depending on circumstances, one or another of these components could be
more salient for a particular purpose. For example, two sets of measures
could have means that are very close to one another in physical units,
yet each were sufficiently precisely measured as to be very unlikely to be
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different by chance. A second comparison may find means are further
apart, yet derived from more widely dispersed sets of observations, so that
there is a higher likelihood that the difference in means could have been
observed by chance. In terms of physical proximity, the first comparison
is more closely replicated. In terms of the likelihood of being derived from
the same underlying distribution, the second set is more highly replicated.

A simple visual inspection of the means and standard errors for mea-
surements obtained by different laboratories may be sufficient for a judg-
ment about their replicability. For example, in Figure 3-2, it is evident that
the bottom two measurement results have relatively tight precision and
means that are nearly identical, so it seems reasonable these can be consid-
ered to have replicated one another. It is similarly evident that results from
LAMPF (second from the top of reported measurements with a mean
value and error bars in Figure 3-2) are better replicated by results from
LNE-01 (fourth from top) than by measurements from NIST-89 (sixth
from top). More subtle may be judging the degree of replication when,
for example, one set of measurements has a relatively wide range of
uncertainty compared to another. In Figure 3-2, the uncertainty range
from NPL-88 (third from top) is relatively wide and includes the mean
of NIST-97 (seventh from top); however, the narrower uncertainty range
for NIST-97 does not include the mean from NPL-88. Especially in such
cases, it is valuable to have a systematic, quantitative indicator of the extent
to which one set of measurements may be said to have replicated a second
set of measurements, and a consistent means of quantifying the extent of
replication can be useful in all cases.

VARIATIONS IN METHODS EMPLOYED IN A STUDY

When closely scrutinized, a scientific study or experiment may be
seen to entail hundreds or thousands of choices, many of which are
barely conscious or taken for granted. In the laboratory, exactly what
size of Erlenmeyer flask is used to mix a set of reagents? At what exact
temperature were the reagents stored? Was a drying agent such as acetone
used on the glassware? Which agent and in what amount and exact con-
centration? Within what tolerance of error are the ingredients measured?
When ingredient A was combined with ingredient B, was the flask shaken
or stirred? How vigorously and for how long? What manufacturer of
porcelain filter was used? If conducting a field survey, how exactly, were
the subjects selected? Are the interviews conducted by computer or over
the phone or in person? Are the interviews conducted by female or male,
young or old, the same or different race as the interviewee? What is the
exact wording of a question? If spoken, with what inflection? What is
the exact sequence of questions? Without belaboring the point, we can
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say that many of the exact methods employed in a scientific study may
or may not be described in the methods section of a publication. An
investigator may or may not realize when a possible variation could be
consequential to the replicability of results.

In a later section, we will deal more generally with sources of non-
replicability in science (see Chapter 5 and Box 5-2). Here, we wish to
emphasize that countless subtle variations in the methods, techniques,
sequences, procedures, and tools employed in a study may contribute in
unexpected ways to differences in the obtained results (see Box 3-2).

Finally, note that a single scientific study may entail elements of
the several concepts introduced and defined in this chapter, including
computational reproducibility, precision in measurement, replicability,
and generalizability or any combination of these. For example, a large
epidemiological survey of air pollution may entail portable, personal de-
vices to measure various concentrations in the air (subject to precision of
measurement), very large datasets to analyze (subject to computational
reproducibility), and a large number of choices in research design, meth-
ods, and study population (subject to replicability and generalizability).

RIGOR AND TRANSPARENCY

The committee was asked to “make recommendations for improving
rigor and transparency in scientific and engineering research” (refer to Box
1-1 in Chapter 1). In response to this part of our charge, we briefly discuss
the meanings of rigor and of transparency below and relate them to our
topic of reproducibility and replicability.

Rigor is defined as “the strict application of the scientific method to
ensure robust and unbiased experimental design” (National Institutes of
Health, 2018e). Rigor does not guarantee that a study will be replicated,
but conducting a study with rigor—with a well-thought-out plan and strict
adherence to methodological best practices—makes it more likely. One of
the assumptions of the scientific process is that rigorously conducted studies
“and accurate reporting of the results will enable the soundest decisions”
and that a series of rigorous studies aimed at the same research question
“will offer successively ever-better approximations to the truth” (Wood et
al., 2019, p. 311). Practices that indicate a lack of rigor, including poor
study design, errors or sloppiness, and poor analysis and reporting, contrib-
ute to avoidable sources of non-replicability (see Chapter 5). Rigor affects
both reproducibility and replicability.

Transparency has a long tradition in science. Since the advent of scien-
tific reports and technical conferences, scientists have shared details about
their research, including study design, materials used, details of the sys-
tem under study, operationalization of variables, measurement techniques,
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BOX 3-2
Data Collection, Cleaning, and Curation

The committee’s definition of computational reproducibility refers to input
data. Developing the set of data that is to be used as input for analysis or for
models is a large task and may involve many decisions, steps, and coordination
depending on the scientific study.

Data that will be generated and used in a given study are central to a study’s
success. While each study will differ in how it collects and manages data, there
are general steps to consider: data definition, collection, review and culling, and
curation. Each step includes decisions that can affect reproducibility and replica-
bility of results.

Goodman et al. (2016, p. 2) provide an example of the steps and details
that may be required for establishing a final dataset for analysis in the clinical
sciences

In the clinical sciences, the definition of which data need to be examined to ensure
reproducibility can be contentious. The relevant data could be anywhere along the
continuum from the initial raw measurement (such as a pathology slide or image), to
the interpretation of those data (the pathologic diagnosis), to the coded data in the
computer analytic file. Many judgments and choices are made along this path and in
the processes of data cleaning and transformation that can be critical in determining
analytical results.

Even when beginning with the same raw dataset, teams of researchers may
make different decisions on how to clean (i.e., perform quality checks and remove
data that do not meet quality standards) or group the data. One example is a 2015
study (Siberzahn et al., 2015, p. 338) in which nearly 30 independent research
teams were given the same raw dataset and asked the same questions: “whether
soccer referees are more likely to give red cards to dark skin toned players than
light skin toned players and whether this relation is moderated by measures of
explicit and implicit bias in the referees’ country of origin.” The results showed
wide variation, with 69 percent of the teams reporting a significant positive effect
and 31 percent not finding a significant relationship. While different approaches
to analysis played an important role in the differing results, decisions on how to
group the data made by the teams were also important.

For studies that involve large collaborations, such as the recent report of the
first picture of a black hole, which included more than 200 collaborators across
the world, defining datasets and analytical plans is a crucial part of the study. The
final image of the black hole began with the collection of more than 5 petabytes
of data (1 petabyte = 1 million gigabytes), which had to be filtered and culled into
a final set from which an image could be created (Koerth-Baker, 2019).
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uncertainties in measurement in the system under study, and how data were
collected and analyzed. A transparent scientific report makes clear whether
the study was exploratory or confirmatory, shares information about what
measurements were collected and how the data were prepared, which
analyses were planned and which were not, and communicates the level
of uncertainty in the result (e.g., through an error bar, sensitivity analysis,
or p-value). Only by sharing all this information might it be possible for
other researchers to confirm and check the correctness of the computations,
attempt to replicate the study, and understand the full context of how to in-
terpret the results. Transparency of data, code, and computational methods
is directly linked to reproducibility, and it also applies to replicability. The
clarity, accuracy, specificity, and completeness in the description of study
methods directly affects replicability.

FINDING 3-1: In general, when a researcher transparently reports a
study and makes available the underlying digital artifacts, such as data
and code, the results should be computationally reproducible. In con-
trast, even when a study was rigorously conducted according to best
practices, correctly analyzed, and transparently reported, it may fail to
be replicated.
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Reproducibility

As defined by the committee, reproducibility relates strictly to
computational reproducibility—obtaining consistent results us-
ing the same input data, computational methods, and conditions
of analysis (see Chapter 3). This chapter reviews the technical
and procedural challenges in ensuring reproducibility and assesses
the extent of non-reproducibility in scientific and engineering re-
search. The committee also examines factors that may deter or
limit reproducibility.

WIDESPREAD USE OF COMPUTATIONAL METHODS

Most scientific disciplines today use computation as a tool (Hey et al.,
2009). For example, public health researchers data mine large databases
looking for patterns, earth scientists run massive simulations of complex
systems to learn about geological changes in our planet, and psychologists
use advanced statistical analyses to uncover subtle effects from randomized
controlled experiments.

Many researchers use software at some point during their work and
some are creating their own software to advance their research (Nangia
and Katz, 2017). Researchers can use computation as a tool to enable data
acquisition (e.g., from instruments), data management (e.g., transform-
ing or cleaning, processing, curating, archiving), analysis (e.g., modeling,
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simulation, data analysis, and data visualization), automation, and other
various tasks. Computation can also be the object of study, with researchers
using computing to design and test new algorithms and systems. However,
the vast majority of researchers do not have formal training in software
development (e.g., managing workflow processes such as maintaining code
and using version control, performing unit testing).

While the abundance of data and widespread use of computation have
transformed most disciplines and have enabled important scientific discov-
eries, this revolution is not yet reflected in how scientific results aided by
computations are reported, published, and shared. Most computational ex-
periments or analyses are discussed informally in papers, results are briefly
described in table and figure captions, and the code that produced the
results is seldom available. Buckheit and Donoho (1993, p. 5) paraphrase
Jon Claerbout as saying, “An article about computational science [. . .] is
merely advertising of the scholarship. The actual scholarship is the complete
software development environment and the complete set of instructions
which generated the figures.”

The connection between reproducibility and transparency (i.e., open
code and data) was made early by the pioneers of the reproducible research
movement. Claerbout and Karrenbach (1992) advocated merging research
publications with the availability of the underlying computational analysis
and using a public license that allows others to reuse, copy, and redistribute
the software. Buckheit and Donoho (1995, p. 4) support similar ideals,
stating that “reproducibility . . . requires having the complete software
environment available in other laboratories and the full source code avail-
able for inspection, modification, and application under varied parameter
settings.” Later, Donoho et al. (2009, p. 8) explicitly defined reproducible
computational research as that in which “all details of the computation—
code and data—are made conveniently available to others.” The Yale Law
School Roundtable on Data and Code Sharing (2010) issued a statement
urging more transparency in computational sciences and offered concrete
recommendations for reproducibility: assign a unique identifier to every
version of the data and code, describe within each publication the comput-
ing environment used, use open licenses and nonproprietary formats, and
publish under open access conditions (or post preprints). Peng (2011, p.
1226) explains:

every computational experiment has, in theory, a detailed log of every
action taken by the computer. Making these computer codes available
to others provides a level of detail regarding the analysis that is greater
than the analogous noncomputational experimental descriptions printed
in journals using a natural language.
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Nonpublic Data and Code

In many cases, sharing or submitting data and code when submitting
a manuscript to a journal is the responsibility of the researcher. However,
the researcher may not be allowed to do so when data or code are not
publicly releasable due to licensing, privacy, or commercial reasons. For
example, data or code may be proprietary as is the case often with com-
mercial datasets; privacy laws (such as the Health Insurance Portability and
Accountability Act [HIPAA]) may restrict sharing of personal information.’

Nonpublic data are often managed by national organizations or com-
mercial (i.e., private) entities. In each case, protecting data and code has
a reasonable goal, although one at odds with the aim of computational
reproducibility. In some instances, access is allowed to researchers for both
original research and reproducibility efforts (i.e., the U.S. Federal Statistical
Research Data Center or the German Research Data Center of the Institute
for Employment Research); in other cases, prior agreements with data or
code owners will allow a researcher to share their data and code with others
for reproducibility efforts (Vilhuber, 2018).

Nonpublic databases such as those storing national statistics are of
particular interest to economists. Access is granted through a set of pro-
tocols. However, datasets used in research may still not be shared with
others. Creation of a dataset for research is a considerable task requiring
the development, in the case of databases, of queries and cleaning of the
dataset prior to use. While a second researcher may have access to the same
nonpublic database and the query used by the original, differences in data
cleaning decisions will result in a different final dataset. Additionally, many
of the large databases used by economists continuously add data so queries
submitted at different times result in different initial datasets. In this case,
reproducibility is not possible while replicability is (Vilhuber, 2018).

Resources and Costs of Reproducibility

Newly developed tools allow researchers to more easily follow Peng’s
advice by capturing detailed logs of a researchers’ keystrokes or changes to
code (see Chapter 6 for more details on these tools). Studies that have been
designed with computational reproducibility as a key component may take
advantage of these tools and efficiently track and retain relevant compu-
tational details. For studies and longstanding collaborations that have not

! Journals that require data to be shared generally allow some exceptions to the data sharing
rule. For example, PLOS publications allow researchers to exclude data that would violate
participant privacy, but they will not publish research that is based solely on proprietary data
that are not made available or if data are withheld for personal reasons (e.g., future publica-
tion or patents).
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designed their processes around computational reproducibility, retrofitting
existing processes to capture logs of computational decisions represents a
resource choice between advancing current research or redesigning a poten-
tially large and complex system. Such studies have often developed methods
for gaining confidence in the function of the system, for example, through
verification and validation checks and internal reviews.

While efforts to improve reporting and reproducibility in computa-
tional sciences have expanded to the broader scientific community (Cassey
and Blackburn, 2006; “Error Prone” (editorial), Nature, 2012; Konkol et
al., 2019; Vandewalle et al., 2007), the costs and resources required to sup-
port computational reproducibility are not well established and may well be
substantial. As new computational tools and data storage options become
available, and as the cost of massive digital storage continues to decline,
these developments will eventually make computational reproducibility
more affordable, feasible, and routine.

FINDING 4-1: Most scientific and engineering research disciplines use
computation as a tool. While the abundance of data and widespread
use of computation have transformed many disciplines and have en-
abled important scientific discoveries, this revolution is not yet uni-
formly reflected in how scientists develop and use software and how
scientific results are published and shared.

FINDING 4-2: When results are produced by complex computational
processes using large volumes of data, the methods section of a tradi-
tional scientific paper is insufficient to convey the necessary information
for others to reproduce the results.

RECOMMENDATION 4-1: To help ensure the reproducibility of
computational results, researchers should convey clear, specific, and
complete information about any computational methods and data
products that support their published results in order to enable other
researchers to repeat the analysis, unless such information is restricted
by nonpublic data policies. That information should include the data,
study methods, and computational environment:

e the input data used in the study either in extension (e.g., a text file
or a binary) or in intension (e.g., a script to generate the data),
as well as intermediate results and output data for steps that are
nondeterministic and cannot be reproduced in principle;

e a detailed description of the study methods (ideally in executable
form) together with its computational steps and associated param-
eters; and
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¢ information about the computational environment where the study
was originally executed, such as operating system, hardware archi-
tecture, and library dependencies. (Library dependency,? in the con-
text of research software as used here, is the relationship of pieces
of software that are needed for another software to run. Problems
often occur when installed software has dependencies on specific
versions of other software.)

ASSESSING REPRODUCIBILITY

When a second researcher attempts to computationally reproduce the
results of another researcher’s work, the attempt is considered successful if
the two results are consistent. For computations, one may expect that the
two results be identical (i.e., obtaining a bitwise identical numeric result).
In most cases, this is a reasonable expectation, and the assessment of re-
producibility is straightforward. However, there are legitimate reasons for
reproduced results to differ while still being considered consistent.3

In some research settings, it may make sense to relax the requirement of
bitwise reproducibility and settle on reproducible results within an accepted
range of variation (or uncertainty). This can only be decided, however,
after fully understanding the numerical-analysis issues affecting the out-
comes. Researchers applying high-performance algorithms thus recognize
(Diethelm, 2012) that when different runs with the same input data produce
slightly different numeric outputs, each of these results is equally credible,
and the output must be understood as an approximation to the correct
value within a certain accepted uncertainty. Sources of the uncertainty
could be, for example, floating point averaging in parallel processors (see
Box 4-1) or even cosmic rays interacting with processors within a super-
computer in climate change research (see Box 4-2). In other research set-
tings, there may be a need to reproduce the result extremely accurately, and
researchers must tackle variability in computations using higher-precision
arithmetic or by redesigning the algorithms (Bailey et al., 2012).

2This definition was corrected during copy editing between release of the prepublication
version and this final, published version.

3 As briefly mentioned in Chapter 2, reproducibility does not ensure that the results them-
selves are correct. If there was a mistake in the source code, and another researcher used the
same code to rerun the analysis, the reproduced results would be consistent but still incorrect.
However, the fact that the information was transparently shared would allow other research-
ers to examine the data, code, and analysis closely and possibly detect errors. For example,
an attempt by an economic researcher to reproduce earlier results highlighted software errors
in a statistics program used by many researchers in the field (McCullough and Vinod, 2003).
Without a high level of transparency, it is difficult to know if and where a computational er-
ror may have occurred.
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BOX 4-1
Parallel Processing and Numerical Precision

Although it may seem evident that running an analysis with identical inputs
would result in identical outputs, this is sometimes not true. One condition under
which computed results can vary between runs of the same computational analy-
sis occurs when using computers that rely on parallel processors. Two factors are
at play: the way that numbers are represented in a computer, and how individual
processors cooperate in a multicore or distributed system.

Numbers are represented in a computer using floating-point representation,
consisting of a number of significant digits scaled by an exponent in a fixed base.
For example, the speed of light is 299,792,458 m/s; in normalized floating-point
representation, this is 2.99792458 x 108 (in base 10). The number of significant
digits gives the precision of the floating-point approximation. Nine digits are
needed for the exact value of the speed of light, but computers store nhumbers
with limited precision and will round this to 2.997924 x 108 when working with only
seven digits of precision. If some calculation were to involve, say, adding a speed
of 10 m/s to the speed of light, the rules of floating-point arithmetic mean that to
add the numbers, the smaller one has to be shifted to the same exponent as the
larger one, so 10 m/s is represented as 0.00000010 x 108, which with seven-digit
precision gets rounded off to zero. Adding floating-point numbers of disparate
scales can thus result in lost accuracy in the result.

Diethelm (2012) discusses the limits of reproducibility in high-performance
(parallel) computing, given the approximate nature of floating-point arithmetic.
When a large calculation (such as adding millions of numbers) is divided up so
that many processors cooperate in obtaining the result in parallel, the order in
which each processor finishes computing (its partial sum) cannot be guaran-
teed. Partial results get computed, and loss of accuracy may occur when the
numbers involved have disparate scales (as described above). The final result
will be different depending on the order in which the partial results are gathered
together by the master process. (In mathematical terms, floating-point addition
is commutative but not associative.) It is possible to prevent this lack of (numeri-
cal) reproducibility, but doing so involves artificial synchronization points in the
calculation, which degrades performance. When the research requires expensive
simulations that run for many days on supercomputers, the focus of research
teams is understandably on maximizing performance. Thus, there is a tension
between computational performance and strict numerical reproducibility of the
results in parallel computing.

Copyright National Academy of Sciences. All rights reserved.



Reproducibility and Replicability in Science

REPRODUCIBILITY

BOX 4-2
Reproducing Climate Model Results

For global climate models (GCMs), computational reproducibility refers to the
ability to rerun a model with a given set of initial conditions and produce the same
results. Such a result is achievable for short time spans and individual locations
and is essential for model testing and software debugging, but the dominance of
this definition as a paradigm in the field is giving way to a more statistical way of
understanding model output.

Historically, climate modelers believed that they needed the more rigid defi-
nition of bitwise reproduction because the nonlinear equations governing Earth
systems are chaotic and sensitive to initial conditions. However, this numerical
reproducibility is difficult to achieve with the computing arrays required by modern
GCMs. There is also a long history of occurrences in the models that have caused
random errors and have never been reproduced, such as possible cosmic ray
strikes.? Other reported events in uncontrolled model runs may or may not have
been the result of internal model variability or software problems (see, e.g., Hall
and Stouffer, 2001; Rind et al., 2018).

Reproducing the conditions that cause these random events is difficult, and
scientists’ lack of understanding of their effects diminishes the utility of the model.
Features of computer architecture that undermine the ability to achieve bitwise
reproducibility include fused multiply-add, which cannot preserve the order of op-
erations, memory details, and issues of parallelism when a calculation is divided
across multiple processors (see Box 4-1). Moreover, the environment in which
GCMs are run is fragile and ephemeral on the scale of months to years, as compil-
ers, libraries, and operating systems are continually updated, such that revisiting
a 10-year-old study would require an impractical museum of supercomputers.

Retaining bitwise reproducibility will become even more difficult in the near
future as machine-learning algorithms and neural networks are introduced. There-
fore, scientists are also interested in representing stochasticity in the physical
models by harnessing noise inherent within the electronics, and some current
devices have mixed or variable bit precision.

aCosmic ray strikes within computer hardware are another source of undetected error, and
by mapping errors in model output, researchers have been able to reconstruct the path of a
particle as it passed through the memory of a supercomputer stack. Therefore, the focus of
the discipline has not been on model run reproducibility, but rather on replication of the model
phenomena that are observed and their magnitudes (Hansen et al., 1984).
SOURCE: Adapted from Bush (2018, pp. 12-13).
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A computational result may be in the form of confirming a hypothesis
that entails a complex relationship among variables. Consider this exam-
ple: On observing a marked seasonal migration of a species of butterflies
between Europe and North Africa, researchers posed the hypothesis that
the migratory strategy evolved to track the availability of host plants (for
breeding) and nectar sources (Stefanescu et al., 2017). After collecting field
data of plant abundance and butterfly populations, the researchers built
statistical models to confirm a correlation in the temporal patterns of mi-
gration and plant abundance. The computational results were presented in
the form of model parameter estimates, computed using statistical software
and custom scripts. A consistent computational result, in this case, means
obtaining the same model parameter estimates and measures of statistical
significance within some degree of sampling variation.

Artificial intelligence and machine learning present unique new chal-
lenges to computational reproducibility, and as these fields continue to
grow, the techniques and approaches for documenting and capturing the
relevant parameters to enable reproducibility and confirmation of study
results needs to keep pace.

FINDING 4-3: Computational reproducibility, within the range of
thoughtfully assessed uncertainties, can be expected for research results
given sufficient access and description of data, code, and methods, with
a few notable exceptions, such as complex processing techniques and
the use of proprietary or personal information.

FINDING 4-4: Understanding the limits of computational reproduc-
ibility in increasingly complex computational systems, such as artificial
intelligence, high-performance computing, and deep learning, is an ac-
tive area of research.

RECOMMENDATION 4-2: The National Science Foundation
should consider investing in research that explores the limits of
computational reproducibility in instances in which bitwise repro-
ducibility is not reasonable in order to ensure that the meaning of
consistent computational results remains in step with the develop-
ment of new computational hardware, tools, and methods.

THE EXTENT OF NON-REPRODUCIBILITY

The committee was asked to assess what is known and, if necessary,
identify areas that may need more information to ascertain the extent of
non-reproducibility in scientific and engineering research. The committee
examined current efforts to assess the extent of non-reproducibility within
several fields, reviewed literature on the topic, and heard from expert panels
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during its public meetings. It also drew on the previous work of committee
members and other experts in the reproducibility of research. A summary
of the reproducibility studies assembled by the committee is shown in
Table 4-1.

As noted earlier, transparency is a prerequisite for reproducibility.
Transparency represents the extent to which researchers provide sufficient
information to enable others to reproduce the results. A number of studies
have examined the extent of the availability of computational information
within particular fields or publications as an indirect measure of computa-
tional reproducibility.

Most of the studies shown in Table 4-1 assess transparency and are thus
indirect measures of computational reproducibility. Four studies listed in
Table 4-1 are results of direct reproducibility (reruns of the available data
and code): Dewald et al. (1986), Jacoby (2017), Moraila et al. (2013), and
Chang and Li (2018). In the Dewald study, nine original research results
were reproduced in a 2-year effort; of the nine, four were unsuccessful.
Jacoby described the standing contract of the American Journal for Political
Science with a university to computationally reproduce every article prior
to publication; he reported to the committee that each article requires ap-
proximately 8 hours to reproduce. In Moraila’s effort, software could be
built for fewer than one-half of the 231 studies, highlighting the challenges
of reproducing computational environments. Chang and Li were able to
reproduce the results of one-half of the 67 studies they examined.

Notable in the studies listed above is the lack of a uniform standard for
success or failure. The determination of transparency has layers of success.
For example, downloadable data or code, downloadable data and code but
not functioning, or available after a single request of the author. Similar
assessments are shown for reproducibility attempts, such as the “near”
successful results provided by Dewald.

FINDING 4-5: There are relatively few direct assessments of repro-
ducibility, replaying the computations to obtain consistent results, in
comparison to assessments of transparency, the availability of data and
code. Direct assessments of computational reproducibility are more
limited in breadth and often take much more time and resources than
assessments of transparency.

CONCLUSION 4-1: Assessments of computational reproducibility
take more than one form—indirect and direct—and the standards for
success of each are not universal and not clear-cut. In addition, the
evidence base of non-reproducibility of computations across science
and engineering research is incomplete. These factors contribute to the
committee’s assessment that determining the extent of issues related to
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TABLE 4-1 Examples of Reproducibility-Related Studies

Author Field Scope of Study Reported Concerns
Prinz et al. Biology Data from 67 Published data in line with
(2011) (oncology, projects within Bayer in-house results: ~20%-
women’s health, HealthCare 25% of total projects.
cardiovascular
health)
Igbal et al. Biomedical An examination of Of 268 papers with
(2016) 441 biomedical studies empirical data, 267 did
published between 2000 not include a link to a full
and 2014 study protocol, and none
provided access to all of the
raw data used in the study.
Stodden et al. Computational  An examination of More than one-half
(2018a) physics the availability of (50.9%) of the articles were
artifacts for 307 articles impossible to reproduce.
published in the Journal About 6% of the articles
of Computational (17) made artifacts
Physics available in the publication
itself, and about 36%
discussed the artifacts (e.g.,
mentioned code) in the
article.
Of the 298 authors who
were emailed with a request
for artifacts, 37% did not
reply, 48% replied but did
not provide any artifacts,
and 15% supplied some
artifacts.
Stodden et al. Cross- A randomly selected Fewer than one-half of
(2018b) disciplinary, sample of 204 the articles provided data:

Chang and Li
(2018)

Dewald et al.
(1986)

computation-
based research

Economics

Economics

computation-based
articles published in
Science, with a data-
sharing requirement for
publication

An effort to reproduce
67 economics papers
from 13 different
journals

A 2-year study that
collected programs and
data from authors who
had published empirical
economic research
articles

24 articles had data, and
an additional 65 provided
some data when requested.

Of the 67 articles, 50%
were reproduced.

Data were available

for 72%-78% of the
nine articles, two were
reproduced successfully,
three “near” successfully,
and four unsuccessfully.
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Author Field Scope of Study Reported Concerns

Duvendack Economics A progress report on In 27 of 333 economics

et al. (2015) the number of journals, more than 50%
economics journals of the articles included the
with data-sharing authors’ sharing of data
requirements and code (an increase from

4 journals in 2003).
Jacoby Political science A review of the results  Of the first 116 articles,
(2017) of a standing contract 8 were reproduced on the

Gunderson et al.  Artificial
(2018) intelligence
Setti Imaging
(2018)

Moraila et al.

(2013)

between American
Journal for Political
Science and universities
to reproduce all articles
submitted to the
journal

A review of

challenges and lack
of reproducibility in
artificial intelligence

A review of the
published availability
of data and code for
articles in Transactions
on Imaging for 2004

An empirical study
of reproducibility in
computer-systems
research conferences

first attempt.

In a survey of 400
algorithms presented in
papers at two top artificial
intelligence conferences

in the past few years, 6%
of the presenters shared
the algorithm’s code;
30% shared the data they
tested their algorithms
on; and 54% shared
“pseudocode”—a limited
summary of an algorithm.

For the year covered, 9%
reported available code,
and 33% reported available
data.

The software could be built
for less than one-half of the
studies for which artifacts
were available (108 of
231).

continued
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TABLE 4-1 Continued

Author Field Scope of Study Reported Concerns
Read et al. Data work A preliminary estimate  12% explicitly mention
(2015) funded by of the number and deposition of datasets in
the National type of NIH-funded recognized repositories,
Institutes of datasets; focused on leaving 88% (200,000 of
Health (NIH) those datasets that 235,000) with invisible
were “invisible” or not datasets; of the invisible
deposited in a known  datasets, approximately
repository; studied 87% consisted of data
published articles in newly collected for the
2011 cited in PubMed  research reported, and 13%
and deposited in reflected reuse of existing
PubMed Central data.
More than 50% of the
datasets were derived from
live human or nonhuman
animal subjects.
Byrne An assessment of the 20% of the articles
(2017) open data policy of have data or code in a

PLOS ONE as of 2016
(noting that rates

of data and code
availability are
increasing)

repository; 60% of the
articles have data in main
text or supplemental
information; and 20% have
restrictions on data access.

computational reproducibility across fields or within fields of science
and engineering is a massive undertaking with a low probability of
success. Rather, the committee’s collection of reproducibility attempts
across a variety of fields allows us to note that a number of systematic
efforts to reproduce computational results have failed in more than
one-half of the attempts made, mainly due to insufficient detail on
digital artifacts, such as data, code, and computational workflow.

Expecting computational reproducibility is considered by some to be
too low of a bar for scientific research, yet our data in Table 4-1 show that
many attempts to reproduce results initially fail. As noted by Peng (2016),
“|Reproducibility] may initially sound like a trivial task but experience
has shown that it’s not always easy to achieve this seemingly minimal
standard.”
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SOURCES OF NON-REPRODUCIBILITY

The findings and conclusion in the previous section raise a key ques-
tion: What makes reproducibility so difficult to achieve? A number of fac-
tors can contribute to the lack of reproducibility in research. In addition
to lack of access to nonpublic data and code, mentioned previously, the
contributors include the following:

¢ Inadequate recordkeeping: The original researchers did not prop-
erly record the relevant digital artifacts such as protocols or steps
followed to obtain the results, the details of the computational
environment and software dependencies, and/or information on
the archiving of all necessary data.

e Nontransparent reporting: The original researchers did not trans-
parently report, provide open access to, or archive the relevant
digital artifacts necessary for reproducibility.

e Obsolescence of the digital artifacts: Over time, the digital artifacts
in the research compendium are compromised because of techno-
logical breakdown and evolution or lack of continued curation.

¢ Flawed attempts to reproduce others’ research: The researchers
who attempted to reproduce the work lacked expertise or failed to
correctly follow the research protocols.

e Barriers in the culture of research: Lack of resources and incentives
to adopt computationally reproducible and transparent research
across fields and researchers.

The rest of this section explores each of these factors.

Inadequate Recordkeeping

The information that needs to be shared in order for research to be
reproducible may vary depending on the type of research and the meth-
ods and tools used. However, the essential component is that the relevant
information required to obtain a consistent result by another researcher
(also referred to as the full compendium of artifacts) must be provided by
the original researcher. In order to transparently report and share the full
compendium of artifacts required for reproducibility, a researcher must first
take care to adequately record a detailed provenance of all of the research
results. Provenance refers to information about how a result was produced
and it includes how, when, and who collected any data; what steps were
followed to transform, curate, or clean them; and what software (and its
version) was used to analyze them (Davidson and Freire, 2008).
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In general, the computational details that need to be captured and
shared for reproducible research include data, code, parameters, computa-
tional environment, and computational workflow including

e the data that were used in the analysis,* formatted appropriately
for the research question, and complemented with standard or suf-
ficient metadata;

e  written statements in a programming language (i.e., the source code
of the software used in the analysis or to generate data products)
including models, data processing scripts, and software notebooks;

e numeric values of all configurable settings for software, instru-
ments, or other hardware—that is, the parameters—for each indi-
vidual experiment or run;

e detailed specification of computational environment including sys-
tem software and hardware requirements, including the version
number of each software used; and

e computational workflow, which is a collection of data processing
scripts, statistical model specification, secondary data, and code
that generated tables and figures in final published form (i.e., the
computational workflow for how the software applications are
configured and how the data flows between them).

Meticulous and complete recordkeeping is increasingly challenging
and potentially time consuming as scientific workflows involve ever more
intricate combinations of digital and physical artifacts and entail complex
computational processes that combine a multitude of tools and libraries.’
Satisfying all of these challenging conditions for transparent computation

4 Final datasets used in analysis are the result of data collection and data culling (or clean-
ing). Decisions related to each step must be captured.

5 For example, consider a scientific workflow that involves processing an image captured by
an instrument, where the final presentation of the image enables the researcher to glean under-
standing from the data. If the researcher used image-processing software through a graphical
user interface (GUI)—that is, by clicking and dragging graphical elements on the computer
screen—it might be impossible for another researcher to subsequently reproduce the resulting
image. For this reason, reproducibility advocates find fault with any interactive programs “un-
less they include the ability to arrive in any previous state by means of a script” (Fomel and
Claerbout, 2009, p. 6). Some observers go as far as saying that “two technologies are enemies
of reproducible research: GUI-based image manipulation, and spreadsheets” (Barba et al.,
2017). The use of spreadsheet software impairs reproducibility because spreadsheets conflate
input, output, code, and presentation (Stark, 2016). Spreadsheets inhibit one’s ability to make
a record of all steps taken to construct a full analysis of the data, and they are notoriously hard
to debug. Hettrick (2017) describes the difficulties faced when trying to reproduce an analysis
originally conducted on spreadsheet software, and he concluded that it is “almost impossible
to reconstruct the logic behind spreadsheet-based analysis.”
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requires that researchers are highly motivated to ensure reproducibility. If
will and incentives are lacking, it is easier for researchers to forego creating
the conditions for reproducibility, as suggested by the results of reproduc-
ibility studies shown in Table 4-1. Manually keeping track of every decision
in the process to include the details in a scientific paper is time-consuming
and potentially error prone. Tools are available and more are being devel-
oped to autocapture relevant details in these complex environments (see
Chapter 6).

Nontransparent Reporting

A second barrier to computational reproducibility is the lack of sharing
or insufficient sharing of the full compendium of artifacts necessary to rerun
the analysis, including the data used,® source code, information about the
computational environment, and other digital artifacts. This information
may not be reported for a number of reasons.

First, a researcher may be unaware of a norm to share the information
or unaware of the details necessary to ensure reproducibility (as detailed
above). Second, a researcher could be unwilling to share to ensure priority
in patenting or publishing or because he or she does not see any benefit to
sharing. Third, a researcher might lack the ability to share due to limited
infrastructure (i.e., tools to capture the provenance or a repository to store
the data or code), nonpublic restrictions (see the Nonpublic Data and Code
section earlier in this chapter), or the compendium of artifacts is too large.
For example, the sharing policies for Science offer ideas for where to share
data, but they do not “suggest specific repositories or give instructions for
hosting and sharing code and computational methods,” and there “is no

consensus regarding repositories, metadata, or computational provenance”
(Stodden et al., 2018b, p. 2584).

Obsolescence of Digital Artifacts

The ability to reproduce published results can decline over time because
digital artifacts can become unusable, inoperative, or unavailable due to

¢ Data quality issues also add to the complexity of identifying problems in a computational
pipeline. According to J. Freire (New York University and committee member, personal com-
munication), because people now must manage (e.g., ingest, clean, integrate, analyze) vast
amounts of data, and data come from multiple sources with different levels of reliability, it is
often not practical to curate the data. To extract actionable insight from data, complex com-
putational processes are required. They are hard to assemble, and, once deployed, they can
break in unforeseen ways (e.g., due to a library upgrade or a small change in the simulation
code). If you have an analysis consisting of many steps, there are many ways that you could
be wrong and that the data could be wrong.
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technological breakdown and evolution or poor curation. This means that
even if the original researcher properly recorded all of the relevant infor-
mation and transparently reported it, and researchers with expertise and
resources are available, reproduction attempts could still fail. Research
software exists in an ecosystem of scientific libraries, system tools, and
compilers. All of these are dynamic, receiving updates to improve security,
fix bugs, or add features; some are no longer maintained and fail to operate
with other software as the system evolves through upgrade. In the process
of adding new features, a library could change how it interfaces with other
software, making other code that depends on it unusable unless updated.
Researchers often refer to this as “code rot.” Potential solutions through
archival systems have been proposed (see Chapter 6).

Flawed Attempts to Reproduce Others’ Research

Just as researchers conducting original studies may make mistakes or
have insufficient expertise to conduct the experiments or analysis properly,
a researcher who is attempting to reproduce a result may also make mis-
takes or fail to follow the original protocols. Even when the original study
qualifies as reproducible research, because all the relevant protocols were
automated and the digital artifacts are available such that it is capable of
being checked, another researcher without proper training and capabilities
may be unable to use those artifacts.

Barriers in the Culture of Research

While interest in open science practices is growing, and many stake-
holders have adopted policies or created tools to facilitate transparent
sharing, the research enterprise as a whole has not adopted sharing and
transparency as near-universal norms and expectations for reproducibility
(National Academies of Sciences, Engineering, and Medicine, 2018).

As shown in Table 4-1, low levels of transparency are common. Cur-
rently, sharing and transparency are generally not rewarded in academic
tenure and promotion systems, while the perception or reality that greater
openness requires significant effort and apprehension about being scruti-
nized or “scooped” remain. In some disciplines and research groups, data
are seen as resources that must be closely held, and it is widely believed that
researchers best advance their careers by generating as many publications as
possible using data before the data are shared. Shifting rewards and incen-
tives will require thoughtful changes on the part of research institutions,
working with funders and publishers (see Chapter 6).
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Replicability

Replicability is a subtle and nuanced topic, especially when dis-
cussed broadly across scientific and engineering research. An at-
tempt by a second researcher to replicate a previous study is an
effort to determine whether applying the same methods to the
same scientific question produces similar results. Beginning with
an examination of methods to assess replicability, in this chapter
we discuss evidence that bears on the extent of non-replicability in
scientific and engineering research and examine factors that affect
replicability.

Replication is one of the key ways scientists build confidence in the scientific
merit of results. When the result from one study is found to be consistent
by another study, it is more likely to represent a reliable claim to new
knowledge. As Popper (2005, p. 23) wrote (using “reproducibility” in its
generic sense):

We do not take even our own observations quite seriously, or accept them
as scientific observations, until we have repeated and tested them. Only by
such repetitions can we convince ourselves that we are not dealing with
a mere isolated ‘coincidence,” but with events which, on account of their
regularity and reproducibility, are in principle inter-subjectively testable.

71
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However, a successful replication does not guarantee that the original
scientific results of a study were correct, nor does a single failed replica-
tion conclusively refute the original claims. A failure to replicate previous
results can be due to any number of factors, including the discovery of an
unknown effect, inherent variability in the system, inability to control com-
plex variables, substandard research practices, and, quite simply, chance.
The nature of the problem under study and the prior likelihoods of pos-
sible results in the study, the type of measurement instruments and research
design selected, and the novelty of the area of study and therefore lack of
established methods of inquiry can also contribute to non-replicability. Be-
cause of the complicated relationship between replicability and its variety of
sources, the validity of scientific results should be considered in the context
of an entire body of evidence, rather than an individual study or an indi-
vidual replication. Moreover, replication may be a matter of degree, rather
than a binary result of “success” or “failure.”” We explain in Chapter 7
how research synthesis, especially meta-analysis, can be used to evaluate
the evidence on a given question.

ASSESSING REPLICABILITY

How does one determine the extent to which a replication attempt has
been successful? When researchers investigate the same scientific question
using the same methods and similar tools, the results are not likely to be
identical—unlike in computational reproducibility in which bitwise agree-
ment between two results can be expected (see Chapter 4). We repeat our
definition of replicability, with emphasis added: obtaining consistent results
across studies aimed at answering the same scientific question, each of
which has obtained its own data.

Determining consistency between two different results or inferences
can be approached in a number of ways (Simonsohn, 2015; Verhagen and
Wagenmakers, 2014). Even if one considers only quantitative criteria for
determining whether two results qualify as consistent, there is variability
across disciplines (Zwaan et al., 2018; Plant and Hanisch, 2018). The
Royal Netherlands Academy of Arts and Sciences (2018, p. 20) concluded
that “it is impossible to identify a single, universal approach to determining
[replicability].” As noted in Chapter 2, different scientific disciplines are
distinguished in part by the types of tools, methods, and techniques used
to answer questions specific to the discipline, and these differences include
how replicability is assessed.

1 See, for example, the cancer biology project in Table 5-1 in this chapter.
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Acknowledging the different approaches to assessing replicability
across scientific disciplines, however, we emphasize eight core characteris-
tics and principles:

1. Attempts at replication of previous results are conducted following
the methods and using similar equipment and analyses as described
in the original study or under sufficiently similar conditions (Cova
et al., 2018).% Yet regardless of how similar the replication study
is, no second event can exactly repeat a previous event.

2. The concept of replication between two results is inseparable from
uncertainty, as is also the case for reproducibility (as discussed in
Chapter 4).

3. Any determination of replication (between two results) needs to
take account of both proximity (i.e., the closeness of one result to
the other, such as the closeness of the mean values) and uncertainty
(i.e., variability in the measures of the results).

4. To assess replicability, one must first specify exactly what attri-
bute of a previous result is of interest. For example, is only the
direction of a possible effect of interest? Is the magnitude of ef-
fect of interest? Is surpassing a specified threshold of magnitude
of interest? With the attribute of interest specified, one can then
ask whether two results fall within or outside the bounds of
“proximity-uncertainty” that would qualify as replicated results.

5. Depending on the selected criteria (e.g., measure, attribute), as-
sessments of a set of attempted replications could appear quite
divergent.3

6. A judgment that “Result A is replicated by Result B” must be
identical to the judgment that “Result B is replicated by Result A.”
There must be a symmetry in the judgment of replication; other-
wise, internal contradictions are inevitable.

7. There could be advantages to inverting the question from, “Does
Result A replicate Result B (given their proximity and uncertainty)?”

2 Cova et al. (2018, fn. 3) discuss the challenge of defining sufficiently similar as well as the
interpretation of the results:

In practice, it can be hard to determine whether the ‘sufficiently similar’ criterion has
actually been fulfilled by the replication attempt, whether in its methods or in its results
(Nakagawa and Parker 2015). It can therefore be challenging to interpret the results of
replication studies, no matter which way these results turn out (Collins, 1975; Earp and
Trafimow, 2015; Maxwell et al., 2015).

3 See Table 5-1, for an example of this in the reviews of a psychology replication study by
Open Science Collaboration (2015) and Patil et al. (2016).
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to “Are Results A and B sufficiently divergent (given their proxim-
ity and uncertainty) so as to qualify as a non-replication?” It may
be advantageous, in assessing degrees of replicability, to define
a relatively high threshold of similarity that qualifies as “repli-
cation,” a relatively low threshold of similarity that qualifies as
“non-replication,” and the intermediate zone between the two
thresholds that is considered “indeterminate.” If a second study has
low power and wide uncertainties, it may be unable to produce any
but indeterminate results.

8. While a number of different standards for replicability/non-
replicability may be justifiable, depending on the attributes
of interest, a standard of “repeated statistical significance” has
many limitations because the level of statistical significance is an
arbitrary threshold (Amrhein et al., 2019a; Boos and Stefanski,
2011; Goodman, 1992; Lazzeroni et al., 2016). For example, one
study may yield a p-value of 0.049 (declared significant at the
p < 0.05 level) and a second study yields a p-value of 0.051
(declared nonsignificant by the same p-value threshold) and
therefore the studies are said not to be replicated. However, if the
second study had yielded a p-value of 0.03, the reviewer would say
it had successfully replicated the first study, even though the result
could diverge more sharply (by proximity and uncertainty) from
the original study than in the first comparison. Rather than focus
on an arbitrary threshold such as statistical significance, it would
be more revealing to consider the distributions of observations and
to examine how similar these distributions are. This examination
would include summary measures, such as proportions, means,
standard deviations (or uncertainties), and additional metrics
tailored to the subject matter.

The final point above is reinforced by a recent special edition of the
American Statistician in which the use of a statistical significance threshold
in reporting is strongly discouraged due to overuse and wide misinterpreta-
tion (Wasserstein et al., 2019). A figure from (Amrhein et al., 2019b) also
demonstrates this point, as shown in Figure 5-1.

One concern voiced by some researchers about using a proximity-
uncertainty attribute to assess replicability is that such an assessment favors
studies with large uncertainties; the potential consequence is that many
researchers would choose to perform low-power studies to increase the
replicability chances (Cova et al., 2018). While two results with large uncer-
tainties and within proximity, such that the uncertainties overlap with each
other, may be consistent with replication, the large uncertainties indicate
that not much confidence can be placed in that conclusion.
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BEWARE FALSE CONCLUSIONS

Studies currently dubbed ‘statistically significant’ and ‘statistically
non-significant’ need not be contradictory, and such designations might
cause genuine effects to be dismissed.

—— ' Significant’ study
¢ (low P value)

‘Non-significant’ study Q
(high P value) :

The observed effect
(or point estimate)
is the same in both

studies, so they are
not in conflict, even
if one is ‘significant’
and the other is not.

Decreased effect 4 No effect P Increased effect enature

FIGURE 5-1 The comparison of two results to determine replicability.

NOTES: The figure shows the issue with using statistical significance as an attribute of
comparison (Point 8 on 74 of the main text); the two results would be considered to have
replicated if using a proximity-uncertainty attribute (Points 3 and 4 on 73 of the main text).
SOURCE: Amrhein et al. (2019b, p. 306).

CONCLUSION 5-1: Different types of scientific studies lead to differ-
ent or multiple criteria for determining a successful replication. The
choice of criteria can affect the apparent rate of non-replication, and
that choice calls for judgment and explanation.

CONCLUSION 5-2: A number of parametric and nonparametric meth-
ods may be suitable for assessing replication across studies. However, a
restrictive and unreliable approach would accept replication only when
the results in both studies have attained “statistical significance,” that
is, when the p-values in both studies have exceeded a selected threshold.
Rather, in determining replication, it is important to consider the dis-
tributions of observations and to examine how similar these distribu-
tions are. This examination would include summary measures, such as
proportions, means, standard deviations (uncertainties), and additional
metrics tailored to the subject matter.

THE EXTENT OF NON-REPLICABILITY

The committee was asked to assess what is known and, if necessary,
identify areas that may need more information to ascertain the extent
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of non-replicability in scientific and engineering research. The committee
examined current efforts to assess the extent of non-replicability within
several fields, reviewed literature on the topic, and heard from expert panels
during its public meetings. We also drew on the previous work of committee
members and other experts in the field of replicability of research.

Some efforts to assess the extent of non-replicability in scientific re-
search directly measure rates of replication, while others examine indirect
measures to infer the extent of non-replication. Approaches to assessing
non-replicability rates include

direct and indirect assessments of replicability;
perspectives of researchers who have studied replicability;
surveys of researchers; and

retraction trends.

This section discusses each of these lines of evidence.

Assessments of Replicability

The most direct method to assess replicability is to perform a study
following the original methods of a previous study and to compare the
new results to the original ones. Some high-profile replication efforts in
recent years include studies by Amgen, which showed low replication rates
in biomedical research (Begley and Ellis, 2012), and work by the Center
for Open Science on psychology (Open Science Collaboration, 2015), can-
cer research (Nosek and Errington, 2017), and social science (Camerer
et al., 2018). In these examples, a set of studies was selected and a single
replication attempt was made to confirm results of each previous study, or
one-to-one comparisons were made. In other replication studies, teams of
researchers performed multiple replication attempts on a single original
result, or many-to-one comparisons (see e.g., Klein et al., 2014; Hagger et
al., 2016; and Cova et al., 2018 in Table 5-1).

Other measures of replicability include assessments that can provide
indicators of bias, errors, and outliers, including, for example, computa-
tional data checks of reported numbers and comparison of reported values
against a database of previously reported values. Such assessments can
identify data that are outliers to previous measurements and may signal
the need for additional investigation to understand the discrepancy.* Table
5-1 summarizes the direct and indirect replication studies assembled by
the committee. Other sources of non-replicabilty are discussed later in this
chapter in the Sources of Non-Replicability section.

4 There is risk of missing a new discovery by rejecting data outliers without further
investigation.
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Many direct replication studies are not reported as such. Replication—
especially of surprising results or those that could have a major impact—
occurs in science often without being labelled as a replication. Many
scientific fields conduct reviews of articles on a specific topic—especially on
new topics or topics likely to have a major impact—to assess the available
data and determine which measurements and results are rigorous (see
Chapter 7). Therefore, replicability studies included as part of the scientific
literature but not cited as such add to the difficulty in assessing the extent
of replication and non-replication.

One example of this phenomenon relates to research on hydrogen stor-
age capacity. The U.S. Department of Energy (DOE) issued a target storage
capacity in the mid-1990s. One group using carbon nanotubes reported
surprisingly high values that met DOE’s target (Hynek et al., 1997); other
researchers who attempted to replicate these results could not do so. At the
same time, other researchers were also reporting high values of hydrogen
capacity in other experiments. In 2003, an article reviewed previous studies
of hydrogen storage values and reported new research results, which were
later replicated (Broom and Hirscher, 2016). None of these studies was
explicitly called an attempt at replication.

Based on the content of the collected studies in Table 5-1, one can
observe that the

* majority of the studies are in the social and behavioral sciences
(including economics) or in biomedical fields, and

¢ methods of assessing replicability are inconsistent and the replica-
bility percentages depend strongly on the methods used.

The replication studies such as those shown in Table 5-1 are not necessarily
indicative of the actual rate of non-replicability across science for a number
of reasons: the studies to be replicated were not randomly chosen, the repli-
cations had methodological shortcomings, many replication studies are not
reported as such, and the reported replication studies found widely varying
rates of non-replication (Gilbert et al., 2016). At the same time, replication
studies often provide more and better-quality evidence than most original
studies alone, and they highlight such methodological features as high
precision or statistical power, preregistration, and multi-site collaboration
(Nosek, 2016). Some would argue that focusing on replication of a single
study as a way to improve the efficiency of science is ill-placed. Rather,
reviews of cumulative evidence on a subject, to gauge both the overall ef-
fect size and generalizability, may be more useful (Goodman, 2018; and
see Chapter 7).

Apart from specific efforts to replicate others’ studies, investigators will
typically confirm their own results, as in a laboratory experiment, prior to
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TABLE 5-1 Examples of Replication Studies

Field and Type of
Author(s) Description Results Assessment
Experimental A group of 20 research  70% of the 40 studies were Direct
Philosophy teams performed replicated by comparing the
(Cova et al., replication studies of 40 original effect size to the
2018) experimental philosophy confidence interval (CI) of the

studies published replication.?

between 2003 and 2015
Behavioral Performed replications of 87% of the replication Direct
Science, 78 previously published attempts were statistically
Personality associations between significant in the expected

Traits Linked to
Life Outcomes
(Soto, 2019)

Behavioral
Science,
Ego-Depletion
Effect

(Hagger et al.,
2016)

General Biology,
Preclinical
Animal Studies
(Prinz et al.,
2011)

Oncology,
Preclinical
Studies (Begley
and Ellis, 2012)

Genetics,
Preclinical
Studies
(Ioannidis, 2009)

Experimental
Psychology
(Klein et al.,
2014)

the Big Five personality
traits and consequential
life outcomes”

Multiple laboratories
(23 in total) conducted
replications of a
standardized ego-
depletion protocol based
on a sequential-task
paradigm by

Sripada et al. (2014)

Attempt by researchers
from Bayer HealthCare
to validate data on
potential drug targets
obtained in 67 projects
by copying models
exactly or by adapting
them to internal needs

Attempt by Amgen

team to reproduce the
results of 53 “landmark”
studies

Replication of data
analyses provided in 18
articles on microarray-
based gene expression
studies

Replication of

13 psychological
phenomena across 36
independent samples

direction, and effects were
typically 77% as strong as the
corresponding original effects.

Meta-analysis of the studies
revealed that the size of the
ego-depletion effect was small
with 95% CI that encompassed
zero (d = 0.04, 95% CI [-0.07,
0.15]).

Published data were completely Direct
in line with the results of the
validation studies in 20%-25%

of cases.

Scientific results were Direct
confirmed in 11% of the

studies.

Of the 18 studies, 2 analyses  Direct
(11%) were replicated; 6 were
partially replicated or showed

some discrepancies in results;

and 10 could not be replicated.

77% of phenomena were Direct

replicated consistently.
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TABLE 5-1 Continued
Field and Type of
Author(s) Description Results Assessment
Experimental Replication of 28 classic  54% of replications produced  Direct
Psychology, and contemporary a statistically significant effect
Many Labs 2 published studies in the same direction as the
(Klein et al., original study, 75% yielded
2018) effect sizes smaller than the
original ones, and 25% yielded
larger effect sizes than the
original ones.
Experimental Attempt to 36% of the replication studies Direct
Psychology independently replicate  produced significant results,
(Open Science  selected results from 100 compared to 97% of the
Collaboration,  studies in psychology original studies. The mean
2015) effect sizes were halved.
Experimental Using reported data 77% of the studies replicated  Direct
Psychology from the Open Science by comparing the original
(Patil et al., Collaboration (2015) effect size to an estimated 95%
2016) replication study in CI of the replication.
psychology, reanalyzed
the results
Experimental Attempt to replicate 21  Found a significant effect in the Direct
Psychology systematically selected ~ same direction as the original
(Camerer et al., experimental studies study for 62% (13 of 21)
2018) in the social sciences studies, and the effect size of
published in Nature and the replications was on average
Science in 2010-2015 about 50% of the original
effect size.
Empirical 2-year study that Two of nine replications Direct
Economics collected programs and ~ were successful, three
(Dewald et al.,  data from authors and  “near” successful, and four
1986) attempted to replicate unsuccessful; findings suggest
their published results  that inadvertent errors in
on empirical economic  published empirical articles are
research a commonplace rather than a
rare occurrence.
Economics Progress report on the 10 journals explicitly note they N/A
(Duvendack number of journals publish replications; of 167
et al., 2015) with data sharing published replication studies,
requirements and an approximately 66% were
assessment of 167 unable to confirm the original
studies results; 12% disconfirmed
at least one major result
of the original study, while
confirming others.
continued
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TABLE 5-1 Continued

Field and Type of
Author(s) Description Results Assessment
Economics An effort to replicate Significant effect in the same  Direct
(Camerer et al., 18 studies published direction as the original study
2016) in the American found for 11 replications
Economic Review and  (61%); on average, the
the Quarterly Journal replicated effect size was 66%
of Economics from of the original.
2011-2014
Chemistry Collaboration with 27% of papers reporting Indirect
(Park et al., National Institute properties of adsorption had
2017, of Standards and data that were outliers; 20%
Sholl, 2017) Technology (NIST) to of papers reporting carbon
check new data against  dioxide isotherms as outliers.
NIST database, 13,000
measurements
Chemistry Collaboration with 33% experiments had data Indirect
(Plant, 2018) NIST, Thermodynamics problems, such as uncertainties
Research Center too small, reported values
(TRC) databases, outside of TRC database
prepublication check distributions.
of solubility, viscosity,
critical temperature, and
vapor pressure
Biology Large-scale replication ~ The first five articles have Direct
Reproducibility ~ project to replicate key  been published; two replicated
Project: Cancer  results in 29 cancer important parts of the original
Biology papers published in papers, one did not replicate,
Nature, Science, Cell, and two were uninterpretable.
and other high-impact
journals
Psychology, Statcheck tool used to  49.6% of the articles with Indirect
Statistical test statistical values null hypothesis statistical test
Checks within psychology (NHST) results contained at
(Nuijten et al.,  articles from 1985-2013 least one inconsistency (8,273
2016) of the 16,695 articles), and
12.9% (2,150) of the articles
with NHST results contained
at least one gross inconsistency.
Engineering, Full replication studies ~ Replication of the main result Direct

Computational
Fluid Dynamics
(Mesnard and
Barba, 2017)

of previously published
results on bluff-body

was achieved in three out of
four of the computational

aerodynamics, using four efforts.

different computational
methods
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TABLE 5-1 Continued
Field and Type of
Author(s) Description Results Assessment
Psychology, Attempt to replicate 10 3 of 10 studies replicated at Direct
Many Labs 3 psychology studies in p < 0.05.
(Ebersole et al., one online session
2016a)
Psychology Argued that one of The original study replicated ~ Direct
(Luttrell et al.,  the failed replications when the original procedures
2017) in Ebersole et al. was were followed more closely,

due to changes in but not when the Ebersole et

the procedure. They al. procedures were used.

randomly assigned

participants to a version

closer to the original

or to Ebersole et al.’s

version.
Psychology 17 different labs None of the studies replicated Direct
(Wagenmakers  attempted to replicate the result at p < 0.05.
et al., 2016) one study on facial

feedback by Strack et al.

(1988).
Psychology Pointed out that all The original study was Direct
(Noah et al., of the studies in the replicated when the original
2018) Wagenmakers et al. procedure was followed

(2016) replication (p = 0.01); the original study

project changed was not replicated when the

the procedure by video camera was present

videotaping participants. (p = 0.85).

Conducted a replication

in which participants

were randomly assigned

to be videotaped or not.
Psychology 31 labs attempted to Replicated the original study.  Direct
(Alogna et al.,  replicate a study by The effect size was much
2014) Schooler and Engstler-  larger when the original study

Schooler (1990).

was replicated more faithfully
(the first set of replications
inadvertently introduced a
change in the procedure).

NOTES: Some of the studies in this table also appear in Table 4-1 as they evaluated both
reproducibility and replicability. N/A = not applicable.
9From Cova et al. (2018, p. 14): “For studies reporting statistically significant results, we
treated as successful replications for which the replication 95 percent CI [confidence interval]
was not lower than the original effect size. For studies reporting null results, we treated as suc-
cessful replications for which original effect sizes fell inside the bounds of the 95 percent CL.”
bFrom Soto (2019, p. 7, fn. 1): “Previous large-scale replication projects have typically treated
the individual study as the primary unit of analysis. Because personality-outcome studies often
examine multiple trait-outcome associations, we selected the individual association as the most
appropriate unit of analysis for estimating replicability in this literature.”
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publication. More generally, independent investigators may replicate prior
results of others before conducting, or in the course of conducting, a study
to extend the original work. These types of replications are not usually
published as separate replication studies.

Perspectives of Researchers Who Have Studied Replicability

Several experts who have studied replicability within and across fields of
science and engineering provided their perspectives to the committee. Brian
Nosek, cofounder and director of the Center for Open Science, said there
was “not enough information to provide an estimate with any certainty
across fields and even within individual fields.” In a recent paper discussing
scientific progress and problems, Richard Shiffrin, professor of psychology
and brain sciences at Indiana University, and colleagues argued that there
are “no feasible methods to produce a quantitative metric, either across
science or within the field” to measure the progress of science (Shiffrin et
al., 2018, p. 2632). Skip Lupia, now serving as head of the Directorate for
Social, Behavioral, and Economic Sciences at the National Science Founda-
tion, said that there is not sufficient information to be able to definitively
answer the extent of non-reproducibility and non-replicability, but there is
evidence of p-hacking and publication bias (see below), which are prob-
lems. Steven Goodman, the codirector of the Meta-Research Innovation
Center at Stanford University (METRICS), suggested that the focus ought
not be on the rate of non-replication of individual studies, but rather on
cumulative evidence provided by all studies and convergence to the truth.
He suggested the proper question is “How efficient is the scientific enter-
prise in generating reliable knowledge, what affects that reliability, and how
can we improve it?”

Surveys

Surveys of scientists about issues of replicability or on scientific methods
are indirect measures of non-replicability. For example, Nature published
the results of a survey in 2016 in an article titled “1,500 Scientists Lift the
Lid on Reproducibility (Baker, 2016)”3; this article reported that a large
percentage of researchers who responded to an online survey believe that
replicability is a problem. This article has been widely cited by researchers
studying subjects ranging from cardiovascular disease to crystal structures
(Warner et al., 2018; Ziletti et al., 2018). Surveys and studies have also as-
sessed the prevalence of specific problematic research practices, such as a
2018 survey about questionable research practices in ecology and evolution

3 Nature uses the word “reproducibility” to refer to what we call “replicability.”
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(Fraser et al., 2018). However, many of these surveys rely on poorly defined
sampling frames to identify populations of scientists and do not use prob-
ability sampling techniques. The fact that nonprobability samples “rely
mostly on people . . . whose selection probabilities are unknown [makes
it] difficult to estimate how representative they are of the [target] popula-
tion” (Dillman, Smyth, and Christian, 2014, pp. 70, 92). In fact, we know
that people with a particular interest in or concern about a topic, such as
replicability and reproducibility, are more likely to respond to surveys on
the topic (Brehm, 1993). As a result, we caution against using surveys based
on nonprobability samples as the basis of any conclusion about the extent
of non-replicability in science.

High-quality researcher surveys are expensive and pose significant chal-
lenges, including constructing exhaustive sampling frames, reaching ad-
equate response rates, and minimizing other nonresponse biases that might
differentially affect respondents at different career stages or in different
professional environments or fields of study (Corley et al., 2011; Peters et
al., 2008; Scheufele et al., 2009). As a result, the attempts to date to gather
input on topics related to replicability and reproducibility from larger
numbers of scientists (Baker, 2016; Boulbes et al., 2018) have relied on
convenience samples and other methodological choices that limit the con-
clusions that can be made about attitudes among the larger scientific com-
munity or even for specific subfields based on the data from such surveys.
More methodologically sound surveys following guidelines on adoption of
open science practices and other replicability-related issues are beginning
to emerge.® See Appendix E for a discussion of conducting reliable surveys
of scientists.

Retraction Trends

Retractions of published articles may be related to their non-replicability.
As noted in a recent study on retraction trends (Brainard, 2018, p. 392),
“Overall, nearly 40% of retraction notices did not mention fraud or other
kinds of misconduct. Instead, the papers were retracted because of errors,
problems with reproducibility [or replicability], and other issues.” Overall,
about one-half of all retractions appear to involve fabrication, falsification,
or plagiarism. Journal article retractions in biomedicine increased from
50-60 per year in the mid-2000s, to 600-700 per year by the mid-2010s
(National Library of Medicine, 2018), and this increase attracted much
commentary and analysis (see, e.g., Grieneisen and Zhang, 2012). A recent
comprehensive review of an extensive database of 18,000 retracted papers

6 See https://cega.berkeley.edu/resource/the-state-of-social-science-betsy-levy-paluck-bitss-
annual-meeting-2018.
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dating back to the 1970s found that while the number of retractions
has grown, the rate of increase has slowed; approximately 4 of every
10,000 papers are now retracted (Brainard, 2018). Overall, the number of
journals that report retractions has grown from 44 journals in 1997 to 488
journals in 2016; however, the average number of retractions per journal
has remained essentially flat since 1997.

These data suggest that more journals are attending to the problem
of articles that need to be retracted rather than a growing problem in any
one discipline of science. Fewer than 2 percent of authors in the database
account for more than one-quarter of the retracted articles, and the retrac-
tions of these frequent offenders are usually based on fraud rather than er-
rors that lead to non-replicability. The Institute of Electrical and Electronics
Engineers alone has retracted more than 7,000 abstracts from conferences
that took place between 2009 and 2011, most of which had authors based
in China (McCook, 2018).

The body of evidence on the extent of non-replicabilty gathered by the
committee is not a comprehensive assessment across all fields of science nor
even within any given field of study. Such a comprehensive effort would be
daunting due to the vast amount of research published each year and the
diversity of scientific and engineering fields. Among studies of replication
that are available, there is no uniform approach across scientific fields to
gauge replication between two studies. The experts who contributed their
perspectives to the committee all question the feasibility of such a science-
wide assessment of non-replicability.

While the evidence base assessed by the committee may not be sufficient
to permit a firm quantitative answer on the scope of non-replicability, it
does support several findings and a conclusion.

FINDING 5-1: There is an uneven level of awareness of issues re-
lated to replicability across fields and even within fields of science and
engineering.

FINDING 5-2: Efforts to replicate studies aimed at discerning the effect
of an intervention in a study population may find a similar direction of
effect, but a different (often smaller) size of effect.

FINDING 5-3: Studies that directly measure replicability take substan-
tial time and resources.

FINDING 5-4: Comparing results across replication studies may be
compromised because different replication studies may test different
study attributes and rely on different standards and measures for a
successful replication.
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FINDING 5-5: Replication studies in the natural and clinical sciences
(general biology, genetics, oncology, chemistry) and social sciences (in-
cluding economics and psychology) report frequencies of replication
ranging from fewer than one out of five studies to more than three out
of four studies.

CONCLUSION 5-3: Because many scientists routinely conduct repli-
cation tests as part of a follow-on work and do not report replication
results separately, the evidence base of non-replicability across all sci-
ence and engineering research is incomplete.

SOURCES OF NON-REPLICABILITY

Non-replicability can arise from a number of sources. In some cases,
non-replicability arises from the inherent characteristics of the systems un-
der study. In others, decisions made by a researcher or researchers in study
execution that reasonably differ from the original study such as judgment
calls on data cleaning or selection of parameter values within a model may
also result in non-replication. Other sources of non-replicability arise from
conscious or unconscious bias in reporting, mistakes and errors (including
misuse of statistical methods), and problems in study design, execution,
or interpretation in either the original study or the replication attempt. In
many instances, non-replication between two results could be due to a com-
bination of multiple sources, but it is not generally possible to identify the
source without careful examination of the two studies. Below, we review
these sources of non-replicability and discuss how researchers’ choices can
affect each. Unless otherwise noted, the discussion below focuses on the
non-replicability between two results (i.e., a one-to-one comparison) when
assessed using proximity and uncertainty of both results.

Non-Replicability That Is Potentially Helpful to Science

Non-replicability is a normal part of the scientific process and can be
due to the intrinsic variation and complexity of nature, the scope of current
scientific knowledge, and the limits of current technologies. Highly surpris-
ing and unexpected results are often not replicated by other researchers.
In other instances, a second researcher or research team may purposefully
make decisions that lead to differences in parts of the study. As long as
these differences are reported with the final results, these may be reasonable
actions to take yet result in non-replication. In scientific reporting, uncer-
tainties within the study (such as the uncertainty within measurements,
the potential interactions between parameters, and the variability of the
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system under study) are estimated, assessed, characterized, and accounted
for through uncertainty and probability analysis. When uncertainties are
unknown and not accounted for, this can also lead to non-replicability.
In these instances, non-replicability of results is a normal consequence
of studying complex systems with imperfect knowledge and tools. When
non-replication of results due to sources such as those listed above are
investigated and resolved, it can lead to new insights, better uncertainty
characterization, and increased knowledge about the systems under study
and the methods used to study them. See Box 5-1 for examples of how
investigations of non-replication have been helpful to increasing knowledge.

The susceptibility of any line of scientific inquiry to sources of non-
replicability depends on many factors, including factors inherent to the
system under study, such as the

e complexity of the system under study;

¢ understanding of the number and relations among variables within
the system under study;

e ability to control the variables;

e levels of noise within the system (or signal to noise ratios);

e mismatch of scale of the phenomena and the scale at which it can
be measured;

e stability across time and space of the underlying principles;

e fidelity of the available measures to the underlying system under
study (e.g., direct or indirect measurements); and

e prior probability (pre-experimental plausibility) of the scientific
hypothesis.

Studies that pursue lines of inquiry that are able to better estimate and
analyze the uncertainties associated with the variables in the system and
control the methods that will be used to conduct the experiment are more
replicable. On the other end of the spectrum, studies that are more prone
to non-replication often involve indirect measurement of very complex
systems (e.g., human behavior) and require statistical analysis to draw con-
clusions. To illustrate how these characteristics can lead to results that are
more or less likely to replicate, consider the attributes of complexity and
controllability. The complexity and controllability of a system contribute
to the underlying variance of the distribution of expected results and thus
the likelihood of non-replication.”

7 Complexity and controllability in an experimental system affect its susceptibility to non-
replicability independently from the way prior odds, power, or p-values associated with
hypothesis testing affect the likelihood that an experimental result represents the true state
of the world.
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BOX 5-1
Varied Sources of Non-Replication

Below are two examples of studies in which non-replication of results led re-
searchers to investigate the source of the discrepancies and ultimately increased
understanding of the systems under study.

Shaken or Stirred

Two separate labs were conducting experiments on breast tissue, using what
they assumed was the same protocol (Hines et al., 2014), yet their results contin-
ued to differ. When the researchers from the two labs sat side by side to conduct
the experiment, they discovered that one lab was stirring the cells gently while
the other lab was using a more vigorous shaking system. Both of these methods
are commonplace, so neither researcher thought to mention the details of the
mixing process (Harris, 2017). Before these researchers discovered the variation
in technique, it was not known that the mixing method could affect the outcome in
this experiment. After their discovery, clarifying the type of mixing technique in the
methods of the study became an avoidable source of non-replicability —something
that researchers who are using best practices would account for in their research
(e.g., by reporting which method was used in the experiment or by systematically
varying the method in order to fully understand the effect).

The Lifespan of Worms

In 2013, three researchers set out to attempt to clarify inconsistent research
results on compounds that could extend the lifespan of lab animals (Phillips et
al., 2017). Some research had found that the compound resveratrol (found in red
wine) could dramatically extend the life of worms in the lab, but other scientists
had difficulty replicating the results. The researchers found a number of reasons
for this lack of replicability.

For example, they found differences in lab protocol that affected outcomes:
worms that were handled by gentle lab technicians lived a full day longer than
others. Another difference lay in how labs measured the age of the worms: for
example, one lab determined age on the basis of when an egg was laid; another
began counting when it was hatched. After more than one year of painstaking
work to align protocols among the labs, the variability decreased. Once these
sources of non-replicability were eliminated, the researchers discovered inherent
variability in the system that was responsible for some of the non-replicability.

The three researchers found that some cohorts of worms could partition
into short-lived or long-lived modes of aging. This characteristic was previously
unknown, and, based on this new information, scientists in the field realized they
needed to test compounds on a wider variety and a larger number of worms in
order to obtain reliable results.

This example demonstrates the variety of legitimate sources of non-
replicability and the time and effort required to perform replication studies—even
when the researchers are making their best efforts. It also demonstrates that
non-replicability can result in advances in scientific knowledge.
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The systems that scientists study vary in their complexity. Although all
systems have some degree of intrinsic or random variability, some systems
are less well understood, and their intrinsic variability is more difficult
to assess or estimate. Complex systems tend to have numerous interact-
ing components (e.g., cell biology, disease outbreaks, friction coefficient
between two unknown surfaces, urban environments, complex organiza-
tions and populations, and human health). Interrelations and interactions
among multiple components cannot always be predicted and neither can
the resulting effects on the experimental outcomes, so an initial estimate of
uncertainty may be an educated guess.

Systems under study also vary in their controllability. If the variables
within a system can be known, characterized, and controlled, research
on such a system tends to produce more replicable results. For example,
in social sciences, a person’s response to a stimulus (e.g., a person’s be-
havior when placed in a specific situation) depends on a large number of
variables—including social context, biological and psychological traits,
verbal and nonverbal cues from researchers—all of which are difficult or
impossible to control completely. In contrast, a physical object’s response
to a physical stimulus (e.g., a liquid’s response to a rise in temperature) de-
pends almost entirely on variables that can either be controlled or adjusted
for, such as temperature, air pressure, and elevation. Because of these dif-
ferences, one expects that studies that are conducted in the relatively more
controllable systems will replicate with greater frequency than those that are
in less controllable systems. Scientists seek to control the variables relevant
to the system under study and the nature of the inquiry, but when these
variables are more difficult to control, the likelihood of non-replicability
will be higher. Figure 5-2 illustrates the combinations of complexity and
controllability.

Many scientific fields have studies that span these quadrants, as dem-
onstrated by the following examples from engineering, physics, and psy-
chology. Veronique Kiermer, PLOS executive editor, in her briefing to the
committee noted: “There is a clear correlation between the complexity of
the design, the complexity of measurement tools, and the signal to noise
ratio that we are trying to measure.” (See also Goodman et al., 2016, on
the complexity of statistical and inferential methods.)

Engineering. Aluminum-lithium alloys were developed by engineers
because of their strength-to-weight ratio, primarily for use in aerospace en-
gineering. The process of developing these alloys spans the four quadrants.
Early generation of binary alloys was a simple system that showed high
replicability (Quadrant A). Second-generation alloys had higher amounts
of lithium and resulted in lower replicability that appeared as failures in
manufacturing operations because the interactions of the elements were
not understood (Quadrant C). The third-generation alloys contained less
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FIGURE 5-2 Controllability and complexity: Spectrum of studies with varying degrees of the
combination of controllability and complexity.

NOTE: See text for examples from the fields of engineering, physics, and psychology that
illustrate various combinations of complexity and controllability that affect susceptibility to
non-replication.

lithium and higher relative amounts of other alloying elements, which
made it a more complex system but better controlled (Quadrant B), with
improved replicability. The development of any alloy is subject to a highly
controlled environment. Unknown aspects of the system, such as interac-
tions among the components, cannot be controlled initially and can lead to
failures. Once these are understood, conditions can be modified (e.g., heat
treatment) to bring about higher replicability.

Physics. In physics, measurements of the electronic band gap of semi-
conducting and conducting materials using scanning tunneling microscopy
is a highly controlled, simple system (Quadrant A). The searches for the
Higgs boson and gravitational waves were separate efforts, and each re-
quired the development of large, complex experimental apparatus and
careful characterization of the measurement and data analysis systems
(Quadrant B). Some systems, such as radiation portal monitors, require
setting thresholds for alarms without knowledge of when or if a threat will
ever pass through them; the variety of potential signatures is high and there
is little controllability of the system during operation (Quadrant C). Finally,
a simple system with little controllability is that of precisely predicting the
path of a feather dropped from a given height (Quadrant D).

Psychology. In psychology, Quadrant A includes studies of basic sen-
sory and perceptual processes that are common to all human beings, such
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as the purkinje shift (i.e., a change in sensitivity of the human eye under
different levels of illumination). Quadrant D includes studies of complex
social behaviors that are influenced by culture and context; for example, a
study of the effects of a father’s absence on children’s ability to delay grati-
fication revealed stronger effects among younger children (Mischel, 1961).

Inherent sources of non-replicability arise in every field of science, but
they can vary widely depending on the specific system undergoing study.
When the sources are knowable, or arise from experimental design choices,
researchers need to identify and assess these sources of uncertainty insofar
as they can be estimated. Researchers need also to report on steps that
were intended to reduce uncertainties inherent in the study or differ from
the original study (i.e., data cleaning decisions that resulted in a different
final dataset). The committee agrees with those who argue that the testing
of assumptions and the characterization of the components of a study are
as important to report as are the ultimate results of the study (Plant and
Hanisch, 2018) including studies using statistical inference and reporting
p-values (Boos and Stefanski, 2011). Every scientific inquiry encounters an
irreducible level of uncertainty, whether this is due to random processes in
the system under study, limits to researchers understanding or ability to
control that system, or limitations of the ability to measure. If researchers
do not adequately consider and report these uncertainties and limitations,
this can contribute to non-replicability.

RECOMMENDATION 5-1: Researchers should, as applicable to the
specific study, provide an accurate and appropriate characterization of
relevant uncertainties when they report or publish their research. Re-
searchers should thoughtfully communicate all recognized uncertainties
and estimate or acknowledge other potential sources of uncertainty that
bear on their results, including stochastic uncertainties and uncertain-
ties in measurement, computation, knowledge, modeling, and methods
of analysis.

Unhelpful Sources of Non-Replicability

Non-replicability can also be the result of human error or poor re-
searcher choices. Shortcomings in the design, conduct, and communication
of a study may all contribute to non-replicability.

These defects may arise at any point along the process of conducting
research, from design and conduct to analysis and reporting, and errors
may be made because the researcher was ignorant of best practices, was
sloppy in carrying out research, made a simple error, or had unconscious
bias toward a specific outcome. Whether arising from lack of knowledge,
perverse incentives, sloppiness, or bias, these sources of non-replicability
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warrant continued attention because they reduce the efficiency with which
science progresses and time spent resolving non-replicablity issues that are
caused by these sources do not add to scientific understanding. That is, they
are unhelpful in making scientific progress. We consider here a selected set
of such avoidable sources of non-replication:

publication bias

misaligned incentives
inappropriate statistical inference
poor study design

errors

incomplete reporting of a study

We will discuss each source in turn.

Publication Bias

Both researchers and journals want to publish new, innovative,
ground-breaking research. The publication preference for statistically
significant, positive results produces a biased literature through the exclu-
sion of statistically nonsignificant results (i.e., those that do not show an
effect that is sufficiently unlikely if the null hypothesis is true). As noted
in Chapter 2, there is great pressure to publish in high-impact journals
and for researchers to make new discoveries. Furthermore, it may be dif-
ficult for researchers to publish even robust nonsignificant results, except
in circumstances where the results contradict what has come to be an
accepted positive effect. Replication studies and studies with valuable
data but inconclusive results may be similarly difficult to publish. This
publication bias results in a published literature that does not reflect the
full range of evidence about a research topic.

One powerful example is a set of clinical studies performed on the ef-
fectiveness of tamoxifen, a drug used to treat breast cancer. In a systematic
review (see Chapter 7) of the drug’s effectiveness, 23 clinical trials were
reviewed; the statistical significance of 22 of the 23 studies did not reach the
criterion of p < 0.05, yet the cumulative review of the set of studies showed
a large effect (a reduction of 16% [+3] in the odds of death among women
of all ages assigned to tamoxifen treatment [Peto et al., 1988, p. 1684]).

Another approach to quantifying the extent of non-replicability is to
model the false discovery rate—that is, the number of research results that
are expected to be “false.” Ioannidis (2005) developed a simulation model to
do so for studies that rely on statistical hypothesis testing, incorporating the
pre-study (i.e., prior) odds, the statistical tests of significance, investigator
bias, and other factors. Ioannidis concluded, and used as the title of his paper,
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that “most published research findings are false.” Some researchers have
criticized Toannidis’s assumptions and mathematical argument (Goodman
and Greenland, 2007); others have pointed out that the takeaway message
is that any initial results that are statistically significant need further
confirmation and validation.

Analyzing the distribution of published results for a particular line of
inquiry can offer insights into potential bias, which can relate to the rate
of non-replicability. Several tools are being developed to compare a distri-
bution of results to what that distribution would look like if all claimed
effects were representative of the true distribution of effects. Figure 5-3
shows how publication bias can result in a skewed view of the body of
evidence when only positive results that meet the statistical significance
threshold are reported. When a new study fails to replicate the previously
published results—for example, if a study finds no relationship between
variables when such a relationship had been shown in previously pub-
lished studies—it appears to be a case of non-replication. However, if the
published literature is not an accurate reflection of the state of the evi-
dence because only positive results are regularly published, the new study
could actually have replicated previous but unpublished negative results.®

Several techniques are available to detect and potentially adjust for
publication bias, all of which are based on the examination of a body of
research as a whole (i.e., cumulative evidence), rather than individual rep-
lication studies (i.e., one-on-one comparison between studies). These tech-
niques cannot determine which of the individual studies are affected by bias
(i.e., which results are false positives) or identify the particular type of bias,
but they arguably allow one to identify bodies of literature that are likely
to be more or less accurate representations of the evidence. The techniques,
discussed below, are funnel plots, a p-curve test of excess significance, and
assessing unpublished literature.

Funnel Plots. One of the most common approaches to detecting publi-
cation bias involves constructing a funnel plot that displays each effect size
against its precision (e.g., sample size of study). Asymmetry in the plotted
values can reveal the absence of studies with small effect sizes, especially in
studies with small sample sizes—a pattern that could suggest publication/
selection bias for statistically significant effects (see Figure 5-3). There are
criticisms of funnel plots, however; some argue that the shape of a funnel
plot is largely determined by the choice of method (Tang and Liu, 2000),

8 Earlier in this chapter, we discuss an indirect method for assessing non-replicability in
which a result is compared to previously published values; results that do not agreed with the
published literature are identified as outliers. If the published literature is biased, this method
would inappropriately reject valid results. This is another reason for investigating outliers
before rejecting them.
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FIGURE 5-3 Funnel charts showing the estimated coefficient and standard error (a) if all
hypothetical study experiments are reported and (b) if only statistically significant results are
reported.

SOURCE: National Academies of Sciences, Engineering, and Medicine (2016¢, p. 29).
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and others maintain that funnel plot asymmetry may not accurately reflect
publication bias (Lau et al., 2006).

P-Curve. One fairly new approach is to compare the distribution of
results (e.g., p-values) to the expected distributions (see Simonsohn et al.,
2014a, 2014b). P-curve analysis tests whether the distribution of statisti-
cally significant p-values shows a pronounced right-skew,” as would be
expected when the results are true effects (i.e., the null hypothesis is false),
or whether the distribution is not as right-skewed (or is even flat, or, in the
most extreme cases, left-skewed), as would be expected when the original
results do not reflect the proportion of real effects (Gadbury and Allison,
2012; Nelson et al., 2018; Simonsohn et al., 2014a).

Test of Excess Significance. A closely related statistical idea for check-
ing publication bias is the test of excess significance. This test evaluates
whether the number of statistically significant results in a set of studies is
improbably high given the size of the effect and the power to test it in the
set of studies (Ioannidis and Trikalinos, 2007), which would imply that the
set of results is biased and may include exaggerated results or false posi-
tives. When there is a true effect, one expects the proportion of statistically
significant results to be equal to the statistical power of the studies. If a re-
searcher designs her studies to have 80 percent power against a given effect,
then, at most, 80 percent of her studies would produce statistically signifi-
cant results if the effect is at least that large (fewer if the null hypothesis is
sometimes true). Schimmack (2012) has demonstrated that the proportion
of statistically significant results across a set of psychology studies often
far exceeds the estimated statistical power of those studies; this pattern
of results that is “too good to be true” suggests that results were either
not obtained following the rules of statistical inference (i.e., conducting a
single statistical test that was chosen a priori) or did not report all studies
attempted (i.e., there is a “file drawer” of statistically nonsignificant studies
that do not get published; or possibly the results were p-hacked or cherry
picked (see Chapter 2).

In many fields, the proportion of published papers that report a posi-
tive (i.e., statistically significant) result is around 90 percent (Fanelli, 2012).
This raises concerns when combined with the observation that most studies
have far less than 90 percent statistical power (i.e., would only successfully
detect an effect, assuming an effect exists, far less than 90% of the time)
(Button et al., 2013; Fraley and Vazire, 2014; Szucs and Ioannidis, 2017,
Yarkoni, 2009; Stanley et al., 2018). Some researchers believe that the

9 Distributions that have more p-values of low value than high are referred to as “right-
skewed.” Similarly, “left-skewed” distributions have more p-values of high than low value.
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publication of false positives is common and that reforms are needed to
reduce this. Others believe that there has been an excessive focus on Type
I errors (i.e., false positives) in hypothesis testing at the possible expense of
an increase in Type II errors (i.e., false negatives, or failing to confirm true
hypotheses) (Fiedler et al., 2012; Finkel et al., 2015; LeBel et al., 2017).

Assessing Unpublished Literature. One approach to countering pub-
lication bias is to search for and include unpublished papers and results
when conducting a systematic review of the literature. Such comprehen-
sive searches are not standard practice. For medical reviews, one estimate
is that only 6 percent of reviews included unpublished work (Hartling et
al., 2017), although another found that 50 percent of reviews did so (Ziai
et al., 2017). In economics, there is a large and active group of researchers
collecting and sharing “grey” literature, research results outside of peer
reviewed publications (Vilhuber, 2018). In psychology, an estimated 75
percent of reviews included unpublished research (Rothstein, 2006). Un-
published but recorded studies (such as dissertation abstracts, conference
programs, and research aggregation websites) may become easier for re-
viewers to access with computerized databases and with the availability of
preprint servers. When a review includes unpublished studies, researchers
can directly compare their results with those from the published literature,
thereby estimating file-drawer effects.

Misaligned Incentives

Academic incentives—such as tenure, grant money, and status—may
influence scientists to compromise on good research practices (Freeman,
2018). Faculty hiring, promotion, and tenure decisions are often based
in large part on the “productivity” of a researcher, such as the num-
ber of publications, number of citations, and amount of grant money
received (Edwards and Roy, 2017). Some have suggested that these incen-
tives can lead researchers to ignore standards of scientific conduct, rush
to publish, and overemphasize positive results (Edwards and Roy, 2017).
Formal models have shown how these incentives can lead to high rates
of non-replicable results (Smaldino and McElreath, 2016). Many of these
incentives may be well intentioned, but they could have the unintended
consequence of reducing the quality of the science produced, and poorer
quality science is less likely to be replicable.

Although it is difficult to assess how widespread the sources of non-
replicability that are unhelpful to improving science are, factors such as
publication bias toward results qualifying as “statistically significant” and
misaligned incentives on academic scientists create conditions that favor
publication of non-replicable results and inferences.
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Inappropriate Statistical Inference

Confirmatory research is research that starts with a well-defined re-
search question and a priori hypotheses before collecting data; confirma-
tory research can also be called hypothesis testing research. In contrast,
researchers pursuing exploratory research collect data and then examine
the data for potential variables of interest and relationships among vari-
ables, forming a posteriori hypotheses; as such, exploratory research can be
considered hypothesis generating research. Exploratory and confirmatory
analyses are often described as two different stages of the research process.
Some have distinguished between the “context of discovery” and the “con-
text of justification” (Reichenbach, 1938), while others have argued that
the distinction is on a spectrum rather than categorical. Regardless of the
precise line between exploratory and confirmatory research, researchers’
choices between the two affects how they and others interpret the results.

A fundamental principle of hypothesis testing is that the same data that
were used to generate a hypothesis cannot be used to test that hypothesis
(de Groot, 2014). In confirmatory research, the details of how a statistical
hypothesis test will be conducted must be decided before looking at the
data on which it is to be tested. When this principle is violated, significance
testing, confidence intervals, and error control are compromised. Thus, it
cannot be assured that false positives are controlled at a fixed rate. In short,
when exploratory research is interpreted as if it were confirmatory research,
there can be no legitimate statistically significant result.

Researchers often learn from their data, and some of the most impor-
tant discoveries in the annals of science have come from unexpected results
that did not fit any prior theory. For example, Arno Allan Penzias and
Robert Woodrow Wilson found unexpected noise in data collected in the
course of their work on microwave receivers for radio astronomy observa-
tions. After attempts to explain the noise failed, the “noise” was eventually
determined to be cosmic microwave background radiation, and these results
helped scientists to refine and confirm theories about the “big bang.” While
exploratory research generates new hypotheses, confirmatory research is
equally important because it tests the hypotheses generated and can give
valid answers as to whether these hypotheses have any merit. Exploratory
and confirmatory research are essential parts of science, but they need to
be understood and communicated as two separate types of inquiry, with
two different interpretations.

A well-conducted exploratory analysis can help illuminate possible
hypotheses to be examined in subsequent confirmatory analyses. Even a
stark result in an exploratory analysis has to be interpreted cautiously,
pending further work to test the hypothesis using a new or expanded data-
set. It is often unclear from publications whether the results came from an
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exploratory or a confirmatory analysis. This lack of clarity can misrepresent
the reliability and broad applicability of the reported results.

In Chapter 2, we discussed the meaning, overreliance, and frequent
misunderstanding of statistical significance, including misinterpreting the
meaning and overstating the utility of a particular threshold, such as p <
0.05. More generally, a number of flaws in design and reporting can reduce
the reliability of a study’s results.

Misuse of statistical testing often involves post hoc analyses of data
already collected, making it seem as though statistically significant results
provide evidence against the null hypothesis, when in fact they may have a
high probability of being false positives (John et al., 2012; Munafo et al.,
2017). A study from the late-1980s gives a striking example of how such
post hoc analysis can be misleading. The International Study of Infarct Sur-
vival was a large-scale, international, randomized trial that examined the
potential benefit of aspirin for patients who had had a heart attack. After
data collection and analysis were complete, the publishing journal asked the
researchers to do additional analysis to see if certain subgroups of patients
benefited more or less from aspirin. Richard Peto, one of the researchers,
refused to do so because of the risk of finding invalid but seemingly signifi-
cant associations. In the end, Peto relented and performed the analysis, but
with a twist: he also included a post hoc analysis that divided the patients
into the twelve astrological signs, and found that Geminis and Libras did
not benefit from aspirin, while Capricorns benefited the most (Peto, 2011).
This obviously spurious relationship illustrates the dangers of analyzing
data with hypotheses and subgroups that were not prespecified.

Little information is available about the prevalence of such inap-
propriate statistical practices as p-hacking, cherry picking, and hypoth-
esizing after results are known (HARKing), discussed below. While
surveys of researchers raise the issue—often using convenience samples—
methodological shortcomings mean that they are not necessarily a reli-
able source for a quantitative assessment.'?

P-hacking and Cherry Picking. P-hacking is the practice of collecting,
selecting, or analyzing data until a result of statistical significance is found.
Different ways to p-hack include stopping data collection once p < 0.05 is
reached, analyzing many different relationships and only reporting those
for which p < 0.05, varying the exclusion and inclusion rules for data so
that p < 0.05, and analyzing different subgroups in order to get p < 0.05.
Researchers may p-hack without knowing or without understanding the
consequences (Head et al., 2015). This is related to the practice of cherry
picking, in which researchers may (unconsciously or deliberately) pick

10 For an example of one study of this issue, see Fraser et al. (2018).
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through their data and results and selectively report those that meet crite-
ria such as meeting a threshold of statistical significance or supporting a
positive result, rather than reporting all of the results from their research.

HARKing. Confirmatory research begins with identifying a hypoth-
esis based on observations, exploratory analysis, or building on previous
research. Data are collected and analyzed to see if they support the hypoth-
esis. HARKing applies to confirmatory research that incorrectly bases the
hypothesis on the data collected and then uses that same data as evidence to
support the hypothesis. It is unknown to what extent inappropriate HARK-
ing occurs in various disciplines, but some have attempted to quantify the
consequences of HARKing. For example, a 2015 article compared hypothe-
sized effect sizes against non-hypothesized effect sizes and found that effects
were significantly larger when the relationships had been hypothesized, a
finding consistent with the presence of HARKing (Bosco et al., 2015).

Poor Study Design

Before conducting an experiment, a researcher must make a number of
decisions about study design. These decisions—which vary depending on
type of study—could include the research question, the hypotheses, the vari-
ables to be studied, avoiding potential sources of bias, and the methods for
collecting, classifying, and analyzing data. Researchers’ decisions at various
points along this path can contribute to non-replicability. Poor study design
can include not recognizing or adjusting for known biases, not following
best practices in terms of randomization, poorly designing materials and
tools (ranging from physical equipment to questionnaires to biological re-
agents), confounding in data manipulation, using poor measures, or failing
to characterize and account for known uncertainties.

Errors

In 2010, economists Carmen Reinhart and Kenneth Rogoff published
an article that showed if a country’s debt exceeds 90 percent of the coun-
try’s gross domestic product, economic growth slows and declines slightly
(0.1%). These results were widely publicized and used to support austerity
measures around the world (Herndon et al., 2013). However, in 2013, with
access to Reinhart and Rogoff’s original spreadsheet of data and analysis
(which the authors had saved and made available for the replication ef-
fort), researchers reanalyzing the original studies found several errors in the
analysis and data selection. One error was an incomplete set of countries
used in the analysis that established the relationship between debt and
economic growth. When data from Australia, Austria, Belgium, Canada,
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and Denmark were correctly included, and other errors were corrected,
the economic growth in the countries with debt above 90 percent of gross
domestic product was actually +2.2 percent, rather than —0.1. In response,
Reinhart and Rogoff acknowledged the errors, calling it “sobering that
such an error slipped into one of our papers despite our best efforts to be
consistently careful.” Reinhart and Rogoff said that while the error led to a
“notable change” in the calculation of growth in one category, they did not
believe it “affects in any significant way the central message of the paper.”!!

The Reinhart and Rogoff error was fairly high profile and a quick In-
ternet search would let any interested reader know that the original paper
contained errors. Many errors could go undetected or are only acknowl-
edged through a brief correction in the publishing journal. A 2015 study
looked at a sample of more than 250,000 p-values reported in eight major
psychology journals over a period of 28 years. The study found that many
of the p-values reported in papers were inconsistent with a recalculation of
the p-value and that in one out of eight papers, this inconsistency was large
enough to affect the statistical conclusion (Nuijten et al., 2016).

Errors can occur at any point in the research process: measurements
can be recorded inaccurately, typographical errors can occur when input-
ting data, and calculations can contain mistakes. If these errors affect the
final results and are not caught prior to publication, the research may be
non-replicable. Unfortunately, these types of errors can be difficult to detect.
In the case of computational errors, transparency in data and computation
may make it more likely that the errors can be caught and corrected. For
other errors, such as mistakes in measurement, errors might not be detected
until and unless a failed replication that does not make the same mistake
indicates that something was amiss in the original study. Errors may also
be made by researchers despite their best intentions (see Box 5-2).

Incomplete Reporting of a Study

During the course of research, researchers make numerous choices
about their studies. When a study is published, some of these choices are
reported in the methods section. A methods section often covers what ma-
terials were used, how participants or samples were chosen, what data col-
lection procedures were followed, and how data were analyzed. The failure
to report some aspect of the study—or to do so in sufficient detail—may
make it difficult for another researcher to replicate the result. For example,
if a researcher only reports that she “adjusted for comorbidities” within the
study population, this does not provide sufficient information about how

11 See https://archive.nytimes.com/www.nytimes.com/interactive/2013/04/17/business/17economix-
response.html.
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exactly the comorbidities were adjusted, and it does not give enough guid-
ance for future researchers to follow the protocol. Similarly, if a researcher
does not give adequate information about the biological reagents used in an
experiment, a second researcher may have difficulty replicating the experi-
ment. Even if a researcher reports all of the critical information about the
conduct of a study, other seemingly inconsequential details that have an
effect on the outcome could remain unreported.

Just as reproducibility requires transparent sharing of data, code, and
analysis, replicability requires transparent sharing of how an experiment
was conducted and the choices that were made. This allows future research-
ers, if they wish, to attempt replication as close to the original conditions
as possible.

Fraud and Misconduct

At the extreme, sources of non-replicability that do not advance scien-
tific knowledge—and do much to harm science—include misconduct and
fraud in scientific research. Instances of fraud are uncommon, but can be
sensational. Despite fraud’s infrequent occurrence and regardless of how

BOX 5-2
A Note on Generalizability

At times, selective variation in the conditions of the experiment will be
the goal. When results are consistent across studies that used slightly different
methods or conditions, it strengthens the validity of the results. To generalize the
results, a systematic variation of the important parameters and variables would
be conducted with the aim of learning the limits of their effects and improving the
characterization of uncertainties.

Experiments conducted under the same conditions may run the risk of find-
ing “truths” that are valid only in the narrow experimental context. For example,
in animal research, it has long been known that the environmental conditions in
which the animals live can have an impact on the outcome of experiments. Be-
cause of this, animal researchers have attempted to standardize environments in
order to increase comparability between studies and reduce the need to replicate
studies involving animals (Richter et al., 2009). However, a 2009 study suggests
that such standardization is actually the cause of non-replicability, rather than the
cure. The authors of this study reported that environmental standardization may
compromise replicability by “systematically increasing the incidence of results
that are idiosyncratic to study-specific environmental conditions” (Richter et al.,
2009). In other words, studies that are performed in such highly standardized en-
vironments result in “local ‘truths’ with little external validity” (Richter et al., 2009).
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highly publicized cases may be, the fact that it is uniformly bad for science
means that it is worthy of attention within this study.

Researchers who knowingly use questionable research practices with
the intent to deceive are committing misconduct or fraud. It can be difficult
in practice to differentiate between honest mistakes and deliberate miscon-
duct because the underlying action may be the same while the intent is not.

Reproducibility and replicability emerged as general concerns in science
around the same time as research misconduct and detrimental research
practices were receiving renewed attention. Interest in both reproducibility
and replicability as well as misconduct was spurred by some of the same
trends and a small number of widely publicized cases in which discovery
of fabricated or falsified data was delayed, and the practices of journals,
research institutions, and individual labs were implicated in enabling such
delays (National Academies of Sciences, Engineering, and Medicine, 2017;
Levelt Committee et al., 2012).

In the case of Anil Potti at Duke University, a researcher using genomic
analysis on cancer patients was later found to have falsified data. This
experience prompted the study and the report, Evolution of Translational
Omics: Lessons Learned and the Way Forward (Institute of Medicine,
2012), which in turn led to new guidelines for omics research at the Na-
tional Cancer Institute. Around the same time, in a case that came to
light in the Netherlands, social psychologist Diederick Stapel had gone
from manipulating to fabricating data over the course of a career with
dozens of fraudulent publications. Similarly, highly publicized concerns
about misconduct by Cornell University professor Brian Wansink highlight
how consistent failure to adhere to best practices for collecting, analyzing,
and reporting data—intentional or not—can blur the line between helpful
and unhelpful sources of non-replicability. In this case, a Cornell faculty
committee ascribed to Wansink: “academic misconduct in his research and
scholarship, including misreporting of research data, problematic statistical
techniques, failure to properly document and preserve research results, and
inappropriate authorship.”12

A subsequent report, Fostering Integrity in Research (National Acad-
emies of Sciences, Engineering, and Medicine, 2017), emerged in this con-
text, and several of its central themes are relevant to questions posed in
this report.

According to the definition adopted by the U.S. federal government
in 2000, research misconduct is fabrication of data, falsification of data,
or plagiarism “in proposing, performing, or reviewing research, or in re-
porting research results” (Office of Science and Technology Policy, 2000,
p. 76262). The federal policy requires that research institutions report all

12 See http://statements.cornell.edu/2018/20180920-statement-provost-michael-kotlikoff.cfm.
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allegations of misconduct in research projects supported by federal funding
that have advanced from the inquiry stage to a full investigation, and to
report on the results of those investigations.

Other detrimental research practices (see National Academies of Sci-
ences, Engineering, and Medicine, 2017) include failing to follow sponsor
requirements or disciplinary standards for retaining data, authorship mis-
representation other than plagiarism, refusing to share data or methods,
and misleading statistical analysis that falls short of falsification. In addition
to the behaviors of individual researchers, detrimental research practices
also include actions taken by organizations, such as failure on the part of
research institutions to maintain adequate policies, procedures, or capacity
to foster research integrity and assess research misconduct allegations, and
abusive or irresponsible publication practices by journal editors and peer
review.

Just as information on rates of non-reproducibility and non-replicability
in research is limited, knowledge about research misconduct and detrimental
research practices is scarce. Reports of research misconduct allegations
and findings are released by the National Science Foundation Office of
Inspector General and the Department of Health and Human Services
Office of Research Integrity (see National Science Foundation, 2018d). As
discussed above, new analyses of retraction trends have shed some light
on the frequency of occurrence of fraud and misconduct. Allegations and
findings of misconduct increased from the mid-2000s to the mid-2010s but
may have leveled off in the past few years.

Analysis of retractions of scientific articles in journals may also shed
some light on the problem (Steen et al., 2013). One analysis of biomedical
articles found that misconduct was responsible for more than two-thirds
of retractions (Fang et al., 2012). As mentioned earlier, a wider analysis
of all retractions of scientific papers found about one-half attributable to
misconduct or fraud (Brainard, 2018). Others have found some differences
according to discipline (Grieneisen and Zhang, 2012).

One theme of Fostering Integrity in Research is that research mis-
conduct and detrimental research practices are a continuum of behaviors
(National Academies of Sciences, Engineering, and Medicine, 2017). While
current policies and institutions aimed at preventing and dealing with re-
search misconduct are certainly necessary, detrimental research practices
likely arise from some of the same causes and may cost the research enter-
prise more than misconduct does in terms of resources wasted on the fabri-
cated or falsified work, resources wasted on following up this work, harm
to public health due to treatments based on acceptance of incorrect clinical
results, reputational harm to collaborators and institutions, and others.

No branch of science is immune to research misconduct, and the com-
mittee did not find any basis to differentiate the relative level of occurrence
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in various branches of science. Some but not all researcher misconduct has
been uncovered through reproducibility and replication attempts, which
are the self-correcting mechanisms of science. From the available evidence,
documented cases of researcher misconduct are relatively rare, as suggested

by a rate of retractions in scientific papers of approximately 4 in 10,000
(Brainard, 2018).

CONCLUSION 5-4: The occurrence of non-replicability is due to
multiple sources, some of which impede and others of which promote
progress in science. The overall extent of non-replicability is an inad-
equate indicator of the health of science.
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Improving Reproducibility
and Replicability

This chapter describes current and proposed efforts to improve
reproducibility and replicability—or to reduce unhelpful sources of
non-replicability. After considering broad issues related to strength-
ening research practices, this chapter will review efforts focused on
computational reproducibility, a number of which will also have a
positive effect on replicability, and then move to a discussion of ef-
forts that seek mainly to improve replicability. The chapter presents
a number of the committee’s key recommendations.

STRENGTHENING RESEARCH PRACTICES:
BROAD EFFORTS AND RESPONSIBILITIES

Improving substandard research practices—including poor study de-
sign, failure to report details, and inadequate data analysis—has the poten-
tial to improve reproducibility and replicability by ensuring that research
is more rigorous, thoughtful, and dependable. Rigorous research practices
were important long before reproducibility and replicability emerged as
notable issues in science, but the recent emphasis on transparency in re-
search has brought new attention to these issues. Broad efforts to improve
research practices through education and stronger standards are a response
to changes in the environment and practice of science, such as the near
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ubiquity of advanced computation and the globalization of research capa-
bilities and collaborations.

The recommendations below to improve reproducibility and replicabil-
ity are generally phrased to allow flexibility in their adoption by funding
agencies and the National Science Foundation (NSF). The committee’s phi-
losophy behind this approach is that we do not apprehend all the priorities
that apply to an agency such as NSF. As the committee is generally averse
to displacing funds that could be applied to discovery research, we have
chosen to frame our funding recommendations in terms that urge their
consideration and respect the agency’s or organization’s responsibility to
weigh the merits against other priorities.

In 1989, the National Academy of Sciences published its first guide to
responsible research, On Being a Scientist. This booklet, directed at stu-
dents in the early phases of their research careers, noted that scientific re-
search involves making difficult decisions based on “value-laden judgments,
personal desires, and even a researcher’s personality and style” (p. 1).
The guide, along with updates in 1995 and 2009, laid out standards for
responsible research conduct that apply across scientific fields and types of
research. The most recent guide (National Academy of Sciences, National
Academy of Engineering, and Institute of Medicine, 2009) describes three
overarching obligations for scientists. First, because the scientific advances
of tomorrow are built on the research of today, researchers have an obli-
gation to conduct responsible research that is valid and worth the trust of
their colleagues. Second, researchers have an obligation to themselves to
act in a responsible and honest way. Third, researchers have an obligation
to act in ways that serve the public for many reasons: research is often
supported by taxpayer dollars, research results are used to inform medical
and health decisions that affect people, and results underlie public policies
that shape our world.

In theory, improving research practices is noncontroversial; in practice,
any new requirements or standards may be a burden on tight budgets. For
example, in hypothesis-testing inquiries, good research practices include
conducting studies that are designed with adequate statistical power to
increase the likelihood of finding an effect when the effect exists. This
practice involves collecting more and better observations (i.e., reducing
sampling error by increasing sample size and reducing measurement error
by improving measurement precision and reliability). Although desirable in
principle, this practice can involve tradeoffs in how researchers allocate lim-
ited resources of time, money, and access to limited participant populations.
For example, should a researcher allocate all of these resources to test one
important hypothesis or conduct lower-powered studies to test two impor-
tant hypotheses, following up on the one that looks most promising? Some
researchers advocate the latter approach (Finkel et al., 2017), while others
have argued for the former (Albers and Lakens, 2018; Gervais et al., 2015).

Copyright National Academy of Sciences. All rights reserved.



Reproducibility and Replicability in Science

IMPROVING REPRODUCIBILITY AND REPLICABILITY 107

Individual scientific fields have also taken steps to improve research
practices, often with an explicit aim at either reproducibility or replicability,
or both. Examples include the following:

e The Association for Psychological Science introduced a new journal
in 2018, Advances in Methods and Practices in Psychological Sci-
ence, which features articles on best practices, statistics tutorials,
and other issues related to replicability. The association also offers
workshops and presentations about research practices at its annual
convention.

e The Society for the Improvement of Psychological Science was
formed in 2016 with the explicit aim of improving research meth-
ods and practices in psychological science.

e A report of the Federation of American Societies for Experimental
Biology (2016) urges all researchers to be trained in the maintenance
of experimental records and laboratory notebooks; use of precise
definitions and standard nomenclature for the field or experimental
model; critical review of experimental design, including variables,
metrics, and data analysis; application of appropriate statistical
methods; and complete and transparent reporting of results.

e The ARRIVE (Animal Research: Reporting of In Vivo Experi-
ments) guidelines for animal research give researchers a 20-point
checklist of details to include in a manuscript.! The guidelines in-
clude information about sample size, how subjects were allocated
to different groups, and very specific details about the particular
strain of animals used.?

e The American Vacuum Society recently published an article high-
lighting reproducibility and replicability issues (Baer and Gilmore,
2018).

e The Council on Governmental Relations (2018) conducted a sur-
vey among its membership to assess what resources its member
institutions provide to foster rigor and reproducibility.

Perhaps the most important group of stakeholders in science are re-
searchers themselves. If their work is to become part of the scientific record,
it must be understandable and trustworthy. If they are to believe and build
on the work of others, it must also be understandable and trustworthy.

1 The ARRIVE guidelines are included in a much larger set found on the EQUATOR
(Enhancing the QUAlity and Transparency Of health Research) Network. See https://www.
equator-network.org/reporting-guidelines.

2 The guidelines were issued by the Centre for Replacement Refinement & Reduction of Ani-
mals in Research. See https://nc3rs.org.uk/sites/default/files/documents/Guidelines/NC3Rs %20
ARRIVE%20Guidelines %202013.pdf.
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researchers are key stakeholders in efforts to improve reproducibility

and replicability.

RECOMMENDATION 6-1: All researchers should include a clear, spe-
cific, and complete description of how a reported result was reached.
Different areas of study or types of inquiry may require different kinds
of information.

Reports should include details appropriate for the type of research,
including

a clear description of all methods, instruments, materials, proce-
dures, measurements, and other variables involved in the study;

a clear description of the analysis of data and decisions for exclu-
sion of some data and inclusion of other;

for results that depend on statistical inference, a description of
the analytic decisions and when these decisions were made and
whether the study is exploratory or confirmatory;

a discussion of the expected constraints on generality, such as
which methodological features the authors think could be varied
without affecting the result and which must remain constant;
reporting of precision or statistical power; and

a discussion of the uncertainty of the measurements, results, and
inferences.

Education and Training

In order to conduct research that is reproducible, researchers need to
understand the importance of reproducibility, replicability, and transpar-
ency, to be trained in best practices, and to know about the tools that
are available. Educational institutions and others have been incorporating
reproducibility in classrooms and other settings in a variety of ways. For
example:

A new course at the University of California, Berkeley, “Repro-
ducible and Collaborative Data Science,” introduces students to
“practical techniques and tools for producing statistically sound
and appropriate, reproducible, and verifiable computational an-
swers to scientific questions.” The university has also created the
Berkeley Initiative for Transparency in the Social Sciences.*

3 For the course description, see https://berkeley-stat159-f17.github.io/stat159-f1.
4 See https://www.bitss.org.
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e At New York University (NYU) and Johns Hopkins University,
reproducibility modules have been added to existing computation
courses.

e Librarians at NYU hold office hours for questions about reproduc-
ibility and offer tutorials, such as “Citing and Being Cited: Code
and Data Edition,” which teaches students how and why to share
data and code.

e Also at NYU, the Moore-Sloan Data Science Environment?® has cre-
ated the Reproducible Science website® to serve as an open direc-
tory of reproducibility resources for issues beyond computational
reproducibility.

e A nonprofit organization, the Carpentries, teaches foundational
coding and data science skills to researchers worldwide, offering
courses such as “Software Carpentry” and “Data Carpentry.”’

e Various other entities offer various short courses.’

New tools and methods for computation and statistical analysis are be-
ing developed at a rapid pace. The use of data and computation is evolving,
and the ubiquity and intensity of data are such that a competent scientist
today needs a sophisticated understanding of computation and statistics.
Investigators want and need to use these tools and methods, but their
education and training have often not prepared them to do so. Research-
ers need to understand the complexity of computation and acknowledge
when outside collaboration is necessary. Adequate education and training
in computation and statistical analysis is an inherent part of learning how
to be a scientist today.

Improving Knowledge and the Use of Statistical Significance Testing

A particular source of non-reproducibility discussed in Chapter 5 is
the misunderstanding and misuse of statistical significance testing. The
American Statistical Association (ASA) (2016) published six principles
about p-values, noting that in its 177 years of existence, it had never previ-
ously taken a stance on a specific matter of statistical practice. However,
given the recent discussion about reproducibility and replicability, the ASA
(2016, p. 129) decided to release these principles in the hopes that they
would “shed light on an aspect of our field that is too often misunderstood
and misused in the broader research community.” The principles cover key
issues in statistical reporting;:

5 See http://msdse.org.

6 See https://reproduciblescience.org.

7 See https://carpentries.org.

8 For example, see http://erigande.github.io/rep-res-webj https://02r.info/2017/05/03/egu-short-
course-recap; and https:/barbagroup.github.io/essential_skills_ RRC [January 2019].

Copyright National Academy of Sciences. All rights reserved.



Reproducibility and Replicability in Science

110 REPRODUCIBILITY AND REPLICABILITY IN SCIENCE

1. P-values can indicate how incompatible the data are with a speci-
fied statistical model.

2. P-values do not measure the probability that the studied hypothesis
is true, or the probability that the data were produced by random
chance alone.

3. Scientific conclusions and business or policy decisions should not
be based only on whether a p-value passes a specific threshold.

4. Proper inference requires full reporting and transparency.

5. A p-value, or statistical significance, does not measure the size of
an effect or the importance of a result.

6. By itself, a p-value does not provide a good measure of evidence
regarding a model or hypothesis.

More recently, The American Statistician, which is the official journal
of the ASA, released a special edition, titled “Statistical Inference in
the 21st Century: A World Beyond P < 0.05,” focused on the use of
p-values and statistical significance.” In the introduction to the special
edition, Wasserstein and colleagues (2019) strongly discourage the use of
a statistical significance threshold in reporting results due to overuse and
wide misinterpretation.

RECOMMENDATION 6-2: Academic institutions and institutions
managing scientific work such as industry and the national laboratories
should include training in the proper use of statistical analysis and in-
ference. Researchers who use statistical inference analyses should learn
to use them properly.

EFFORTS TO IMPROVE REPRODUCIBLITY

Chapters 4 and 5 cover current knowledge on the context, extent, and
causes of, non-reproducibility and non-replicability respectively. In the
case of non-reproducibility, the causes include inadequate recordkeeping
and nontransparent reporting. Improving computational reproducibility
involves better capturing and sharing information about the computational
environment and steps required to collect, process, and analyze data. All
of the sources of non-reproducibility also impair replicability efforts, since
they deprive researchers the information that is useful in designing or un-
dertaking replication studies. These primary causes of non-reproducibility
also directly contribute to non-replicability in that they make errors in
analysis more likely, and make it more difficult to detect error, data fabrica-
tion, and data falsification.
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Recordkeeping

Researchers typically execute multiple computational steps and lines
of reasoning as they develop models, perform analyses, or formulate and
test hypotheses. This process may involve executing multiple computational
steps and using a variety of tools, both of which may require a set of in-
puts (including data and parameters) and are executed in a computational
environment comprised of hardware and software (e.g., operating system
and libraries). The automatic capture of computational details is becoming
more common across domains to aid in recordkeeping. This section reviews
some of the tools that are available for that task. In the discussion below,
mention specific tools or platforms to highlight a current capability; this
should not be seen as an endorsement by this committee.

One example comes from physicists working at CERN, who have
developed methods to “capture the structured information about the re-
search data analysis workflows and processes to ensure the usability and
longevity of results” (Chen et al., 2018, p. 119). Figure 6-1 shows how the
large-scale CERN collaboration has developed infrastructure for capturing
computational details to allow for reproducibility and data reuse. In other
fields, open source workflow-based visualization tools, such as VisTrails,
have been developed to automatically capture computational details.’

Smaller groups or individual researchers may also capture computa-
tional details necessary for reproducibility. A computer scientist may run a
new simulation code in a computing cluster, copy the results to her desktop,
and analyze them using an interactive notebook (i.e., additional code).
To analyze additional simulation results, she can automate the complete
process by creating a scientific workflow. After the results are published,
a detailed provenance of the process needs to be included to enable others
to reproduce and extend them. This information includes the description
of the data, the computational steps followed, and information about the
computational environment.

For a paper that investigates Galois conjugates of quantum double
models (Freedman et al., 2011), each figure is accompanied by its prov-
enance, consisting of the workflow used to derive the plot, the underlying
libraries invoked by the workflow, and links to the input data—that is,
simulation results stored in an archival site (see Figure 6-2). This prov-
enance information allows all results in the paper to be reproduced. In the

9 Traditional workflow systems are used to automate repetitive computations, very much
like a script. For example, instead of typing commands on a shell, a workflow can be created
that automatically issues the commands. The open source VisTrails software does this and
captures the evolution of the computations (e.g., the use of different simulations, parameter
explorations). See https://www.vistrails.org/index.php/Main_Page.
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FIGURE 6-1 CERN system for data capture.

NOTES: (a) The experimental data from proton—proton collisions in the Large Hadron
Collider (LHC) are collected, curated, and stored. The raw experimental data is filtered and
processed to give the collision dataset formats that are suitable for physics analyses (i.e., data
curation). In parallel, the computer simulations also produce data and provide necessary
comparison of experimental data with theoretical predictions. (b) The stored collision and
simulated data are then released for individual physics analyses across a large collaboration.
A physicist may perform further data reduction and selection procedures, which are followed
by a statistical analysis on the data. The analysis assets being used by the individual researcher
include the information about the collision and simulated datasets, the detector conditions, the
analysis code, the computational environments, and the computational workflow steps used by
the researcher to derive the histograms and the final plots as they appear in publications. (c)
The CERN analysis preservation service captures all the analysis assets and related documen-
tation via a set of “push” and “pull” protocols, so that the analysis knowledge and data are
preserved in a trusted long-term digital repository for preservation purposes. (d) The CERN
open data service publishes selected data as they are released by the LHC collaborations into
the public domain, after an embargo period of several years, depending on the collaboration
data management plans and preservation policies (Chen et al., 2018, p. 114).

SOURCES: Chen et al. (2018, Fig. 1). CERN (a); Dave Gandy (b, c, code icon); Simplelcon
(b, ¢, gear icon); Andiran Valeanu (b, ¢, data icon); Umar Irshad (c, paper icon); Freepik (c,
workflow icon); https://www.nature.com/articles/s41567-018-0342-2#rightslink. See https//
creativecommons.org/licenses/by/4.0.
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PDF version of the paper,'? the figures are active, and when clicked on, the
corresponding workflow is loaded into the VisTrails system and executed
on a reader’s machine. The reader may then modify the workflow, change
parameter values, and input data (Stodden et al., 2014b, p. 35).

Source Code and Data Version Control

In computational environments, several researchers may be working
on shared code or data files. The changes to the code or data files affect
the results. In order for another researcher to reproduce results (or even to
clearly understand what was done), the version of the code or data file is
an important reporting detail. However, manual recordkeeping of the mul-
tiple changes by each user (or even a single user) is burdensome and adds
significant work to the research effort.

Version-control systems can automatically capture the history of all
changes made to the source code of a computer program, often saved as a
text file. This creates a history of changes and allows developers to better
understand the code and to identify possible problems or errors.

One of the most extensively used version-control systems, Git,'! is
a free and open source distributed version-control system. Scientists are
increasingly adopting it as a necessary piece in the reproducibility toolbox
(Wilson et al., 2014; Blischak et al., 2016). Recently, the concept of version
control has been extended to data files. These files are generally too large
to be stored in standard version-control systems, and they are often in a
binary format that cannot be versioned. Rather, data version control ex-
cludes the large data files from the main versioned repository, automatically
collects data provenance, records data processing steps into a (reproducible)
pipeline, and connects with cloud services where large data files are stored.

Scientific Workflow-Management Systems

Scientific workflows represent the complex flow of data products
through various steps of collection, transformation, and analysis to produce
an interpretable result. Capturing provenance of the result is increasingly
difficult to do using manual processes. Thus, to support computational
reproducibility, efforts have been under way for several years to develop
workflow-management systems that capture and store data and workflow
provenance automatically. With such systems, results can be reliably linked
to the computational process that derived them, and computational tasks

10 See http://arxiv.org/abs/1106.3267.
11 See https://git-scm.com.
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can be automated, allowing them to be rerun and shared. We present some
examples below.

In the life sciences, the Taverna project began as a tool to compose bio-
informatics workflows (Oinn et al., 2004), including programmatic access
to web-based data repositories and analysis tools. It is now an extensive set
of open source tools that are used in biology, chemistry, meteorology, social
sciences, and other fields.12

In physics, the Chimera system (Foster et al., 2002) originated in
support of data-intensive physics as a means to capture and automate a
complex pipeline of transformations on the data by external software. An
early prototype was tested in the analysis of data from the Sloan Digital
Sky Survey,!3 where image and spectroscopic data are transformed in sev-
eral stages to computationally locate galaxy clusters in the images. The
workflow involved reading and writing millions of data files (Annis et al.,
2002). Chimera enables on-demand generation of the derived data through
its “virtual data” system, reducing data storage requirements, while at the
same time making the transformation pipeline reproducible.

The Open Science Framework, developed by the Center for Open Sci-
ence (2018), is a cloud-based project management tool that emerged as part
of efforts to replicate psychological research that can be used by researchers
in other fields.' It is open source and free to use, and integrates a number
of other open scientific infrastructure resources.

Bowers and Ludascher (2005) constructed a formal model describing
scientific workflows and separating concerns, such as communication or
data flow and task coordination or orchestration. Modeling the basic com-
ponents of scientific workflows enables them to propose various workflow
design strategies, including task-, data-, structure-, and semantic-driven.
The Kepler workflow-management system (Ludascher et al., 2006), which
arose in ecology and environmental communities, leverages this formal ap-
proach for creating, analyzing, and sharing complex scientific workflows.!’
It can access and connect disparate data sources (e.g., streaming sensor
data, satellite images, simulation output) and integrate software compo-
nents for analysis or visualization. Kepler is used today in many fields, in-
cluding bioinformatics, chemistry, genetics, geoinformatics, oceanography,
and phylogeny. It is free and open source and has been supported over the
years by various agencies, including NSFE.

The previously described VisTrails system (see Callahan et al., 2006;
Freire et al., 2006) goes beyond workflow management and provenance

12 See https://taverna.incubator.apache.org.
13 See https://www.sdss.org.

14 See https://osf.io.

15 See https://kepler-project.org.

Copyright National Academy of Sciences. All rights reserved.



Reproducibility and Replicability in Science

116 REPRODUCIBILITY AND REPLICABILITY IN SCIENCE

capture by adding support for exploratory visualization. It is able to main-
tain a detailed history of all steps followed in the course of an exploration
involving computational tasks that are iteratively modified. Thus, it cap-
tures provenance of the workflow evolution.

An NSF-funded workshop in 2006, titled “Challenges of Scientific
Workflows,” focused on the questions of how to represent, capture, share,
and manage workflows, and the research needs in this arena. Among the
many workshop recommendations was the idea of integrating workflow
representations into the scholarly record (Gil et al., 2007). A subsequent
large community effort led to the specification of an Open Provenance
Model (Moreau et al., 2007, 2011), which enables unambiguously sharing
provenance information. This model motivated interoperable new tools and
continued research and development in workflow and data provenance.!®
Today, automated scientific workflows are essential in data-intensive and
large-scale science missions that aim to be computationally reproducible
(Deelman et al., 2018).

Tools for Reproduction of Results

After researchers capture the data and workflow provenance, and pos-
sibly use some technology to package the full computational environment
used in generating some results, other researchers who want to reproduce
the results in their local environment may still face challenges. A number
of solutions have been proposed that attempt to simplify reproduction
through the use of virtualization and cloud computing. For example, a re-
searcher using ReproZip will create a package to share with others who can
unpack, inspect, and reproduce the computational sequence in their own
environment; they can use virtualization tools (such as virtual machines
and containers), or they can execute the package in the cloud, without the
need to install any additional software packages (Rampin et al., 2018).
Virtual machines encapsulate an entire computational environment, from
the operating system up through all the layers of software, including the
whole file system.

Howe (2012) describes how virtual machines hosted on public clouds
can enable reproducibility. Transparency can be compromised if the original
researcher makes available a virtual machine containing executable soft-
ware as “black boxes,” without supplying the source code. Following good
practices for documenting and sharing computational artifacts, however,
the combination of virtual machines and public cloud has proved valuable
for reproducibility in several domains, such as microbial ecology and bio-
informatics (Ragan-Kelley et al., 2013). A newer solution that is gaining

16 See https://openprovenance.org.

Copyright National Academy of Sciences. All rights reserved.



Reproducibility and Replicability in Science

IMPROVING REPRODUCIBILITY AND REPLICABILITY 117

backers in the reproducible-research community are container technolo-
gies, such as Docker!” (Boettiger, 2015). Researchers can build container
images that work similarly to virtual images, but instead of bundling all
the data and software dependencies in a single file, the container image is
built from stackable pieces. Being a more lightweight solution, containers
are smaller and have less overhead than virtual images. They are being used
in archaeological research (Marwick, 2017), genomics (Di Tommaso et al.,
2015), phylogenomics (Waltemath and Wolkenhauer, 2016), and many
other science fields. The Docker software had contributors from many
organizations, including Google, IBM, and Microsoft as well as the team
at Docker, Inc. It has been widely adopted in industry (Vaughan-Nichols,
2018), which led to fast innovation and sustainability that researchers can
directly benefit from. The Software Sustainability Institute in the United
Kingdom held a June 2017 workshop, “Docker Containers for Reproduc-
ible Research,” where talks covered applications in bioinformatics, deep
learning, high-energy physics, and metagenomics, among more general
technical topics.

Interactive computational notebooks are another technology support-
ing reproducible research (Shen, 2014). Jupyter is an open source project
developing a set of tools for interactive computation and data analysis,
enabling researchers to fully narrate their analysis with text and multimedia
content.'® The narratives and the computational analysis are saved in a
Jupyter Notebook, which can be shared with other researchers to reproduce
the computations. Notebooks organize the content into cells: code cells that
can be individually executed and produce output below them, and content
cells written with Markdown formatting syntax. The output of code cells
can be of any type, including data plots and interactive visualizations
(Kluyver et al., 2016). Scientists are increasingly adopting Jupyter for their
own exploratory computing, sharing knowledge within their communities,
and publishing alongside traditional academic papers. One example is the
publication of the confirmed detection of gravitational waves by the Laser
Interferometer Gravitational-Wave Observatory (LIGO) experiment. The
researchers published Jupyter notebooks that reproduced the analysis of the
data displaying the signature of a binary black-hole merger.!’

Recent technological advances in version control, virtualization, com-
putational notebooks, and automatic provenance tracking have the po-
tential to simplify reproducibility, and tools have been developed that
leverage these technologies. However, given that computational reproduc-
ibility requirements vary widely even within a discipline, there are still

17 Docker is a free and open source; see https://www.docker.com/resources/what-container.
18 See https://jupyter.org.
19 See https://www.gw-openscience.org/data and https://doi.org/10.7935/K53X84K2.
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many questions to be answered both to understand the gaps left by existing
tools and to develop principled approaches that fill those gaps. Making the
creation of reproducible experiments easy and an integral part of scientists’
computational environments would provide a great incentive for much
broader adoption of reproducibility.

RECOMMENDATION 6-3: Funding agencies and organizations
should consider investing in research and development of open-source,
usable tools and infrastructure that support reproducibility for a broad
range of studies across different domains in a seamless fashion. Concur-
rently, investments would be helpful in outreach to inform and train
researchers on best practices and how to use these tools.

Publication Reproducibility Audits

One approach that could be taken by publishers is to assess the re-
producibility of a manuscript’s results before the manuscript is published,
using the data and code provided by the authors. One publication that does
so is the American Journal of Political Science, which uses paid external
contractors to assess reproducibility (Jacoby, 2017). The journal submits
accepted manuscripts to an external reproducibility check before they are
published. As discussed in Chapter 4, since the journal began this process in
20135, the external check has almost always (e.g., 108 of 116 articles) found
some issue that requires the author to provide more information or make
a change. This prepublication checking is an expensive and labor-intensive
process, but it allows the journal to be more confident in the reproducibility
of the work that is published. The external check adds about 52 days to the
publishing process and, as noted above, requires an average of 8 person-
hours. The files with the author-provided information are also made avail-
able to the public. Other journals submit some but not all manuscripts to
such a check, sometimes during the review process and sometimes when a
manuscript is accepted.

One advantage of prepublication reproducibility checks is that they
encourage authors to be careful in how they conduct, report, and docu-
ment their analyses. Knowing that the journal will (or may) send the data
and code to be checked for reproducibility may make authors more careful
to document their data and analyses clearly and to make sure the reported
results are free of errors. Another important benefit of this approach is
that verifying all manuscripts for reproducibility before publication should
lead to a high rate of reproducibility of published results. Whether sub-
mitting some but not all manuscripts to such a check has an effect on the
non-checked papers is an open question. The primary downside of this
practice is that it is expensive, time consuming, and labor intensive. It is
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also challenging to make sure that statistical analysis code can be executed
by others who may not have the same software (or the same version of the
software) as the authors.

A number of other initiatives related to publication and report-
ing of research results are discussed below in the context of supporting
reproducibility.

RECOMMENDATION 6-4: Journals should consider ways to en-
sure computational reproducibility for publications that make claims
based on computations, to the extent ethically and legally possible.
Although ensuring such reproducibility prior to publication presents
technological and practical challenges for researchers and journals,
new tools might make this goal more realistic. Journals should make
every reasonable effort to use these tools, make clear and enforce their
transparency requirements, and increase the reproducibility of their
published articles.

OVERCOMING TECHNOLOGICAL AND
INFRASTRUCTURE BARRIERS TO REPRODUCIBILITY

Even if complete information about the computational environment
and workflow of a study are accurately recorded, computational reproduc-
ibility is only practically possible if this information is available to other
researchers. The open and persistent availability of digital artifacts, such
as data and code, are also essential to replicability efforts, as explained in
Chapter 5. Yet, barriers related to costs, lack of infrastructure, disciplinary
culture, and weak incentives act as barriers to achieving persistent availabil-
ity of these digital objects (National Academies of Sciences, Engineering,
and Medicine, 2018). A number of relevant initiatives are under way to
overcome the technological and infrastructure barriers, as discussed below.
Initiatives on barriers related to culture and incentives are discussed later
in the chapter.

Archival Repositories and Open Data Platforms

The widespread availability of repositories where researchers can de-
posit the digital artifacts associated with their own work, as well as find
the work of others, is an enabling condition for improving reproducibility
and replicability. A wide range of organizations maintain repositories, in-
cluding research institutions, disciplinary bodies, and for-profit companies.
The FAIR (findable, accessible, interoperable, and reusable) data principles,
published in 2016 and discussed in more detail below, provide a framework
for the management and stewardship of research data aimed at facilitating
the sharing and use of research data.
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In order to share data, code, and other digital artifacts, researchers
need repositories that meet a set of standard requirements. A number of
new repositories have been developed in recent years, either institutionally
based or discipline specific. They can be found by means of directories of
open access repositories, such as OpenDOAR (Directory of Open Access
Repositories)?? and ROAR (Registry of Open Access Repositories).2!

The minimum requirements for an archival repository are that it is
searchable by providing a unique global identifier for the deposited arti-
fact, has a stated guarantee of long-term preservation, and is aligned with
a standard set of data access and curation principles. The details of each
of these three requirements are not well established across science and
engineering. Most commonly, to meet these requirements, a Digital Object
Identifier (DOI, see below) is used as a unique global identifier, long-term
preservation guarantees are at least 10 years, and FAIR principles are used.
Box 6-1 describes two repositories that satisfy these requirements; other
examples include Dataverse*? and Dryad.??

NSF has funded open science efforts in specific disciplines. In earth sci-
ences, The Magnetics Information Consortium (MagIC) provides a data ar-
chive that allows the discovery and reuse of such data for the broader earth
sciences community.2* MagIC began in 2002 as an NSF-funded project to
develop a comprehensive database for archiving of paleontology and rock
magnetic data, from laboratory measurements to a variety of derived data
and metadata, such as the positions of the spin axis of the Earth from the
point of view of the wander continents and the variations of the strength
and direction of the field through time, to changes in environmentally
controlled rock magnetic mineralogy. Closely linked to the MagIC project
is open source software for the conversion of laboratory data to a com-
mon data format that allows interpretation of the data in a consistent and
reproducible manner. Once published, the data and interpretations can be
uploaded into the MagIC database. All software involved with the MagIC
project is freely available on GitHub repositories. MagIC also maintains
an open access textbook on rock and paleomagnetism and links the data
to the original publications (only a portion of which are currently openly
available).

NSF also supported the Paleo Perspectives on Climate Change (P2C2)
Program, which funds much of the relevant, ongoing paleoclimate re-
search, with the goals of generating proxy datasets that can serve as tests

20 See http://v2.sherpa.ac.uk/opendoar.

21 See http://roar.eprints.org.

22 See https://dataverse.org.

23 See https://datadryad.org.

24 See http://earthref.org/MaglC; also see National Academies of Sciences, Engineering, and
Medicine (2018, p. 92).
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BOX 6-1
Examples of Archival Repositories

Two examples of archival repositories that meet minimal requirements of
providing a unique global identifier of deposited data, offer a long-term preserva-
tion guarantee, and support researchers as they seek to meet FAIR principles are
Figshare and Zenodo.

Figshare is a general-purpose repository for all kinds of digital artifacts of
research. Any file format can be uploaded, up to 5GB in size. It is free and unlim-
ited for public items, and also offers private space for up 20GB. Researchers use
it to deposit presentation slides, research figures, posters, course syllabi, lecture
notes, and reproducibility packages to accompany papers. The depositor retains
copyright on all deposited artifacts, and they are released under the license of
the depositor’s choice. One can connect a GitHub account and import directly
from that repository.@

Zenodo is a data repository created by CERN and the European open-
access infrastructure project called OpenAlRE.” It is free and noncommercial. One
can log in with a unique code (ORCID-ID) and deposit large files; the default is
50GB, but one can request larger capacity. Researchers use it to deposit larger
research datasets, such as discretization meshes, as well as to archive a full code
base from its GitHub repository and to get a Digital Object Identifier (DOI) for the
code at the time of a release or publication. Lab groups often create a Zenodo
community, to collect joint artifacts.

Both Figshare and Zenodo provide information and other resources that sup-
port and encourage users seeking to meet FAIR principles.¢ As open platforms,
they do not require that user deposits be FAIR.

aSee http://figshare.com.

bSee https://zenodo.org.

¢ See https:/ffigshare.com/articles/Figshare_and_the_FAIR_data_principles/7476428 and
https://about.zenodo.org/principles.
SOURCE: Adapted from Barba (2019, under CC-BY).

for climate models and synthesizing proxy and model data to understand
longer-term and higher-magnitude climate system variability not captured
by the instrumental record.?

Code Hosting and Collaboration Platforms

Version-control systems tools like Git>® are often used in concert with

hosting services like GitHub, Bitbucket, GitLab, and others. These hosting
services offer “repositories” (note that this term is used differently in the

25 See https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5750.
26 See https://git-scm.com.
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software world than in the data world) where authors share their code,
while at the same time synchronizing the history of changes with their
version-control tool, used locally in their working computers.

Increasing numbers of open source research software projects are
hosted on these services, and researchers are taking advantage of them for
more than code: writing reports and manuscripts, sharing supplementary
materials for papers, and other artifacts. Large research organizations often
create their own space on GitHub for collecting their project repositories,
including the National Aeronautics and Space Administration,?” Allen In-
stitute for Brain Science,?® and Space Telescope Science Institute,?’ among
others (Perez-Riverol et al., 2016). These hosting services are provided by
companies—for example, GitHub is owned by Microsoft—a fact that could
raise concern if researchers rely on them for code, data access, management
for reproducibility, and sharing because companies can disappear or change
their focus or priorities (see National Academies of Sciences, Engineering,
and Medicine, 2018).

Digital Object Identifiers

A DOI is a unique sequence of characters assigned to a digital object
by a registration agency, identifying the object and providing a persistent
link to it on the Internet (Barba, 2019). The DOI system is an international
standard, is interoperable, and has been widely adopted. Almost all schol-
arly publications assign a DOI to the articles they publish, and archival
repositories assign them to every artifact they receive. A DOI contains
standard metadata about the object, including the URL (uniform resource
locator) to where the object can be found online. When the URL changes
for any reason, the publisher can update the metadata so that the DOI still
resolves to the object’s location.

The permanent and unambiguous identification afforded by a DOI
makes a wide variety of research artifacts shareable and citable. Archival-
quality repositories (e.g., Dataverse, Dryad, Figshare, Zenodo) assign a
DOI to all artifact deposits, whether they are data, figures, or a snapshot
of the complete archive of a research software.

Journals with a data sharing policy often require the data that a paper
relied on or produced be deposited in an archival-quality repository with a
DOL. For example, PLOS journals require authors to make their data avail-
able (with few exceptions): “Repositories must assign a stable persistent

27 See https://github.com/nasa.
28 See https://github.com/Allenlnstitute.
29 See https://github.com/spacetelescope.
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identifier (PID) for each dataset at publication, such as a digital object
identifier (DOI) or an accession number” (PLOS ONE, 2018).

Obsolescence of Data and Code Storage

More thorough reporting that includes, for example, the unique identi-
fier to the correct version of each library and the research code that pro-
duced the results can attenuate the problem of obsolescence of data and
code storage. Proper use of archival repositories also helps. Researchers
increasingly adopt best practices, such as making an archival deposit of the
source code associated with a publication and citing its DOI, rather than
simply including a link to a GitHub (or similar) repository, which could
be later deleted (Barba, 2019). As discussed above, virtual machines and
containers are two available solutions to package an entire software stack,
ensuring the correct versions of dependencies are available.

Sometimes, however, technological breakdowns occur. A dataset could
be in a format that is no longer legible with current computers. University
libraries are developing a more comprehensive role to aid researchers in
the curation of digital artifacts, particularly research data, and they will
increasingly participate in reproducibility initiatives. For example, Yale
University Library has begun a digital preservation project that involves
building infrastructure for on-demand access to old software, applying
emulation technologies (Cummings, 2018).

Ensuring the longevity and openness of digital artifacts is a new chal-
lenge. Research institutions, research funders, and disciplinary groups all
recognize that they have responsibilities for the long-term stewardship of
digital artifacts, and they are developing strategies for meeting those needs.
For example, university libraries are developing strategies for covering the
associated costs (Erway and Rinehart, 2016). Although many research
funders support the costs of data management during the life of the project,
including preparing data for deposit in a repository, the ongoing costs of
stewardship that are borne by the institution need to be covered by some
combination of indirect budgets, unrestricted or purpose-directed funds,
and perhaps savings from cutting other services.

Some disciplinary communities have also developed robust institutions
and support structures for the stewardship of digital artifacts. One long-
standing example from the social and behavioral sciences is the Inter-
university Consortium for Political and Social Research (ICPSR)3°,
Supported by member dues as well as by public and private grants, ICPSR
maintains an archive of community datasets, offers education and training
programs, and performs other data-related services.

30 See https://www.icpsr.umich.edu.
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Yet there are wide disparities among research fields in their readiness to
take on the tasks of preserving and maintaining access to digital artifacts.
There are many discipline-specific considerations, such as which data and
artifacts to store, in what formats, how best to define and establish the insti-
tutional and physical infrastructure needed, and how to set and encourage
standards. The needs and requirements of governmental bodies, funding or-
ganizations, publishers, and researchers need to be taken into account. For
all, an overarching concern is how much these long-term efforts will cost
and how they will be supported. It is important to keep in mind that storage
itself is not the only expense; there are other life-cycle costs associated with
accessioning and de-accessioning data and artifacts, manually curating and
managing the information, updating to new technology, migrating data and
artifacts to new and changing systems, and other activities and costs that
may enable the data to be used.

In the past several years, several executive and legislative actions have
sought to provide incentives for data and artifact sharing and to encourage
standardized processes. A 2013 memorandum from the Office of Science
and Technology Policy?! directed all federal agencies with expenditures of
more than $100 million to develop plans for improving access to digital
data that result from federally funded research. In 2019, Congress enacted
the Open, Public, Electronic, and Necessary Government Data Act,3? which
requires several advancements in data storage and access, including that
open government data assets are to be published as machine-readable data.
In addition, it requires that “each agency shall (1) develop and maintain a
comprehensive data inventory for all data assets created by or collected by
the agency, and (2) designate a Chief Data Officer who shall be responsible
for lifecycle data management and other specified functions.” The act also
establishes in the U.S. Office of Management and Budget a Chief Data Of-
ficer Council for establishing government-wide best practices for the use,
protection, dissemination, and generation of data and for promoting data
sharing agreements among agencies.

Some research funders are already encouraging more openness in their
funded research. For example, the National Institutes of Health (NIH)
stores and makes available data and artifacts from work funded through-
out all of its institutes. To help better estimate and prepare for increased
data needs, NIH has recently funded a study by the National Academies
of Sciences, Engineering, and Medicine to examine the long-term costs of
preserving, archiving, and accessing biomedical data.

For some “big science” research projects that are computing-intensive
and generate large amounts of data, management and long-term preservation

31 See https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/ostp_public_
access_memo_2013.pdf.
32 This act was part of the Foundations for Evidence-Based Policymaking Act.
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of data and computing environments are central components of the project
itself. For example, the LIGO collaboration, mentioned earlier for its use of
Jupyter notebooks, has an elaborate data management plan that is updated
as the project continues (Anderson and Williams, 2017). The plan explains
the overall approach to data stewardship using an Open Archival Informa-
tion System model, delineates roles and responsibilities for various tasks,
and includes provisions for archiving and preserving digital artifacts for
LIGO?’s users, including the public. Funding comes through central grants
to LIGO, as well as through grants to participating investigators and their
institutions. Although the trend toward research funders requiring and sup-
porting data sharing is clear, many funders do not currently require data
management plans that protect the coherence and completeness of data and
objects that are part of a scholarly record.

Implementation Challenges

Efforts to support sharing and persistent access to data, code, and
other digital artifacts of research in order to facilitate reproducibility and
replicability will need to navigate around several persistent obstacles. For
example, to the extent that federal agencies and other research sponsors
can harmonize repository requirements and data management plans, it
will simplify the tasks associated with operating repositories and perhaps
even help to avoid an undue proliferation of repositories. Researchers and
research institutions would then find it more straightforward to comply
with funder mandates. A consultation or coordinating mechanism among
federal agencies and other research sponsors is one possible element toward
harmonization and simplification.

Barriers to sharing data and code, such as restrictions on personally
identifiable information, national security, and proprietary information,
will surely persist. Some research communities in disciplines such as eco-
nomics rely heavily on nonpublic data and/or code.?3 It may be helpful or
necessary for such communities to develop alternative mechanisms to verify
computational reproducibility. The use of virtual machines is one possible
approach, as discussed above.

Finally, as noted in the discussion of repositories, there is intense inter-
est in who controls and owns the tools and infrastructure that researchers
use to make digital artifacts available. The relative merits of for-profit
companies versus community ownership, as well as open source versus
proprietary software, will continue to be important topics of debate as
research communities shape their future (National Academies of Sciences,
Engineering, and Medicine, 2018).

33 See https://www.aeaweb.org/research/transparency-reproducibility-credibility-economics.
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RECOMMENDATION 6-5: In order to facilitate the transparent shar-
ing and availability of digital artifacts, such as data and code, for its
studies, the National Science Foundation (NSF) should

e develop a set of criteria for trusted open repositories to be used by
the scientific community for objects of the scholarly record;

® seek to harmonize with other funding agencies the repository cri-
teria and data management plans for scholarly objects;

e endorse or consider creating code and data repositories for long-
term archiving and preservation of digital artifacts that support
claims made in the scholarly record based on NSF-funded re-
search. These archives could be based at the institutional level or
be part of, and harmonized with, the NSF-funded Public Access
Repository;

¢ consider extending NSF’s current data management plan to include
other digital artifacts, such as software; and

e work with communities reliant on nonpublic data or code to de-
velop alternative mechanisms for demonstrating reproducibility.

Through these repository criteria, NSF would enable discoverability
and standards for digital scholarly objects and discourage an undue
proliferation of repositories, perhaps through endorsing or providing
one go-to Website that could access NSF-approved repositories.

RECOMMENDATION 6-6: Many stakeholders have a role to play in
improving computational reproducibility, including educational institu-
tions, professional societies, researchers, and funders.

e Educational institutions should educate and train students and fac-
ulty about computational methods and tools to improve the quality
of data and code and to produce reproducible research.

e Professional societies should take responsibility for educating the
public and their professional members about the importance and
limitations of computational research. Societies have an important
role in educating the public about the evolving nature of science
and the tools and methods that are used.

e Researchers should collaborate with expert colleagues when their
education and training are not adequate to meet the computational
requirements of their research.

e In line with its priority for “harnessing the data revolution,” the
National Science Foundation (and other funders) should consider
funding of activities to promote computational reproducibility.
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EFFORTS TO IMPROVE REPLICABILITY

Transparency and complete reporting are key enablers of replicability.
No matter how research is conducted, it is essential that other researchers
and the public can understand the details of the research study as fully as
possible. When researchers “show their work” through detailed methods
sections and full transparency about the choices made during the course of
research, it introduces a number of advantages. First, transparency allows
others to assess the quality of the study and therefore how much weight
to give the results. For example, a study that hypothesized an effect on 20
outcomes and found a statistically significant effect on 16 of them would
provide stronger evidence for the effectiveness of the intervention than a
study that hypothesized an effect on the same 20 outcomes and found a
statistically significant effect of the intervention only on 1 outcome. With-
out transparency, this type of comparison would be impossible. Second, for
researchers who may want to replicate a study, transparency means that
sufficient details are provided so that the researcher can adhere closely to
the original protocol and have the best opportunity to replicate the results.
Finally, transparency can serve as an antidote to questionable research
practices, such as hypothesizing after results are known or p-hacking, by
encouraging researchers to thoroughly track and report the details of the
decisions they made and when they made them.

Efforts to foster a culture that values and rewards openness and trans-
parency are taking a number of forms, including guidelines that promote
openness, badges and prizes that recognize openness, changes in policies
to ensure transparent reporting, new approaches to publishing results, and
direct support for replication efforts.

The efforts described here to decrease non-reproducibility and non-
replicability have been undertaken by various stakeholders, including jour-
nals, funders, educational institutions, and professional societies, as well
as researchers themselves. Given the current system’s incentives and roles,
publishers and funders can have a strong influence on behavior. For ex-
ample, funders can make funding contingent on researchers’ following
certain practices, and journals can set publication requirements. Profes-
sional organizations also have taken steps to improve reproducibility and
replicability. They have convened scientists within and across disciplines in
order to discuss issues; to develop standards, guidelines, and checklists for
ensuring good conduct and reporting of research; and to serve as resources
for media in order to improve communication about scientific results. Pro-
fessional organizations also control some of the incentive structures that
can be leveraged to change research practices and norms (e.g., journals,
awards, conference presentations).
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Openness Guidelines

Professional societies, journals, government organizations, and other
stakeholders have worked separately and together on developing guidelines
for open sharing. One of the largest efforts was a collaboration among aca-
demics, publishers, funders, and industry that began with a 2014 conference
at the Lorentz Center in the Netherlands and resulted in the 2016 publication
of the FAIR data principles. As noted above, the principles aim to make data
findable, accessible, interoperable, and reusable in the hopes that good data
management will facilitate scientific discovery (see Wilkinson et al., 2016).
Other guidelines include the Transparency and Openness Promotion (TOP)
guidelines and those by the Association for Computing Machinery (ACM).3*

The TOP guidelines were developed by journals, funders, and societies
and published in Science (Nosek et al., 2015). Their goal is to encourage
transparency and reproducibility in science; the effort currently has more

than 5,000 signatories®:

[The guidelines] include eight modular standards, each with three levels
of increasing stringency. Journals select which of the eight transparency
standards they wish to implement and select a level of implementation
for each. These features provide flexibility for adoption depending on
disciplinary variation, but simultaneously establish community standards.

The eight modular standards reflect the discussion throughout this

report:
1. citation
2. data transparency
3. analytic methods (code) transparency
4. research materials transparency
5. design and analysis transparency
6. preregistration of studies
7. preregistration of analysis plans
8. replication

We also note that the definition of “replication” by the TOP administrators
is consistent with this committee’s definition.

Several journals have begun requiring researchers to share their data
and code. For example, Science implemented a policy in 2011 requiring
researchers to make data and code available on request (American Associa-
tion for the Advancement of Science, 2018):

34 See https://www.acm.org/publications/task-force-on-data-software-and-reproducibility.
33 See https://cos.io/top.
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After publication, all data and materials necessary to understand, assess,
and extend the conclusions of the manuscript must be available to any
reader of a Science Journal. After publication, all reasonable requests for
data, code, or materials must be fulfilled. Any restrictions on the availabil-
ity of data, code, or materials, including fees and restrictions on original
data obtained from other sources must be disclosed to the editors as must
any Material Transfer Agreements (MTAs) pertaining to data or materials
used or produced in this research, that place constraints on providing these
data, code, or materials. Patents (whether applications or awards to the
authors or home institutions) related to the work should also be declared.

Journal Requirements, Badges, and Awards

Badges, which recognize and certify open practices, are another way
that journals have tried to encourage researchers to share information
with the aim of enabling reproducibility. For example, the Center for
Open Science has developed three badges—for preregistered studies (see
below), open data, and open materials—and at least 34 journals offer one
or more of these badges to authors. Initial research indicates that these
badges are effective at increasing the rate of data sharing, though not
effective in improving other practices, such as code sharing (Kidwell et al.,
2016; Rowhani-Farid et al., 2017). ACM has introduced a set of badges
for journal articles that certify whether the results have been replicated or
reproduced, and whether digital artifacts have been made available or been
verified. ACM’s branding structure gives badges in recognition of articles
that have passed some level of artifact review (Rous, 2018)3%; includes
this information in the article metadata, which is searchable in ACM’s
digital library; and allows authors to attach code and data to the article’s
record. ACM badges were introduced in 2016, and there are now more
than 820 articles in the ACM digital library with badges indicating they
are accompanied by artifacts (code, data, or both). The IEEE (Institute of
Electrical and Electronics Engineers) Xplore Digital Library also assigns
reproducibility badges to code or datasets for some articles. Another
interesting resource is Papers with Code, a GitHub repository, which is
collecting papers that have associated code on GitHub and providing links
to the paper, as well as the number of stars on GitHub.?”

Awards have also been used to incentivize authors not only to publish
reproducible results, but also to do it properly. One example is the Most
Reproducible Paper Award, introduced in 2017 by the ACM Special Inter-
est Group on Management of Data.3® There are four criteria for selecting
winners:

36 See https://www.acm.org/publications/policies/artifact-review-badging.
37 See https://github.com/zziz/pwc.
38 See https://sigmod.org/sigmod-awards/sigmod-most-reproducible-paper-award.
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1. coverage (ideal: all results can be verified)

2. ease of reproducibility (ideal: works)

3. flexibility (ideal: can change workloads, queries, data and get simi-
lar behavior with published results)

4. portability (ideal: Linux, Mac, Windows)

Over the past decade, a trend has emerged of journals—including Sci-
ence, Nature, and PLOS publications—strengthening their data and code
sharing policies. Technological advances have changed the journal publish-
ing landscape dramatically, and one advance has been the ability to publish
research artifacts connected (and linked) to the manuscript reporting the
scientific result. This has led to a push for journals to encourage or require
authors to publish the research artifacts necessary for others to attempt to
reproduce the results in a manuscript. Other journals do not require this but
encourage it, sometimes with extra incentives (Kidwell et al., 2016).

Some journals require authors to make all data underlying their results
available at the time of publication (e.g., PLOS publications), while others
require authors to make information available on request (e.g., Science).
However, as discussed in Chapter 4, authors are not always willing to share,
despite these requirements. Some journals now have data editors review
and confirm that submissions meet the journal’s data sharing requirements.
Others, instead of requiring, give authors the choice to include data and
code and provide incentives for them to do so. Information Systems,>® in
addition to evaluating the reproducibility of papers, also provides incentives
to reviewers: reviewers write, together with the authors of the paper being
evaluated, a reproducibility report that is published by the journal. Also,
some journals have separated the review of the data and code from the
traditional peer review of the overall content of submitted articles.

Introducing Prepublication Checks
for Errors and Anomalous Results

Several methods and tools can be used by researchers, peer review-
ers, and journals to identify errors in a paper prior to publication. These
methods and tools support reproducibility by strengthening the reliability
and rigor of results and also deter detrimental research practices such as
inappropriate use of statistical analysis as well as data fabrication and falsi-
fication. One approach is comparing new results against existing data in the
published literature, as in the partnership between the Journal of Chemical
and Engineering Data and the Thermodynamics Research Center (TRC) of
the National Institute of Standards and Technology. TRC maintains and

39 See https://www.journals.elsevier.com/information-systems.
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curates a number of databases that contain thermophysical and transport
properties of pure compounds, binary mixtures, ternary mixtures, and
chemical reactions, as well as other data.

Under its partnership with the journal, TRC performs a number of
quality checks on the data in articles prior to publication, including iden-
tifying anomalous behavior by plotting the new data in different ways and
comparison against TRC’s database; confirming that experimental uncer-
tainties are reasonably assessed and reported; and checking that descrip-
tions of sample characterization, method description, and figure and table
content are adequate. Papers that fail any of these checks are flagged for
follow-up, and the authors can correct the identified mistakes.

Joan Brennecke, editor-in-chief of the journal, reported to the com-
mittee that 23 percent of the submissions had “major issues”; of these,
around one-third of the anomalies were due to typographical errors or
similar mistakes.

Independently reproducing or replicating results before publishing is
an effective though time-consuming way to ensure that published results
are reproducible or replicable. One journal has undertaken this effort
since its inception in 1921; Organic Syntheses, a small journal about the
preparation of organic compounds, does not publish research until it has
been independently confirmed in the laboratory of a member of the board
of editors. In order to facilitate this work, the journal requires authors to
provide extensive details about their methods and also expects the authors
to have repeated the experiment themselves before submission.*? This type
of prepublication check is only feasible for experiments that are relatively
simple and inexpensive to reproduce or replicate.

Other approaches to identifying errors prior to publication do not re-
quire collaboration with other researchers and could be performed by the
authors of papers prior to submission or by journals prior to publication.
For example, in psychology and the social sciences, several mathematical
tools have been developed to check the statistical data and analyses that use
null hypothesis tests, including statcheck and p-checker:

e statcheck independently computes the p-values based on reported
statistics, such as the test statistic and degrees of freedom. This tool
has also been used to assess the percentage of reported p-values
that are inconsistent with their reported data across psychology
journals from 1985 to 2013 (Epskamp and Nuijten, 2016; Nuijten
et al., 2016).

e p-checker is an app that implements a set of tools developed by
various researchers to test whether reported p-values are correct.*!

40 See http://www.orgsyn.org/instructions.aspx.
4 See http://shinyapps.org/apps/p-checker.
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The tools include p-curve, the R-index, and the test of insufficient
variance (Schimmack, 2014; Schonbrodt, 2018; Simonsohn et al.,
2014b).

Although these tools have been developed and used in the social sci-
ence and psychological research communities, they could be used by any
researcher or journal to check statistical data in papers using null hypoth-
esis significance tests.

Preregistration of Studies

Preregistration is a specific practice under the broad umbrella of trans-
parency. Confusion over whether an analysis is exploratory or confirmatory
can be a source of non-replication, and preregistration can help mitigate
this confusion. Specifically, if p-values are interpreted as if the statistical
test was planned ahead of time (i.e., confirmatory) when in fact it was
exploratory, this will lead to misplaced confidence in the result and an in-
creased likelihood of non-replication. In short, without documentation of
which analyses were planned and which were exploratory, p-values (and
some other inferential statistics) are easily misinterpreted. One proposed
solution is registering the analysis plan before the research is conducted,
or at least before the data are examined. This practice goes by different
names in different fields, including “pre-analysis plan,” “preregistration,”
and “trial registration.” These plans include a precise description of the
research design, the statistical analysis that will test the key hypothesis or
research question, and the team’s plan for specific analytic decisions (e.g.,
how sample size will be determined, how outliers will be identified and
treated, when and how to transform variables).

Preregistration has several potential advantages (Nosek et al., 2018).
First, when done correctly, it makes the researchers’ plans transparent for
others to verify. Any deviations from the specified plan would be detectable
by others, and the scientific community can decide whether these deviations
warrant interpreting the evidence as more exploratory than confirmatory.
Second, when done correctly, preregistration improves interpretability of
any statistical tests and, when relevant, can ensure that a single, predeter-
mined statistical hypothesis has been carried out and can be regarded as a
legitimate test. In addition, the error rate among studies that are preregis-
tered correctly would be controlled (i.e., the rate of false positives when the
null hypothesis is true should be equal to alpha, the significance threshold).
In other words, preregistration would allow researchers to achieve the
stated goal of frequentist hypothesis testing—namely, error control. Third,
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by documenting the confirmatory part of their research plan, researchers
can expand their design and data collection to simultaneously gather ex-
ploratory evidence about new research questions. Without preregistration,
a researcher who had an a priori hypothesis but also wanted to collect and
analyze data for exploratory purposes in the same study would be indistin-
guishable from one who had no plan and simply conducted many different
tests in a single study. With preregistration, researchers can document their
planned hypothesis test and also collect and analyze data for exploratory
analyses, and the scientific community can verify that the planned tests
were indeed planned. Fourth, preregistration lessens overconfidence in ser-
endipitous results and allows the scientific community to present them with
appropriate caveats and take the necessary steps to confirm them.

A common misconception is that preregistration restricts researchers to
conducting only the analysis or analyses that were specified in the registered
plan. To the contrary, both exploratory and confirmatory analyses can be
conducted and reported; preregistration simply allows the scientific commu-
nity to distinguish between analyses that were prespecified and those that
were not and calibrate their confidence accordingly (Simmons, 2018). These
new or revised hypotheses would then be subject to new tests conducted
with independent data and prespecified analysis plans.

Despite these potential advantages, several concerns about prereg-
istration have been raised (Shiffrin et al., 2018; Morey, 2019). Perhaps
the biggest concern is that a preregistration requirement would put an
undue burden on researchers without clear evidence that preregistration
will actually help lower the instances of false positives. Another concern
is that preregistration will change the nature of what researchers study
by encouraging them to preferentially test easily confirmable hypotheses
and discouraging the kinds of open-ended exploration that can yield
important and unanticipated scientific advances (Goldin-Meadow, 2016;
Kupferschmidt, 2018). Finally, preregistration is sometimes presented as
a proxy for quality research; however, poor-quality ideas, methods, and
analyses can be preregistered just like high-quality research.

In a survey of more than 2,000 psychologists, Buttliere and Wicherts
(2018) found that preregistration had the lowest support among 11 pro-
posed reforms in psychological science. This lack of acceptance of prereg-
istration may be due, at least in part, to the fact that its effectiveness in
changing research practices and improving replication rates is unknown. It
could also be due to the fact that tools for preregistering studies have not
been around as long as tools for calculating effect sizes or statistical power,
so norms surrounding preregistration have had less time to develop.
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Encouraging the Publication of All Results

As discussed in Chapter 3, certain results are published over others for a
number of reasons. Novel, seemingly consequential, and eye-catching results
are favored over replication attempts, null results, or incremental results. En-
couraging the publication of null or incremental results will advance replica-
bility by increasing the amount of information available on a scientific topic
and reducing the bias favoring the publication of positive effects (Kaplan and
Irvin, 20135). The publication of replication studies encourages researchers to
expend more effort on replication.

Some new journals stress evaluation of manuscripts based only on
quality or rigor, rather than on the newsworthiness or potential impact of
the results (e.g., PLOS publications, Collabra: Psychology). In addition to
these new specialized journals, some traditional journals have advertised
that they welcome submissions of replication studies and studies report-
ing negative results. With an ever-increasing number of scientific journals,
specialized outlets may appear for all kinds of studies (e.g., null results,
replications, and methodologically limited studies, as well as groundbreak-
ing results). Some believe that having such outlets will help redress the
problem of publication bias, while others doubt the viability of outlets
that are likely to be seen as less prestigious. Having outlets for informative
but undervalued work does not necessarily mean that researchers will put
time and effort into publishing such work, particularly if the incentives do
not encourage it (e.g., if the journals that publish such work are not well
respected). According to this view, it is important that the same journals
that publish original, significant, and eye-catching results also consider pub-
lishing important and rigorous work that does not have these features. In
the meantime, preprint servers (e.g., arXiv, BioRxiv, PsyArXiv, SocArXiv)
make it possible for researchers to post papers whether or not they have
been accepted by a scientific journal. Such posting is likely to help the
scientific community incorporate the results of a broader range of studies
when evaluating the evidence for or against a scientific claim (e.g., when
undertaking research syntheses).

The publication of previously unpublishable results is a rather new
phenomenon; it will be useful to see if journals that have invited such sub-
missions follow through with publishing such studies, and if so, whether
publishing such studies will have an impact (positive or negative) on the
journals’ reputations. More importantly, will the availability of outlets lead
to more submissions of these types of studies? It is an open question as to
what extent the dearth of negative results and replication studies is due to
journals’ selection criteria. If more journals and more prestigious journals
become more open to publishing these types of studies, a more balanced
and realistic literature may result. Journals® reluctance to publish negative
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results and non-groundbreaking studies reflects the value that is currently
placed on these types of research by much of the scientific community,
which may value novel and eye-catching results over rigor and reliability.
While some traditional journals have advertised their willingness to pub-
lish negative results and replication studies, these submissions may not be
given full consideration in the review process: authors may be subjected
to harsher evaluation than if they were to present novel, original, positive
results.

A growing number of journals offer the option for submissions to be
reviewed on the basis of the proposed research question, method, and pro-
posed analyses, without a reviewer knowing the results.*?> The principal
argument for this type of approach is to separate the outcome of the
study from the evaluation of the importance of the research question and
the quality of the research design. The idea is that if the study is testing an
important question, and testing it well, then the results should be worthy
of publication regardless of the outcome of the study. This approach would
not apply to all studies. For example, in some studies the value of the study
depends on the outcome, such as “moon-shot” studies testing a very unlikely
hypothesis that would be a breakthrough if true, but unremarkable if false.

Two primary ways to conduct results-blind reviewing are available.
The first allows authors to submit a version of the manuscript with the
results obscured. That is, the results are known to the authors, but they
omit the relevant sections from the submitted manuscript so that reviewers
must evaluate the submission without knowing the results. Another ver-
sion of this approach is to invite submissions of manuscripts that propose
studies that have not been carried out yet, known as a “registered report”
(Chambers et al., 2014). These submissions would include all parts of a
manuscript that can be written before data are collected, including back-
ground literature and rationale for the research question, proposed meth-
ods, and planned analyses. This submission is peer reviewed and the editor
can request changes or reject the submission. If accepted, the authors carry
out the research and submit a final manuscript with the results, which is
again reviewed to ensure that the authors followed the proposed protocol.

No consensus has developed about whether and when the outcome of
a study should be a basis for evaluating the publication-worthiness of a pa-
per. Proponents of results-blind review argue that while there are certainly
circumstances under which knowing the results should affect the interpreta-
tion of the quality of a study (e.g., when the results bring to light error or
bias in the study design or analysis), in some circumstances knowing the
results could introduce bias into the peer review process. Proponents argue
that if more journals offer these options, a more balanced literature would

42 See http://cos.io/rr.
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be produced, and there would therefore be more accurate and replicable
conclusions both for individual studies and in meta-analyses. Others are
more cautious, arguing that requiring registered reports would be counter-
productive, by eliminating the ability of researchers to draw valid inferences
that emerge during the study.*} It can also be argued that authors are ca-
pable of self-publishing all of their own results in order to avoid publication
bias (e.g., by posting them on preprint servers), and that it is reasonable for
journals to evaluate results as part of the peer review process.

Additional Journal Initiatives

A number of journals have undertaken initiatives directed at improv-
ing reproducibility and replicability. One such example is the Psychology
and Cognitive Neuroscience section of Royal Society Open Science, which
is committed to publishing replications of empirical research particularly if
published within its journal.** There are new journals that print only nega-
tive results, such as New Negatives in Plant Science, as well as efforts by
other journals to highlight negative results and failures to replicate, such as
PLOS’s “missing pieces” collection of negative, null, and inconclusive re-
sults. IEEE Access is an open access journal that publishes negative results,
in addition to other articles on topics that do not fit into its traditional
journals.* Some journals have created specific protocols for conducting
and publishing replication studies. For example, Advances in Methods and
Practices in Psychological Science has a new article type called registered
replication reports, which involves multiple labs that all use the same proto-
cols in an attempt to replicate a result. These studies are often conducted in
collaboration with the original study authors, and the reports are published
regardless of the results. Some journals rely on voluntary badge systems;
others require authors to affirm that they have followed certain practices
or share their data or code as a requisite for publication.

RECOMMENDATION 6-7: Journals and scientific societies requesting
submissions for conferences should disclose their policies relevant to
achieving reproducibility and replicability. The strength of the claims
made in a journal article or conference submission should reflect the
reproducibility and replicability standards to which an article is held,
with stronger claims reserved for higher expected levels of reproduc-
ibility and replicability. Journals and conference organizers are encour-
aged to:

43 See https://www.insidehighered.com/news/2018/02/08/two-journals-experiment-registered-
reports-agreeing-publish-articles-based-their.

44 See https://royalsocietypublishing.org/rsos/replication-studies.

45 See https://ieeeaccess.ieee.org/frequently-asked-questions.
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e et and implement desired standards of reproducibility and replica-
bility and make this one of their priorities, such as deciding which
level they wish to achieve for each Transparency and Openness
Promotion guideline and working toward that goal;

¢ adopt policies to reduce the likelihood of non-replicability, such as
considering incentives or requirements for research materials trans-
parency, design, and analysis plan transparency, enhanced review
of statistical methods, study or analysis plan preregistration, and
replication studies; and

® require as a review criterion that all research reports include a
thoughtful discussion of the uncertainty in measurements and
conclusions.

Research Funder Efforts to Encourage Replicability

Funders can directly influence how researchers conduct and report
studies. By making funding contingent on researchers’ following specific
requirements, funders can make certain practices mandatory for large num-
bers of researchers. For example, a funding agency or philanthropic orga-
nization could require that grantees follow certain guidelines for design,
conduct, and reporting or could require grantees to preregister hypotheses
or publish null results.

Some funders are already taking these types of steps. For example, in
2012, the National Institute of Neurological Disorders and Stroke convened
a meeting of stakeholders and published a call for reporting standards, ask-
ing researchers to report on blinding, randomization, sample size estima-
tion, and data handling. In 2014, NIH gathered a group of journal editors
to discuss reproducibility and replicability. The group developed guidelines
for reporting preclinical research that cover statistical analysis, data and
material sharing, consideration of refutations, and best practices. About
135 journals have signed on to the guidelines thus far.

Also in 2014, NIH started a process to update application and review
language for the research that it funds (National Institutes of Health,
2018d). After collecting input from the community, NIH developed a
policy called “enhancing reproducibility through rigor and transparency.”
(NIH uses the word “reproducibility” as a broad term to refer to both
reproducibility and replicability.) The policy is aimed specifically at rigor
and transparency in the hopes that improvements in these areas will result
in improved replicability in the long run (see Box 6-2).

In addition to funding requirements, funders can also choose to directly
fund reproduction or replication attempts or research syntheses. Replica-
tions are sometimes the best and most efficient way to confirm a result so
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BOX 6-2
Standards and Guidelines by Funders

Beginning in 2015, the National Institutes of Health (NIH) implemented
standards and guidelines for grant applications, career development awards, and
review aimed at enhancing rigor and transparency in work that it supports. The
standards and guidelines focus on four areas.

First, grantees should explicitly consider the strengths and weaknesses of
published or preliminary work bearing on the “scientific premise” of the proposed
work. For example, how rigorous were previous experimental designs?

Second, the application should address how the proposed experimental de-
sign and methods will generate “robust and unbiased results” (National Institutes
of Health, 2018d).

Third, applicants should explain how “biological variables such as sex, age,
weight, and underlying health conditions” are accounted for in experimental de-
sign, analysis, and reporting for vertebrate animal and human studies. This re-
quirement emerged from concerns that the tendency for some animal studies to
be limited to one sex could lead to a lack of understanding of possible sex-based
differences in outcomes.

Fourth, proposals should include the authentication of key biological and
chemical resources such as “cell lines, specialty chemicals, antibodies and other
biologics” (National Institutes of Health, 2018b). Applicants should state how they
plan to authenticate these resources.

NIH also indicated that it will be updating standards and guidelines for
other types of awards, such as institutional training grants, institutional career-
development awards, and individual fellowships (National Institutes of Health,
2018b, 2018c). In addition to the updated standards and guidelines, NIH has
developed training modules, organized webinars, and compiled links to funding
opportunities and meetings related to reproducibility, replicability, rigor, and trans-
parency. (National Institutes of Health, 2018d). NIH has a number of policies and
guidelines on sharing data and other resources that it has introduced over time
and continues to update, which are also relevant to reproducibility and replicability
(National Institutes of Health, 2018e).

The National Science Foundation (NSF) has not yet introduced standards
and guidance directly aimed at enhancing reproducibility and replicability in its ap-
plication process, as NIH has. NSF does have a data sharing policy and requires
that proposals include a data management plan. Individual directorates and divi-
sions provide more detailed guidance on preparation of data management plans
(National Science Foundation, 2018b, 2018c). Several of NSF’s directorates have
also issued “dear colleague letters” in recent years that encourage submission of
proposals addressing certain aspects of reproducibility and replicability, including
the Directorate for Social, Behavioral and Economic Sciences, the Directorate
for Computer and Information Science and Engineering, and the Geosciences
Directorate (National Science Foundation, 2016a, 2016b, 2018a).
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that decisions can be made and further research can move forward. How-
ever, as we note throughout this report, it can be costly and time consum-
ing to replicate previous research, and directing resources at replication
means that those resources cannot be used for discovery (refer to Box 5-2,
Chapter 5). Given the magnitude of scientific research today—with more
than 2 million articles published in 2016 alone—attempting to replicate
every study would be daunting and unwise. However, there is undoubtedly
a need to replicate some studies in order to confirm or correct the results.

The tension between discovery of new knowledge and confirmation
and repudiation of existing knowledge led the committee to develop criteria
for investment in replications. These criteria could be used by funders to
determine when to fund replication efforts, by journals to determine when
to publish replication studies, or by researchers to decide their own research
priorities.

Similar criteria have been developed by other bodies (see the example
in Table 6-1). The Netherlands Organisation for Scientific Research (NWO)
announced in 2016 that it would commit $3.3 million over 3 years for

TABLE 6-1 Assessment of the Desirability of Replication Studies

Criteria The desirability of a replication study:
Knowledge e is higher when results from a previous study seem more
implausible

e is higher when there are more doubts about the validity of the
methods or the proper execution of a previous study

e is higher when its results may have a major impact on
scientific knowledge

e is higher when it may help improve research methods

Impact e is higher when its results may have a major societal impact

e is higher when it may help avoid wasting research resources
on a scientific dead end

e is higher when it may improve the functioning of a whole
discipline (replication series)
Cost e is lower when it requires more resources and time investment
by researchers
e is lower when it places a heavier burden on human and animal
test subjects
Alternatives e must be weighed against performing innovative studies

e must be weighed against taking other measures to improve
reproducibility

SOURCE: Royal Netherlands Academy of Arts and Sciences (2018, Table 4).
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Dutch scientists who want to reproduce or replicate studies. NWO (2016)
has chosen to prioritize funding reproduction and replication in areas of
study called “cornerstone research,” defined as research that*®

is cited often,

has far-reaching consequences for further research,

plays a major role in policy making,

is heavily referred to in student textbooks, and

has received media attention and thus had an impact on public

debate.

The Global Young Academy (2018) similarly states that replications
may be more necessary “the more applied the research is, or the closer the
finding is towards short-term real-life implementation, where the conse-
quence of falsifying data has a greater risk of physical and environmental
harm.”

The tradeoff between the resources allocated to research for discovery
of new knowledge and to research for replication to confirm or repudiate
previous knowledge deserves thoughtful consideration.

Developing Effective Funder Mandates

Policies and mandates can play an important role, but their effective-
ness depends on whether they are clear, easy to follow, and harmonized
across funders and publishers. Recently, the Public Access Working Group
of the Association of American Universities and the Association of Public
and Land-grant Universities (2017) released a report with recommendations
for federal agencies and research institutions on how they should work
individually and collectively to improve the effectiveness of public access
policies. To the extent that a harmonized system of digital identifiers for in-
vestigators, projects, and outputs can be implemented, the costs and burden
of compliance can be reduced, and the process of compliance monitoring
can be largely automated. This development would counter the current
problem of widespread noncompliance with some open science mandates.

Finally, the nature of data, code, and other digital objects used or gener-
ated by different disciplines varies widely. Policies that encourage research
communities to define their own requirements and guidelines in order to
meet sharing and transparency goals might be helpful in avoiding problems
that could arise from the imposition of one-size-fits-all approaches.

The Association of American Universities and the Association of Pub-
lic and Land-grant Universities (2017) report provides useful guidance for

46 See https://www.nwo.nl/en/news-and-events/news/2016/nwo-makes-3-million-available-
for-replication-studies-pilot.html.
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striking the right balance between harmonization and specificity needed in
some aspects of open science policies, and the flexibility that is needed in
other areas.

RECOMMENDATION 6-8: Many considerations enter into decisions
about what types of scientific studies to fund, including striking a
balance between exploratory and confirmatory research. If private or
public funders choose to invest in initiatives on reproducibility and
replication, two areas may benefit from additional funding:

e education and training initiatives to ensure that researchers have
the knowledge, skills, and tools needed to conduct research in ways
that adhere to the highest scientific standards; describe methods
clearly, specifically, and completely; and express accurately and
appropriately the uncertainty involved in the research; and

e reviews of published work, such as testing the reproducibility of
published research, conducting rigorous replication studies, and
publishing sound critical commentaries.

RECOMMENDATION 6-9: Funders should require a thoughtful dis-
cussion in grant applications of how uncertainties will be evaluated,
along with any relevant issues regarding replicability and computa-
tional reproducibility. Funders should introduce review of reproduc-
ibility and replicability guidelines and activities into their merit-review
criteria, as a low-cost way to enhance both.

RECOMMENDATION 6-10: When funders, researchers, and other
stakeholders are considering whether and where to direct resources for
replication studies, they should consider the following criteria:

e The scientific results are important for individual decision making
or for policy decisions.

e The results have the potential to make a large contribution to basic
scientific knowledge.

e The original result is particularly surprising, that is, it is unex-
pected in light of previous evidence and knowledge.

e There is controversy about the topic.

e There was potential bias in the original investigation, due, for ex-
ample, to the source of funding.

e There was a weakness or flaw in the design, methods, or analysis
of the original study.

e The cost of a replication is offset by the potential value in reaffirm-
ing the original results.

e  Future expensive and important studies will build on the original
scientific results.
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Confidence in Science

The committee was asked to “draw conclusions and make recom-
mendations for improving rigor and transparency in scientific and
engineering research.” Certainly, reproducibility and replicability
play an important role in achieving rigor and transparency, and for
some lines of scientific inquiry, replication is one way to gain con-
fidence in scientific knowledge. For other lines of inquiry, howeuver,
direct replications may be impossible due to the characteristics of
the phenomena being studied. The robustness of science is less well
represented by the replications between two individual studies than
by a more holistic web of knowledge reinforced through multiple
lines of examination and inquiry. In this chapter, the committee
illustrates a spectrum of pathways to attain rigor and confidence
in scientific knowledge, beginning with an overview of research
synthesis and meta-analysis, and then citing illustrative approaches
and perspectives from geoscience, genetics, psychology, and big
data in social sciences. The chapter concludes with a consideration
of public understanding and confidence in science.

When results are computationally reproduced or replicated, confidence in
robustness of the knowledge derived from that particular study is increased.
However, reproducibility and replicability are focused on the compari-
son between individual studies. By looking more broadly and using other
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techniques to gain confidence in results, multiple pathways can be found
to consistently support certain scientific concepts and theories while reject-
ing others. Research synthesis is a widely accepted and practiced method
for gauging the reliability and validity of bodies of research, although like
all research methods, it can be used in ways that are more or less valid
(de Vrieze, 2018). The common principles of science—gathering evidence,
developing theories and/or hypotheses, and applying logic—allow us to
explore and predict systems that are inherently non-replicable. We use
several of these systems below to highlight how scientists gain confidence
when direct assessments of reproducibility or replicability are not feasible.

RESEARCH SYNTHESIS

As we note throughout this report, studies purporting to investigate
similar scientific questions can produce inconsistent or contradictory re-
sults. Research synthesis addresses the central question of how the results
of studies relate to each other, what factors may be contributing to vari-
ability across studies, and how study results coalesce or not in developing
the knowledge network for a particular science domain. In current use,
the term research synthesis describes the ensemble of research activities in-
volved in identifying, retrieving, evaluating, synthesizing, interpreting, and
contextualizing the available evidence from studies on a particular topic
and comprises both systematic reviews and meta-analyses. For example,
a research synthesis may classify studies based on some feature and then
test whether the effect size is larger for studies with or without the feature
compared with the other studies. The term meta-analysis is reserved for the
quantitative analysis conducted as part of research synthesis.

Although the terms used to describe research synthesis vary, the prac-
tice is widely used, in fields ranging from medicine to physics. In medicine,
Cochrane reviews are systematic reviews that are performed by a body of
experts who examine and synthesize the results of medical research.! These
reviews provide an overview of the best available evidence on a wide variety
of topics, and they are updated periodically as needed. In physics, the Task
Group on Fundamental Constants performs research syntheses as part of
its task to adjust the values of the fundamental constants of physics. The
task group compares new results to each other and to the current estimated
value, and uses this information to calculate an adjusted value (Mohr et
al., 2016). The exact procedure for research synthesis varies by field and
by the scientific question at hand; the following is a general description of
the approach.

1 For an overview of the Cochrane, see http://www.cochrane.org.
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Research synthesis begins with formal definitions of the scientific issues
and the scope of the investigation and proceeds to search for published and
unpublished sources of potentially relevant information (e.g., study results).
The ensemble of studies identified by the search is evaluated for relevance to
the central scientific question, and the resulting subset of studies undergoes
review for methodological quality, typically using explicit criteria and the
assignment of quality scores. The next step is the extraction of qualitative
and quantitative information from the selected studies. The former includes
study-level characteristics of design and study processes; the latter includes
quantitative results, such as study-level estimates of effects and variability
overall as well as by subsets of study participants or units or individual-level
data on study participants or units (Institute of Medicine, 2011, Chapter 4).

Using summary statistics or individual-level data, meta-analysis pro-
vides estimates of overall central tendencies, effect sizes, or association
magnitudes, along with estimates of the variance or uncertainty in those es-
timates. For example, the meta-analysis of the comparative efficacy of two
treatments for a particular condition can provide estimates of an overall ef-
fect in the target clinical population. Replicability of an effect is reflected in
the consistency of effect sizes across the studies, especially when a variety of
methods, each with different weaknesses, converge on the same conclusion.
As a tool for testing whether patterns of results across studies are anoma-
lous, meta-analyses have, for example, suggested that well-accepted results
in a scientific field are or could plausibly be largely due to publication bias.

Meta-analyses also test for variation in effect sizes and, as a result,
can suggest potential causes of non-replicability in existing research. Meta-
analyses can quantify the extent to which results appear to vary from
study to study solely due to random sampling variation or to varying
in a systematic way by subgroups (including sociodemographic, clinical,
genetic, and other subject characteristics), as well as by characteristics of
the individual studies (such as important aspects of the design of studies,
the treatments used, and the time period and context in which studies were
conducted). Of course, these features of the original studies need to be
described sufficiently to be retrieved from the research reports.

For example, a meta-analytic aggregation across 200 meta-analyses
published in the top journal for reviews in psychology, Psychological Bul-
letin, showed that only 8 percent of studies had adequate statistical power;
variation across studies testing the same hypothesis was very high, with 74
percent of variation due to unexplained heterogeneity; and reporting bias
overall was low (Stanley et al., 2018).

In social psychology, Malle (2006) conducted a meta-analysis of stud-
ies comparing how actors explain their own behavior with how observers
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explain it and identified an unrecognized confounder—the positivity of the
behavior. In studies that tested positive behaviors, actors took credit for
the action and attributed it more to themselves than did observers. In stud-
ies that tested negative behaviors, actors justified the behavior and viewed
it as due to the situation they were in more than did observers. Similarly,
meta-analyses have often shown that the association of obesity with various
outcomes (e.g., dementia) depend on the age in life at which the obesity is
considered.

Systematic reviews and meta-analyses are typically conducted as ret-
rospective investigations, in the sense that they search and evaluate the
evidence from studies that have been conducted. Systematic reviews and
meta-analyses are susceptible to biased datasets, for example, if the scien-
tific literature on which a systematic review or a meta-analysis is biased
due to publication bias of positive results. However, the potential for a
prospective formulation of evidence synthesis is clear and is beginning to
transform the landscape. Some research teams are beginning to monitor the
scientific literature on a particular topic and conduct periodic updates of
systematic reviews on the topic.> Prospective research synthesis may offer
a partial solution to the challenge of biased datasets.

Meta-research is a new field that involves evaluating and improv-
ing the practice of research. Meta-research encompasses and goes beyond
meta-analysis. As Ioannidis et al. (2015) aptly argued, meta-research can
go beyond single substantive questions to examine factors that affect rigor,
reproducibility, replicability, and, ultimately, the truth of research results
across many topics.

CONCLUSION 7-1: Further development in and the use of meta-
research would facilitate learning from scientific studies. These
developments would include the study of research practices such
as research on the quality and effects of peer review of journal
manuscripts or grant proposals, research on the effectiveness and side
effects of proposed research practices, and research on the variation in
reproducibility and replicability between fields or over time.

2 In the broad area of health care research, for example, this approach has been adopted
by Cochrane, an international group for systematic reviews, and by U.S. government orga-
nizations such as the Agency for Healthcare Research and Quality and the U.S. Preventive
Services Task Force.
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GEOSCIENCE

What distinguishes geoscience from much of chemistry, biology, and
physics is its focus on phenomena that emerge out of uncontrolled natural
environments, as well as its special concern with understanding past events
documented in the geologic record. Emergent phenomena on a global scale
include climate variations at Earth’s surface, tectonic motions of its litho-
spheric plates, and the magnetic field generated in its iron-rich core. The
geosystems responsible for these phenomena have been active for billions
of years, and the geologic record indicates that many of the terrestrial pro-
cesses in the distant geologic past were similar to those that are occurring
today. Geoscientists seek to understand the geosystems that produced these
past behaviors and to draw implications regarding the future of the planet
and its human environment. While one cannot replicate geologic events,
such as earthquakes or hurricanes, scientific methods are used to generate
increasingly accurate forecasts and predictions.

Emergent phenomena from complex natural systems are infinite in
their variety; no two events are identical, and in this sense, no event repeats
itself. Events can be categorized according to their statistical properties,
however, such as the parameters of their space, time, and size distributions.
The satisfactory explanation of an emergent phenomena requires building a
geosystem model (usually a numerical code) that can replicate the statistics
of the phenomenon by simulating the causal processes and interactions.
In this context, replication means achieving sufficient statistical agreement
between the simulated and observed phenomena.

Understanding of a geosystem and its defining phenomena is often
measured by scientists’ ability to replicate behaviors that were previously
observed (i.e., retrospective testing) and predict new ones that can be sub-
sequently observed (i.e., prospective testing). These evaluations can be in
the form of null-hypothesis significance tests (e.g., expressed in terms of
p-values) or in terms of skill scores relative to a prediction baseline (e.g.,
weather forecasts relative to mean-climate forecasts).

In the study of geosystems, reproducibility and replicability are closely
tied to verification and validation.? Verification confirms the correctness of
the model by checking that the numerical code correctly solves the math-
ematical equations. Validation is the process of deciding whether a model
replicates the data-generating process accurately enough to warrant some
specific application, such as the forecasting of natural hazards.

3 The meanings of the terms verification and validation, like reproducibility and replicabil-
ity, differ among fields. Here we conform to the usage in computer and information science.
In weather forecasting, a model is verified by its agreement with data—what is here called
validation.
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Hazard forecasting is an area of applied geoscience in which the issues
of reproducibility and replicability are sharply framed by the operational
demands for delivering high-quality information to a variety of users in a
timely manner. Federal agencies tasked with providing authoritative hazard
information to the public have undertaken substantial programs to improve
reproducibility and replicability standards in operational forecasting. The
cyberinfrastructure constructed to support operational forecasting also en-
hances capabilities for exploratory science in geosystems.

Natural hazards—from windstorms, droughts, floods, and wildfires to
earthquakes, landslides, tsunamis, and volcanic eruptions—are notoriously
difficult to predict because of the scale and complexity of the geosystems
that produce them. Predictability is especially problematic for extreme
events of low probability but high consequence that often dominate societal
risk, such as the “500-year flood” or “2,500-year earthquake.” Neverthe-
less, across all sectors of society, expectations are rising for timely, reliable
predictions of natural hazards based on the best available science.* A sub-
stantial part of applied geoscience now concerns the scientific forecasting
of hazards and their consequences. A forecast is deemed scientific if meets
five criteria:

formulated to predict measurable events

respectful of physical laws

calibrated against past observations

as reliable and skillful as practical, given the available information
testable against future observations

o hE S

To account for the unavoidable sources of non-replicability (i.e., the
randomness of nature and lack of knowledge about this variability), scien-
tific forecasts must be expressed as probabilities. The goal of probabilistic
forecasting is to develop forecasts of natural events that are statistically
ideal—the best forecasts possible given the available information. Progress
toward this goal requires the iterated development of forecasting models
over many cycles of data gathering, model calibration, verification, simula-
tion, and testing.

In some fields, such as weather and hydrological forecasting, the natu-
ral cycles are rapid enough and the observations are dense and accurate

4 For example, the 2015 Paris Agreement adopted by the U.N. Framework Convention
on Climate Change specifies that “adaptation action . . . should be based on and guided by
the best available science.” And the California Earthquake Authority is required by law to
establish residential insurance rates that are based on “the best available science” (Marshall,
2018, p. 106).
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enough to permit the iterated development of system-level models with
high explanatory and predictive power. Through steady advances in data
collection and numerical modeling over the past several decades, the skill of
the ensemble forecasting models developed and maintained by the weather
prediction centers has been steadily improved (Bauer et al., 2015). For
example, forecasting skill in the range from 3 to 10 days ahead has been
increasing by about 1 day per decade; that is, today’s 6-day forecast is as
accurate as the 5-day forecast was 10 years ago. This is a familiar illustra-
tion of gaining confidence in scientific knowledge without doing repeat
experiments.

GENETICS

One of the principal tools to gain knowledge about genetic risk fac-
tors for disease is a genome-wide association study (GWAS). A GWAS is
an observational study of a genome-wide set of genetic variants with the
aim of detecting which variants may be associated with the development
of a disease, or more broadly, associated with any expressed trait. These
studies can be complex to mount, involve massive data collection, and re-
quire application of a range of sophisticated statistical methods for correct
interpretation.

The community of investigators undertaking GWASs have adopted a
series of practices and standards to improve the reliability of their results.
These practices include a wide range of activities, such as:

e efforts to ensure consistency in data generation and extensive qual-
ity control steps to ensure the reliability of genotype data;

e genotype and phenotype harmonization;

e a push for large sample sizes through the establishment of large
international disease consortia;

e rigorous study design and standardized statistical analysis proto-
cols, including consensus building on controlling for key confound-
ers, such as genetic ancestry/population stratification, the use of
stringent criteria to account for multiple testing, and the develop-
ment of norms for conducting independent replication studies and
meta-analyzing multiple cohorts;

e a culture of large-scale international collaboration and sharing of
data, results, and tools, empowered by strong infrastructure sup-
port; and

e an incentive system, which is created to meet scientific needs and is
recognized and promoted by funding agencies and journals, as well
as grant and paper reviewers, for scientists to perform reproduc-
ible, replicable, and accurate research.
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For a description of the general approach taken by this community of
investigators, see Lin (2018).

PSYCHOLOGY

The idea that there is a “replication crisis” in psychology has received
a good deal of attention in professional and popular media, including The
New York Times, The Atlantic, National Review, and Slate. However, there
is no consensus within the field on this point. Some researchers believe that
the field is rife with lax methods that threaten validity, including low sta-
tistical power, failure to clarify between a priori and a posteriori hypothesis
testing, and the potential for p-hacking (e.g., Pashler and Wagenmakers,
2012; Simmons et al., 2011). Other researchers disagree with this charac-
terization and have discussed the costs of what they see as misportraying
psychology as a field in crisis, such as the possible chilling effects of such
claims on young investigators and an overemphasis on Type I errors (i.e.,
false positives) at the expense of Type II errors (i.e., false negatives), and
failing to discover important new phenomena (Fanelli, 2018; Fiedler et al.,
2012). Yet others have noted that psychology has long been concerned with
improving its methodology, and the current discussion of reproducibility is
part of the normal progression of science. An analysis of experimenter bias
in the 1960s is a good example, especially as it spurred the use of double-
blind methods in experiments (Rosenthal, 1979). In this view, the current
concerns can be situated within a history of continuing methodological
improvements as psychological scientists continue to develop better under-
standing and implementation of statistical and other methods and reporting
practices.

One reason to believe in the fundamental soundness of psychology as
a science is that a great deal of useful and reliable knowledge is being pro-
duced. Researchers are making numerous replicable discoveries about the
causes of human thought, emotion, and behavior (Shiffrin et al., 2018). To
give but a few examples, research on human memory has documented the
fallibility of eyewitness testimony, leading to the release of many wrongly
convicted prisoners (Loftus, 2017). Research on “overjustification” shows
that rewarding children can undermine their intrinsic interest in desirable
activities (Lepper and Henderlong, 2000). Research on how decisions are
framed has found that more people participate in social programs, such as
retirement savings or organ donation, when they are automatically enrolled
and have to make a decision to leave (i.e., opt out), compared with when
they have to make a decision to join (i.e., opt in) (Jachimowicz et al., 2018).
Increasingly, researchers and governments are using such psychological
knowledge to meet social needs and solve problems, including improv-
ing educational outcomes, reducing government waste from ineffective
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programs, improving people’s health, and reducing stereotyping and preju-
dice (Walton and Wilson, 2018; Wood and Neal, 2016).

It is possible that accompanying this progress are lower levels of repro-
ducibility than would be desirable. As discussed throughout this report, no
field of science produces perfectly replicable results, but it may be useful to
estimate the current level of replicability of published psychology results
and ask whether that level is as high as the field believes it needs to be. In-
deed, psychology has been at the forefront of empirical attempts to answer
this question with large-scale replication projects, in which researchers from
different labs attempt to reproduce a set of studies (refer to Table 5-1 in
Chapter 3).

The replication projects themselves have proved to be controversial,
however, generating wide disagreement about the attributes used to assess
replication and the interpretation of the results. Some view the results of
these projects as cause for alarm. In his remarks to the committee, for ex-
ample, Brian Nosek observed: “The evidence for reproducibility [replicabil-
ity| has fallen short of what one might expect or what one might desire.”
(Nosek, 2018). Researchers who agree with this perspective offer a range
of evidence.’

First, many of the replication attempts had similar or higher levels of
rigor (e.g., sample size, transparency, preregistration) as the original studies,
and yet many were not able to reproduce the original results (Cheung et
al., 2016; Ebersole et al., 2016a; Eerland et al., 2016; Hagger et al., 2016;
Klein et al., 2018; O’Donnell et al., 2018; Wagenmakers et al., 2016). Given
the high degree of scrutiny on replication studies (Zwaan et al., 2018), it
is unlikely that most failed replications are the result of sloppy research
practices.

Second, some of the replication attempts have focused specifically on
results that have garnered a lot of attention, are taught in textbooks, and
are in other ways high profile—results that one might expect have a high
chance of being robust. Some of these replication attempts were success-
ful, but many were not (e.g., Hagger et al., 2016; O’Donnell et al., 2018;
Wagenmakers et al., 2016).

Third, a number of the replication attempts were collaborative, with
researchers closely tied to the original result (e.g., the authors of the original
studies or people with a great deal of expertise on the phenomenon) play-
ing an active role in vetting the replication design and procedure (Cheung
et al., 2016; Eerland et al., 2016; Hagger et al., 2016; O’Donnell et al.,
2018; Wagenmakers et al., 2016). This has not consistently led to positive
replication results.

Fourth, when potential mitigating factors have been identified for
the failures to replicate, these are often speculative and yet to be tested

5 For a list of replication studies in psychology, see http://curatescience.org/#replications-
section.
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empirically. For example, failures to replicate have been attributed to con-
text sensitivity and that some phenomena are simply more difficult to recre-
ate in another time and place (Van Bavel et al., 2016). However, without
prospective empirical tests of this or other proposed mitigating factors, the
possibility that the original result is not replicable remains a real possibility.

And fifth, even if a substantial portion (say, one-third) of failures to
replicate are false negatives, it would still lead to the conclusion that the
replicability of psychology results falls short of the ideal. Thus, to conclude
that replicability rates are acceptable (say, near 80%), one would need to
have confidence that most failed replications have significant flaws.

Others, however, have a quite different view of the results of the
replication projects that have been conducted so far and offer their own
arguments and evidence. First, some replication projects have found relatively
high rates of replication: for example, Klein et al. (2014) replicated 10 of 13
results. Second, some high-profile replication projects (e.g., Open Science
Collaboration, 2015) may have underestimated the replication rate by failing
to correct for errors and by introducing changes in the replications that were
not in the original studies (e.g., Bench et al., 2017; Etz and Vandekerckhove,
2016; Gilbert et al., 2015; Van Bavel et al., 2016). Moreover, several
cases have come to light in which studies failed to replicate because of
methodological changes in the replications, rather than problems with the
original studies, and when these changes were corrected, the study replicated
successfully (e.g., Alogna et al., 2014; Luttrell et al., 2017; Noah et al., 2018).
Finally, the generalizability of the replication results is unknown, because no
project randomly selected the studies to be replicated, and many were quite
selective in the studies they chose to try to replicate.

An unresolved question in any analysis of replicability is what criteria
to use to determine success or failure. Meta-analysis across a set of results
may be a more promising technique to assess replicability, because it can
evaluate moderators of effects as well as uniformity of results. However,
meta-analysis may not achieve sufficient power given only a few studies.

Despite opposing views about how to interpret large-scale replication
projects, there seems to be an emerging consensus that it is not helpful, or
justified, to refer to psychology as being in a state of “crisis.” Nosek put
it this way in his comments to the committee: “How extensive is the lack
of reproducibility in research results in science and engineering in general?
The easy answer is that we don’t know. We don’t have enough information
to provide an estimate with any certainty for any individual field or even
across fields in general.” He added, “I don’t like the term crisis because it
implies a lot of things that we don’t know are true.”

Moreover, even if there were a definitive estimate of replicability in
psychology, no one knows the expected level of non-replicability in a
healthy science. Empirical results in psychology, like science in general, are
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inherently probabilistic, meaning that some failures to replicate are inevi-
table. As we stress throughout this report, innovative research will likely
produce inconsistent results as it pushes the boundaries of knowledge. Am-
bitious research agendas that, for example, link brain to behavior, genetic
to environmental influences, computational models to empirical results, and
hormonal fluctuations to emotions necessarily yield some dead ends and
failures. In short, some failures to replicate can reflect normal progress in
science, and they can also highlight a lack of theoretical understanding or
methodological limitations.

Whatever the extent of the problem, scientific methods and data ana-
lytic techniques can always be improved, and this discussion follows a long
tradition in psychology of methodological innovation. New practices, such
as checks on the efficacy of experimental manipulations, are now accepted
in the field. Funding proposals now include power analyses as a matter of
course. Longitudinal studies no longer just note attrition (i.e., participant
dropout), but instead routinely estimate its effects (e.g., intention-to-treat
analyses). At the same time, not all researchers have adopted best practices,
sometimes failing to keep pace with current knowledge (Sedlmeier and
Gigerenzer, 1989). Only recently are researchers starting to systematically
use power calculations in research reports or to provide online access to
data and materials. Pressures on researchers to improve practices and to
increase transparency have been heightened in the past decade by new
developments in information technology that increase public access to in-
formation and scrutiny of science (Lupia, 2017).

SOCIAL SCIENCE RESEARCH USING BIG DATA

With close to 7 in 10 Americans now using social media as a regular
news source (Pew, 2018), social scientists in communication research, psy-
chology, sociology, and political science routinely analyze a variety of infor-
mation disseminated on commercial social media platforms, such as Twitter
and Facebook, how that information flows through social networks, and
how it influences attitudes and behaviors.

Analyses of data from these commercial platforms may rely on publicly
available data that can be scraped and collected by any researcher without
input from or collaboration with industry partners (model 1). Alternatively,
industry staff may collaborate with researchers and provide access to pro-
prietary data for analysis (such as code or underlying algorithms) that may
not be made available to others (model 2). Variations on these two basic
models will depend on the type of intellectual property being used in the
research.

Both models raise challenges for reproducibility and replicability. In
terms of reproducibility, when data are proprietary and undisclosed, the
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computation by definition is not reproducible by others. This might put
this kind of research at odds with publication requirements of journals and
other academic outlets. An inability to publish results from such industry
partnerships may in the long term create a disincentive for work on da-
tasets that cannot be made publicly available and increase pressure from
within the scientific community on industry partners for more openness.
This process may be accelerated if funding agencies only support research
that follows the standards for full documentation and openness detailed in
this report.

Both models also raise issues with replicability. Social media platforms,
such as Twitter and Facebook, regularly modify their application program-
ming interfaces (APIs) and other modalities of data access, which influences
the ability of researchers to access, document, and archive data consistently.
In addition, data are likely confounded by ongoing A/B testing® and tweaks
to underlying algorithms. In model 1, these confounds are not transparent
to researchers and therefore cannot be documented or controlled for in
the original data collections or attempts to replicate the work. In model 2,
they are known to the research team, but because they are proprietary they
cannot be shared publicly. In both models, changes implemented by social
media platforms in algorithms, APIs, and other internal characteristics over
time make it impossible to computationally reproduce analytic models and
to have confidence that equivalent data for reproducibility can be collected
over time.

In summary, the considerations for social science using big data of the
type discussed above illustrate a spectrum of challenges and approaches
toward gaining confidence in scientific studies. In these and other scientific
domains, science progresses through growing consensus in the scientific com-
munity of what counts as scientific knowledge. At the same time, public
trust in science is premised on public confidence in the ability of scientists to
demonstrate and validate what they assert is scientific knowledge.

In the examples above, diverse fields of science have developed methods
for investigating phenomena that are difficult or impossible to replicate.
Yet, as in the case of hazard prediction, scientific progress has been made
as evidenced by forecasts with increased accuracy. This progress is built
from the results of many trials and errors. Differentiating a success from a
failure of a single study cannot be done without looking more broadly at
the other lines of evidence. As noted by Goodman and colleagues (2016,
p- 3): “[A] preferred way to assess the evidential meaning of two or more
results with substantive stochastic variability is to evaluate the cumulative
evidence they provide.”

6 A/B testing is a randomized experiment with two variants that includes application of sta-
tistical hypothesis testing or “two-sample hypothesis testing” as used in the field of statistics.
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CONCLUSION 7-2: Multiple channels of evidence from a variety
of studies provide a robust means for gaining confidence in scientific
knowledge over time. The goal of science is to understand the overall
effect or inference from a set of scientific studies, not to strictly deter-
mine whether any one study has replicated any other.

PUBLIC PERCEPTIONS OF REPRODUCIBILITY
AND REPLICABILITY

The congressional mandate that led to this study expressed the view
that “there is growing concern that some published research results cannot
be replicated, which can negatively affect the public’s trust in science.” The
statement of task for this report reflected this concern, asking the commit-
tee to “consider if the lack of replicability and reproducibility impacts . .
. the public’s perception” of science (refer to Box 1-1 in Chapter 1). This
committee is not aware of any data that have been collected that specifi-
cally address how non-reproducibility and non-replicability have affected
the public’s perception of science. However, there are data about topics that
may shed some light on how the public views these issues. These include
data about the public’s understanding of science, the public’s trust in sci-
ence, and the media’s coverage of science.

Public Understanding of Science

When examining public understanding of science for the purposes of
this report, at least four areas are particularly relevant: factual knowledge,
understanding of the scientific process, awareness of scientific consensus,
and understanding of uncertainty.

Factual knowledge about scientific terms and concepts in the United
States has been fairly stable in recent years. In 2016, Americans correctly
answered an average of 5.6 of the 9 true-or-false or multiple-choice items
asked on the Science & Engineering Indicators surveys. This number was
similar to the averages from data gathered over the past decade. In other
words, there is no indication that knowledge of scientific facts and terms
has decreased in recent years. It is clear from the data, however, that “fac-
tual knowledge of science is strongly related to individuals’ level of formal
schooling and the number of science and mathematics courses completed”
(National Science Foundation, 2018e, p. 7-35).

Americans’ understanding of the scientific process is mixed. The Science
& Engineering Indicators surveys ask respondents about their understand-
ing of three aspects related to the scientific process. In 2016, 64 percent
could correctly answer two questions related to the concept of probability,
51 percent provided a correct description of a scientific experiment, and 23
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percent were able to describe the idea of a scientific study. While these num-
bers have not been declining over time, they nonetheless indicate relatively
low levels of understanding of the scientific process and suggest an inability
of “[m]any members of the public . . . to differentiate a sound scientific
study from a poorly conducted one and to understand the scientific process
more broadly” (Scheufele, 2013, p. 14041).

Another area in which the public lacks a clear understanding of science is
the idea of scientific consensus on a topic. There are widespread perceptions
that no scientific consensus has emerged in areas that are supported by strong
and consistent bodies of research. In a 2014 U.S. survey (Funk and Raine,
2015, p. 8), for instance, two-thirds of respondents (67%) thought that
scientists did “not have a clear understanding about the health effects of
GM |[genetically modified] crops,” in spite of more than 1,500 peer-refereed
studies showing that there is no difference between genetically modified
and traditionally grown crops in terms of their health effects for human
consumption (National Academies of Sciences, Engineering, and Medicine,
2016a). Similarly, even though there is broad consensus among scientists,
one-half of Americans (52%) thought “scientists are divided” that the uni-
verse was created in a single, violent event often called the big bang, and
about one-third thought that scientists are divided on the human causes of
climate change (37%) and on evolution (29%).

For the fourth area, the public’s understanding about uncertainty, its
role in scientific inquiry, and how uncertainty ought to be evaluated, re-
search is sparse. Some data are available on uncertainties surrounding
public opinion poll results. In a 2007 Harris interactive poll,” for instance,
only about 1 in 10 Americans (12%) could correctly identify the source of
error quantified by margin-of-error estimates. Yet slightly more than one-
half (52%) agreed that pollsters should use the phrase “margin of error”
when reporting on survey results.

Some research has shown that scientists believe that the public is unable
to understand or contend with uncertainty in science (Besley and Nisbet,
2013; Davies, 2008; Ecklund et al., 2012) and that providing informa-
tion related to uncertainty creates distrust, panic, and confusion (Frewer
et al., 2003). However, people appear to expect some level of uncertainty
in scientific information, and seem to have a relatively high tolerance for
scientific uncertainty (Howell, 2018). Currently, research is being done to
explore how best to communicate uncertainties to the public and how to
help people accurately process uncertain information.

7 See https://theharrispoll.com/wp-content/uploads/2017/12/Harris-Interactive-Poll-Research-
Margin-of-Error-2007-11.pdf.
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Public Trust in Science

Despite a sometimes shaky understanding of science and the scientific
process, the public continues largely to trust the scientific community. In
its biannual Science & Engineering Indicators reports, the National Science
Board (National Science Foundation, 2018e) tracks public confidence in a
range of institutions (see Figure 7-1). Over time, trust in science has remained
stable—in contrast to other institutions, such as Congress, major corpora-
tions, and the press, which have all shown significant declines in public
confidence over the past 50 years. With respect to public confidence, science
has been eclipsed in public confidence only by the military during Operation
Desert Storm in the early 1990s and since the 9/11 terrorist attacks.

In the most recent iteration of the Science & Engineering Indicators sur-
veys (National Science Foundation, 2018e), almost 9 in 10 (88%) Ameri-
cans also “strongly agreed” or “agreed” with the statement that “[m]ost
scientists want to work on things that will make life better for the average
person.” A similar proportion (89%) “strongly agreed” or “agreed” that
“[s]cientific researchers are dedicated people who work for the good of hu-
manity.” Even for potentially controversial issues, such as climate change,
levels of trust in scientists as information sources remain relatively high,
with 71 percent in a 2015 Yale University Project on Climate Change survey
saying that they trust climate scientists “as a source of information about
global warming,” compared with 60 percent trusting television weather
reporters as information sources, and 41 percent trusting mainstream news
media. Controversies around scientific conduct, such as “climategate,”
have not led to significant shifts in public trust. In fact, “more than a de-
cade of public opinion research on global warming . . . [shows] that these
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FIGURE 7-1 Levels of public confidence in selected U.S. institutions over time.
SOURCE: National Science Foundation (2018e, Figure 7-16) and General Social Survey (2018
data from http://gss.norc.org/Get-The-Data).
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controversies . . . had little if any measurable impact on relevant opinions
of the nation as a whole” (MacInnis and Krosnick, 2016, p. 509).

In recent years, some scholars have raised concerns that unwar-
ranted attention on emerging areas of science can lead to misperceptions
or even declining trust among public audiences, especially if science is
unable to deliver on early claims or subsequent research fails to replicate
initial results (Scheufele, 2014). Public opinion surveys show that these
concerns are not completely unfounded. In national surveys, one in four
Americans (27%) think that it is a “big problem” and almost one-half
of Americans (47%) think it is at least a “small problem” that “[s]cience
researchers overstate the implications of their research”; only one in four
(24%) see no problem (Funk et al., 2017). In other words, “science may
run the risk of undermining its position in society in the long term if it does
not navigate this area of public communication carefully and responsibly”
(Scheufele and Krause, 2019, p. 7667).

Media Coverage of Science

The concerns noted above are exacerbated by the fact that the public’s
perception of science—and of reproducibility and replicability issues—is
heavily influenced by the media’s coverage of science. News is an inher-
ently event-driven profession. Research on news values (Galtung and Ruge,
1965) and journalistic norms (Shoemaker and Reese, 1996) has shown that
rare, unexpected, or novel events and topics are much more likely to be
covered by news media than recurring or what are seen as routine issues. As
a result, scientific news coverage often tends to favor articles about single-
study, breakthrough results over stories that might summarize cumulative
evidence, describe the process of scientific discovery, or delineate between
systemic, application-focused, or intrinsic uncertainties surrounding science,
as discussed throughout this report. In addition to being event driven, news
is also subject to audience demand. Experimental studies have demonstrated
that respondents prefer conflict-laden debates over deliberative exchanges
(Mutz and Reeves, 2005). Audience demand may drive news organizations
to cover scientific stories that emphasize conflict—for example, studies that
contradict previous work—rather than reporting on studies that support
the consensus view or make incremental additions to existing knowledge.

In addition to what is covered by the media, there are also concerns
about how the media cover scientific stories. There is some evidence that
media stories contain exaggerations or make causal statements or inferences
that are not warranted when reporting on scientific studies. For example,
a study that looked at journal articles, press releases about these articles,
and the subsequent news stories found that more than one-third of press
releases contained exaggerated advice, causal claims, or inferences from
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animals to humans (Sumner et al., 2016). When the press release contained
these exaggerations, the news stories that followed were far more likely also
to contain exaggerations in comparison with news stories based on press
releases that did not exaggerate.

Public confidence in science journalism reflects this concern about cov-
erage, with 73 percent of Americans saying that the “biggest problem with
news about scientific research findings is the way news reporters cover it,”
and 43 percent saying it is a “big problem” that the news media are “too
quick to report research findings that may not hold up” (Funk et al., 2017).
Implicit in discussions of sensationalizing and exaggeration of research
results is the concept of uncertainty. While scientific publications almost
always include at least a brief discussion of the uncertainty in the results—
whether presented in error bars, confidence intervals, or other metrics—this
discussion of uncertainty does not always make it into news stories. When
results are presented without the context of uncertainty, it can contribute
to the perception of hyping or exaggerating a study’s results.

In recent years, the term “replication crisis” has been used in both
academic writing (e.g., Shrout and Rodgers, 2018) and in the mainstream
media (see, e.g., Yong, 2016), despite a lack of reliable data about the
existence of such a “crisis.” Some have raised concerns that highly visible
instances of media coverage of the issue of replicability and reproducibility
have contributed to a larger narrative in public discourse around science be-
ing “broken” (Jamieson, 2018). The frequency and prominence with which
an issue is covered in the media can influence the perceived importance
among audiences about that issue relative to other topics and ultimately
how audiences evaluate actors in their performance on the issue (National
Academies of Sciences, Engineering, and Medicine, 2016b). However, large-
scale analyses suggest that widespread media coverage of the issue is not the
case. A preliminary analysis of print and online news outlets, for instance,
shows that overall media coverage on reproducibility and replicability
remains low, with fewer than 200 unique, on-topic articles captured for a
10-year period, from June 1, 2008, to April 30,2018 (Howell, 2018). Thus,
there is currently limited evidence that media coverage of a replication crisis
has significantly influenced public opinion.

Scientists also bear some responsibility for misrepresentation in the
public’s eye, with many believing that scientists overstate the implications
of their research. The purported existence of a replication crisis has been
reported in several high-profile articles in the mainstream media; how-
ever, overall coverage remains low and it is unclear whether this issue has
reached the ears of the general population.

CONCLUSION 7-3: Based on evidence from well-designed and
long-standing surveys of public perceptions, the public largely trusts
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scientists. Understanding of the scientific process and methods has
remained stable over time, though is not widespread. The National
Science Foundation’s most recent Science & Engineering Indicators
survey shows that 51 percent of Americans understand the logic of
experiments and 23 percent understand the idea of a scientific study.

As discussed throughout this report, uncertainty is an inherent part of
science. Unfortunately, while people show some tolerance for uncertainty
in science, it is often not well communicated by researchers or the media.
There is, however, a large and growing body of research outlining evidence-
based approaches for scientists to more effectively communicate different
dimensions of scientific uncertainty to nonexpert audiences (for an over-
view, see Fischhoff and Davis, 2014). Similarly, journalism teachers and
scholars have long examined how journalists cover scientific uncertainty
(e.g., Stocking, 1999) and best practices for communicating uncertainty in
science news coverage (e.g., Blum et al., 2005).

Broader trends in how science is promoted and covered in modern
news environments may indirectly influence public trust in science related
to replicability and reproducibility. Examples include concerns about hy-
perbolic claims in university press releases (for a summary, see Weingart,
2017) and a false balance in reporting, especially when scientific topics are
covered by nonscience journalists: in these cases, the established scientific
consensus around issues such as climate change are put on equal footing
with nonfactual claims by nonscientific organizations or interest groups for
the sake of “showing both sides” (Boykoff and Boykoff, 2004).

RECOMMENDATION 7-1: Scientists should take care to avoid over-
stating the implications of their research and also exercise caution in
their review of press releases, especially when the results bear directly
on matters of keen public interest and possible action.

RECOMMENDATION 7-2: Journalists should report on scientific
results with as much context and nuance as the medium allows. In
covering issues related to replicability and reproducibility, journalists
should help their audiences understand the differences between non-
reproducibility and non-replicability due to fraudulent conduct of
science and instances in which the failure to reproduce or replicate may
be due to evolving best practices in methods or inherent uncertainty in
science. Particular care in reporting on scientific results is warranted
when

e the scientific system under study is complex and with limited con-
trol over alternative explanations or confounding influences;
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e aresult is particularly surprising or at odds with existing bodies of
research;

e the study deals with an emerging area of science that is character-
ized by significant disagreement or contradictory results within the
scientific community; and

e research involves potential conflicts of interest, such as work funded
by advocacy groups, affected industry, or others with a stake in the
outcomes.

Finally, members of the public and policy makers have a role to play to
improve reproducibility and replicability. When reports of a new discovery
are made in the media, one needs to ask about the uncertainties associated
with the results and what other evidence exists that the discovery might be
weighed against.

RECOMMENDATION 7-3: Anyone making personal or policy deci-
sions based on scientific evidence should be wary of making a serious
decision based on the results, no matter how promising, of a single
study. Similarly, no one should take a new, single contrary study as
refutation of scientific conclusions supported by multiple lines of previ-
ous evidence.
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has been funded by the National Science Foundation, National Institute of
Mental Health, and Russell Sage Foundation. He has served on numerous
editorial boards, including the Board of Reviewing Editors at Science from
2010 to 2018. Wilson was elected to the American Academy of Arts and
Sciences in 2009. In 2013, he received the Donald T. Campbell Award
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been recognized through awards and funding from the National Science
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at the National Academies of Sciences, Engineering, and Medicine since
2011. She has directed studies within the Division on Earth and Life Stud-
ies (DELS) and Division of Behavioral and Social Sciences and Education
(DBASSE). Her work within DELS’s Nuclear and Radiation Studies Board
focuses on nuclear security, nonproliferation, and nuclear environmental
cleanup. Within DBASSE, she has worked with the Board on Environmen-
tal Change and Society and Board on Behavioral, Cognitive, and Sensory
Sciences. Prior to coming to the National Academies, she worked as a
program manager at the Johns Hopkins University Applied Physics Labo-
ratory (APL) for nearly 10 years. While at APL, she established and grew
its nuclear security program with the Department of Homeland Security’s
Domestic Nuclear Detection Office. She received a B.S. in physics from
Georgetown University, a B.S.E.E. from Catholic University of America,
and a Ph.D. in physics from Northwestern University.

THOMAS ARRISON is a program director in the Policy and Global Af-
fairs division of the National Academies of Sciences, Engineering, and
Medicine. Since joining the National Academies in 1990, he has directed
a range of studies and activities in areas, such as research integrity, open
science, international science and technology relations, innovation, infor-
mation technology, higher education, and strengthening the U.S. research
enterprise. Arrison earned M.A. degrees in public policy and Asian studies
from the University of Michigan.

MICHAEL COHEN is a senior program officer for the Committee on
National Statistics at the National Academies of Sciences, Engineering,
and Medicine. He is currently serving as study director for the Standing
Committee for Improving Motor Carrier Safety Measurement and for the
Workshop on Transparency and Reproducibility in Federal Statistics. He
was a mathematical statistician at the Energy Information Administration,
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an assistant professor at the School of Public Affairs at the University of
Maryland, and a visiting lecturer in statistics at Princeton University. His
general area of interest is the use of statistics in public policy, with particu-
lar focus in census undercount, model validation, and robust estimation. He
is a fellow of the American Statistical Association and an elected member
of the International Statistical Institute. He received a B.S. in mathematics
from the University of Michigan and an M.S. and Ph.D. in statistics from
Stanford University.

MICHELLE SCHWALBE is the director of the Board on Mathematical
Sciences and Analytics. She joined the National Academies in 2010 and
directed BMSA’s standing Committee on Theoretical and Applied Statis-
tics from 2011 to 2017, including a wide range of studies and workshops
related to big data, reproducibility of scientific results, and related topics.
She has been involved in a variety of activities focused on the mathemati-
cal sciences, machine learning, automotive fuel economy, electric vehicles,
and additive manufacturing. Prior to joining the National Academies, she
held positions at Oak Ridge National Laboratory and Lawrence Livermore
National Laboratory. Her interests lie broadly in mathematics, statistics,
and their many applications. Dr. Schwalbe has a Ph.D. in mechanical
engineering and an M.S. in engineering science and applied mathematics
from Northwestern University, and a B.S. in applied mathematics from the
University of California, Los Angeles.

ADRIENNE STITH BUTLER is associate director of the Board on Be-
havioral, Cognitive, and Sensory Sciences (BBCSS). Previously, she was
a senior program officer in BBCSS directing a project aimed at develop-
ing pilot media campaign materials based on recommendations from the
report Ending Discrimination Against People with Mental and Substance
Use Disorders. Prior to her work in BBCSS, she worked in the Health and
Medicine Division and served as the staff officer for reports pertaining to
the nursing workforce, interventions for mental and substance use disor-
ders, end of life care, pain management and research, regenerative medicine,
family planning, preterm birth, psychological consequences of terrorism,
diversity in the health care workforce, and racial and ethnic disparities in
health care. Prior to her work at the National Academies, Dr. Butler was
the James Marshall Public Policy Scholar, a fellowship sponsored by the
American Psychological Association and the Society for the Psychological
Study of Social Issues. Dr. Butler is a clinical psychologist and received her
Ph.D. from the University of Vermont. She completed postdoctoral fellow-
ships in adolescent medicine and pediatric psychology at the University of
Rochester Medical Center.
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BARBARA A. WANCHISEN is a senior board director with the National
Academies of Sciences, Engineering, and Medicines where she directs
the Board on Behavioral, Cognitive, and Sensory Sciences. She is a long-
standing member of the Psychonomic Society, American Psychological
Association (Fellow, Division 25), Association for Behavior Analysis-
International, and the American Association for the Advancement of Science.
She has served on the editorial boards of the Journal of the Experimental
Analysis of Behavior and The Behavior Analyst while also serving as a guest
reviewer of a number of other journals in experimental psychology. From
November 2001 until April 2008, employed by the American Psychological
Association, Wanchisen was the executive director of the Federation of
Behavioral, Psychological, and Cognitive Sciences in Washington, D.C., a
nonprofit advocacy organization. Previous to that role, Wanchisen was a
professor in the Department of Psychology and director of the college-wide
Honors Program at Baldwin-Wallace University near Cleveland, Ohio. She
received a B.A. in English and philosophy from Bloomsburg University in
Pennsylvania, an M.A. in English from Villanova University, and her Ph.D.
in experimental psychology from Temple University.

TINA WINTERS is an associate program officer with the Board on Behav-
ioral, Cognitive, and Sensory Sciences (BBCSS) at the National Academies
of Sciences, Engineering, and Medicine. She has worked on a variety of ac-
tivities within BBCSS on topics including reproducibility and replicability in
science, healthy aging, factors that influence the success of collaborative sci-
entific research endeavors, program evaluation, learning across the lifespan,
and contextual factors that bear on military units. Prior to joining BBCSS,
her work at the National Academies centered on studies and other activities
related to K-16 science and mathematics education, as well as education
research. She co-edited the National Academies consensus report Advanc-
ing Scientific Research in Education, authored Understanding Pathways
to Successful Aging: Bebhavioral and Social Factors Related to Alzheimer’s
Disease, Proceedings of a Workshop—in Brief, and has worked on many
other National Academies reports, including Enbancing the Effectiveness
of Team Science, Measuring Human Capabilities: An Agenda for Basic Re-
search on the Assessment of Individual and Group Performance Potential
for Military Accession, The Context of Military Environments: An Agenda
for Basic Research on Social and Organizational Factors Relevant to Small
Units, Using Science as Evidence in Public Policy, Strengthening Peer Review
in Federal Agencies That Support Education Research, Scientific Research in
Education, and Knowing What Students Know: The Science and Design of
Educational Assessment.
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Agendas of Open Committee Meetings

First Meeting
DECEMBER 12-13, 2017
TUESDAY, DECEMBER 12, 2017
Welcome and Introductions
Mary Ellen O’Connell, Executive Director, Division of Behavioral and

Social Science and Education

Harvey Fineberg, Committee Chair; President, Gordon and Betty Moore
Foundation

The Scientific Enterprise
Edward (Ned) Hall, Committee Member; Chair, Department of Philosophy,

Harvard University

National Science Foundation’s Interests and Goals for the Study
Joan Ferrini-Mundy, Chief Operating Officer, National Science Foundation

Perspectives on Reproducibility and Replication: Scientific Societies, Part I

Panelists, primarily leaders from U.S. scientific societies and organizations,
have been asked to focus on the following topics:
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e Within your field of science, what is the level of awareness, inter-
est, concern, and involvement in reproducibility and replicability
of research results?

e Are there specific areas within your field of science that are more
likely to have issues with reproducing scientific results?

e What reproducibility challenges does your field of science face with
cross disciplinary research?

Behavioral and Social Sciences
William G. Jacoby, Department of Political Science, Michigan State Univer-
sity; Editor, American Journal of Political Science

Howard S. Kurtzman, Acting Executive Director, Science Directorate,
American Psychological Association

Felice J. Levine, Executive Director and Ethics Officer, American Educa-
tional Research Association

Physical Sciences
Kate Kirby, Chief Executive Officer, American Physical Society

David Sholl, John E Brock III School Chair, School of Chemical and Bio-
molecular Engineering, Georgia Institute of Technology

Statistics
Ron Wasserstein, Executive Director, American Statistical Association

Earth Sciences

Brooks Hanson, Senior Vice President Publications, American Geophysical
Union

Engineering

Philip DiVietro, Managing Director of Publishing, American Society of

Mechanical Engineers

John Baillieul, Distinguished Professor, Department of Mechanical Engi-
neering, Boston University

Public Comments
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WEDNESDAY, DECEMBER 13, 2017

Welcome, Day One and Day Two Overviews
Harvey Fineberg, Committee Chair

Perspectives on Reproducibility and Replication: Scientific Societies and
Agencies, Part II

1. Panelists, primarily leaders from U.S. scientific societies and orga-
nizations, have been asked to focus on the following topics:

e What reproducibility challenges does your field of science face
with cross-disciplinary research?

e Within your field of science, what is the level of awareness,
interest, concern, and involvement in reproducibility and rep-
licability of research results?

e Are there specific areas within your field of science that are
more likely to have issues with reproducing scientific results?

Life Sciences
Yvette Seger, Director of Science Policy, Federation of American Societies
for Experimental Biology

Reproducibility of Scientific Research within the Agencies
Patricia Valdez, Extramural Research Integrity Officer, National Institutes
of Health

Anne Plant, Biosystems and Biomaterials Division, National Institute of
Standards and Technology

2. International panelists have been asked to focus on the following
topics:

e  What is the level of awareness, interest, concern, and involve-
ment in reproducibility and replicability of research results
within your national scientific societies?

e Are there specific areas of science that are more likely to have
issues with reproducing scientific results?

e What reproducibility and replicability issues exist for cross-
disciplinary research?
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Eric-Jan Wagenmakers, Professor of Psychology, University of Amsterdam
Jean Phillipe de Jong, The Dutch Royal Society of Sciences

3. The editor of a major cross-disciplinary journal was asked to focus
on the following questions:

Can journals assess levels of R&R across science?
What R&R challenges does cross-disciplinary research pose
that can be addressed by journals?
e Are cross-disciplinary papers handled differently from “pure”
science papers in terms of peer review or publishing decisions?
e  What R&R challenges does cross-disciplinary research pose
that can be addressed by journals?

Veronique Kiermer, Executive Editor, Public Library of Science

Reporting of Reproducibility Issues in Science
Richard Harris, Science Correspondent, National Public Radio

Public Comments

Copyright National Academy of Sciences. All rights reserved.



Reproducibility and Replicability in Science

APPENDIX B 203

Second Meeting
FEBRUARY 22-23, 2018

THURSDAY, FEBRUARY 22, 2018

Welcome and Introductions
Harvey Fineberg, Committee Chair; President, Gordon and Betty Moore
Foundation

Perspectives on Reproducibility and Replication: American Economic
Association

The speaker has been asked to focus on the following questions:

e Within economics, what is the level of awareness, interest, concern,
and involvement in reproducibility and replicability of research
results?

e Are there specific areas within economics that are more likely to
have issues with reproducing scientific results?

e What reproducibility challenges does economics face with cross-
disciplinary research?

Margaret Levenstein, Professor of Economics and Director, Inter-university
Consortium for Political and Social Research, University of Michigan

Panel 1: Overview of Extent of Reproducibility Issues in Scientific and
Engineering Research

The panelists have been asked to focus on the following session questions:

e How extensive is the lack of reproducibility in research results in
science and engineering, in general?

e At what level does a lack of reproducibility become a problem for
the wellbeing of science or engineering?

®  Does the lack to reproduce scientific results impact the public per-
ception of specific scientific fields and/or science and engineering in
general?

John Toannidis, C.F. Rehnborg Chair in Disease Prevention and Co-Director,
Meta-Research Innovation Center, Stanford University

Brian Nosek, Director, Center for Open Science and Professor of Psychol-
ogy, University of Virginia
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Daniel Sarewitz, Co-Director, Consortium for Science, Policy & Outcomes,
and Professor of Science and Society, Arizona State University

Panel 2, Part 1: Reproducibility Issues in Computational Sciences and
Statistics

The panelists in this session have been asked to address the session ques-
tions (above) with a focus on the management of computational code and
data.

David Madigan, Executive Vice President and Dean of the Faculty of Arts
and Sciences, Columbia University

Arjun Kumar Manrai, Department of Biomedical Informatics, Harvard
University

Panel 2, Part 2: Reproducibility Issues in Computational Sciences and
Statistics

The panelists in this session have been asked to address the session ques-
tions (above) with a focus on the impact of the misuse of statistics in
research.

Giovanni Parmigiani, Harvard T.H. Chan School of Public Health and
Dana Farber Cancer Institute

Steven Goodman, Professor of Medicine and Epidemiology, Associate Dean
for Clinical and Translational Research, and Co-Director, Meta-Research
Innovation Center at Stanford (METRICS), Stanford University

Panel 2, Part 3: Reproducibility Issues in Economics and Social Science

The panelists in this session have been asked to address the session ques-
tions (above) as they relate to economics, social sciences, and psychology.

Paul L. Joskow, Elizabeth and James Killian Professor of Economics, Emeri-
tus Department of Economics, Massachusetts Institute of Technology

Arthur (Skip) Lupia, Hal R. Varian Collegiate Professor of Political Science,
University of Michigan
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Joseph Simmons, Professor of Operations, Information, and Decisions,
Wharton School, University of Pennsylvania

Public Comments
FRIDAY, FEBRUARY 23, 2018

Welcome and Introductions
Harvey Fineberg, Committee Chair

Panel 3: Reproducibility Issues in Engineering

Gianluca Setti, Politecnico di Torino, Italy, and IEEE editor
Panel 4: Reporting of Reproducibility Issues in Science
Christie Aschwanden, Lead Science Editor, FiveThirtyEight
Laura Helmuth, Science Editor, The Washington Post

Public Comments
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Third Meeting
WEDNESDAY, APRIL 18, 2018

Welcome and Introductions

Harvey Fineberg, Committee Chair; President, Gordon and Betty Moore
Foundation

Perspectives on Scientific Progress and Irreproducibility

Richard Shiffrin, Department of Psychological and Brain Sciences, Indiana
University Bloomington

Panel 1: Reproducibility in the Physical and Earth Sciences

Joan Brennecke, Cockrell Family Chair in Engineering #16, McKetta De-
partment of Chemical Engineering, The University of Texas at Austin

Peter Mohr, Atomic Physics Division, National Institute of Standards and
Technology

Panel 2: Reproducibility in Industry and Industrial Engineering
Carl Ascoli, Chief Science Officer, Rockland Immunochemicals

William Lyons, Director, Global Research and Development Strategy for the
Global Technology Organization, Boeing Research and Technology

Introduction to Economics and Reproducibility
Daniel L. Goroff, Vice President and Program Director, Alfred P. Sloan
Foundation

Panel 3: The Economics of Addressing Reproducibility Issues in Science

Heidi Williams, Department of Economics, Massachusetts Institute of
Technology

Myron P. Gutmann, Professor of History and Director of the Institute of
Behavioral Science, University of Colorado Boulder

Richard Freeman, Herbert Ascherman Chair in Economics, Harvard
University

Brent Goldfarb, Management and Organizations Department and Dingman
Center for Entrepreneurship, University of Maryland

Public Comments
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Fourth Meeting
MAY 9, 2018

Welcome and Introductions
Harvey Fineberg, Committee Chair; President, Gordon and Betty Moore
Foundation

Panel: Perspectives on Reproducibility and Replication of Results in Cli-
mate Science

The panelists have been asked to focus on the following session questions:

e How has the awareness and understanding about reproducibility
and replication in climate science evolved over recent years?

e Are there specific challenges regarding reproducibility that you
have encountered or are aware of? Identify specific steps that are
being taken, either by you or by others, to ameliorate these issues.

e Highlight historical and potential new approaches to reproducing
and replicating climate science research using examples such as
paleoclimate data to test models and estimate uncertainties.

Michael Evans, Department of Geology, University of Maryland
Gavin Schmidt, Director, Goddard Institute for Space Studies, National

Aeronautics and Space Administration

Rich Loft, Director, Technology Development Division, National Center
for Atmospheric Research

Andrea Dutton, Department of Geological Sciences, University of Florida

Wrap-Up
Harvey Fineberg, Committee Chair
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Fifth Meeting
MAY 31, 2018

Welcome and Call to Order
Harvey Fineberg, Committee Chair; President, Gordon and Betty Moore
Foundation

Panel: International Perspectives on Reproducibility and Replication in Sci-
ence and Engineering

The panelists have been asked to focus on the following session questions:

e  Are there specific examples in your country/region where a lack of
reproducibility and replicability in research results has led to doubt
about reported results more broadly? Are reproducibility and repli-
cation of research results a global concern or is it a concern focused
within specific countries?

e Are there particular scientific fields in which lack of reproducibility
and replicability is more/less of a concern?

e Are there any concrete actions that organizations (e.g., funders,
publishers, societies) in your country or region have taken to ad-
dress concerns about reproducibility and replicability? What ac-
tions should they take?

e Should the research community work regionally and/or globally
to address concerns about reproducibility and replicability? If so,
what should be the priorities?

Laura Fierce, Environmental and Climate Sciences Department, Brookhaven
National Laboratory, and member, Executive Committee, Global Young
Academy [in person]

Koen Vermeir, French National Centre for Scientific Research, former
Co-Chair, Scientific Excellence and Open Science Programs, and Member,
Executive Committee, Global Young Academy [via Zoom]

Harry Xia, President, Alliance for Scientific Editing in China [in person]

Suman Chakraborty, Department of Mechanical Engineering, Indian Insti-
tute of Technology Kharagpur, India [via Zoom]|
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Recommendations Grouped

by Stakeholder

The committee’s recommendations in the main text of the report are
presented here by stakeholder: scientists and researchers, the National Sci-
ence Foundation, other funders, journals and conference organizers, edu-
cational institutions, professional societies, journalists, and members of the
public and policy makers. Some recommendations appear more than once
because they are addressed to more than one stakeholder.

SCIENTISTS AND RESEARCHERS

RECOMMENDATION 4-1: To help ensure the reproducibility of com-
putational results, researchers should convey clear, specific, and complete
information about any computational methods and data products that
support their published results in order to enable other researchers to re-
peat the analysis, unless such information is restricted by nonpublic data
policies. That information should include the data, study methods, and
computational environment:

¢ the input data used in the study either in extension (e.g., a text file
or a binary) or in intension (e.g., a script to generate the data),
as well as intermediate results and output data for steps that are
nondeterministic and cannot be reproduced in principle;

e a detailed description of the study methods (ideally in executable
form) together with its computational steps and associated param-
eters; and

209
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e information about the computational environment where the study
was originally executed, such as operating system, hardware ar-
chitecture, and library dependencies (which are relationships de-
scribed in and managed by a software dependency manager tool
to mitigate problems that occur when installed software packages
have dependencies on specific versions of other software packages).

RECOMMENDATION 5-1: Researchers should, as applicable to the spe-
cific study, provide an accurate and appropriate characterization of relevant
uncertainties when they report or publish their research. Researchers should
thoughtfully communicate all recognized uncertainties and estimate or
acknowledge other potential sources of uncertainty that bear on their
results, including stochastic uncertainties and uncertainties in measurement,
computation, knowledge, modeling, and methods of analysis.

RECOMMENDATION 6-1: All researchers should include a clear, spe-
cific, and complete description of how the reported result was reached.
Different areas of study or types of inquiry may require different kinds of
information.

Reports should include details appropriate for the type of research,
including

e a clear description of all methods, instruments, materials, proce-
dures, measurements, and other variables involved in the study;

e aclear description of the analysis of data and decisions for exclu-
sion of some data and inclusion of other;

e for results that depend on statistical inference, a description of
the analytic decisions and when these decisions were made and
whether the study is exploratory or confirmatory;

e a discussion of the expected constraints on generality, such as
which methodological features the authors think could be varied
without affecting the result and which must remain constant;

e areport of precision or statistical power; and

e a discussion of the uncertainty of the measurements, results, and
inferences.

RECOMMENDATION 6-2: Academic institutions and institutions manag-
ing scientific work such as industry and the national laboratories should
include training in the proper use of statistical analysis and inference. Re-
searchers who use statistical inference analyses should learn to use them

properly.
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RECOMMENDATION 6-6: Many stakeholders have a role to play in im-
proving computational reproducibility, including educational institutions,
professional societies, researchers, and funders.

e  Educational institutions should educate and train students and fac-
ulty about computational methods and tools to improve the quality
of data and code and to produce reproducible research.

e Professional societies should take responsibility for educating the
public and their professional members about the importance and
limitations of computational research. Societies have an important
role in educating the public about the evolving nature of science
and the tools and methods that are used.

e Researchers should collaborate with expert colleagues when their
education and training are not adequate to meet the computational
requirements of their research.

e In line with the National Science Foundations’s (NSF’s) priority
for “harnessing the data revolution,” NSF (and other funders)
should consider funding of activities to promote computational
reproducibility.

RECOMMENDATION 6-10: When funders, researchers, and other stake-
holders are considering whether and where to direct resources for replica-
tion studies, they should consider the following criteria:

e The scientific results are important for individual decision making
or for policy decisions.

e  The results have the potential to make a large contribution to basic
scientific knowledge.

e The original result is particularly surprising, that is, it is unex-
pected in light of previous evidence and knowledge.

e There is controversy about the topic.

e There was potential bias in the original investigation, due, for ex-
ample, to the source of funding.

e There was a weakness or flaw in the design, methods, or analysis
of the original study.

e The cost of a replication is offset by the potential value in reaffirm-
ing the original results.

e Future expensive and important studies will build on the original
scientific results.

RECOMMENDATION 7-1: Scientists should take care to avoid overstat-
ing the implications of their research and also exercise caution in their
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review of press releases, especially when the results bear directly on matters
of keen public interest and possible action.

THE NATIONAL SCIENCE FOUNDATION

RECOMMENDATION 4-1: To help ensure the reproducibility of com-
putational results, researchers should convey clear, specific, and complete
information about any computational methods and data products that
support their published results in order to enable other researchers to re-
peat the analysis, unless such information is restricted by nonpublic data
policies. That information should include the data, study methods, and
computational environment:

e the input data used in the study either in extension (e.g., a text file
or a binary) or in intension (e.g., a script to generate the data),
as well as intermediate results and output data for steps that are
nondeterministic and cannot be reproduced in principle;

e a detailed description of the study methods (ideally in executable
form) together with its computational steps and associated param-
eters; and

e information about the computational environment where the study
was originally executed, such as operating system, hardware ar-
chitecture, and library dependencies (which are relationships de-
scribed in and managed by a software dependency manager tool
to mitigate problems that occur when installed software packages
have dependencies on specific versions of other software packages).

RECOMMENDATION 4-2: The National Science Foundation should con-
sider investing in research that explores the limits of computational repro-
ducibility in instances in which bitwise reproducibility is not reasonable
in order to ensure that the meaning of consistent computational results
remains in step with the development of new computational hardware,
tools, and methods.

RECOMMENDATION 6-3: Funding agencies and organizations should
consider investing in research and development of open source, usable tools
and infrastructure that support reproducibility for a broad range of studies
across different domains in a seamless fashion. Concurrently, investments
would be helpful in outreach to inform and train researchers on best prac-
tices and how to use these tools.
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RECOMMENDATION 6-5: In order to facilitate the transparent sharing
and availability of digital artifacts, such as data and code, for its studies,
the National Science Foundation (NSF) should

e develop a set of criteria for trusted open repositories to be used by
the scientific community for objects of the scholarly record;

e seek to harmonize with other funding agencies the repository cri-
teria and data management plans for scholarly objects;

¢ endorse or consider creating code and data repositories for long-
term archiving and preservation of digital artifacts that support
claims made in the scholarly record based on NSF-funded research;
these archives could be based at the institutional level or be part of,
and harmonized with, the NSF-funded Public Access Repository;

e consider extending NSF’s current data-management plan to include
other digital artifacts, such as software; and

e work with communities reliant on nonpublic data or code to de-
velop alternative mechanisms for demonstrating reproducibility.

Through these repository criteria, NSF would enable discoverability
and standards for digital scholarly objects and discourage an undue prolif-
eration of repositories, perhaps through endorsing or providing one go-to
website that could access NSF-approved repositories.

RECOMMENDATION 6-6: Many stakeholders have a role to play in im-
proving computational reproducibility, including educational institutions,
professional societies, researchers, and funders.

e  Educational institutions should educate and train students and fac-
ulty about computational methods and tools to improve the quality
of data and code and to produce reproducible research.

e Professional societies should take responsibility for educating the
public and their professional members about the importance and
limitations of computational research. Societies have an important
role in educating the public about the evolving nature of science
and the tools and methods that are used.

e Researchers should collaborate with expert colleagues when their
education and training are not adequate to meet the computational
requirements of their research.

e In line with its priority for “harnessing the data revolution,” the
National Science Foundation (and other funders) should consider
funding of activities to promote computational reproducibility.
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RECOMMENDATION 6-8: Many considerations enter into decisions
about what types of scientific studies to fund, including striking a balance
between exploratory and confirmatory research. If private or public funders
choose to invest in initiatives on reproducibility and replication, two areas
may benefit from additional funding:

e education and training initiatives to ensure that researchers have
the knowledge, skills, and tools needed to conduct research in ways
that adhere to the highest scientific standards; that describe meth-
ods clearly, specifically, and completely; and that express accurately
and appropriately the uncertainty involved in the research; and

e reviews of published work, such as testing the reproducibility of
published research, conducting rigorous replication studies, and
publishing sound critical commentaries.

RECOMMENDATION 6-9: Funders should require a thoughtful discus-
sion in grant applications of how uncertainties will be evaluated, along with
any relevant issues regarding replicability and computational reproduc-
ibility. Funders should introduce review of reproducibility and replicability
guidelines and activities into their merit-review criteria, as a low-cost way
to enhance both.

RECOMMENDATION 6-10: When funders, researchers, and other stake-
holders are considering whether and where to direct resources for replica-
tion studies, they should consider the following criteria:

e The scientific results are important for individual decision making
or for policy decisions.

e  The results have the potential to make a large contribution to basic
scientific knowledge.

e The original result is particularly surprising, that is, it is unex-
pected in light of previous evidence and knowledge.

e There is controversy about the topic.

e There was potential bias in the original investigation, due, for ex-
ample, to the source of funding.

e There was a weakness or flaw in the design, methods, or analysis
of the original study.

e The cost of a replication is offset by the potential value in reaffirm-
ing the original results.

e Future expensive and important studies will build on the original
scientific results.
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OTHER FUNDERS

RECOMMENDATION 6-3: Funding agencies and organizations should
consider investing in research and development of open-source, usable tools
and infrastructure that support reproducibility for a broad range of studies
across different domains in a seamless fashion. Concurrently, investments
would be helpful in outreach to inform and train researchers on best prac-
tices and how to use these tools.

RECOMMENDATION 6-6: Many stakeholders have a role to play in im-
proving computational reproducibility, including educational institutions,
professional societies, researchers, and funders.

e  Educational institutions should educate and train students and fac-
ulty about computational methods and tools to improve the quality
of data and code and to produce reproducible research.

e Professional societies should take responsibility for educating the
public and their professional members about the importance and
limitations of computational research. Societies have an important
role in educating the public about the evolving nature of science
and the tools and methods that are used.

e Researchers should collaborate with expert colleagues when their
education and training are not adequate to meet the computational
requirements of their research.

e In line with its priority for “harnessing the data revolution,” the
National Science Foundation (and other funders) should consider
funding of activities to promote computational reproducibility.

RECOMMENDATION 6-8: Many considerations enter into decisions
about what types of scientific studies to fund, including striking a balance
between exploratory and confirmatory research. If private or public funders
choose to invest in initiatives on reproducibility and replication, two areas
may benefit from additional funding:

e education and training initiatives to ensure that researchers have
the knowledge, skills, and tools needed to conduct research in ways
that adhere to the highest scientific standards; describe methods
clearly, specifically, and completely; and express accurately and
appropriately the uncertainty involved in the research; and

e reviews of published work, such as testing the reproducibility of
published research, conducting rigorous replication studies, and
publishing sound critical commentaries.
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RECOMMENDATION 6-9: Funders should require a thoughtful discus-
sion in grant applications of how uncertainties will be evaluated, along with
any relevant issues regarding replicability and computational reproduc-
ibility. Funders should introduce review of reproducibility and replicability
guidelines and activities into their merit-review criteria, as a low-cost way
to enhance both.

RECOMMENDATION 6-10: When funders, researchers, and other stake-
holders are considering whether and where to direct resources for replica-
tion studies, they should consider the following criteria:

e The scientific results are important for individual decision making
or for policy decisions.

e  The results have the potential to make a large contribution to basic
scientific knowledge.

e The original result is particularly surprising, that is, it is unex-
pected in light of previous evidence and knowledge.

e There is controversy about the topic.

e There was potential bias in the original investigation, due, for ex-
ample, to the source of funding.

e There was a weakness or flaw in the design, methods, or analysis
of the original study.

e The cost of a replication is offset by the potential value in reaffirm-
ing the original results.

e Future expensive and important studies will build on the original
scientific results.

JOURNALS AND CONFERENCE ORGANIZERS

RECOMMENDATION 6-4: Journals should consider ways to ensure com-
putational reproducibility for publications that make claims based on com-
putations, to the extent ethically and legally possible. Although ensuring
such reproducibility prior to publication presents technological and practi-
cal challenges for researchers and journals, new tools might make this goal
more realistic. Journals should make every reasonable effort to use these
tools, make clear and enforce their transparency requirements, and increase
the reproducibility of their published articles.

RECOMMENDATION 6-7: Journals and scientific societies requesting
submissions for conferences should disclose their policies relevant to achiev-
ing reproducibility and replicability. The strength of the claims made in a
journal article or conference submission should reflect the reproducibility
and replicability standards to which an article is held, with stronger claims
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reserved for higher expected levels of reproducibility and replicability. Jour-
nals and conference organizers are encouraged to:

¢ set and implement desired standards of reproducibility and replica-
bility and make this one of their priorities, such as deciding which
level they wish to achieve for each Transparency and Openness
Promotion guideline and working toward that goal;

¢ adopt policies to reduce the likelihood of non-replicability, such as
considering incentives or requirements for research materials trans-
parency, design, and analysis plan transparency, enhanced review
of statistical methods, study or analysis plan preregistration, and
replication studies; and

® require as a review criterion that all research reports include a
thoughtful discussion of the uncertainty in measurements and
conclusions.

EDUCATIONAL INSTITUTIONS

RECOMMENDATION 6-2: Academic institutions and institutions manag-
ing scientific work such as industry and the national laboratories should
include training in the proper use of statistical analysis and inference. Re-
searchers who use statistical inference analyses should learn to use them

properly.

RECOMMENDATION 6-6: Many stakeholders have a role to play in im-
proving computational reproducibility, including educational institutions,
professional societies, researchers, and funders.

e  Educational institutions should educate and train students and fac-
ulty about computational methods and tools to improve the quality
of data and code and to produce reproducible research.

e Professional societies should take responsibility for educating the
public and their professional members about the importance and
limitations of computational research. Societies have an important
role in educating the public about the evolving nature of science
and the tools and methods that are used.

e Researchers should collaborate with expert colleagues when their
education and training are not adequate to meet the computational
requirements of their research.

e In line with its priority for “harnessing the data revolution,” the
National Science Foundation (and other funders) should consider
funding of activities to promote computational reproducibility.
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PROFESSIONAL SOCIETIES

RECOMMENDATION 6-6: Many stakeholders have a role to play in im-
proving computational reproducibility, including educational institutions,
professional societies, researchers, and funders.

e  Educational institutions should educate and train students and fac-
ulty about computational methods and tools to improve the quality
of data and code and to produce reproducible research.

e Professional societies should take responsibility for educating the
public and their professional members about the importance and
limitations of computational research. Societies have an important
role in educating the public about the evolving nature of science
and the tools and methods that are used.

e Researchers should collaborate with expert colleagues when their
education and training are not adequate to meet the computational
requirements of their research.

e In line with its priority for “harnessing the data revolution,” the
National Science Foundation (and other funders) should consider
funding of activities to promote computational reproducibility.

RECOMMENDATION 6-7: Journals and scientific societies requesting
submissions for conferences should disclose their policies relevant to achiev-
ing reproducibility and replicability. The strength of the claims made in a
journal article or conference submission should reflect the reproducibility
and replicability standards to which an article is held, with stronger claims
reserved for higher expected levels of reproducibility and replicability. Jour-
nals and conference organizers are encouraged to:

¢ set and implement desired standards of reproducibility and replica-
bility and make this one of their priorities, such as deciding which
level they wish to achieve for each Transparency and Openness
Promotion guideline and working toward that goal;

¢ adopt policies to reduce the likelihood of non-replicability, such as
considering incentives or requirements for research materials trans-
parency, design, and analysis plan transparency, enhanced review
of statistical methods, study or analysis plan preregistration, and
replication studies; and

® require as a review criterion that all research reports include a
thoughtful discussion of the uncertainty in measurements and
conclusions.
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JOURNALISTS

RECOMMENDATION 7-2: Journalists should report on scientific results
with as much context and nuance as the medium allows. In covering issues
related to replicability and reproducibility, journalists should help their
audiences understand the differences between non-reproducibility and non-
replicability due to fraudulent conduct of science and instances in which
the failure to reproduce or replicate may be due to evolving best practices
in methods or inherent uncertainty in science. Particular care in reporting
on scientific results is warranted when

e the scientific system under study is complex and with limited con-
trol over alternative explanations or confounding influences;

e aresult is particularly surprising or at odds with existing bodies of
research;

e the study deals with an emerging area of science that is character-
ized by significant disagreement or contradictory results within the
scientific community; and

e research involves potential conflicts of interest, such as work funded
by advocacy groups, affected industry, or others with a stake in the
outcomes.

MEMBERS OF THE PUBLIC AND POLICY MAKERS

RECOMMENDATION 7-3: Anyone making personal or policy decisions
based on scientific evidence should be wary of making a serious decision
based on the results, no matter how promising, of a single study. Similarly,
no one should take a new, single contrary study as refutation of scientific
conclusions supported by multiple lines of previous evidence.
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Appendix D

Using Bayes Analysis for
Hypothesis Testing

After a study is conducted that produces a scientific conclusion, what is
the probability! that the conclusion is correct? In the case of research that
involves hypothesis testing, the scientific result may point to the null or to
the alternative hypothesis. An estimate of the likelihood that the scientific
conclusion is correct is represented by the post-experimental (a posteriori)
probability of, or the odds favoring, the particular hypothesis. These odds
or, equivalently, the probability, can be obtained from the Bayes formula.

For purposes of exposition, it is convenient to express the Bayes for-
mula using likelihood ratios in the simplified context of observing a data
point x_and using it to test null hypothesis H, versus the alternative hy-
pothesis H;, as shown in Equation D.1. For a study comparing two groups,
H, would typically be the hypothesis of no difference between the groups,
H, would specify a difference of a particular size, and the observed data
point would be the difference in the group means.

In mathematical terms, the Bayes formula is represented as follows,
Equation D.1:

P[] _f[x/th] P[]

P[H,|x,] f[x,|H,] P[H,]

IText modified December 2019. In discussions related to the p-value, the original report
used “likelihood” rather than “probability.” Although the words probability and likelihood
are interchangeable in everyday English, they are distinguished in technical usage in statistics.
This change was made, when relevant, on pages 224, 225, and 228.
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Copyright National Academy of Sciences. All rights reserved.



Reproducibility and Replicability in Science

222 REPRODUCIBILITY AND REPLICABILITY IN SCIENCE

In this representation:

P[H,lx ] is the probability that H, (the alternative hypothesis) is correct
given the observed findings (x).

P[H x| is the probability that H,, (the null hypothesis) is correct given
the observed findings (x,).

P[H,] is the prior (pre-experimental?) probability of H,.

P[H,] is the prior (pre-experimental) probability of H,.

flx,H,] is the likelihood of x_ under the alternative hypothesis, as-
sumed here to follow a normal distribution.

flx H,] is the likelihood of x_ under the null hypothesis, assumed here
to follow a normal distribution.

It is assumed that P[H ] + P[H,] = 1.0, which also implies P[H x| +
P[H x| = 1.0. The ratio of P[H,] to P[H] is the prior odds favoring the
alternative hypothesis H,, while the ratio of P[H,lx ] to P[Hlx ] is the
posterior odds favoring the alternative hypothesis. The ratio of f[x |H,] to
flx |H,] is called the Bayes factor.

In words, the Bayes formula (see Equation D.1) shows that the post-
experimental odds favoring a hypothesis depends on the pre-experimental
odds favoring the hypothesis and the relative likelihood of observing the
results when the hypothesis is true, in comparison to the relative likelihood
when the hypothesis is false.

The p-value, in classical statistics, is defined as the probability of find-
ing an observed, or more extreme, result under the assumption that the null
hypothesis is true. The p-value is thus related to the expression f[x |H,] in
that the p-value represents one or both outer segments of the curve defined
by the possible, observed results when the null hypothesis is true. It is as-
sumed that the possible results under the null hypothesis (H,) and under
the alternative hypothesis (H,) have normal distributions with the same
variance (0?) but different means (u).> In the case of a two-group com-
parison, the mean under the null hypothesis would be zero and under the
alternative hypothesis non-zero. With these assumptions, and the p-value
calculated on the basis of the results observed in an experiment, one can

2 Pre-experimental or prior probability may also be referred to as “a priori probability.” We
chose to use “prior probability” throughout this appendix.
1 ’("’l‘)z

e 20°

3 The height of a normal curve is defined as: v270* , where w is the mean and o is the
standard deviation (o? is the variance); & is a constant representing the ratio of the circumfer-
ence to the diameter of a circle and is = 3.14159; and e is the base of natural logarithms and
is =2.718282.
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apply a Bayesian approach to estimate the post-experimental odds favoring
the alternative or the null hypothesis based on the pre-experimental odds
and the measured p-value. The pre- and post-experimental odds may be
equivalently expressed as probabilities.*

In principle, under a Bayesian approach, the alternative hypothesis
(H,) may take on any value (indicating the distance of its mean from the
H, mean) and any prior (pre-experimental) probability (subject to the
constraint that the sum of the probabilities of the null and the alternative
equal 1.0). The pre-experimental probabilities of the hypotheses (P[H ]
and P[H,] in Bayes formula) reflect the prior expectation that a hypothesis
would be true. If an inference from a study is very surprising, this means
that the pre-experimental probability of the corresponding hypothesis was
low. If a particular inference was highly anticipated, this indicates that the
pre-experimental probability of its corresponding hypothesis was high.

As noted above, in a study that compares an experimental and a control
group, the null hypothesis specifies that the difference between the means of
the experimental and control group is zero. The alternative hypothesis can
specify that the difference in means can take on any pre-experimental value
reflecting the degree of effect that the experimenter posits. For example,
there may be a threshold for action that the experimenter identifies, and
the experimenter wishes to test whether this threshold has been exceeded.

For purposes of illustration here, consider an alternative hypothesis
where the underlying mean effect size (u,) is the same as the effect size
actually observed (x,). This for expository purposes only; this choice of
value for the mean effect size of the alternative hypothesis illustrates the
maximum degree to which the observed results of the study can diminish
the post-experimental probability of the null hypothesis. Put another way,
if the observed results happened to coincide with the mean value of the
previously chosen alternative hypothesis, one would obtain the maximum
possible change in the a posteriori (post-experiment) probability of the
experimental hypothesis in comparison with the null hypothesis.

One can use the ratio of the two likelihood functions (for H, and for
H,) at the observed results (x_) to estimate the odds favoring the more likely
(higher) hypothesis given the observed effect. This ratio,

f[%o/Hi]

f[xo|Ho]’

at the observed effect, gives the Bayes factor that pertains to this study.
When we specify an effect size that generates a particular p-value under the

4To convert from odds to probabilities, divide the odds by one plus the odds. To convert
from a probability to odds, divide the probability by one minus that probability. An odds ratio
of 3 (or 3 to 1 in favor) thus converts to a probability of 3 + 4 = 0.75.
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assumption that the null hypothesis is correct, such as p = 0.05 for H, this
determines the Bayes factor ratio for that p-value, namely,

f[x(),p=0.05[H0]|Hl]
f[xo,p=0.05[H0]|H0]’

in the case of p = 0.05.

Under the assumption of normal distributions with the same variance
for the data under the null and alternative hypotheses, with u, = x_, the
Bayes factor does not depend on the specific values of w,, u,, or o (the
means or standard deviation of the distributions). Rather, the Bayes factor
reduces to a function of the standard deviate units (z) that correspond to
the specified p-value in each case: specifically, under these assumptions, the
Bayes factor = e(#2), The z-score for any specified p-value may be found in
any table of standard normal probabilities: for example, a p-value of 0.05
corresponds to z = 1.645. Under our assumptions, the Bayes factor for p =
0.05 is el162572) = 3.87.

Importantly, only if one also knows the pre-experimental (prior) odds
favoring the experimental hypothesis, expressed as

P[H,]
P[H,]

b

can one calculate the post-experimental probability that the alternative
hypothesis is true on the basis of the results of a specific study. In principle,
one would want to specify the prior odds without knowing the specific
results of the study, based only on knowledge obtained prior to the study.
One is expressing the odds as favoring the experimental or alternative
hypothesis, but one could equivalently use the same results to estimate
the post-experimental odds favoring the null hypothesis based on pre-
experimental odds of

Consider the case in which a study produces results with a one-tailed
test of statistical significance at p = 0.05, and the pre-experimental prob-
ability that the experimental hypothesis is true was 25 percent. With these
assumptions, the post-experimental probability that the experimental hy-
pothesis is true rises only to about 56 percent, see Table D-1 (Posterior odds
in favor of 1.289 are equivalent to a probability of about 56%.)
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One of the most striking lessons from Bayesian analysis is the pro-
found effect of the pre-experimental odds that a hypothesis is true on the
post-experimental odds. Similar calculations show, for example, how the a
posteriori probability of a disease following a positive test result depends
crucially on the prior probability. For any given level of statistical signifi-
cance observed in a study, the probability that an inference is correct can
vary widely depending on the probability it was true before the experiment.
For example, if an experiment resulted in a one-sided p-value of 0.01, the
post-experimental probabilities the hypothesis is true range from about
13 percent, if the prior probability was as low as 1 percent, to nearly 94
percent, if the prior probability was as high as 50 percent.

Another way of thinking about this is that if one had done a series of
studies in which the prior probability of each experimental hypothesis was
only 1 percent, and the results were statistically significant at the 0.01 level,
only about one in eight of those study results would be likely to hold up
as true. In contrast, if the prior probability was as high as 25 percent, then
the post-experimental probability would rise to about 83 percent, and one
would expect more than four of five such studies to hold up over time. It is
clearly inappropriate to apply the same confidence to the results of a study
with a highly unexpected and surprising result as in a study in which the
results were a priori more plausible. If one quantifies the prior expectations,
then Bayes formula can be used to calculate the appropriate adjustment to
the post-experimental probabilities.

If study results are significant only at the 0.05 level (rather than
0.01 level), then the post-experimental probabilities of the experimental
hypothesis (P[H,lx_]) would range from under 4 percent, when the pre-
experimental probability was 1 percent, to nearly 80 percent, when the
pre-experimental probability was 50 percent. Comparisons across levels
of significance show the degree to which more statistically significant re-
sults affect the probability that the experimental hypothesis is correct: see
Tables D-1, D-2, D-3, and D-4. However, the effect of the observed level
of statistical significance is indirect, affected by sample size and variance,
and mediated by the Bayes factor and the prior probabilities of the null and
experimental hypotheses.
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TABLE D-1 Posterior Odds Based on Bayes Formula for p = 0.085,
1-Sided Test, z =~ 1.645

Prior Odds Posterior Odds
(H]  [H)  P[H,/P[H, P[H,,] P[H,lx ] P[H,lx,] / P[H,x ]
0.01 0.99 0.010 0.038 0.962 0.039
0.05 0.95 0.053 0.169 0.831 0.204
0.1 0.9 0.111 0.301 0.699 0.430
0.2 0.8 0.250 0.492 0.508 0.967
0.25 0.75 0.333 0.563 0.437 1.289
0.3 0.7 0.429 0.624 0.376 1.658
0.4 0.6 0.667 0.721 0.279 2.579
0.5 0.5 1.000 0.795 0.205 3.868

NOTES: In this table:

F[%opaogugl ] 0.39894228
pg[Ho| 0103127774

1.645%/2
(1.645°12)

~3.868427157 = 3.87.

Bayes factor: f[x
0,p=0.0
~3.87.

Bayes factor (simplified calculation): e

TABLE D-2 Posterior Odds Based on Bayes Formula for p = 0.025,
1-Sided Test, z = 1.96

Prior Odds Posterior Odds
[H,] [H,)  P[H,]/PH, P[H,,] P[H,x,] P[H,lx,] / P[H,x ]
0.01 0.99 0.010 0.065 0.935 0.069
0.05 0.95 0.053 0.264 0.736 0.359
0.1 0.9 0.111 0.431 0.569 0.758
0.2 0.8 0.250 0.631 0.369 1.707
0.25 0.75 0.333 0.695 0.308 2.275
0.3 0.7 0.429 0.745 0.255 2.926
0.4 0.6 0.667 0.820 0.180 4.551
0.5 0.5 1.000 0.872 0.128 6.826

NOTES: In this table:

F [ %o peoasgig | Hi | ~0.39894228
g Ho |~ 0-58440944

(19612)

~6.826417419 = 6.83.

Bayes factor: f[
X
0,p=0.25]

=6.83.

Bayes factor (simplified calculation): e
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TABLE D-3 Posterior Odds Based on Bayes Formula for p = 0.01,
1-Sided Test, z = 2.325

Prior Odds Posterior Odds

(H]  [H)  P[H,]/P[H, P[H,x,] P[H,Jx,] P[H,lx,] / P[H,x ]
0.01 0.99 0.010 0.132 0.868 0.151

0.05 0.95 0.053 0.441 0.559 0.789

0.1 0.9 0.111 0.625 0.375 1.666

0.2 0.8 0.250 0.789 0.211 3.748

0.25 0.75 0.333 0.833 0.167 4.997

0.3 0.7 0.429 0.865 0.135 6.425

0.4 0.6 0.667 0.909 0.091 9.994

0.5 0.5 1.000 0.937 0.063 14.991

NOTES: In this table:

Bayes factor: f [xO,p=0.Ol[HO] |H0] 0.026611734

2.325%/2
Bayes factor (simplified calculation): e( )

F[%opoommgHi] 039894228

=14.9.

~14.99121706 = 15.0.

TABLE D-4 Posterior Odds Based on Bayes Formula for p = 0.005,
1-Sided Test, z = 2.575

Prior Odds Posterior Odds

[H,]  [H]  P[H,/P[H, P[H,x,] P[H,lx,] P[H,lx,] / P[H,x ]
0.01 0.99 0.010 0.218 0.782 0.279

0.05 0.95 0.053 0.592 0.408 1.453

0.1 0.9 0.111 0.754 0.246 3.067

0.2 0.8 0.250 0.873 0.127 6.900

0.25 0.75 0.333 0.902 0.098 9.201

0.3 0.7 0.429 0.922 0.078 11.829

0.4 0.6 0.667 0.948 0.052 18.401

0.5 0.5 1.000 0.965 0.035 27.602

NOTES: In this table:

Bayes factor: f[

Bayes factor (simplified calculation): e

F[%opamosugl H ] 039894228

%0,p=0.005]H] |H, ]

"~ 0.014453386

2.575212
(2:575%12)

=27.5.

=~27.60199354 = 27.6.
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If the observed results produce a p-value equal to 0.005 and the
prior probability of the experimental hypothesis is 0.25, then the post-
experimental probability that the experimental hypothesis is true is about 90
percent. It is reasoning such as this (using different assumptions in applying
the Bayes formula) that led a group of statisticians to recommend setting
the threshold p-value to 0.005 for claims of new discoveries (Benjamin et
al., 2018). One drawback with this very stringent threshold for statistical
significance is that it would fail to detect legitimate discoveries that by
chance had not attained the more stringent p-value in an initial study.
Regardless of the threshold level of p-value that is chosen, in no case is the
p-value a measure of the probability that an experimental hypothesis is true.

When the prior probability of an experimental hypothesis (P[H,]) is
0.3 (meaning its pre-experimental probability of being true is about 1 in 3)
and the p-value is 0.05, Table D-1 shows the post-experimental probability
to be about 62 percent (posterior odds favoring H, of 1.658 are equivalent
to a probability of about 62%). If replication efforts of studies with these
characteristics were to fail about 40 percent of the time, one would say
this is in line with expectations, even assuming the studies were flawlessly
executed.

When a study fails to be replicated, it may be because of shortcomings
in study design or execution, or it may be related to the boldness of the
experiment and surprising nature of the results, as manifested in a low pre-
experimental probability that the scientific inference is correct (Wilson and
Wixted, 2018). For this reason, failures to replicate can be a sign of error,
may relate to variability in the data and sample size of a study, or they may
signal investigators’ eagerness to make important, unexpected discoveries
and represent a natural part of the scientific process.

Without losing sight of the importance of errors in experimental design
and execution or instances of fraud as sources of non-replicability, this
excursion into Bayesian reasoning demonstrates how non-replicability can
reflect the probabilistic nature of scientific research and be an integral part
of progress in science. Just as it would be wrong to assume that any par-
ticular instance of non-replicability indicates a fundamental problem with
that study or with a whole branch of science, it is equally wrong to ignore
sources of non-replicability that are avoidable and the result of error or
malfeasance. It is incumbent on those who produce scientific results to use
sound research design and technique and to be clear, precise, and accurate
in depicting the uncertainty inherent in their results; those who use scientific
results need to understand the limitations of any one study in demonstrating
that a scientific hypothesis is more or less likely to be correct.
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Appendix E

Conducting Replicable Surveys
of Scientific Communities

Collecting reliable and valid survey data requires carefully constructing
a sampling frame, ensuring that each respondent from that sampling frame
has an equal and known chance of being selected, and putting procedures
in place to ensure that not just the most motivated respondents respond,
but that follow-ups and other incentives also help recruit hard-to-reach
respondents (for a good overview, see Brehm, 1993). The quality of data
collection also depends on how questions are worded and ordered and on
how information nonresponse bias might influence results (for an overview,
see Dillman et al., 2009). When assessing scientists’ attitudes about repli-
cability and reproducibility, transparency in reporting methods, adhering
to state-of-the-art tools of sampling representative groups of respondents,
and eliciting valid responses are particularly important.

Unfortunately, even some deviations from scientific protocols can pro-
duce significantly skewed results that provide little information about what
one wants to measure. Attempts to measure or even accurately record the
attitudes of scientists about potential concerns related to replicability and re-
producibility face a particularly difficult task: for scientists in general, or even
researchers in a particular field, there is no easily accessible comprehensive
list of scientists or researchers, even within any given country.

The rest of this appendix discusses issues of sampling frame, response
biases, and question wording and order.
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SAMPLING FRAME

Many of the existing attempts to survey scientists about replicability
and reproducibility issues have not used a carefully defined populations of
scientists. Instead, data collections have drawn on nonrepresentative self-
selected populations that are convenient to survey (e.g., scientists publish-
ing in particular outlets or members of professional associations) or used
other haphazard sampling techniques—such as snowball sampling or mass
emails to listservs—that make it impossible to discern which populations
were reached or not reached. As a result, researchers who might try to
replicate these studies would not even be able to follow the same sampling
strategy and would have no measurable indicators of how closely a new
sample—drawn on the basis of similarly nonsystematic methods—is to the
original one.

Fortunately, public opinion researchers (informed by related work in
social psychology, political science, sociology, communication science, and
psychology) have developed very sophisticated tools for measuring attitudes
in a valid and reliable fashion. Like other surveys, any survey of scientists
would be based on the assumption that one cannot contact to everyone in
the target population, that is, not all scientists or not even all researchers in
a particular field. Instead, a carefully conducted survey of scientists would
define a sampling frame that adequately captures the population of interest,
draw a probability sample from that population, and administer a question-
naire designed to produce reliable and valid responses.

At the sampling stage, this work typically involves developing fairly
elaborate search strings to capture the breadth and depth of a particular
scientific discipline of field (e.g., Youtie et al., 2008). These search strings
are used to mine academic databases, such as Scopus, Web of Science, or
Google Scholar for the population of articles published in a particular field.
The next step would be to shift from the article level to the lead author
level as the unit of analysis; in that form, those datasets could serve as the
sampling frame for drawing probability samples for specific time periods,
for researchers above certain citation thresholds, or other criteria (for over-
views, see Peters, 2013; Peters et al., 2008; Scheufele et al., 2007). Most
importantly, sampling strategies like these can be documented transparently
and comprehensively in ways that would allow other researchers to create
equivalent samples for replication studies.

RESPONSE BIASES

Minimizing potential biases related to sampling, however, is not just
a function of defining a systematic, transparent sampling frame, but also
a function of using probability sampling techniques to select respondents.
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Probability sampling (often confused with simple random sampling) means
that each member of the population has a non-zero, known, and equal
chance of being selected into the sample.

A first indication of how successful a survey is in reaching all mem-
bers of a population are cooperation and response rates. Reporting stan-
dards developed by the American Association for Public Opinion Research
(2016) for calculating and reporting cooperation and response rates take
into account not only how many surveys were returned, but also provide
transparency with respect to sampling frames (e.g., respondents who could
not be reached because of invalid addresses), explicit declines, and simple
nonresponses. Unfortunately, many surveys of scientists on replicability and
reproducibility to date do not follow even minimal reporting standards with
respect to response rates and therefore make it difficult for other researchers
to assess potential biases.

Even response rates, however, provide only limited information on
systematic nonresponse. Especially for potentially controversial issues, like
reproducibility and replicability, it is possible that researchers in particular
fields, at certain career levels, or with more interest in the topic are more
likely to respond to an initial survey request than others. As a result, state-
of-the-art surveys of scientists typically follow some variant of the Tailored
Design Method (Dillman et al., 2009), with multiple mailings of paper
questionnaires over time, paired sometimes with precontact letters by the
investigators, small incentives, reminder postcards, online follow-up, and
other tools to maximize participation among all respondents. Following
this approach, regardless of the mode of data collection, is crucially im-
portant for minimizing systematic nonresponse based on prior interest,
time constraints, or other factors that might disincentivize participation in
a survey. Again, many of the published surveys of scientists on replicabil-
ity and reproducibility issues either rely on single-contact data collections
with limited systematic follow-up or do not contain enough published
information for other researchers to ascertain the degree or potential effect
of systematic nonresponse.

QUESTION WORDING AND ORDER

Survey results depend heavily on how questions are asked, how they
are ordered, and what kinds of response options are offered (for an over-
view, see Schaeffer and Presser, 2003). Unfortunately, there is significant
inconsistency across current attempts to measure scientists’ attitudes on
replicability and reproducibility with respect how responsive questionnaires
are to potential biases related to question wording and order.

This issue complicates interpreting survey results. Simply using the term
“crisis” to introduce questions in a survey about the nature and state of

Copyright National Academy of Sciences. All rights reserved.



Reproducibility and Replicability in Science

234 REPRODUCIBILITY AND REPLICABILITY IN SCIENCE

science is likely to influence subsequent responses by activating related con-
siderations in a respondent’s memory (Zaller and Feldman, 1992). A pow-
erful illustration of this phenomenon comes from public opinion surveys
on affirmative action. In some surveys, 70 percent of Americans supported
“affirmative action programs to help blacks, women, and other minorities
get better jobs and education.” In other surveys that rephrased the question
and asked if “we should make every effort to improve the position of blacks
and minorities, even if it means giving them preferential treatment,” almost
the same proportion, 65 percent, disagreed.!

This problem can be exacerbated by social desirability effects and other
demand characteristics that have the potential to significantly influence an-
swers. It is unclear, for example, to which degree author surveys sponsored
by scientific publishers about a potential crisis incentivize or disincentivize
agreement with the premise that there is a crisis in the first place. Similarly,
some previous questionnaires distributed to researchers asked about the
existence of a potential crisis, providing three response options (not count-
ing “don’t know”):

1. There is a significant crisis of reproducibility.
2. There is a slight crisis of reproducibility.
3. There is no crisis of reproducibility.

Note that two of the options implied the existence of a “crisis of repro-
ducibility” in the first place, potentially skewing responses.

All of these factors confound and limit the conclusions that can be
drawn from current assessments of scientists’ attitudes about replicability
and reproducibility. We hope that systematic surveys of the scientific com-
munity that follow state-of-the-art standards for conducting surveys and
for reporting results and relevant protocols will help clarify some of these
questions. Using split-ballot designs and other survey-experiment hybrids
would also allow social scientists to systematically test the influence that
the sponsorship of surveys, question wording, and question order can have
on attitudes expressed by researchers across disciplines.

1 See http://www.pewresearch.org/fact-tank/2009/06/15/no-to-preferential-treatment-yes-to-
affirmative-action [January 2019].
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