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1

Biomedical research results in the collection and storage of increasingly large and complex data sets. 
 Preserving those data so that they are discoverable, accessible, and interpretable accelerates scientific discovery 
and improves health outcomes but requires that researchers, data curators, and data archivists consider the long-
term disposition of data and the costs of preserving, archiving, and promoting access to them. All involved in data 
management throughout the data life cycle need to consider how data-related choices affect the costs of future 
preservation, management, and use. All need to be informed about the costs of retaining versus replacing data, the 
value of retained data, the costs of data curation and storage, and potential costs borne by future data users. These 
are integral to data preservation, archiving, and access promotion. Attention to and quantitative estimates of such 
costs will facilitate better allocation of resources and planning by those charged with guiding and investing in the 
production of scientific knowledge such as researchers, research-performing institutions, and funders.

The mission of the National Library of Medicine (NLM) within the National Institutes of Health (NIH) is to 
acquire, organize, and disseminate health-related information. At the request of NLM, the National Academies of 
Sciences, Engineering, and Medicine convened a committee to examine and assess approaches and considerations 
for forecasting costs for preserving, archiving, and promoting access to biomedical research data. This report pro-
vides a comprehensive conceptual framework for cost-effective decision making that encourages data accessibility 
and reuse for researchers, data managers, data archivists, data scientists, and institutions that support platforms 
that enable biomedical research data preservation, discoverability, and use. The framework can be adapted by 
anyone responsible for managing data at any point in the data life cycle, but the analysis conducted during its 
application by researchers, data, data repository hosts, and funding institutions will vary greatly. Its purpose is to 
make the forecaster think of all the elements that could affect life-cycle costs so that costs can be understood and 
total costs be more accurately calculated. Other than the forecasting framework itself, the report does not include 
recommendations. Rather it describes the kind of environment conducive to forecasting the cost of sustainable 
data management, and provides strategies that could be applied by different members of the biomedical research 
community for creating those environments.

THE STUDY CHARGE

As part of its charge to develop and demonstrate a framework for forecasting long-term costs for preserving, 
archiving, and accessing various types of biomedical research data, the study committee evaluated economic 

Summary
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2 LIFE-CYCLE DECISIONS FOR BIOMEDICAL DATA

factors to be considered when examining the life-cycle costs for data acquisition, curation, and preservation; the 
cost consequences for various practices related to accessioning and deaccessioning data sets; economic factors if 
data are designated as high value; anticipated technological disruptors and future developments in data science 
in a 5- to 10-year horizon; and critical factors for successful adoption of data-forecasting approaches by research 
and program management staff. Per the statement of task provided to the committee by NLM, the framework 
was applied to two case studies in different biomedical contexts relevant to NLM data resources. The committee 
also organized a 2-day workshop to gather input on tools and practices that NLM could use to help researchers 
and funders better integrate risk-management practices and considerations into data preservation, archiving, and 
accessing decisions; methods to encourage NIH-funded researchers to consider, update, and track lifetime data 
costs; and burdens on the academic researchers and industry staff to implement these tools. A summary of workshop 
proceedings was published in a separate document (NASEM, 2020).

THE COST-FORECASTING FRAMEWORK

The framework for forecasting costs presented in this report first describes the different data environments 
in which data may be placed (herein referred to as “data states”; Box 2.1) and the various activities associated 
with those data states (Tables 2.1-2.3), and steps in the framework process are identified (Table 4.1). The cost 
drivers that may be important for each of those activities (Table 4.2) and questions that lead critical decision 
points related to those cost drivers are described in Chapter 4 through a series of questions to be answered by 
the forecaster. The committee tabulated those questions in a template that can be modified and used to inform 
a cost analysis (Appendix E). The forecasting framework does not offer computational models for quantifying 
costs because those applying the framework will have diverse interests in the framework’s application and diverse 
resources. Instead, it provides a comprehensive conceptual framework which the forecaster can use to identify 
what costs need to be quantified.

States of the Data Life Cycle

The data life cycle begins when data are collected during primary research and continues through data analysis, 
preservation and curation, reuse, storage, and potentially to deaccession. The data life cycle is not necessarily 
linear—data may be reused and repurposed, combined with other data, and analyzed in a variety of ways and for 
different purposes throughout their existence. How actively data are used during the data life cycle may change: 
they may be used often when initially collected and then only periodically after placed in a repository. At some 
point, they may become dormant and be placed in an archive for long-term preservation. They may be  rediscovered 
at any time and again be actively used. Ideally, the data states in which the data are placed throughout their existence 
allow for different types of activities. Data may be moved from one data state to another as needs arise, the data 
may transition in a nonlinear manner, or some data may not ever transition into all the data states. 

Digital data may transition among three states in the data life cycle:

• State 1: The primary research and data management environment where data are captured and analyzed. 
It is possible that no one managing or using a given State 1 data environment is focused on standardizing, 
documenting, sharing, or preserving data and algorithms.

• State 2: An active repository and platform where data may be acquired, curated, aggregated, accessed, and 
analyzed. Such a repository is an active information system that usually provides services to a wide range 
of users. Where data are complex, confidential, or very large, it may be a platform for controlling access. 
Support may be provided for analyzing and processing data.

• State 3: A long-term preservation platform in which content is preserved across changes in governance, 
assessment of data value, and technology. The platform may include an extract of data from a single data 
set, multiple data sets, or an information system in a system-agnostic format. In this state, data are neither 
directly analyzable nor easily accessible.
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SUMMARY 3

FIGURE S.1 Conceptual diagram showing the three data states, the principal activities associated with each state, and how 
data may transition between states. Note that the transition arrows between states are bidirectional, indicating that data already 
existing in repositories can transition back into a primary research environment when new data are incorporated, data are 
 aggregated with other data, or data are used in new ways.

These data states were conceptualized by the committee to communicate the characteristics of different envi-
ronments, with different purposes, and having different data storage and preservation costs. The data states can 
be represented by Figure S.1, which also illustrates the major activities associated with each state. Tables 2.1-2.3 
in the main body of the report provide more detail about the activities shown in the figure, as well as various 
subactivities that may occur and the personnel required to conduct them.

The Cost-Forecasting Process

Every data resource and management situation has unique characteristics and considerations, but there are 
commonalities in the cost-forecasting process. This report does not present an instrument for cost forecasting but 
rather a framework to help the cost forecaster build the instrument that is suitable for the particular application. The 
framework identifies many of the commonalities and should be considered a foundation for a detailed analysis that 
can be tailored for specific circumstances. Regardless of the application, the forecaster is encouraged to think about 
the entire life cycle of the data rather than of just the life of the data resource being developed or managed. It is 
more cost efficient in the long term if decisions are made in light of their impacts on future costs of management 
and data access. Table S.1 summarizes the steps necessary to understand the cost drivers that are important for 
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4 LIFE-CYCLE DECISIONS FOR BIOMEDICAL DATA

TABLE S.1 Steps for Forecasting Costs of a Biomedical Information Resource

1.  Determine the type of data resource 
environment, its data state(s), and how data 
might transition between those states during 
the data life cycle.

 The data states are defined in Box 2.1:
  State 1: primary research environment
  State 2: active repository
  State 3: long-term preservation and archive

•  Decide the goals and objectives for the data resource.
•  Consider how the resource is likely to be used now and in the future.
•  Identify available guidance that defines the type of resource to be created or 

managed (e.g., requests for application, community standards, or institutional 
requirements).

•  Compare the above with the activities defined for each of the data states (see 
Figure S.1) and decide which data state(s) best align(s).

2.  Identify data characteristics (Chapter 4), data 
contributors, and users.

•  Fill in the cost-driver template (Appendix E)
 o  Complete category A of the template to help to identify the size, 

complexity, metadata requirements, depth versus breadth, processing levels 
and fidelity, and replaceability of the data.

 o  Complete category E of the template to help to identify the life-cycle 
issues.

 o  Complete category F of the template to help to identify data contributors 
and users.

3.  Identify the current and potential value of 
the data and how the data value might be 
maintained or increased with time.

•  Consult with the institution hosting the data resource, the project funders, 
and the broader research community to develop appropriate metrics for 
assessing the value of the data.

•  Identify decisions that affect data value in the shorter and longer terms (see 
Chapter 3 for different methodologies).

•  Consider how data generation methodologies affect short- and long-term data 
value in terms of data contributors and users and the data life cycle.

4.  Identify the personnel and infrastructure 
likely necessary in the short and long terms.

•  Identify the major activities and subactivities associated with the information 
resource, including activities related to potential transitions between data 
states (Tables 2.1, 2.2, and 2.3). 

•  Identify short- and long-term staffing requirements for the current state and 
transition between states.

•  Identify the infrastructure requirements and available resources. 

5.  Identify the major cost drivers associated 
with each activity based on the steps above, 
including how decisions might affect future 
data use and its cost. 

•  Identify the major cost drivers and associated uncertainties for each of 
the activities identified above by completing the cost-driver template 
(Appendix E).

•  Identify likely relative costs (e.g., using Table 4.2).
•  Consult with institutional experts (e.g., at the institution hosting the resource, 

library resources) and determine available personnel and infrastructure 
resources.

•  Work with experts at the host institution to quantify short-term costs and to 
bound uncertainties in longer-term forecasts.

6.  Estimate the costs for relevant cost 
components based on the characteristics of 
the data and information resource.

•  Identify which cost drivers are important for each cost component of the 
information resource (e.g., labor, information technology infrastructure and 
services, media, licenses and subscriptions, facilities and utilities, outside 
services, travel, and institutional overhead; Box 3.2).

•  Estimate costs for the current funding period.
•  Estimate costs and cost uncertainties for future funding periods, including 

costs to transition data to other states.
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a given information resource. The framework will assist the forecaster in identifying the characteristics of data 
and the biomedical information resource, the near-term and future data management needs, and the activities and 
decisions that are likely to be important drivers of near-term and future costs. The steps outlined in the table will 
not necessarily be performed in the order presented. Forecasting activities may occur concurrently, and they may 
need to be revisited as new information unfolds during analysis. The cost forecast can be quantified when decisions 
pertaining to them are made. Chapter 4 defines the primary cost drivers, listed below: 

• Content (e.g., data size, complexity, and diversity; metadata requirements, depth versus breadth, processing 
level and fidelity; and replaceability of the data);

• Capabilities (e.g., user annotation, persistent identifiers, citation, search, data linking and merging, use 
tracking, and data analysis and visualization);

• Control (e.g., content, quality, access, and platform);
• External context (e.g., resource replication, external information dependencies, and distinctiveness);
• Data life cycle (e.g., anticipated growth, updates and versions, useful lifetime, and offline and deep storage);
• Contributors and users (e.g., contributor base, user base and usage scenarios, training and support require-

ments, and outreach);
• Availability (e.g., tolerance for outages, currency, response time, and local versus remote access);
• Confidentiality, ownership, and security (e.g., data privacy issues and licensing);
• Maintenance and operations (e.g., periodic integrity checking, data-transfer capacity, risk management, 

and system-reporting requirements); and
• Standards and regulatory compliance and other governance concerns.

Table 4.2 (in Chapter 4) illustrates which of these drivers are likely to be important for the major activities 
in the three data states. A series of questions related to each cost driver is provided in Chapter 4—and compiled 
in a template in Appendix E—to assist the forecaster in his analysis. The questions may need to be modified for 
a specific application of the cost framework: not all the guiding questions may be relevant to a given application, 
and not all relevant questions may be included. Through work with experts from within the institution that will 
host the data resource (e.g., the researcher’s university), relative costs may be estimated for activities for the data 
life cycle, and shorter-term costs may be quantified. Working through the guiding questions will also help the 
forecaster identify uncertainties in forecasted costs.

In most cases in which data are shared, the costs of long-term data preservation are not borne by a single 
individual or institution. Responsibility may be transferred, for example, from a researcher to a data platform 
host or between platform hosts. Understanding where costs will be accrued, who pays those costs, and who has 
managerial responsibility for them will inform decision makers for all data states. The cost-forecasting framework 
guides the forecaster through identification of those who hold responsibility for those factors.

CREATING AN ENVIRONMENT CONDUCIVE TO COST 

FORECASTING OF SUSTAINABLE DATA MANAGEMENT

Approaches to building and managing data repositories differ across institutions and among researchers, but 
regardless of where biomedical information resources are hosted, costs associated with personnel are likely to 
dominate total life-cycle costs. Storage, computing, and networking services also contribute to total cost. The ability 
of individual researchers to forecast and manage those costs depends on how well they understand service-provider 
costs and prices—whether those services are rendered by the research institution or by commercial providers. The 
lack of visibility regarding the true costs of data storage and access in individual laboratories, institutions, and 
community resources often hampers reliable cost forecasting. 

Costs associated with long-term preservation, archiving, and access to biomedical research data will likely 
rise as data sets increase in size and complexity. Being able to forecast those costs is critical to the success of 
sustainable data preservation and access. Successful cost forecasting and sustainable data management require 
that those making decisions about data have the necessary information and incentives to recognize the full costs 
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of data management borne by all parties throughout the data life cycle. This is true whether decision makers are 
researchers, data scientists, research institution officials, data resource managers, or program managers at funding 
agencies or federal agencies that host and manage data on behalf of the broader research community. 

To foster the scientific environment necessary to conduct better long-term cost forecasts now and into the 
future, a series of strategies, actions, and advances is presented below. The reader will need to determine how best 
to apply the strategies based on her role in the scientific endeavor and on the data environments under consideration.

Strategies

Efficient long-term data management and effective cost forecasting are more likely if data resource managers, 
cost forecasters, and institutions that support them apply the following strategies: 

• Create data environments that foster discoverability and interpretability through long-term planning 

and investment throughout the data life cycle. Data sharing is not equivalent to data reuse, and developing 
processes that allow efficient data preservation, archiving, and access to facilitate data reuse could benefit 
scientific discovery. 

• Incorporate data management activities throughout the data life cycle to strengthen data curation 

and preservation. Up-front costs may be increased, but data value may also increase, and the overall cost 
of research may be reduced.

• Incorporate the expertise and resources needed to create and curate metadata throughout the data 

life cycle, and in the transition between data states into the cost forecast. Data discoverability and 
reusability depend on adherence to community-accepted data and metadata standards.  

• Weigh the benefits, risks (e.g., data loss), and costs (both up-front and anticipated) of data storage 

and computation options before selecting among options. A service may look attractive from an 
immediate-financing perspective, but service-provider strategies deserve vetting and verification, including 
examination of exit or transition strategies and costs. Long-term costs need to be informed by a provider’s 
risk-management strategies.

Actions

Individuals within specific biomedical sectors may collaborate to increase the efficiency of data management 
efforts, but there is little guidance available from funding agencies and the institutions that support biomedical 
data resources on practices for long-term management and cost forecasting for the biomedical research community. 
The following actions, especially if taken by funding agencies and institutions that support data resources, could 
expand the capacity of data producers and managers to make sound management decisions and cost forecasts: 

• Explicitly recognize the value of State 2 data resources (i.e., active repositories) to the enhanced 

curation, discoverability, and use of data. This recognition is absent among the funding entities, 
researchers, and institutions supporting research, most of which apply the more traditional data management 
approach of transitioning data directly from the primary research environment (i.e., State 1) to long-term 
archiving (i.e., State 3). 

• Structure cost forecasts for State 2 resources around communities and research programs rather 

than individual research efforts. Because State 2 resources serve communities of researchers, it may 
not be appropriate to allocate the costs of managing data in a State 2 resource back to the individual data 
contributor. 

• Support standardization efforts, including developing tools and methodologies to estimate the cost 

of standards development, encouraging the use of those tools and standards as part of the funding 

programs where appropriate, and explicitly supporting metadata preparation. Support could take the 
form of funding and the provision of tools. Issuing clarifying language about the use of federal funds for 
data preservation beyond the performance period of the project that collected them would also help assist 
in the development and promotion of the use of community standards and metadata preparation.
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• Identify incentives, tools, and training for adopting good data management practices, including 

cost-forecasting practices, which facilitate sustainable long-term data preservation, curation, and 

access. Such activities would benefit the entire biomedical research community, including the institutions 
and funding entities that support research. To support these endeavors, funding entities need to better 
understand research-community needs, help the community to define desired outcomes, support training, 
develop realistic and actionable metrics for success, and provide near-term incentives for success.

• Understand the charges associated with storage and computation in a data resource, regardless of 

who “pays the bill,” when making decisions about data and workflows. Institutions supporting research 
might develop mechanisms to inform researchers of the actual costs paid for the services rendered to them 
and encourage them to limit those costs.

Advances for Practice

Data are of little use without services to support them. Institutions that support primary research (State 1), 
or the development and management of State 2 (active) or State 3 (long-term preservation) repositories, face 
challenges understanding and providing the resources necessary to build, maintain, or otherwise acquire access 
to the systems necessary for a sustainable data-preservation platform. There is often confusion regarding who 
bears ultimate ownership (i.e., intellectual rights) and responsibility for data and data policies at the institutional 
level. Successful long-term data stewardship cannot be an ad hoc endeavor but rather needs to be planned in 
advance. Methodologies to forecast life-cycle costs for preserving, archiving, and accessing biomedical data are 
immature, and few tools and resources are available for those to quantify long-term costs with confidence. Making 
people aware of and accountable for their costs—and helping them understand that their actions generate costs 
for  someone—might help researchers reduce resource consumption with more efficient workflows, experiment 
design, and data tracking.

The following activities, likely to be enabled at an agency or research-institution level, could advance practices 
and drive future improvements in the ability to forecast costs:

• Recognize explicitly that scientific data constitute an asset and that data stewardship requires 

support. Biomedical research data and data resources are vital to the delivery of good science and, 
ultimately, to the public good. The universities and institutions that support or enable research and host 
data resources, in turn, benefit from the recognition of that support.

• Systematically collect data on costs associated with the biomedical research data enterprise to allow 

the translation of the framework outlined in this report into resources and methodologies that would 

benefit individual researchers and repository institutions. A clear locus of responsibility for compiling 
this information systematically is necessary.

• Develop easier mechanisms for creating and maintaining data management plans (DMPs), 

automatically incorporating data and metadata into resources, and improving citations for data 

to work together with other research products. By providing these mechanisms, funders and research 
institutions could help improve efficiency, return value for stakeholders, and increase the likelihood that 
stakeholders will make sound data-related decisions. 

POTENTIAL DISRUPTORS

Disruptors are considered anything that may cause radical changes to the ways research is conducted and data 
are collected, used, archived, or preserved. Disruptors may be positive, negative, or mixed, and may either raise or 
lower the cost of data management and preservation. There is no way to fully anticipate potential disruptor impact, 
but remaining aware of it and building flexibility into data can help to mitigate the effects. There are numerous 
issues that could lead to disruptions, including issues such as the evolving open data practices and the application 
of “findable, accessible, interoperable, and reusable” (FAIR) data principles for research data; developments 
in cybersecurity (both regulatory and legal requirements that may interact with privacy and human-subjects 
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regulations, and in terms of changing threat environments); major changes in funding levels and flows; more 
general changes in the vendor landscape (e.g., bankruptcies, mergers, and acquisitions); technology production 
and supply chains; and environmental or geopolitical developments. Many of these are discussed throughout this 
report. Chapter 7 of this report includes discussion of the following potential disruptors:

• Biomedical data volume and variety: Sudden orders-of-magnitude increases in data collection in domains 
such as imaging and multiscale high-performance computing simulations have moved biomedical research 
into the realm of “big data.” This has been observed, for example, given recent advances in genomics 
research. Biomedical research will experience growth that tends to add dimensions to the data space or to 
extend a dimension by an order of magnitude.

• Advances in machine learning and artificial intelligence (AI): The increased use of machine learning and 
AI techniques has accompanied the increases in data volumes. Automatic annotation of data and metadata 
generation using AI that allow regular updates to volumes of data increases the need for active storage 
approaches and requires programmatic access to data; this may also have implications for metadata 
requirements. Certain compliance and regulatory processes may be automated, but AI may also give rise 
to new challenges as it upends assumptions about data identifiability and data security. 

• Changes in storage technologies and practices: While costs per byte stored per year continue to drop, 
although more slowly than in the past, the aggregate size of the data being stored and managed is growing 
quickly. Some sites face physical facilities constraints on the amount of storage they can support locally; 
the capital investment costs of purchasing and upgrading storage are also challenging. Cloud providers offer 
greater flexibility in terms of expansion, and costs of storage and compute services continue to become 
more attractive. On the other hand, if there is a need to change providers, moving large amounts of data 
is technically challenging and could involve a variety of costs of which the information resource manager 
must be aware. In other words, vendor lock-in could be a risk.

• Future computing technologies: The scale and speed of the adoption of emerging technologies in the 
next 5 to 10 years is uncertain. For example, the ability to move computation to data rather than data to 
computation can change practices and costs. New cloud cost models may be the determinant factor for 
the overall cost of data. Emerging edge computing models, reliance on non–von Neumann architectures, 
and specialized hardware such as machine learning accelerators may also reshape how data are stored and 
reused, and the associated costs of storage and usage.

• Workforce development challenges: It is difficult and expensive to attract and sustain the needed size and 
quality of workforce when industry offers higher wages than those offered in the public sector and academia. 

• Legal and policy disruptors: Changes in legislation and policy related to issues such as data sharing; data 
identifiability; permissible data collection, storage, and sharing; and human-subjects research may require 
changes in the way data are stored, shared, and accessed.

ENSURING LONG-TERM STEWARDSHIP

It is not common practice to think beyond a current funding period when developing a data management 
budget, and the current system for funding research is not conducive to data life-cycle cost forecasting. 

At present, cost forecasting is typically short term and is often conducted only at the onset of an endeavor when 
many issues are uncertain (e.g., data quantities, quality, and format). Planning horizons are dictated by funding 
streams (e.g., federal budget allocations, grant levels) and thus extend only for the life of the project, excluding 
post-project data-preservation issues. Many researchers think about the disposition of their data after their primary 
research is complete and strive to make those data public. DMPs (see Appendix B) today are typically static 
documents prepared as a mandatory—but not necessarily influential—part of the funding process. Placing more 
emphasis on quantified cost forecasts during the award process may be one way to incentivize early planning and 
communication, even if cost forecasts are uncertain. However, placing greater emphasis on cost forecasting at that 
time does not mean that the forecasts will become precise estimates; they could be considered accurate reflections 
of uncertainties. Cost forecasts and DMPs need to evolve as research progresses and as associated data and the 
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resources and technologies available to manage those data evolve. Monitored evolution of a DMP (e.g., at mid-
term evaluations or at the end of the award period) might inform eligibility for future funding.

The cost of long-term data stewardship is better considered systematically by the funding institution rather 
than research by staff. Researchers working in a State 1 environment typically are not responsible for costs or 
data management beyond the grant performance period. Managing data in States 2 and 3 generally becomes an 
institutional responsibility, but planning at the institutional level is typically over 1- to 2-year time horizons rather 
than over the many years required to realize the promise of current and future repositories. A forecaster will focus 
on costs associated with the resource under development or being managed but needs to be aware of how early 
planning decisions can affect long-term costs of data curation and use in future states (e.g., by increasing the 
efficiency of future curation and use or by making future curation prohibitively expensive). 

Treating cost estimation as an important agency priority and investing in training, recognizing success, 
critiquing failures, and encouraging assembly of cost-related data are increasingly important. However, evidence 
is needed to understand costs. The federal government has an important role in preserving data resulting from 
scholarly activity. The systematic collection of cost data related to the biomedical-research-data enterprise by 
an organization that owns that responsibility could provide evidence necessary to translate the cost-forecasting 
framework presented in this report into a set of tools that can be used by the biomedical-research and data-
preservation community. This development could encourage institutions to focus on costs, facilitate future cost 
forecasting, and help refine cost-forecasting models. The ultimate beneficiaries of such efforts, of course, will be 
the scientific enterprise and our nation’s citizens, whose well-being science seeks to advance.
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Biomedical researchers generate, collect, and store more research data than ever. They do so in an environment 
that requires increasing levels of data openness and sharing as well as ever greater attention to the privacy of those 
from whom the data derive. Preserving those data in discoverable and accessible ways is increasingly important; 
however, it is no longer reasonable to collect data with the expectation that they will be stored “forever” at no 
cost. Data often may be worth preserving only if they have been integrated and aggregated with other related data. 
Resource constraints make it necessary for researchers and data archivists to consider the long-term disposition of 
data, data sets, and data streams, as well as to consider the long-term costs for preserving, archiving, and promoting 
access to those data. In many, if not most, cases, responsibility for data management shifts to different individuals 
and institutions as the data are collected, analyzed, curated, archived, and potentially reused for other purposes. 

Given resource constraints, researchers will need to be able to estimate the quantity of data that they will 
collect over the course of a project as well as determine the likelihood and feasibility of data reuse when the 
original project has ended. Archivists might need to consider what archival principles might be imposed on the data 
as well as the ramifications of those principles. Archivists might also need to determine whether greater value 
should be placed on particular data types and to consider how risk management might inform data-preservation 
and archiving strategies. To support the scientific endeavor, all involved in managing the data throughout the data 
life cycle need to consider how choices regarding their data affect the costs of future preservation, management, 
and use, regardless of who bears those costs. Their decisions will require information about costs for curation and 
storage, revenue prospects associated with data generation or future data use, and estimated value of retained data 
(or, alternatively, the cost of replacing the data). While information alone will not result in the internalization of 
costs incurred elsewhere in the data life cycle, attention to and quantification of such costs will facilitate better 
allocation of resources and planning by those charged with guiding and investing in the production of scientific 
knowledge. Some of those costs may or may not be expressed in monetary units. Market valuation may place 
more value on, for example, clinical versus preclinical data in some contexts, or on one type of biomedical data 
versus another. Such valuations may not align with the priorities and mission of the organization bearing the cost. 
An understanding of how to make and use such valuations will inform data-preservation decisions. 

The mission of the National Institutes of Health’s (NIH’s) National Library of Medicine (NLM) is to acquire, 
organize, and disseminate health-related information. NLM’s strategic plan includes accelerating discovery and 
advancing health through data-driven research, reaching more people through enhanced dissemination and engage-
ment (NLM, 2018). As the largest biomedical library in the world, NLM understands that meeting the needs of 

1

Introduction



Life-Cycle Decisions for Biomedical Data: The Challenge of Forecasting Costs

Copyright National Academy of Sciences. All rights reserved.

INTRODUCTION 11

the biomedical research community requires a community-wide understanding that recent technological advances 
in data-collection technologies and data science require commensurate increases in resources for data curation, 
preservation, and discoverability (NLM, 2017). Efforts have been undertaken to understand the issues related to 
improving data discovery and access to NIH-funded data (e.g., Read et al., 2015), and NLM wants to strengthen 
a research community’s capability to value future data reuse and to estimate the cost of making reuse possible, 
which requires tools, methods, and practices. 

At the request of NLM, the National Academies of Sciences, Engineering, and Medicine (National Academies) 
have prepared this report, which examines and assesses approaches and considerations for forecasting costs for 
preserving, archiving, and promoting access to biomedical research data. The report first identifies the different 
data environments (called “states” in this report) in which data must be managed and the activities that take place in 
those environments. The report then identifies cost drivers and the states and activities in which costs are incurred. 
Critical decisions that might be made during each of the data states that could influence long-term costs of cura-
tion, preservation, and access to data are identified. The purpose of this report is to provide a general framework 
for cost-effective decision making that encourages data accessibility and reuse for researchers, data managers, 
data archivists, data scientists, and institutions that support platforms for biomedical research data preservation 
and use. The framework is not itself a cost model; rather, it provides the set of activities that must be considered 
in constructing a cost model. The wide range of possible activities associated with any particular biomedical 
data set precludes constructing a single generic model that all readers of this report could employ. Costs will be 
a function of the data set characteristics, the activities that will be undertaken with the data set, and the duration 
of those activities. Moreover, readers of this report will be addressing cost forecasts at different times in the life 
cycle and with different interests.

However, the cost-forecasting framework presented in this report can be adapted by anyone responsible for 
managing data at any point in the life cycle, and use of the framework itself is the primary recommendation in this 
report. Specific recommendations regarding the application of the framework are not provided because researchers, 
data, repository hosts, and funding institutions and their requirements vary greatly. The report does describe the kind 
of environment conducive to forecasting the cost of sustainable data management, but making recommendations 
to specific institutions about how to create those environments is beyond the scope of this report.

THE CHARGE TO THE NATIONAL ACADEMIES AND THE STUDY COMMITTEE

NLM asked the National Academies to develop and demonstrate a cost-forecasting framework and estimate 
potential future benefits to research. The charge to the National Academies is provided in Box 1.1. To meet its 
charge, the National Academies convened an ad hoc committee of experts in areas such as biomedical sciences; 
biomedical informatics; cybersecurity; data science; data storage, archiving, and architectures; database systems; 
decision making under uncertainty; economics; ethics; health care; information theory; mathematical modeling 
of reliability; cost forecasting; and statistics. The members were nominated by their peers and selected by the 
National Academies in consideration of the balance of individual expertise and to avoid any unnecessary conflict 
of interest and bias. Brief biographies of the committee members are included in Appendix G.

COMMITTEE INFORMATION GATHERING AND APPROACH TO ITS TASK

Given the complexity of the task, the committee employed a series of public meetings, a workshop, multiple 
site visits, and one-on-one communication to hear from the numerous stakeholders in the biomedical research 
community. These stakeholders included biomedical-science researchers at academic or nonprofit institutions; data 
scientists and institutional administrators within academic, private, and public sectors; data archivists; software 
engineers; data platform managers; and many others—all individuals who make decisions about data throughout 
the entire data life cycle. The committee consulted the published literature and communicated with individuals and 
institutions with responsibility for managing data in different formats to understand any cost-forecasting models 
that might be applied and those factors that influence decision making. The committee members also drew from 
their collective expertise and experiences, and many of the report conclusions are based on their own observations. 
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BOX 1.1 

Statement of Task

A National Academies of Sciences, Engineering, and Medicine–appointed ad hoc committee will 

 develop and demonstrate a framework for forecasting long-term costs for preserving, archiving, and 

access ing various types of biomedical data and estimating potential future benefits to research. In so  doing, 

the committee will examine and evaluate the following considerations:

●	 	Economic	 factors	 to	be	 considered	when	examining	 the	 life-cycle	 cost	 for	 data	 sets	 (e.g.,	 data	
acquisition, preservation, and dissemination);

●	 	Cost	consequences	for	various	practices	in	accessioning	and	deaccessioning	data	sets;
●	 	Economic	factors	to	be	considered	in	designating	data	sets	as	high	value;
●	 	Assumptions	built	into	the	data	collection	and/or	modeling	processes;
●	 	Anticipated	 technological	disruptors	and	 future	developments	 in	data	science	 in	a	5-	 to	10-year	

horizon; and

●	 	Critical	factors	for	successful	adoption	of	data	forecasting	approaches	by	research	and	program	
management staff. 

The committee will provide two case studies illustrating application of the framework to different 

biomedical	contexts	relevant	to	the	National	Library	of	Medicine’s	data	resources.	Relevant	life-cycle	costs	
will be delineated, as well as the assumptions underlying the models. To the extent practicable, the committee 

will identify strategies to communicate results and gain acceptance of the applicability of these models.

As part of its information gathering, the committee will plan and organize a 2-day workshop to gather 

input on the following topics:

●	 	Tools	and	practices	that	NLM	could	use	to	help	researchers	and	funders	better	integrate	risk	man-

agement practices and considerations into data preservation, archiving, and access ing decisions;

●	 	Methods	to	encourage	NIH-funded	researchers	to	consider,	update,	and	track	lifetime	data	costs	
(e.g.,	through	data	management	plans	and	project	renewals,	or	other		interactions	with	NIH);	and

●	 	Burdens	on	the	academic	researchers	and	industry	staff	to	implement	these	tools,		methods,	and	
practices.

The committee held five meetings in Washington, D.C.; three of these meetings included open sessions in which 
speakers and guests were invited to respond to questions relevant to the committee’s statement of task (Box 1.1). 
Agendas for the committee’s open session meetings, the workshop, and site visits appear in Appendix A. 

The committee’s first meeting included presentations and a panel discussion with leadership and staff at NIH 
and NLM. Those individuals were asked to describe NIH’s institutional priorities and primary objectives for data 
management, the largest cost issues encountered to meet those objectives, and the financial mechanisms employed 
or being considered to meet data-related goals. The second meeting included panelists with expertise in research 
technology, methodologies, and workflows across the data life cycle, and in research-data collaboration from the 
private sector. They were asked to describe their respective methods for anticipating long-term uses and costs of 
data management and emerging issues that could affect data management in the future. The committee’s third 
meeting included discussions with the director of digital preservation from the U.S. National Archives to learn 
about that agency’s approaches to develop budgets for data preservation and with the deputy project leader of the 
World Wide Computing Grid of the European Organization for Nuclear Research (CERN) to learn about lifetime 
data management at CERN. A principal project manager from a commercial cloud vendor discussed the changes 
in technologies, data volumes and types, and data uses in the near and distant future. The committee queried all of 
these individuals about the positive and negative developments anticipated in the next 5 to 10 years that are likely 
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to affect the cost of data preservation, archiving, and access. The committee’s workshop included 15  speakers 
and more than 50 invited guests, and focused on elements as described in Box 1.1. Workshop participants had 
the opportunity to discuss (1) tools and practices that NLM could use to help researchers and funders better 
integrate risk-management practices and considerations into data preservation, archiving, and accessing decisions; 
(2) methods to encourage NIH-funded researchers to consider, update, and track lifetime data costs; and (3) burdens 
on the academic researchers and industry staff to implement these tools, methods, and practices. The workshop 
was summarized in a set of proceedings (NASEM, 2020) that was released separately from the present report.

To engage in open discussion with a number of additional stakeholders and service providers, the committee 
made a total of 10 site visits to a variety of institutions. To maximize efficiency, the committee first identified the 
types of institutions with which it should engage, identified specific institutions of those types and their locations, 
and then identified regions where a number of such institutions could be visited within a few days. Ultimately, the 
committee visited institutions in San Diego, California; Washington, D.C.; Boston, Massachusetts; and Seattle, 
Washington. These included visits to the National Center for Microscopy and Imaging Research; the University of 
California, San Diego/San Diego Supercomputer Center Advanced CyberInfrastructure Development Lab; NIH; 
Dana-Farber Cancer Institute; Harvard Medical School; The Broad Institute; Amazon Web Services; Institute 
for Systems Biology; Allen Institute; and the Fred Hutchinson Cancer Research Center. The committee also met 
with NIH staff across institutes that run various data repositories. Ultimately, the committee members met with 
more than 100 individuals with different perspectives and expertise who engaged with research data at different 
states within the data life cycle. Visits to any number of other institutions could have informed the committee’s 
deliberations, but the mix of private- and public-sector data resource managers, researchers, data scientists, and 
service providers provided the committee the base of information it needed. Information gaps were then filled via 
literature searches and personal communications between committee members and external experts. 

The committee found that few think about data preservation beyond the state in which the data currently 
exist. Only a few of the individuals with whom the committee interacted consider how their data-related decisions 
affect the long-term costs associated with data preservation, curation, and access. Data regarding the costs of data 
resource management do not seem to be collected in any systematic way to inform future efforts. Planning for the 
longer term seems nascent: there are few tools or community standards available to assist with long-term plan-
ning, and such planning is at best short term in nature. Planning horizons are dictated by funding streams (e.g., 
federal budget allocations, grant levels) and thus extend only for the life of the project, excluding post-project 
data-preservation issues. Given these findings and the apparent lack of suitable examples on which to base the 
committee’s cost-forecasting model, the committee concluded that it would be necessary to develop an original 
framework on which to base a forecasting model per its charge. Once the framework was developed, the commit-
tee demonstrated its use by applying it to two use cases, per the statement of task.

FEDERAL CONTEXT

Some federal agencies, such as the National Aeronautics and Space Administration and the National Oceanic 
and Atmospheric Administration, are already committed to data preservation and understand that proper data pres-
ervation is a complex endeavor requiring dedicated resources over the long term. Data preservation is integrated 
into their cultures, and the cost of long-term preservation is included when costing a project. Other agencies have 
traditionally attached less importance to data preservation, and increased efforts on that front may require major 
cultural shifts within those agencies, a challenge that should not be underestimated. Regardless, planning horizons 
for agencies are often short given annual budget appropriations and that there may be legal prohibitions to planning 
beyond the appropriation period. These factors affect the way agencies fund external research.

Researchers who receive federal funds may be required or encouraged to do some level of planning for the 
disposition of their data at the end of their research projects, but research funding does not generally extend beyond 
the performance of the research and often does not cover data preservation. As a result, data-preservation activities 
are often minimal and may be conducted only as an afterthought to the research. Research grants provided by U.S. 
funding agencies, for example, are generally awarded only for 2- to 3-year performance periods, although some 
awards may be longer. Foreign funding agencies often fund research over longer performance periods with explicit 
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requirements related to data curation. For example, Canadian1,2 and European3,4 funding agencies offer different 
types of awards for periods ranging up to 7 years. German agencies have provided research funding for up to 
12 years. Information-technology infrastructure and data management are explicitly incorporated into these grants. 

BIOMEDICAL DATA LANDSCAPE

To provide some context for its work, the committee presents an overview of some of the current infrastructure 
and stakeholders that comprise the biomedical landscape, focusing mostly on infrastructure funded by NIH. The 
biomedical data landscape is diverse, distributed, and dynamic, characterized by an array of data repositories, 
databases, and platforms, which host data and make them available for reuse. These repositories are the database 
infrastructures where long-term stewardship, preservation, and access to research data are made possible. For the 
purposes of this report, the committee uses the terms “data repository” and “data archive” to refer to data infrastructure 
that host primary research data rather than to refer to knowledge bases that extract and aggregate analyzed data from 
the scientific literature. A similar distinction is adopted in the NIH Strategic Plan for Data Science (NIH, 2018). 
Examples of primary research data repositories include the Protein Data Bank,5 the National Institute of Mental 
Health Data Archive, and the National Archive of Computerized Data on Aging;6 examples of knowledge bases 
include UniProt7 and the Monarch Initiative.8 The distinction between a database and a knowledge base is not always 
clean—many digital repositories serve dual purposes—but NIH defines the primary function of a data repository to 
“ingest, archive, preserve, manage, distribute, and make accessible the data related to a particular system or systems.”9 
The primary function of a knowledge base, according to NIH, is to “extract, accumulate, organize, annotate, and link 
growing bodies of information related to core datasets.”10 A third type of digital artifact that does not fit neatly into 
these categories is the many digital spatial atlases that cover structures such as the nervous system (e.g., Brainspan 
Atlas of the Developing Human,11 Cell Atlas of Mouse Brain-Spinal Cord Connectome12), urogenital system, heart, 
and other organs (e.g., Genito-Urinary Molecular Anatomy Project).13 An important component of biomedical data 
and knowledge resources is that they are usually not simple platforms for hosting data; they also comprise many 
software tools and services that make the data and knowledge usable and useful. Consideration of challenges in hosting 
physical samples (i.e., biospecimen or biosample repositories) is beyond the scope of this report.

The biomedical repository landscape spans accessible data repositories hosted by government agencies, 
national laboratories, research consortia, institutions and hospitals, patient advocacy organizations, researchers, 
journals, and commercial entities, including consortia of study sponsors. The exact number of these repositories 
is difficult to estimate. re3data,14 a registry of research data repositories, returns a list of 483 for the search term 
“basic biological and medical research,” of which 38 are in the United States. The California Digital Library, a 
digital research library founded by the University of California, lists more than 600 biomedical source databases 

1  Information regarding the Canadian Social Sciences and Humanities Research Council is found at https://www.sshrc-crsh.gc.ca/funding-
financement/programs-programmes/partnership_development_grants-subventions_partenariat_developpement-eng.aspx, accessed May 12, 2020.

2  Information regarding Canada’s Partnership Grants (stage 1) is found at https://www.sshrc-crsh.gc.ca/funding-financement/programs-
programmes/partnership_grants_stage1-subventions_partenariat_etape1-eng.aspx, accessed May 12, 2020.

3  Information regarding the European Research Council (ERC) consolidator grants is found at https://erc.europa.eu/funding/consolidator-
grants, accessed May 12, 2020.

4  Information regarding the ERC synergy grants is found at https://erc.europa.eu/funding/synergy-grants, accessed May 12, 2020.
5  The website for the Worldwide Protein Data Bank is https://www.wwpdb.org/, accessed December 2, 2019.
6  The website for the National Archive of Computerized Data on Aging is https://www.icpsr.umich.edu/icpsrweb/NACDA/, accessed Janu-

ary 2, 2020. 
7  The website for UniProt is https://www.uniprot.org/, accessed December 2, 2019.
8  The website for the Monarch Initiative is https://monarchinitiative.org/, accessed December 2, 2019.
9  For example, see https://grants.nih.gov/grants/guide/pa-files/PAR-20-089.html, accessed February 20, 2020.
10  For example, see https://grants.nih.gov/grants/guide/pa-files/PAR-20-097.html, accessed February 20, 2020.
11  The website for the Brainspan Atlas of the Developing Human is http://brainspan.org/, accessed December 2, 2019.
12  The website for the Cell Atlas of Mouse Brain-Spinal Cord Connectome project is https://projectreporter.nih.gov/project_info_description.

cfm?aid=9583948&icde=0, accessed December 2, 2019. 
13  The website for the Genito-Urinary Molecular Anatomy Project is https://www.gudmap.org/, accessed December 2, 2019.
14  The website for the re3data registry of research data repositories is https://www.re3data.org/, accessed May 12, 2020.
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(Wimalaratne et al., 2018). An analysis by the ELIXIR project lists more than 500 data resources available in 
Europe (Durinx et al., 2017). NLM currently lists 82 repositories on the NLM Data Sharing Repositories page.15 
The Neuroscience Information Framework (NIF) has maintained a registry for online biomedical data resources 
since 2006. NIF lists more than 200 such primary research data repositories serving biomedicine. Approximately 
120 of these repositories explicitly list support from NIH, although information was not available or recorded 
for many. The total number of data resources, which includes data repositories, databases, knowledge bases, and 
atlases in NIF, is greater than 6,000.16 

While some institutes are more invested in data repositories than others, as shown in Figure 1.1, the majority 
of NIH institutes and centers have funded one or more repositories. Reflecting the diversity of NIH institutes and 
other funding sources, the repositories cover a wide range of data types (Figure 1.2) and topics. At the same time, 
many generalist repositories exist that are hosted by institutions, nonprofits, and commercial entities that host data 
of all types, often deposited in the context of a published scientific paper. Some repositories, mostly institutional 
repositories and data centers supporting various research consortia, restrict data deposition, and sometimes access, 
to specific constituents. 

Researchers generally have a choice as to where they store their data, whether the data are for private or public 
use. Many researchers have access to data repositories within their home institutions, or they can take advantage of 
specialist or generalist community repositories. In the absence of specific requirements coming from the funder or 
journal, the general recommendation from community organizations promoting data sharing is to use a community 
data repository specialized for a particular type of data (see OpenAIRE, 2019; e.g., protein-structure data might be 
deposited in the Protein Data Bank,17 microarray data might be deposited in the Gene Expression Omnibus). Specialist 
repositories generally enforce community standards and have software available to help researchers comply with these 
standards. They also generally provide visualization and analysis tools that work with these specialized data types 
(e.g., the National Center for Biotechnology Information [NCBI] Basic Local Alignment Search Tool [BLAST]18). 

Most repositories do not charge the depositor a fee for submitting or hosting data (although this may be true 
only up to a specified size limit). For example, the Dryad Digital Repository19 is operated by a not-for-profit 
organization and originally hosted data associated primarily with Earth-science publications. It now functions as 
a cross-disciplinary data repository that is integrated as part of the manuscript submission process for more than 
1,000 journals, many in biomedicine. To offset costs, Dryad charges $120 for data deposition for data sets smaller 
than 20 gigabytes (GB). Depositors are charged $50 for each additional 10 GB.20 

Much of the ecosystem of data repositories described above has been designed to share data with third parties 
for the purposes of transparency and reuse. However, not all data hosted by these repositories are open—that is, 
made available for anyone to use and distribute. A consortium data center, for example, may make the data available 
only to others in the consortium, and even open repositories may have requirements (e.g., they may require approval 
by the Institutional Review Board that governs data use). Institutional repositories, many of which are hosted by 
research libraries, generally provide services for private management or public sharing of research data only for 
researchers within their home institutions. Not all published data are hosted within a repository. Many journals 
allow authors to publish small data sets that live on the journal website as supplemental materials to their papers. 

The biomedical data landscape is dynamic in that new data are constantly being generated, and new data 
infrastructures are continually coming into existence while older ones may migrate, merge, grow stale, or be taken 
down. The ELIXIR project of the European Union has defined different phases of a data repository—developing, 
mature, and legacy—and provides some characteristics of each phase (Durinx et al., 2017). The legacy phase refers 
to the state in which the repository is still online but no longer growing. The NIF project shows that, of the 200 data 
repositories listed, only 18 have gone out of service or have merged with other entities, and approximately 10 others 

15  The website for NIH’s Data Sharing Repositories is https://www.nlm.nih.gov/NIHbmic/nih_data_sharing_repositories.html, accessed 
August 13, 2019.

16  The website for the Neuroscience Information Framework is https://neuinfo.org/, accessed December 2, 2019.
17  The website for the Protein Data Bank is http://www.rcsb.org/, accessed December 2, 2019.
18  The website for the NCBI BLAST is https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed December 2, 2019.
19  The website for the Dryad Digital Repository is https://datadryad.org/, accessed December 2, 2019.
20  The website showing Dryad’s data publishing charges is https://datadryad.org/stash/publishing_charges, accessed May 27, 2020.
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remain online but appear to be no longer actively maintained. At the same time, more data repositories are being 
created. A search of the NIH Research Portfolio Online Reporting Tools21 (NIH RePORTER), an online database 
of NIH-awarded grants, identifies another 128 data centers or data coordinating centers funded in 2018-2019 to 
support individual projects or consortia, many of which may be too nascent to be listed in repository catalogues.

Little information is available about what happens to data from resources that have been decommissioned. 
Occasionally, a resource is taken down and a plan for disposition and continued access to the data for a period of 
time is displayed on the website—for example, the Beta Cell Biology Consortium22 (BCBC), a project funded by 
the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). The BCBC data were transferred 
to the NIDDK Information Network23 before the resource went out of commission.

Less understood and studied are the practices of researchers and institutions for managing their research data 
before they are made available in a repository or how much such repositories and services are used. Although data 
management practices in the laboratory are at the front line of eventual data sharing and long-term data access, 
there is often a lack of incentive for researchers to think about long-term curation and preservation needs, as they 
do not recognize a personal benefit (see Box 1.2). The policies around data stewardship and retention at universities 
may not have kept pace with the digital-data revolution. Although NIH and the National Science Foundation 
require researchers to have data management plans specified in their grant proposals, there are no requirements 
for how those plans are to be formulated (see Appendix B). The committee was not able to locate any research on 
how much of the data generated by researchers are transferred to a more stable entity for long-term stewardship, 
although funder mandates and requirements are assumed to play a role in populating public archives.

The variety of expertise and types of infrastructures and services required to work with diverse data make it 
unlikely that biomedicine will ever be served by a single large data resource; multiple archives and data reposi-
tories will continue to exist, even for the same type of data. The advantages of such an approach are specialized 
tools and services and a certain amount of robustness and innovation in the ecosystem. If these repositories use 
the same standards, federated search across them becomes possible. Nevertheless, multiple repositories impose a 
cost in that separate infrastructures, staff, and tools must be maintained at each site and may, in some cases, result 
in less value, and less data discovery, than might otherwise accrue from a more unified resource, particularly if 
different standards and formats are imposed by different repositories. Therefore, after a period of innovation and 
separate development, it may make sense to consolidate some resources. Merging of two active data resources 
will lead to costs of data transfer, harmonization of data, and adaptation of technologies.

In an effort to reduce redundancy and increase functionality, the Alliance of Genome Resources24 has been 
formed as part of the NIH Strategic Plan for Data Science. The goals of the Alliance are to “establish a common 
infrastructure and software platform for data from all the [Model Organism Databases]; adopt updated data 
management practices; better integrate content, software, and user interfaces; improve interoperability; exchange 
best practices; and reduce redundancies of operation and maintenance.”25

In summary, the diversity and dynamism of data repositories and other infrastructures and the “black hole” 
of dark data (i.e., unpublished data; see Box 1.3) or data that are otherwise discoverable (e.g., Read et al., 2015) 
makes a true landscape analysis difficult. As indicated above, reliable data on the number and locations of such 
repositories, particularly institutional repositories, are difficult to determine,26 and few may be set up for large 
volumes of data. Thus, a complete accounting of biomedical data infrastructures and their content is not possible, 
even for publicly accessible data. To date, there is no equivalent of PubMed for biomedical data sets, although 

21  The website for the NIH RePORTER is https://projectreporter.nih.gov/reporter.cfm, accessed December 2, 2019.
22  The website for BCBC is https://www.betacell.org/, accessed December 2, 2019.
23  The website for the NIDDK Information Network is https://dknet.org/, accessed December 2, 2019.
24  The website for the Alliance of Genome Resources is https://www.alliancegenome.org/, accessed December 2, 2019.
25  The website for the National Human Genome Research Institute is https://www.genome.gov/Funded-Programs-Projects/Computational-

Genomics-and-Data-Science-Program/The-Alliance, accessed May 12, 2020.
26  University research data policies provide little guidance. See, for example, https://doresearch.stanford.edu/research-scholarship/re-

search-data, https://research.columbia.edu/research-data-columbia, https://libraries.mit.edu/data-management/, http://guides.library.jhu.edu/c.
php?g=813898&p=6281112, and https://ogc.umich.edu/frequently-asked-questions/research/, accessed December 12, 2019. 
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BOX 1.2 

Practices and Attitudes Related to Data Management in the Laboratory

A	survey	was	conducted	of	140	researchers,	spanning	different	career	levels,	in	neuroimaging	(Borghi	
and	Van	Gulick,	2018).	Respondents	were	asked	about	the	types	of	data	collected,	tools	used	for	data	
storage, organization and analysis, and the degree to which practices are documented and standardized 

within	their	research	group.	Survey	results	suggested	that	only	about	25	percent	of	researchers	engaged	
with	their	institutional	resources	and	services	for	data	management,	although	45	percent	reported	using	a	
technical infrastructure for managing their data during the course of the study. Most indicated that they used 

a	common	file	structure	(70	percent)	and	file-naming	conventions	(67	percent)	for	organizing	their	data.	
Overall, researchers were unequivocal in their belief that good data management practices were necessary 

to protect against loss of data and to ensure present and future access for at least their collaborators. Few 

indicated that practices they used were fully documented and mature. 

Results	 identified	several	barriers	 to	data	management	and	sharing	(see	Table	1.2.1).	The	biggest	
limitation was the amount of time it took, followed by lack of best practices, and lack of training. More than 

half	believe	lack	of	training	and	best	practices	are	constraints	(assuming	that	the	lack	of	best	practices	
reflects a lack of training). This study suggests that regardless of whether there is data management 

infrastructure in the laboratory, more training is needed to improve the knowledge and application of best 

practices.	If	one	infers	that	“lack	of	time”	implies	the	absence	of	the	ability	to	outsource	tasks	(at	some	
cost) to campus or community resources, then it is possible there is a lack of capacity on campuses and 

within	community	resources	and	a	lack	of	funds	within	project	budgets.

TABLE 1.2.1 Research	Data	Management	and	Limitations	
Data	Collection Data	Analysis Data	Sharing

Limits The amount of time it takes 69.60 71.30 79.46
Lack of best practices 43.20 48.70 49.11
Lack of incentives 36.80 32.18 37.50
Lack	of	knowledge/training 32.80 40.87 41.07
The financial cost 17.60 8.70 22.32
Other 7.20 6.09 5.36

Motivations Prevent loss of data 100.00 85.83 78.57
Ensure access for collaborators 76.80 73.33 70.53
Openness and reproducibility 63.20 64.17 66.96
Institutional data policy 52.00 39.17 47.32
Publisher/funder	mandates 35.20 28.33 41.96
Availability of tools 12.00 9.17 8.93
Other 3.20 3.3 0.0

NOTE:	Limits	and	motivations	for	RDM	during	the	data	collection,	analysis,	and	sharing/publishing	phases	of	a	research	
project.	All	values	listed	are	percentage	of	total	participants.	More	than	one	response	could	be	selected.	For	limitations,	
“Other” responses included changes in personnel, differences in expertise within a laboratory, differences in preferences 

 between laboratory members, lack of top-down leadership, and concerns about future cost. For motivations, “Other” 

responses included ensuring continuity following personnel changes, keeping track of analyses, preventing error, and 

maximizing	efficiency.	(Data	collection:	n	=	125	[limits/motivations];	Data	analysis:	n	=	115	[limits],	120	[motivations];	
Data	sharing:	n	=	112	[limits/motivations]).
SOURCE:	Borghi	and	Van	Gulick	(2018).

continued
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The survey revealed that data collection is not limited to measurements derived from the scanners; 

it	also	 includes	ancillary	 types	of	data	 (e.g.,	demographic	data,	study	design,	code).	High	percentages	
of	respondents	 indicated	that	 those	data	should	be	preserved	for	 the	 long	term	(and	therefore	must	be	
accommodated). Most participants indicated that they do not use formal tools to document their activities 

(e.g.,	data-analysis	pipelines)	but	rather	use	a	word	processing	program	or	“read	me”	files.	Only	25	percent	
used	version-control	systems,	and	20	percent	used	electronic	notebooks	such	as	Jupyter.a The use of 

laboratory management tools such as LabGurub or Open Science Frameworkc	was	 low	 (2.5	 percent).	
Approximately	10	percent	admitted	they	do	not	document	their	activities	in	any	systematic	way.

Overall,	this	and	other	studies	(e.g.,	Barone	et	al.,	2017)	suggest	that	data	management	in	the	labo-

ratory is an area that will require more attention and training. It is difficult to compensate later for lack of 

good	documentation	and	organization	during	State	1	(the	primary	research	environment).

BOX 1.2 Continued

BOX 1.3 

Dark Data

Data	stewards	often	do	not	have	the	domain	expertise	to	understand	the	value	of	data	to	the	long-term	
scientific enterprise, and yet they are often called on to make decisions about the disposition of data. If data 

are not properly documented with informative metadata, the scientific context of the data may not be under-

stood. They become “dark data” that can neither be used nor disposed of and are therefore kept indefinitely. 

Committee	members	heard	anecdotes	of	stewards	“inheriting”	data	of	unknown	provenance	or	quality,	and	of	
servers housing multiple similar versions of the same data sets without any documentation describing what 

might have been done to them. As data sets become larger, these dark data will represent greater costs indefi-

nitely.	Dark	data	are	good	candidates	for	deaccessioning,	but	no	standards	exist	for	data	stewards	to	do	so.	

there have been several efforts launched by NIH and others to construct them (e.g., DataMed;27 Chen et al., 2018). 
None of these has been fully populated. 

FAIR DATA

The research community has designed a set of principles to assist reuse of data by third parties (i.e., by those 
other than the data producers) and drive science discovery. The findable, accessible, interoperable, and reusable 
(FAIR) data principles offer guidance on how to design data and data systems to make data more reusable by 
both humans and machines (Wilkinson et al., 2016). These principles have seen rapid endorsement by funders in 
both Europe and the United States. Although the principles themselves are not recommendations for implementa-
tion, they do lay out a set of 15 attributes (see Box 1.4).

Communities attempting to implement FAIR principles recognize associated costs accrued by both the data 
provider and those providing data access. Some costs are short lived, but others are recurrent and long lasting. 
Some obligations imposed by FAIR can even be viewed in perpetuity—for example, the requirement that (meta)
data be assigned persistent identifiers (e.g., Digital Object Identifiers). There are short-term costs associated with 
providing these identifiers and then long-term costs associated with ensuring that links between the identifier and 

27  The website for DataMed is https://datamed.org/, accessed December 2, 2019.
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BOX 1.4 

The 15 Data Attributes for FAIR Data

The	FAIR	data	principles,	formulated	during	a	2014	workshop	and	published	by	Wilkinson	and	colleagues	
(2016),	offer	guidance	on	how	to	design	data	and	data	systems	to	make	data	more	reusable	by	both	humans	
and	machines.	The	principles	and	their	attributes	as	defined	by	Wilkinson	and	others	(2016)	are	listed	below.	

To be Findable:

F1.	 	(meta)data	are	assigned	a	globally	unique	and	persistent	identifier
F2.	 	data	are	described	with	rich	metadata	(defined	by	R1	below)
F3.	 	metadata	clearly	and	explicitly	include	the	identifier	of	the	data	it	describes
F4.	 	(meta)data	are	registered	or	indexed	in	a	searchable	resource

To be Accessible:

A1.	 	(meta)data	are	retrievable	by	their	identifier	using	a	standardized	communications	protocol
A1.1	 	the	protocol	is	open,	free,	and	universally	implementable
A1.2	 	the	protocol	allows	for	an	authentication	and	authorization	procedure,	where	necessary
A2.  metadata are accessible, even when the data are no longer available

To be Interoperable:

I1.	 	(meta)data	use	a	formal,	accessible,	shared,	and	broadly	applicable	 language	for	knowledge	
representation.

I2.	 	(meta)data	use	vocabularies	that	follow	FAIR	principles
I3.	 	(meta)data	include	qualified	references	to	other	(meta)data

To	be	Reusable:
R1.	 	meta(data)	are	richly	described	with	a	plurality	of	accurate	and	relevant	attributes
R1.1.		(meta)data	are	released	with	a	clear	and	accessible	data	usage	license
R1.2.		(meta)data	are	associated	with	detailed	provenance
R1.3.		(meta)data	meet	domain-relevant	community	standards

SOURCE:	Wilkinson	et	al.	(2016,	p.	4).

data are maintained. Similarly, the FAIR requirement that metadata are accessible, even when the data are no 
longer available, represents a small cost for an individual data set. However, in aggregate, the requirement imposes 
a societal obligation on ensuring that there are entities to maintain access to these metadata in perpetuity. Thus, 
implementing FAIR principles requires both technical infrastructure and organizational infrastructure. As data are 
transferred across entities and moved across the different stages of maturity, these services must be maintained. 

On the other hand, although perhaps too early to tell, implementation of the FAIR principles also has the 
potential to contribute to long-term data sustainability, as agreement on and adherence to standards and best prac-
tices can conceivably lower the cost of porting data from one archive to another.

REPORT ORGANIZATION

The statement of task requests a general cost-forecasting framework that is applicable to all data resources 
and throughout the data life cycle. It also asks the committee to evaluate an array of considerations. To provide 
the basis for forecasting long-term costs for preserving, archiving, and accessing various types of biomedical 
data, Chapter 2 explores the three states in the data life cycle and their associated activities: (State 1) the primary 
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research and data management environment; (State 2) an active repository and platform where data may be acquired, 
curated, aggregated, accessed, and analyzed; and (State 3) a long-term preservation platform. Chapter 3 describes 
the economics of cost forecasting. Chapter 4 presents the cost-forecasting framework and highlights the important 
cost drivers, the decisions about which may affect costs throughout the data life cycle. In Chapters 5 and 6, the 
committee demonstrates the application of the cost-forecasting framework in biomedical contexts. Chapter 5 applies 
the framework of the cost forecast for a new repository and platform for biomedical research data, and Chapter 6 
applies the framework to forecasting costs for new research in the primary research environment. Chapter 7 discusses 
potential economic, technology, policy, and legal disruptors that could affect data costs in the future. In Chapter 8, 
the committee offers a set of strategies, actions, and needed advances that would foster an environment conducive 
to responsible long-term data management decisions and cost forecasting.

The cost-forecasting framework itself is not an instrument for calculating the dollars necessary to develop 
or manage an information resource, but rather it is a framework that assists the cost forecaster in developing his 
own instrument. Each application of the framework will be unique depending on the nature of the information 
resource, its users and contributors, available resources, and the point of view of the forecaster. Box 1.5 outlines 
the major elements of the framework found throughout the report.

BOX 1.5 

Key Report Elements of the Cost-Forecasting Framework

Elements	of	the	cost-forecasting	framework	are	found	in	Chapters	2,	3,	and	4	of	this	report,	and	in	
Appendix	E.	Below	is	a	list	that	describes	portions	of	the	report	that	are	fundamental	to	understanding	and	
applying the cost-forecasting framework.

Chapter 2

•	 	Box 2.1 provides	an	overview	definition	of	each	of	the	three	data	states	(environments)	in	which	
data	might	exist	throughout	their	life	cycles.	Details	about	each	of	the	data	states	are	provided	in	
sections	following	Table	2.1.

•	 	Tables 2.1-2.3 (describe	each	of	the	three	data	management	environments,	the	activities	associated	
with each of the three states, and the personnel that would generate staffing costs.

Chapter 3

•	 	Box 3.2 lists	major	cost	components	of	a	biomedical	information	resource.	

Chapter 4

•	 	Table 4.1 outlines the steps for forecasting the costs of a biomedical resource. 

•	 	Table 4.2 identifies	 the	major	cost	drivers	 for	 the	major	activities	 that	occur	 in	each	of	 the	data	
states. More detailed descriptions of each of the cost drivers is provided in subsequent sections of 

Chapter	4.
•	 	Box 4.2 provides	a	description	of	how	to	use	Table	4.2.

Appendix E is a template to assist the cost forecaster in identifying the characteristics of the data resource 

and data. It will direct the forecaster through decisions related to each of the cost drivers. Using the infor-

mation identified through the completion of this template, the cost forecaster might then develop a decision 

tree	or	conduct	other	analysis	to	quantify	costs	for	each	of	the	cost	components	(listed	in	Box	3.2).	
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BENEFICIARIES OF THIS REPORT

Through its interactions with a variety of stakeholders, the committee determined that considering costs 
of preservation, archiving and allowing access to data beyond a short 1- to 2-year planning horizon is not part 
of common practice. Many researchers think about the disposition of their data after their primary research is 
complete and strive to make those data public. They may struggle, however, owing to the lack of financial and 
technical resources available once the performance period of the original research funding has ended. There are 
also researchers who considered the outcomes of their research to be journal articles rather than data and therefore 
put little thought into the long-term disposition of their data beyond that required as a condition of their research 
funding or journal policy. The responsibility of managing data is often transferred to the manager of a data-archiving 
platform, and managers of those platforms face new challenges associated with, for example, maneuvering within 
commercially available cloud storage and associated fee structures. Further, those managers may not be domain 
experts and may not understand how to retain the value of the data if the data are not properly standardized or 
documented.

While NLM commissioned this study, the cost-forecasting framework presented as part of this report is 
intended to be useful across multiple stakeholder groups, including the following: 

• Researchers who need to estimate the costs involved in acquiring data, managing them effectively in the 
laboratory, and preparing them for submission to an archive;

• Graduate students and other shorter-term research staff who may not see or appreciate the long-term cost 
benefits of good decision making related to data collection and curation;

• Institutional officials at the researchers’ home institutions—these institutions bear significant shared and 
shifted operating and capital costs to maintain data infrastructure and supporting staff;

• Archive managers who need to estimate costs when determining the amount of funding required to fulfill 
their mission and who may need to transfer their archives to platforms receiving greater or lesser use;

• Program officers or other funding agency staff who are launching new programs and need to anticipate 
costs across the different stages of the project, including long-term preservation and access; and

• Data preservationists who will need to estimate the costs for long-term preservation ahead of procuring or 
accepting data.

Expanding this conversation among these and other stakeholders will not only advance data preservation, 
archiving, and access, but it will also foster rich scientific discovery. 
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The data life cycle begins when data are collected during the conduct of primary research and continues 
through data analysis, preservation and curation, reuse, storage, and potentially to deaccession. The data life cycle 
is not necessarily linear, and data may be reused and repurposed, combined with other data, and analyzed in a 
variety of ways and for different purposes throughout the existence of the data. How actively data are used during 
the data life cycle may change: they may be used often when initially collected, then see only periodic use after 
being placed in a repository. At some point, they may become dormant and be placed in an archive for long-term 
preservation. They may be rediscovered at any time and once again see active use. The environments in which the 
data are placed throughout their existence allow for different types of activities, and they may be moved from one 
environment to another as the need arises. The committee calls these environments “data states” and recognizes 
that the data may move from one state to another in a nonlinear manner. These data states were conceptualized by 
the committee to communicate the characteristics of different environments with different purposes, and different 
data storage and preservation costs. Note that they do not map directly to the data life cycle.

Digital data transition among three states over the research life cycle is described in Box 2.1.

2

Framework Foundation:  
Data States and Associated Activities
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BOX 2.1 

The Three Data States

Digital	data	transition	among	three	states	over	the	research	life	cycle.	The	three	states	provide	the	
framework	for	forecasting	data	storage,	preservation,	and	archiving	costs	presented	in	this	report.	Data	
take a different form in each state, and each state includes different activities with different personnel, 

hardware, and management requirements. The labor and computation required to transform data from 

one state require significant resources.

●	 	State 1: The primary research and data management environment where data are captured and 

analyzed. It could be possible that no one working in the data environment is focused on standard-

izing, documenting, sharing, or preserving data and algorithms.

●	 	State 2: An active repository and platform where data may be acquired, curated, aggregated, 

accessed, and analyzed. This is an active information system that usually provides services to a 

wide	range	of	users.	Where	data	are	complex,	confidential,	or	very	large,	it	may	be	a	platform	for	
controlling access and may also provide support for analyzing and processing data.

●	 	State 3: A long-term preservation platform in which content is preserved across changes in gov-

ernance, assessment of data value, and technology. The platform may include an extract of data 

from a single data set, multiple data sets, or an information system in a system-agnostic format. In 

this state, data are neither directly analyzable nor easily  accessible.

Because	 research	 activities	 related	 to	 data	may	 not	 occur	 sequentially,	 data	might	 not	 transition	
through	the	three	states	sequentially	during	the	life	cycle	of	a	research	project	or	the	life	of	a	repository.	
A	research	laboratory	may	maintain	data	in	State	1	for	analysis,	while	transforming	the	data	into	State	3	
for	other	purposes.	An	active	State	2	repository	may	coexist	with	the	same	data	stored	on	a	State	3	long-
term preservation platform, or the same data may be stored in more than one State 2 environment. A new 

research	 project	may	 require	 a	 new	State	 1	 environment	with	 inputs	 resulting	 from	 transformations	 of	
multiple	State	2	or	3	resources,	in	addition	to	capturing	data	from	novel	sources.

The	three	states	and	the	activities	involved	in	each	of	the	states	are	summarized	in	Figure	2.1.1.	The	
activities and subactivities in each state will be described in greater detail in later sections. The enumeration 

of the activities and subactivities have benefited from previous work, including the recent National Acad-

emies study Open Science by Design	(NASEM,	2018)	and	the	models	proposed	by	“Keeping	Research	
Data	Safe”	(Beagrie,	2019),	The Open Archival Information System	(Lavoie,	2014),	The LIFE2 Final Project 

Report	(Ayris	et	al.,	2008),	the	National	Aeronautics	and	Space	Administration’s	Cost	Estimation	Toolkit	
(Fontaine	et	al.,	2007),	and	Palaiologk	et	al.	(2012).	

continued
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FIGURE 2.1.1 Conceptual	diagram	showing	the	three	data	states,	the	primary	activities	within	each	state,	
and how data may transition between states. Note that the transition arrows between states are bidirectional, 

indicating that data already existing in repositories can transition back into a primary research environment 

when new data are incorporated, data are aggregated with other data, or data are used in new ways.

BOX 2.1 Continued

STATE 1: THE PRIMARY RESEARCH AND DATA MANAGEMENT ENVIRONMENT

The first state is the form that the data take in the primary research environment. The data are actively captured 
in this environment as they are created—for example, as digital sampling of electrical current, image and voice 
signals, text, or binary data. Computing ahead of storage (e.g., processing as data are generated) is generally 
fast enough to synchronously capture the data stream and to manage its conversion to data structures for quality 
assurance and initial analysis. The data management systems in this environment ideally include software features 
to manage disruptions in logical work units (if, for example, there is a disruption in electrical current as data are 
being transferred, the data flow needs to be corrected before completing the transfer). Multiple generations of 
backup may be needed to provide time to detect corruptions resulting from the addition of new data before those 
new data cascade across older backups.

Table 2.1 describes State 1 activities and subactivities as well as the types of individuals who carry out those 
activities. Personnel are specifically noted because personnel costs often account for the largest expenditures in 
data management activities. Relative salary levels of personnel costs are discussed in a later section following the 
discussions of the three data environments.
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TABLE 2.1  State 1: Primary Research and Data Management Environment Activities and Personnel

Activity Subactivities Personnel

A. Outreach and Training 
Guidance on best practices in 
collecting and archiving data

1. Obtain support for creating funding proposals and data 
management plans (DMPs).

2. Obtain support for creating and describing research data.
3. Identify tools available for optimal data sharing.

Researcher, records management 
specialist, data scientist, data 
librarian, information technology 
(IT) systems engineer, education 
specialist, policy specialist

B. Provocation and Ideation 

Activities involved in exploring 
existing data resources and 
initiating the research activity

1. Explore and mine existing data resources for possible 
use and augmentation.

2. Design project with data sharing in mind.
3. Prepare funding application and explicit DMP 

(including estimates of costs of data storage and 
access). 

4. Negotiate intellectual property rights. 
5. Obtain ethics and regulatory approvals (e.g., 

Institutional Review Board [IRB], privacy office/
Health Insurance Portability and Accountability Act, 
information security protocols). 

Researcher, data scientist, 
software engineer, research 
domain project manager, IT 
security specialist, policy 
specialist, administrative staff

C. Knowledge Generation and 

Validation

Activities involved in creating 
shareable research data

1. Evaluate and use tools for data collection, curation, 
and analysis.

2. Generate data and metadata using community-accepted 
standards.

3. Manage and document project data.
4. Validate data and code (including version).
5. Maintain active DMP/records.

Researcher, metadata librarian, 
data scientist, research domain 
project manager, research domain 
curator, software engineer

D. Dissemination and Preservation

Activities involved in the 
disposition of the data 

1. Prepare data and algorithms for submission to an 
active repository or long-term archive.

2. Transform data and algorithms as necessary in line 
with repository/archive submission requirements.

Researcher, research domain 
project manager, IT project 
manager, software engineer, 
data wrangler, research domain 
curator

STATE 2: THE ACTIVE REPOSITORY AND PLATFORM

The second state is the active repository and platform. Data are acquired from the primary research environment 
or from another active repository, or may be revived from archival storage for active use. Acquisition is asynchronous, 
either in near real time or in a batch form. Data are less volatile during acquisition in this state than they are in 
the primary research environment. In the ideal case, data may be curated as they are acquired to add metadata 
describing the data’s provenance (i.e., the context that is implicit in the primary research environment and must be 
made explicit to accommodate use across research environments). Depending on the depth and quality of the data 
curation before it enters State 2 (including adherence to community data standards), the transition to State 2 may 
require extensive curation. Data sets are merged and aggregated with other data already in the active repository, 
which includes formatting, applying standards, and validating the data. The storage is fast enough to accommodate 
the search and analysis compute platforms used to make the data accessible. The data management systems in this 
environment necessarily handle much more data than the primary research environment because they aggregate 
data from multiple research projects. It is important to note that many State 2 activities will need to be repeated 
each time a new data set is added to the existing system. It is crucial that versioning and its documentation be 
controlled and curated. Failure to document and curate versions as they are created can lead to scientific errors 
with significant negative consequences. Costs incurred through activities in this state may reduce the efforts of 
future users of the data and for those transitioning data to other states or platforms.

Table 2.2 describes State 2 activities and subactivities as well as the types of individuals who carry out those 
activities.
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TABLE 2.2 State 2: Active Repository and Platform

Activity Subactivities Personnel

A. Community Leadership

Engagement with the broader 
community in the development of 
tools, standards, and best practices 

1. Develop community data standards and best practices 
and policies.

2. Share lessons from development of repository systems 
and tools. 

3. Identify community needs through community outreach.

Researcher, informatician, 
records management specialist, 
data librarian, communication 
specialist

B. Functional Specifications and 

Implementation

Processes involved in designing or 
modifying and implementing the 
system for access and use

1. Design or modify and implement the repository 
infrastructure.

2. Consult with stakeholders on proposed design.
3. Design or modify and implement analytic tools.
4. Design or modify and implement search capabilities.
5. Design or modify and implement visualization tools.
6. Design or modify and implement authentication/

authorization methods for secure access.
7. Design and implement user interfaces for data 

submission and access.
8. Design or modify and implement services for 

programmatic access to the data.
9. Design or modify and implement a private data 

enclave for researcher and collaborator use before 
access by other users of the repository.

10. Address findable, accessible, interoperable, and 
reusable (FAIR) compliance.

Senior staff, software engineer, 
informatician, research domain 
project manager, IT project 
manager, IT security specialist

C. Validation 

Processes involved in supporting 
the researcher in ensuring 
compliance with repository 
requirements

1. Provide a sandbox for researchers to test data sets for 
compliance with repository standards.

2. Test compliance with repository submission requirements.
3. Resolve errors.
4. Release data for submission.

Research domain curator, 
research domain project 
manager, software engineer

D. Acquisition

Processes involved in acquiring 
the data 

1. Apply selection policy to incoming data.
2. Provide support for and negotiate submission 

agreements with depositors.
3. Assess compliance with legal, ethical, and other 

policies (e.g., determination that secondary use is 
consistent with consent terms).

4. Revise selection policy as necessary.

Senior staff, data librarian, 
policy specialist

E. Ingest

Processes involved in receiving 
and preparing the data for insertion 
in the repository

1. Receive submission. 
2. Conduct quality assurance of submitted data.
3. Transform data into a format suitable for deposit and 

access (including possible deidentification). 
4. Curate data: generate, validate, or upgrade descriptive 

metadata and documentation.
5. Assign unique identifiers. 
6. Generate administrative metadata. 

Research domain curator, 
research domain project 
manager, metadata librarian, 
data wrangler, IT project 
manager, software engineer

F. Data Aggregation and Linking

Processes involved in merging and 
aggregating new data with existing 
data, and processes involved in 
linking to external databases

1. Integrate data with existing data in the data repository.
2. Link new data to external repository data, if relevant 

(e.g., link data to publications).
3. Link data to external data sets through database federation.

Software engineer, 
informatician, data scientist, 
research domain curator, 
research domain project manager
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Activity Subactivities Personnel

G. Database Management 
Services and functions for 
managing the repository

1. Maintain the integrity of the database.
2. Generate administrative reports from the database.
3. Back up data at additional storage sites.
4. Plan for potential disaster recovery.

Software engineer, IT project 
manager, IT security specialist

H. Access

Services and functions for making 
the data available to users

1. If applicable, confirm identity or eligibility of user 
as a qualified user (e.g., IRB approval, Collaborative 
Institutional Training Initiative training).

2. Determination that specific proposal for secondary 
use is consistent with consent terms.

3. Design or modify and deploy search algorithms.
4. Prepare data for dissemination to user. 
5. Deliver search results.

Software engineer, IT security 
specialist, IT project manager, 
informatician, policy specialist

I. User Support

Services for making the repository 
useful to users

1. Develop or modify and implement training materials.
2. Staff a help desk.
3. Publicize the repository.

Software engineer, education 
specialist, communication 
specialist

J. Administration

Functions that control the overall 
operation of the repository

1. Provide general management and oversight.
2. Develop and review policies and standards.
3. Monitor use.
4. Provide support for security assessment and audit.
5. Provide administrative support including billing for 

submission and usage, if required.

Senior staff, research domain 
project manager, IT security 
specialist, policy specialist, 
administrative staff

K. Common Services

Shared supporting services
1. Provide operating system, network, and network 

security services.
2. Provide and renew software licenses.
3. Provide hardware maintenance.
4. Ensure physical security and disaster management.
5. Supply utilities.

IT systems engineer, IT project 
manager, facilities manager

L. Data Retention or Replacement

Determining whether the data will 
be retained, replaced, transferred, 
or destroyed 

1. Retain data, or
2. Replace data, or
3. Prepare data for transfer and transfer data and any 

transformation code to long-term archive, or
4. Destroy data.

Senior staff, research domain 
project manager, software 
engineer

TABLE 2.2 Continued

STATE 3: THE LONG-TERM PRESERVATION PLATFORM

The third state is the long-term preservation platform. Content (e.g., data and code) are preserved in such a 
platform when it is anticipated that the data will not be actively used for the foreseeable future or if the resources 
are not available to maintain an active repository. For example, data from an active repository may be transformed 
into text, delimited strings, images, or other forms that may be viewed or processed without the content of the data 
management systems of States 1 and 2. This transformation enables preservation over tens to, perhaps, hundreds 
of years through changes in governance and computational technologies and may include compression (although 
compression could hinder preservation if corresponding decompression routines are also not preserved). Storage 
may be offline. Data may be rehydrated (see Box 2.2) as needed and moved back into an active environment, 
where it can be accessed and be more easily discovered.
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BOX 2.2 

Data Dehydration and Rehydration

Data	dehydration	and	 rehydration	are	 terms	used	 in	 this	 report	as	shorthand	 for	 the	processes	of	
transitioning	data	from	one	state	to	another.	Data	are	said	to	be	dehydrated	when	transitioning	from	an	
active	platform	(States	1	or	2)	to	a	less	active	platform	(usually	a	State	3	platform).	A	decision	to	dehydrate	
may be made, for example, when a sophisticated, high-function software platform reaches the end of its 

funding	cycle	and	additional	funds	cannot	be	found	to	sustain	it.	Commonly,	data	are	moved	to	some	file	
repository as a series of flat files accompanied by metadata descriptions. 

The	following	should	be	considered	for	data	in	a	given	State	2	(active	repository)	resource	that	are	
to be dehydrated:

1.	 	What	data	should	be	preserved?	Not	all	data	can	realistically	be	preserved	in	perpetuity.		Decisions	
will need to be made about the potential value of data and the criteria that warrants their  preservation.

2.	 	Granularity:	How	should	data	be	mapped	to	files?	A	general	rule	would	be	that	any	data	object	with	
an externally referenced identifier that might be found in the literature should be recoverable from 

the	files	and	metadata	exported	from	the	State	2	platform	in	a	reasonably	straightforward	way	(e.g.,	
the identifier corresponds to a file or a group of files).

3.	 	What	metadata	should	be	exported	to	accompany	the	files?	Note	that	the	response	leaves	room	
for	curatorial	decision	making.	Some	State	2	platform	metadata	about	data	objects	may	not	export	
meaningfully	or	usefully	(e.g.,	detailed	editing	histories	attributed	to	specific	users	of	the	platform).	

Hydration	is	not	a	tidy	inverse	of	dehydration.	It	could	be	viewed	as	building	a	new	State	2	hosting	
platform	(or	adapting	an	existing	one)	and	importing	data	sets	existing	from	one	or	more	State	3	repositories.	
More	broadly,	it	could	be	viewed	as	the	process	that	a	researcher	(or	group	of	researchers)	needs	to	go	
through	to	move	data	from	a	State	3	environment	to	one	that	is	directly	useful	and	usable.	This	description	
is necessarily vague; to give one example of the kinds of issues here, when in a State 2 platform, 

computational or analytic tools might be part of the platform and thus provide a set of readily available 

capabilities	for	researchers	reusing	data	on	the	platform.	When	the	data	transition	to	State	3,	these	tools	are	
no	longer	there.	Rehydrating	data	from	State	3	may	require	a	specific	subset	of	these	analytic	capabilities	
for their intended use of the data; the reuser may need to rebuild these capabilities, or may be able to obtain 

them from existing tools. Note also that standards are an important enabler: to the extent that there are 

standardized file formats for classes of biomedical data—and tools that understand those standards—the 

barriers to some kinds of rehydration may be considerably reduced. 

It will become important to collect and understand best practices about dehydration of data in State 2 

platforms as they are decommissioned. These will evolve, continuously informed by subsequent attempts 

to	reuse	and	rehydrate	data	from	State	3	repositories.	Importantly,	best	practices	will	also	be	informed	by	
decisions not	to	reuse	data	given	that	the	costs	of	rehydration	are	too	high	(and	borne	by	the	reuser).	It	
will be valuable to understand these decisions, perhaps through reviews of research proposals that choose 

to	collect	new	data	or	to	ignore	certain	existing	State	3	data	for	these	reasons.

There will naturally be overlap in some activities in all the data states. The distinction between States 2 and 3 
helps focus on the different issues that arise as one moves from facilitating active use to long-term retention. Those 
managing a State 2 information resource may make decisions related to a State 3 resource, and the movement from 
State 2 to State 3 could potentially be seamless. Following good archival practice, State 2 resource managers may 
automatically create preservation copies of the data as they are accessioned, or those data may be stored in a 
preservation format. Drawing a boundary between States 2 and 3 helps to ensure that decision-making processes 
also consider the challenges of long-term data preservation and their associated costs.

Table 2.3 describes State 3 activities and subactivities as well as the types of individuals who carry out those 
activities.
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TABLE 2.3 State 3: Long-Term Preservation Platform

Activity Subactivities Personnel

A. Preservation Planning

Services and functions for ensuring 
that the archive remains accessible 
over the long term

1.  Develop preservation policies, strategies, and standards 
with particular attention to possible future data rehydration.

2.  Develop preservation-metadata specifications. 
3.  Engage with and monitor the designated user community.
4.  Monitor technology. 
5.  Develop migration plans. 

Senior staff, records 
management specialist, curator, 
IT project manager, software 
engineer

B. Ingest and Data Transformation

Processes involved in receiving 
and preparing the data for insertion 
in the archive

1. Receive data for long-term storage.
2.   Check for errors in data transfer.
3.  Transform data into a format suitable for deposit. 
4.  Generate administrative metadata. 

IT project manager, records 
management specialist, curator, 
software engineer, data wrangler, 
data scientist

C. Archive Storage

Services and functions for long-
term data storage 

1.  Store data.
2.  Replace media as needed.

Software engineer, IT project 
manager, IT security specialist

D. Common Services

Shared supporting services
1.  Provide hardware maintenance.
2.  Ensure physical security and disaster management.

IT systems engineer, facilities 
manager

E. Data Export or Deaccession 

Functions involved in transferring 
custody of or deaccessioning data

1.  Prepare data for transfer of custody, or
2.  Deaccession data.

Senior staff, software engineer, 
research domain curator

PERSONNEL AND THEIR RELATIVE SALARY LEVELS

Based on published case studies (e.g., Palaiologk et al., 2012) and experience of individual committee 
members, personnel salaries often account for the largest expenditures in data preservation, curation, and access. 
Appendix C provides data drawn from occupational employment statistics for the relative salary levels shown in 
Table 2.4. Table 2.4 defines the roles of the personnel shown in Tables 2.1-2.3 and indicates a relative salary level 
(VH, very high; H, high; M, medium) for each of them based on information from Appendix C. 
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TABLE 2.4 Personnel Categories with Definitions and Relative Salary Levels 

Personnel Definition

Relative 
Salary 
Level

Administrative staff Provides a variety of support functions for a project or program M

Communication specialist Trained in effective methods for publicizing and disseminating information to a 
broad audience

M

Curator Often an archivist, trained in methods to describe and add value to data M

Data librarian Trained in the technical aspects of data management M

Data scientist Trained in quantitative methods for collecting, analyzing, and interpreting data H

Data wrangler Trained in methods for transforming data from one format into another and data 
cleansing for improved data interpretation

H

Education specialist Trained in design, modification, and implementation of training materials relevant 
to data management and use

M

Facilities manager Oversees and handles matters relating to the physical environment M

Informatician Trained in biology, medicine, or other health-related field and in quantitative 
methods for collecting, analyzing, and interpreting data in those fields

VH

IT project manager Responsible for planning, executing, and overseeing a project; trained IT 
specialist

H

IT security specialist Trained in methods to protect IT systems against inadvertent or malicious attacks VH

IT systems engineer Trained in implementing, monitoring, and maintaining IT systems VH

Metadata librarian Trained in the technical aspects of data standards M

Policy specialist Trained in relevant ethical, legal, and regulatory requirements H

Project manager Responsible for planning, executing, and overseeing a project M

Records management specialist Often an archivist, trained in managing data throughout the data life cycle M

Research domain curator Domain expert trained in methods to describe and add value to data H

Research domain project manager Domain expert responsible for planning, executing, and overseeing a project H

Researcher An individual who generates potentially shareable data while conducting research H

Senior staff Has a supervisory and decision-making role within an organization or program VH

Software engineer Trained in the design, implementation, testing, evaluation, operation, and 
maintenance of computer programs or databases

VH

NOTE: H, high; M, medium; VH, very high.
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Cost refers to the resources necessary to accomplish an objective. A cost forecast (i.e., a prediction of costs) 
is usually expressed in monetary terms and will be based on the quantity and nature of the items and services 
needed. Cost forecasts inform decision makers about the resources needed to transform an idea into a reality. Costs 
and cost forecasts come in a variety of forms, and there is a rich set of issues to consider in thinking about them. 
A cost forecast can inform actions needed to assemble necessary resources or to resolve any issues that would 
impede success. That may include identifying less costly solutions if the forecast suggests that original plans will 
face financing difficulties. Indeed, cost forecasts are vital in comparisons of alternative courses of action. Cost is 
not a measure of value (i.e., the benefit the objective produces), and cost forecasts may be unwelcome to the extent 
that they raise questions about the merits of an undertaking relative to the resources required. Decision makers 
focus on the best use of available resources; however, they will want good cost forecasts as the basis for their 
choices. A good cost forecast allows focus on the idea that resources expended in one use are unavailable for 
other potentially high-value uses. This “opportunity cost” is an important element of data management. Expending 
resources on keeping existing data sets available means fewer resources for funding new research activities. There 
is a trade-off in balancing the allocation of resources to maintain the by-products of past research and allocating 
resources toward new research. 

Controversies created by cost forecasts help explain why so many governments in the United States and abroad 
use cash budgets (i.e., finance 1 year of costs at a time) versus acknowledging the total commitment implied by 
today’s decisions through full funding of projects. A variant of this difficulty is created when a fixed horizon 
(e.g., a “5-year plan”) is used to forecast costs. Large costs may be encountered just beyond that fixed horizon. As 
described later, this problem arises in planning for the long-term preservation and use of biomedical research data 
(States 2 and 3, in the terminology of this report), since typical previous State 1 primary research grants provided 
only for the performance period of the grant (a policy within at least the National Institutes of Health [NIH] that 
may change [DHHS, 2019]). To the extent that the biomedical research enterprise wants to ensure that good deci-
sions about data management and data access are made at research project inception, or at any point in of the data 
life cycle (see Chapter 2), it is critical to address all cost components across the full life cycle of the data system.

 Because many researchers and data scientists have had no formal education in economics, this chapter begins 
with a primer that introduces basic economics terms and concepts that may be encountered by the cost forecaster. 
The text delineates the principal economic issues in creating cost forecasts and the significant variables (i.e., “cost 
drivers”) affecting the forecast in the biomedical research data life cycle. It then assesses which are most significant 

3

Cost and the Value of Data
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in each element of States 1, 2, and 3 and follows with a review of how the properties of these drivers influence 
costs. The chapter concludes with an illustration of how the cost drivers might affect forecasts for States 1, 2, and 3.

ECONOMIC ISSUES IN FORECASTING COSTS

When developing a cost forecast, it is important to understand that (1) all goods and services will incur costs 
to someone—even if a cost seems “free” (e.g., services provided by a university to a researcher, or the “free” 
access to data repositories managed by a government institution), (2)  many costs are not incurred immediately, 
(3)  many costs are not easily anticipated, and (4)  cost burdens may shift. The first step when considering costs 
is to define precisely what one is trying to accomplish—in other words, identify what one is “buying.” 

Whose Costs?

From the perspective of the individual or organization that makes management decisions (e.g., a researcher, 
research institution, or repository host), the costs that matter most are those that must be financed from its budget. 
Those costs may be less than the total costs of a project or responsibility, distorting comparisons among competing 
courses of action. For example, a government agency that manages a data repository may underfund pension costs 
and omit overhead items such as facilities cost that a private organizations must include. A public agency or other 
organization that manages research or a repository may benefit from services such as a computing environment 
that is financed outside of its budget.

Parent institutions such as a university that provides services to component units such as research departments 
may insist that the costs of those services be incorporated into decision making. From the parent institution’s 
perspective, the decision to proceed will trigger payment of those costs by the institution even if the immediate 
project manager (e.g., the researcher) does not have to finance them. 

Sunk Versus Marginal Costs

It is important to distinguish between sunk costs (i.e., costs that have already been sustained and cannot be 
recovered, such as previously purchased computer equipment) and marginal costs (i.e., future costs, including costs 
for the next increment of effort, such as additional servers for data storage). Some sunk costs might be derived 
from reusing or redeploying previously developed software or infrastructure paid for by others. For example, 
existing open-source software might be incorporated as a component of a new data information resource, so some 
amount of development costs for that software would not be included in the present forecast. However, there 
will still be marginal costs for adapting, maintaining, and integrating that existing software that would need to 
be incorporated into the cost forecast. Marginal costs tally what costs beyond the fixed overhead that is already 
financed or investments that do not need to be repeated will be incurred if a project proceeds. Marginal costs 
might also change if there are savings derived from greater efficiencies incorporated into later project stages, for 
example, as a result of experience gained managing data or improvements in hardware technologies. Decisions 
are best informed based on marginal costs because the incremental resources required for a project may be better 
understood. This dictum is true even if an institution requires a budget to be prepared otherwise (e.g., to amortize 
a building that has already been constructed). 

Because marginal costs may be difficult to calculate, many institutions rely on an average of past costs for 
their forecasts. If there are significant fixed costs for an activity (e.g., to create the data typology), average costs 
could decline as additional data sets are acquired. However, in that situation, the average will exceed the marginal 
cost, thus potentially overstating resource needs and unduly discouraging the next increment of activity. It is 
also possible that marginal costs could exceed the historical average, for example, if a new facility is required to 
accommodate a major expansion, and the historical average is based on a building for which the construction cost 
has not been adjusted for inflation. Presumably, an appropriate adjustment will be made, but the best safeguard 
against misforecasting is to invest the additional effort to understand costs at the margin.
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Cost Versus Price

Institutions or individuals often base their cost forecasts on the prices charged for goods and services. Prices 
will vary with the extent of services provided. Prices for in-house services (e.g., on-premises data storage) may not 
cover all the elements needed for the data function (e.g., power, data center overhead), whereas a cloud provider’s 
price is more likely to bundle these elements (along with a certain level of data security). A price reflects the 
amount of money needed to purchase a product or service, but it may not always accurately reflect the true cost to 
provide those inputs (i.e., all the resources that society must use). If, for example, another part of the institution or 
a different institution subsidizes a research program or data repository by providing “free” or discounted computer 
services or by lending staff to a project, the prices may understate production costs. This situation also arises if 
larger social effects are omitted that should be (but are not) reflected in prices (e.g., environmental effects of 
electricity generation and use required by data repositories). Again, some of these may not be incurred directly as 
monetary costs, or they may not be incurred immediately. They may result in future costs (e.g., power companies 
may need to charge higher rates as they become responsible for mitigating environmental impacts). On the other 
hand, market forces might lead to prices that overstate actual costs for goods and services (e.g., “excessive” 
download charges from a cloud service provider). 

The issue of cost versus price is especially important to consider when projecting the cost of commercial 
services. Service providers may benefit from much greater economies of scale and thus lower cost than an indi-
vidual institution or researcher, but their lower costs will not necessarily translate into lower prices for the science 
community. Even if prices accurately reflect past (marginal) costs, there is no guarantee that they will do so in the 
future. For example, the widespread adoption of new data practices (or even an adoption by a single large enter-
prise) could shift demand sufficiently to affect future prices (e.g., for a particular skill) in a way that is not captured 
by studying the past pricing history. Recent increases in salaries for data scientists is an example (see Box 3.1).

Institutions acting in the public interest may be instructed to include the full cost of producing a result or to 
avoid practices that impose social costs not reflected in market prices. They may be instructed to finance some 
of the subsidies (e.g., in the form of scholarships). They may be directed to reduce the impact of imperfections 
through how they procure an item (e.g., the statutory direction that the Department of Defense use Veterans 
Administration preferential drug prices). 

Investment Versus Operating Costs and Their Time Profiles

The time profile of costs matters when comparing courses of action. That case certainly arises if funds for the 
immediate budget period are more difficult to obtain than those further in the future, when fewer commitments 
are perceived to be fixed and there is more discretion about how funds might be employed. Some one-time costs 
(i.e., investments) may be necessary to begin a project or a project’s next phase. Sometimes, such costs must be 
expended periodically (e.g., the cost of hardware or software refreshment). These expenditures are often followed 
by a period in which operating costs require a lower level of continued resources. 

BOX 3.1 

Data Scientist Compensation

Based	on	interviews	with	more	than	2,000	individuals	described	as	predictive	analytic	professionals	
and	data	scientists,	a	2019	study	by	Burtch	Works	Executive	Recruiting	(Burtch,	2019)	reports	a	median	
entry-level	base	salary	 for	a	person	with	a	bachelor’s	degree	and	without	significant	computer	skills	as	
$80,000.	The	salary	of	an	experienced	person	with	a	Ph.D.	and	significant	computer	skills	is	reported	to	
be	$180,000.	Meanwhile,	the	median	base	salaries	of	experienced	managers	are	reported	to	be	$250,000.	
These salary levels reflect the scarcity of the required advanced skills of the sort delineated in this report 

but also substantially exceed what research-oriented staff typically earn in the public sector and academia. 
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Two projects may have the same (total) forecast costs but very different time profiles. The standard solution 
to comparing these different cost streams is discounting (e.g., Mankiw, 2017)—for example, using a discount 
(interest) rate to price everything as a single payment made immediately (i.e., the “present value”). This present 
value can be thought of as a corpus that pays not just for first-period costs but for future expenses as well, using 
a combination of the principal and the interest theoretically (or actually) earned in the meantime. A “discounted 
value” recalculates future payments as the equivalent of payments made today on which the earnings at the discount 
(i.e., interest) rate plus the first-period principal would be exactly enough to cover future obligations. Controversy 
arises among stakeholders about the choice of discount rate, which affects how courses of action rank. A high 
discount rate diminishes the present value of future costs, a low one vice versa. Discount rates for U.S. federal 
agencies are usually mandated by the Office of Management and Budget (usually the rate on Treasury obligations).1 

Buildings and other physical facilities present a special problem: they represent large expenditures in short 
periods, and there is an issue of cost recovery. If the institution already owns them and no refurbishment is needed, 
their costs may be viewed as sunk and thus omitted from forecast marginal costs. If another entity either owns or 
is renting the building on the institution’s behalf (e.g., for a federal agency, the General Services Administration), 
the rent becomes part of the forecast cost. If the institution constructs the facilities for the purpose of the project 
under consideration, those costs become part of the project’s early-period expenses. 

Forecasting costs may be reasonably straightforward when investment costs occur early in the life of an indi-
vidual project. Forecasters might draw on experience with similar recent projects, or they might even be based on 
bids for the specific project (with due allowance for how the contracting strategy and other factors might affect 
the actual price eventually paid). If periodic future investments are needed to sustain the project, forecasting 
could be more difficult, given changes in the marketplace that affect costs. Some costs may increase (e.g., owing 
to suppliers leaving the business), while others may shrink (e.g., from technological improvements such as those 
that have characterized computing power). As a result, there may be substantial uncertainty about future costs.

 In reality, investment costs are often underestimated at inception, in part owing to the cost of developing 
necessary new technology (e.g., new software and hardware), the procurement costs of which may thus be greater 
than anticipated. Such inaccurate cost forecasts may reflect excessive optimism about what can be achieved, a lack 
of clarity or precision regarding what is to be accomplished, or deliberate “lowballing” on the part of a proposer 
seeking to win approval for an initiative. 

Principal Elements of Operating Costs

For most public and private enterprises, the principal elements of operating costs are consumable inputs (e.g., 
power, vendor services) and direct labor (i.e., personnel). Both present interesting forecasting challenges. Box 3.2 
lists the major costs to establish and operate a biomedical information resource. Uncertainty may arise from 
potential changes in the marketplace for non-direct-labor inputs. For example, what is the likelihood of changes 
in the cost of materials-based inputs (e.g., reductions in energy costs as a result of hydraulic fracturing versus any 
increase that a carbon tax would impose)? Are vendor prices for services likely to be stable? If not, how plausible 
are the mechanisms that drive change? 

Estimating the cost of direct labor (i.e., for the personnel employed by the organization) may appear to be 
straightforward, but the institution must allow for the reality that wages are likely to increase over the longer term, 
driven by general inflation and productivity growth. Moreover, fringe benefits (e.g., health care) account for a 
major part of direct labor costs, and their costs may be driven by factors outside the institution’s control. Also 
challenging is forecasting how much direct labor will be required for new or different projects (e.g., for activities 
such as curating a new data set, and for data security, integrity checking, and addressing the impacts of disruptions 
to access of those data sets). Collecting early data on what specific activities will be required in any of the data 
steps will help to improve estimates. 

The institution will also need to consider changes in the composition of its direct labor force in its forecasts. 
A higher proportion of specialized skills would likely increase costs (e.g., more data scientists), whereas new 

1  See OMB Circular A-94, December 18, 2018.
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data processing approaches (e.g., the application of artificial intelligence) or the ability to employ a more junior 
workforce might decrease them, after allowing for any required initial software or process investments. Since 
changes in the experience composition of the workforce are a product both of organizational and individual deci-
sions, forecasts need to look at a distribution of potential developments for those elements not under direct control 
(e.g., retirement rates). 

Relative Costs of Storage Media and Hardware

A difficult issue in forecasting costs for a data-intensive enterprise is how to deal with the information 
infrastructure (i.e., the storage media and hardware). First, this infrastructure may be provided by others (e.g., 
a university or other host institution), and the repository may be charged in such a way that prices and costs 
diverge substantially. Indeed, the repository may see only an operating cost—that is, charge for services—because 
the providing entity is making the actual investments. It will nonetheless be useful for repository managers to 
understand those underlying costs, if only to judge their reasonableness, especially in deciding whether reliance 
on another provider or investing in some or all of the infrastructure itself is a better course of action. Second, as 
is widely appreciated, IT changes rapidly, with implications for both the nature of the services the repository is 
providing (e.g., users wanting the latest level of capability) and for the costs the repository faces, as has been true 
for storage. 

BOX 3.2 

Cost Components of a Biomedical Information Resource

The	 following	 list	 includes	major	 costs	 borne	 by	 an	 organization	 charged	 with	 constructing	 and	
operating a biomedical information resource. These components will necessarily be visited during the 

application	 of	 the	 cost-forecasting	 framework	 (see	 Table	 4.1)	 once	 the	 activities	 associated	 with	 the	
development	and	management	of	an	information	resource,	as	well	as	the	major	cost	drivers	associated	
with them, are identified.

●	 	Labor—direct salaries and benefits.

●	 	Information technology (IT) infrastructure—costs associated with the purchase, upgrade, and replace-

ment of computers, storage servers, networking equipment, and software purchases.

●	 	IT services—costs	incurred	in	conjunction	with	installing,	operating,	and	maintaining	IT	infrastruc-

ture, such as network connectivity fees, cloud provider fees, and repair costs.

●	 	Media—costs	of	consumable	storage	formats,	such	as	tapes	and	DVDs.
●	 	Licenses and subscriptions—one-time or periodic payments for the use of data and software; sub-

scriptions to or memberships in organizations that provide access to needed data or services.

●	 	Facilities and utilities—costs of space for people and IT infrastructure, the power to run them, and 

other utilities; in some cases, these costs might be incorporated into institutional overhead.

●	 	Outside services—amounts paid to or for entities outside the hosting organization, such as 

consultants, external auditors, off-site media storage, and training.

●	 	Travel—costs for outreach activities, to convene governing boards, and so on.

●	 	Institutional overhead—indirect costs for administrative and other support that are not direct costs 

in	a	unit’s	budget	but	that	might	be	allowed	to	a	greater	or	lesser	extent	in	a	contract	or	grant.

There	are	other	“soft”	costs	that	are	more	difficult	to	capture	quantitatively	(but	that	may	nevertheless	
be compared across design and operation alternatives). One soft cost is the time users must expend to 

make use of the data. Such time costs for users may prove significant if data discovery is difficult. See 

Appendix	D	for	a	discussion	of	these	types	of	costs.
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The choice of data storage media may also affect the short- and long-term costs of data storage. Data might be 
sitting in the potentially volatile main memory of the computer system (e.g., if they just came off an instrument or 
were output by a simulation model) or in online storage (e.g., solid-state or mechanical disk drives), from where 
they can be readily transferred to the information resource. They might be held in an offline storage medium, such 
as removable disk drives, compact discs, or tapes, in which case there will be costs in bringing the data back online 
by either automated or manual means. In some cases, the data may be stored in a deprecated medium (e.g., a Zip-
drive disk), where finding a device to access the data could be a challenge. The data might even be in nondigital 
format, such as paper or photographs, which entails high costs for scanning or manual transcription (see, e.g., 
Nielson et al., 2015). The repository may face a one-time cost to shift to contemporary storage media, which may 
be less expensive on a life-cycle basis, or an ongoing challenge with cost implications for maintaining access to 
data using storage approaches for which commercial and technical support are shrinking. The relative costs of 
hardware and storage media for long-term preservation need to be compared in a systematic way, especially in 
light of how quickly options evolve. Example approaches to such comparison can be found in the literature (e.g., 
Merrill, 2017; Rosenthal, 2017). 

Forecast Reliability

The reliability of a cost forecast is an important consideration. Procuring something new typically involves 
substantial uncertainty, which should be communicated (Manski, 2019). For example, during its information 
gathering for this report, the committee heard how the switching of service providers resulted in unexpected costs 
(see Box 3.3). Throughout the data life cycle, there will be a distribution of estimates for what is needed to sustain 
the activities in each data state. The Department of Defense, for example, recognized this reality in the call to 
budget to the “most likely cost” in 1981 (Greene, 1981) and in the later development and evolution of its “Better 
Buying Power Initiatives,” which acknowledge that there is a distribution of potential cost outcomes (Kendall, 
2017). Doing so quantitatively may be difficult, owing to a lack of data, and require substantial additional effort. 
But at a minimum, the cost forecaster owes decision makers a warning and discussion about the existence of those 
uncertainties—even if they cannot be precisely characterized.

BOX 3.3 

Changing Behaviors Given Changing Storage and Compute Scenarios

The committee heard from researchers about their ability to “experiment” with data-intensive 

computations, at no additional cost to them, when data resources were hosted by their research institutions. 

However,	when	their	data	were	moved	to	a	commercial	cloud,	the	same	levels	of	experimentation	resulted	
in unexpected and large computational bills at the end of the month. Once the cost consequences of their 

behaviors	became	transparent	(requiring	compute	bills	to	be	sufficiently	granular)—and	especially	when	
they were responsible for some or all of those costs—the researchers learned to be more thoughtful and 

efficient. For example, they began to pilot their analyses before performing them on full data sets. Making 

people responsible for their costs, helping them understand that their actions generate costs for someone, 

and providing appropriate training might help reduce resource consumption with more efficient workflows. 

The information resource platform manager might develop a compelling narrative to alert researchers to 

storage and computational cost structures and the empowering benefits to researchers of forecasting their 

costs	 (Chodacki,	2019).	The	narrative	could	properly	stress	 the	researchers’	 larger	 responsibility	 to	 the	
research community.
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ASSESSING THE VALUE OF DATA

Data constitute a different type of asset than physical infrastructure, and biomedical research data constitute 
a different type of data than those which are readily monetized in the commercial sector. The biomedical research 
community will want data valuation models that are able to attach value to the public good that a data resource 
can generate, and that can recognize the value society places on the institutions that support the data resources. 
The value of a single data set reflects factors such as its uniqueness, the number of times it is used, the cost per 
use, and the impact of each use (e.g., the change in prior probability of a hypothesis). Value differs from cost—it 
reflects worth in terms beyond the monetary. The value of data might vary for different purposes (e.g., initial 
discovery versus repeatability). And it may change with time, even if the data themselves do not change (e.g., a 
data set may lose value if it is superseded by another that is more precise or accurate, or it may gain value if better 
analysis techniques allow new knowledge to be obtained). Value may accrue in different states to different actors 
for reasons. A data set may be considered valuable while in regular use in a State 1 (primary research) or State 2 
(active repository) environment (see Box 2.1), especially if seen to contribute to advancing science. However, it 
is difficult to forecast the value of data into the future because it is difficult to know how the data may be used 
or aggregated and repurposed. 

A larger aggregated data resource has the potential to increase the value of a data set by increasing the number 
of uses and by increasing the benefit per use through linkage to other data sets. A data set increases the value of the 
aggregate data resource by contributing to its breadth (e.g., variety of data types added by the data set) and depth 
(e.g., number of instances of a data type or granularity of data in an instance). The degree to which the aggregate 
resource delivers on the potential to increase the value of a data set depends on how well it handles factors such 
as accessibility, discoverability, and analysis. The value of a data resource compounds if it sparks connections 
among diverse users. This compound value reflects factors such as the distribution of user backgrounds, geographic 
origins, and purposes, including research and nonresearch purposes. In the long term, the greatest value may be 
realized through the multiplier effect as heterogeneous data sets are aggregated and linked on novel computational 
platforms in ways that are impossible to predict at the time a data set is created. Uniqueness of a data set may be 
the best long-term predictor of value.

When determining the value of data from small, individual studies, an important factor is the extent to which 
they can be combined with other similar studies to increase statistical power. Studies that yield small sample sizes 
by the end of the study may be considered exploratory. If rigorous community standards and good data management 
practices have already been implemented by a laboratory, then submitting the data to a specialist repository will 
require less effort. The inherent value of the data may have increased, as it is more likely that they can be used 
with other similar data. On the other hand, if the data require significant formatting to meet community standards, 
the laboratory would have to expend significant resources preparing the data for submission. In this case, the data 
might be considered only moderately valuable and the researcher may choose to submit the data to a repository 
with less onerous requirements. 

The lack of statistical power in smaller data sets is a key factor in current reproducibility problems (e.g., 
 Ioannidis, 2005). Large efforts like the Human Connectome Project, the Alzheimer’s Disease Neuroimaging 
Initiative, and the Adolescent Brain Cognitive Development (ABCD) initiative are producing large, well-aligned 
data sets, but these types of projects are not able to sufficiently sample the phenotype space either within or 
between conditions. Promising results are starting to emerge, however. It is possible and perhaps even advantageous 
at times to aggregate data from smaller studies to increase statistical power and to train new machine learning 
algorithms to take advantage of heterogeneous data. Aggregating heterogeneous data allows a more complete and 
robust model of preclinical research to emerge, as each individual laboratory samples a small slice of a larger, 
multidimensional picture (Ferguson, 2019; Williams, 2019). The work of Alan Evans (Moradi et al., 2017) in 
neuroimaging with multicenter data from the Autism Brain Imaging Data Exchange (ABIDE) database2 also shows 
the importance of making available multiple independently acquired data sets. The ABIDE initiative includes two 
large-scale neuroimaging data collections, ABIDE I and ABIDE II, created through the aggregation of data sets 

2  The website for ABIDE is https://fcon_1000.projects.nitrc.org/indi/abide/, accessed December 12, 2019.
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independently collected across more than 24 international brain imaging laboratories studying autism. Moradi et 
al. (2017) showed that machine learning algorithms that are trained across independently acquired data are more 
robust and generalizable than when trained on data from a single site. This work is consistent with that discussed at 
the Workshop on Forecasting Costs for Preserving and Promoting Access to Biomedical Data by Ferguson (2019) 
and Williams (2019), in which investigations using data from multiple laboratories or multiple genetic strains lead 
to more robust clinical predictions than investigations using more limited data. These results suggest that while a 
small individual data set on its own may be of limited value, when aggregated with other data, it can potentially 
increase the value of the pool of data. So to the extent that data are “multiplicatively integrative” through adherence 
to the findable, accessible, interoperable, and reusable (FAIR) principles and exposure through platforms that make 
them FAIR, their value increases. If, however, the data are shared through a platform where their discoverability 
is limited and where standards and curation are not enforced, then their value will be diminished.

To retain data value, reanalysis of data by either a researcher or a repository may be necessary to make them 
compatible with new data and to ensure that the results derived from the reanalysis are valid. For example, a 
widely discussed and controversial paper claimed that the statistical methods used in functional magnetic resonance 
imaging (fMRI) data analyses were leading to an overinflation of false positives in neuroimaging studies (Eklund 
et al., 2016). Detailed comparisons across major software packages in structural fMRI find major differences 
in the way that these packages calculate parameters such as cortical thickness (summarized in Kennedy et al., 
2019). Software bugs or system dependencies may be uncovered that invalidate results drawn from older studies 
( Kennedy et al., 2019). Such reanalysis will entail costs that cannot be estimated in early cost forecasts because 
the evolution cannot always be predicted.

While technological volatility can make data obsolete as higher-quality or higher-resolution data become avail-
able, it can also increase the value of data in the long term, provided that the underlying data are valid. Their long-
term availability ensures that these data may be reanalyzed with newer algorithms and approaches. As Eklund and 
colleagues note, “Due to lamentable archiving and data-sharing practices, it is unlikely that problematic  analyses 
can be redone” (PNAS, 2016). In an analysis reported in 2019, Eklund and colleagues estimated that, of the total 
of 23,000 studies published in neuroimaging, up to 2,500 were likely affected by the misapplication of statistics. If 
the average cost of a neuroimaging NIH Resarch Project Grant Program (RO1) award to an investigator is $400,000 
(Kennedy, 2014), then the total value of these 2,500 studies that must be discarded or reperformed is $1 billion. 
Thus, many in the neuroimaging community called for more long-term storage of primary neuro imaging data 
(Eklund et al., 2016, 2019; Kennedy et al., 2019).

Data value will also be related to the quality of the data. Higher-quality data are likely to be more valuable 
than lower-quality data, although quality control metrics for data are not always known and algorithms in the 
future may be able to account for suboptimal data characteristics (e.g., motion artifacts) and “rescue” these data 
for future use. The quality of the data is likely to be affected by the platform and standards used and how well 
they are supported by automated and human curation. Dr. Greg Farber (committee site visit to NIH, September 18, 
2019) and Dr. Russ Poldrack (personal communication with M. Martone, September 18, 2019) described that 
automated pipelines catch many errors such as inconsistently named files that are difficult for human curators to 
identify, improving the overall quality of data and metadata submitted. However, human curators, using their human 
knowledge and insight, can catch discrepancies that software misses. So the same data set might be significantly 
increased in value when submitted to a repository with both automated and human curation in comparison to one 
that is submitted to a generalist repository that has minimal curation support. However, if the researcher carefully 
documents her data and adheres to community standards and best practices independently, data deposited in such 
repositories can be quite FAIR.

The perceived value of data influences preservation, access, and archiving decisions as well as decisions made 
regarding transition of data from state to state. Characterizing value for decision making might be related to the 
number of different tasks or decisions that the data support, and it might be possible to compare values of data 
sets without quantifying them. For example, if data set “A” supports all tasks that data set “B” supports, then one 
could assert that data set B’s value is no greater than that of data set A. Some may attempt to relate the value of 
data with the cost of obtaining them, but data value does not necessarily correlate with the financial investment 
made to collect them. Decisions made about the disposition of data may be based on the cost to replace the data, 
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but those decisions should also be informed by the data quality, use, and replacement costs. A data set can have 
many anticipated uses and thus be viewed as high value, but if those uses do not occur, the value is not realized. 
The cost to replace the data may change. The day may come, for example, when technology advancements make 
it less expensive to resequence an organism than to download its genome. On the other hand, some data may be 
irreplaceable (e.g., surveys done in the past with time-dependent results) or take a long time to re-create (e.g., the 
Framingham Heart Study [see, e.g., Tsao and Vasan, 2015]).

Identifying data as high value when in any of the data states will have cost ramifications. For data value 
to be realized, the data need to be discoverable and usable. Metadata are required to make the data more easily 
discoverable. Without at least some minimal standard for metadata tags, the data are destined to become “dark 
data”—data that are undiscoverable and, hence, unused (see Box 1.3). Services around the data may be required for 
data to be usable, and significant labor will likely be necessary to implement and provide those services, including 
maintaining data standards. From a scientific point of view, data have no value without proper standardization and 
documentation. Preserving the value of data in any state, particularly in the State 3 environment, requires using 
accessible formats and keeping high-level context information (e.g., “all these data came from the same clinic”) 
so that the data are discoverable at reasonable levels of effort that make the search time worthwhile.

APPROACHES TO DATA VALUATION

Before considering the consequences of designating data as high value, it helps to consider how the different 
facets of value might be assessed for data. It may be useful to look at some commercial approaches to data valuation 
(see Box 3.4) to see what insights they offer. Information valuation is still a nascent discipline in the commercial 
world, in part because standard accounting principles do not permit data to be listed as an asset on a company’s 
balance sheet (Laney, 2017). Nevertheless, commercial information clearly has a value, as witnessed by the stock 
market valuations and sales prices of information-intensive companies relative to their balance sheets. In particu-
lar, the committee finds the taxonomy of valuation approaches set forth by the Gartner Group to be informative 
(Laney, 2017). Some of the approaches are not well suited to biomedical research data. For example, the “market 
value of information” approach is of limited use, as biomedical data sets are generally not bought and sold in 
public marketplaces. However, at least three of the approaches seem relevant in the biomedical-information setting.

1. Cost value of information (CVI): This approach equates the value of data with the expense of obtaining 
them. While this approach ignores a multitude of factors about a data set, it is useful in setting a target for 
how much it makes sense to invest in preserving a data set. Spending more than the replacement cost of 
the data should raise questions, although there are a few caveats. The replacement cost of the data set may 
differ from the original cost of obtaining it—perhaps dropping as technology improves or rising with labor 
costs. Also, replacing data takes time, so it may make sense to spend more than the CVI of a data set to 
preserve it so as to avoid gaps in availability.

2. Intrinsic value of information (IVI): IVI is a nonmonetary metric based on the quality (i.e., correctness and 
completeness), scarcity, and expected lifetime of a data set. While IVI does not determine appropriate costs 
for preserving data sets, it can be used to prioritize expenditures among data sets when funds are limited.

3. Business value of information (BVI): BVI is another nonmonetary metric based on the goodness and 
relevance of a data set for a specific purpose. In a biomedical research or clinical setting, BVI might be 
interpreted as the range of tasks or investigations that a data set enables and its adequacy to those ends.

With all of these approaches, it is important to recognize that the value of data need not stay fixed over time. 
As noted with CVI, the replacement cost may change with developments in technology or trends in labor costs. 
For IVI, quality assurance activities or the retirement of similar data sets can increase value. BVI is especially 
amenable to change. A data set may become useful in a broader range of tasks (or better suited to current uses) if 
it is combined with other data sets or new analysis methods are developed that can work with it.
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BOX 3.4 

Commercial Approaches to Assessing Data Value

Data	valuation	has	received	increased	attention	in	the	commercial	domain,	as	more	and	more	compa-

nies	see	their	data	assets	as	major	drivers	of	revenue.	While	these	companies	are	often	focused	on	the	use	
of data to achieve their “bottom line,” the biomedical domain is focused on the value of data for research 

and clinical benefits. Nevertheless, it is useful to draw insights from several commercial approaches.

O’Neal	(2012)	posits	that	when	data	are	not	actively	maintained,	their	value	depreciates	at	a	rate	of	
10	percent	per	year.	That	 loss	 is	based	on	data	becoming	outdated	(e.g.,	old	customer	addresses	and	
e-mails).	While	much	biomedical	data,	such	as	gene	sequences,	will	not	become	obsolete,	other	types,	
such	as	survey	results	or	disease	demographics,	might.	Another	valuable	approach	from	O’Neal	(2012)	
relates	to	the	analysis	of	sources	of	data-productivity	loss	(with	notional	formulas)	for	manual	reconciliation	
of	data,	data	access	and	retrieval,	and	project	delays.	

Schmarzo	(2016)	points	out	that	data	are	an	unusual	currency:	the	same	data	can	be	used	across	mul-
tiple	use	cases	and	thus	do	not	have	the	“transactional	limitations”	of	money.	He	introduces	the	concept	of	
developing formulas to “express the intangible but quantifiable prudent value” of data assets and con siders 

key	business	 initiatives	as	 the	basis	 for	 valuing	data	 (Schmarzo,	2016).	Accordingly,	 in	 the	bio	medical	
research setting, it might be possible to identify key goals that an information resource could enable. 

Short	and	Todd	(2017)	present	cases	where	data	value	is	not	fully	retained	during	transfer	(i.e.,	the	
utility	to	one	entity	 is	not	what	another	might	realize).	Results	from	a	survey	of	30	companies	and	non-

profits revealed that most had no formal data valuation policies, but some had data-classification efforts 

(e.g.,	“critical,”	“important,”	“other”).	Short	and	Todd	(2017)	explained	that	“value	may	be	based	on	multiple	
attributes, including usage type and frequency, content, age, author, history, reputation, creation cost, rev-

enue	potential,	security	requirements,	and	legal	importance.	Data	value	may	change	over	time	in	response	
to new priorities, litigation, or regulations.” Thus, data value should be a composite of three sources of 

value:	(1)	Asset value	concerns	direct	or	indirect	monetization.	Direct	monetization	includes	buying,	sell-
ing, or trading data. Indirect monetization refers to when a new product or service is based on data, but 

the	data	do	not	change	hands.	(2)	Activity value concerns the value of data in use. Unlike tangible assets, 

data value generally does not decrease with use and might, in fact, become more valuable with use. The 

benefit	of	different	uses	of	the	same	data	can	also	vary	greatly.	Capture,	storage,	and	maintenance	are	
the	main	costs	for	data,	and	the	marginal	cost	of	use	can	be	very	small.	(3)	Future value concerns how the 

value of the data would reflect in a balance sheet. This value could be quantified in several ways: based 

on transactions on similar data, the income or savings they produce, or development or replacement cost 

(Short	and	Todd,	2017).
Laney	 (2015)	 presents	 perhaps	 the	most	 comprehensive	 treatment	 of	 information	 valuation.	 He	

	describes	two	classes	of	measures	for	data,	each	with	three	information	valuation	methods:	(1)	Founda-

tional measures focus on improving information management discipline, with consideration for the intrinsic, 

business,	and	performance	values	of	information.	(2)	Financial measures	focus	on	improving	information’s	
economic benefits, with consideration for the cost, market, and economic values of information. 
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Thus far, this report has provided foundational information. This chapter organizes that information into a 
framework for identifying the major cost drivers for any biomedical research information resource. It can be applied 
by anyone who generates, collects, or manages data at some point in the data life cycle, or it may be applied by 
a funding or institutional official. The framework walks the cost forecaster through the various characteristics of 
data and information resources to determine which of those are likely to represent major cost drivers in the short 
and long terms. Cost forecasters will likely need to consult with multiple individuals with varied expertise to 
minimize uncertainty in the forecast. 

The framework presented herein should be considered the basis of a cost forecast rather than a one-size-fits-
all analytical tool for all applications. How it is applied in any situation depends on the circumstances, needs, and 
resources available to those involved. The activities, decisions, and cost drivers will be situationally dependent, 
and the framework provided herein will need to be modified to suit the specific purpose. In whatever applica-
tion, however, the forecaster is encouraged to think beyond the costs associated with the specific data state being 
developed or managed. In the long term, it is more efficient to think early about how decisions may affect the 
costs of data management and access in future data states, the transitions to those states, and the future value of 
data to the scientific enterprise. 

Making the right decisions about infrastructure can help to minimize many costs, as can taking advantage 
of economies of scale. But decisions need to be weighed against each other to understand their short- and long-
term cost implications and their effects on data value. Many costs incurred over time are related to the curation, 
management, and preservation of different types of data, from different sources, that are generated by different 
evolving technologies and that are to be aggregated, accessed, and used in new ways. The cost-forecasting 
framework will help the forecaster identify the decisions to be made about the variables that can impact costs and 
the value of data in the short and long terms. The forecaster will necessarily focus on costs associated with the 
resource under development or being managed but will need to be aware of how decisions made in the earliest 
planning stages might affect long-term costs of data curation and use. Decisions made early in the planning process 
might increase the efficiency of future data curation and use or make future data curation prohibitively expensive.

Table 4.1 provides a framework for conducting a cost forecast. Subsequent sections of this chapter describe 
how to accomplish the steps. It should be noted that although these are presented as “steps,” they are actually 
activities that may occur concurrently, or iteratively as new information is gathered.

4

The Cost-Forecasting Framework:  
Identifying Cost Drivers in the 

Biomedical Data Life Cycle
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TABLE 4.1 Steps for Forecasting Costs of a Biomedical Information Resource

1.  Determine the type of data resource 
environment, its data state(s), and how data 
might transition between those states during 
the data life cycle.

 The data states are defined in Box 2.1:
  State 1: primary research environment
  State 2: active repository
  State 3: long-term preservation and archive

•  Decide the goals and objectives for the data resource.
•  Consider how the resource is likely to be used now and in the future.
•  Identify available guidance that defines the type of resource to be created or 

managed (e.g., requests for application, community standards, or institutional 
requirements). 

•  Compare the items above with the activities defined for each of the data 
states (see Figure S.1) and decide which data state(s) best align(s).

2.  Identify data characteristics (Chapter 4), data 
contributors, and users.

•  Fill in the cost-driver template (Appendix E):
 o  Complete category A of the template to help to identify the size, 

complexity, metadata requirements, depth versus breadth, processing levels 
and fidelity, and the replaceability of  the data.

 o  Complete category E of the template to help to identify the life-cycle issues.
 o  Complete category F of the template to help to identify data contributors 

and users.

3.  Identify the current and potential value of 
the data and how the data value might be 
maintained or increased with time.

•  Consult with the institution hosting the data resource, the project funders, 
and the broader research community to develop appropriate metrics for 
assessing the value of the data.

•  Identify decisions that affect data value in the shorter and longer terms (see 
Chapter 3 for different methodologies).

•  Consider how data generation methodologies affect short- and long-term data 
value in terms of data contributors and users and the data life cycle.

4.  Identify the personnel and infrastructure likely 
necessary in the short and long terms.

•  Identify the major activities and subactivities associated with the information 
resource, including activities related to potential transitions between data 
states (Tables 2.1, 2.2, and 2.3) 

•  Identify short- and long-term staffing requirements for the current state and 
transition between states.

•  Identify the infrastructure requirements and available resources. 

5.  Identify the major cost drivers associated 
with each activity based on the steps above, 
including how decisions might affect future 
data use and its cost. 

•  Identify the major cost drivers and associated uncertainties for each of 
the activities identified above by completing the cost-driver template 
(Appendix E).

•  Identify likely relative costs (e.g., using Table 4.2).
•  Consult with institutional experts (e.g., at the institution hosting the resource, 

library resources) and determine available personnel and infrastructure 
resources.

•  Work with experts at the host institution to quantify short-term costs and to 
bound uncertainties in longer-term forecasts.

6.  Estimate the costs for relevant cost 
components based on the characteristics of the 
data and information resource.

•  Identify which cost drivers are important for each cost component of the 
information resource (e.g., labor, information technology [IT] infrastructure 
and services, media, licenses and subscriptions, facilities and utilities, 
outside services, travel, and institutional overhead; Box 3.2).

•  Estimate costs for the current funding period.
•  Estimate costs and cost uncertainties for future funding periods, including 

costs to transition data to other states.



Life-Cycle Decisions for Biomedical Data: The Challenge of Forecasting Costs

Copyright National Academy of Sciences. All rights reserved.

46 LIFE-CYCLE DECISIONS FOR BIOMEDICAL DATA

CONSULTING WIDELY TO CONDUCT A COST FORECAST

The cost forecaster may be a researcher but could also be a funding or institutional official. The steps outlined 
in Table 4.1 require the cost forecaster to develop a narrative regarding the biomedical information resource and 
the data contained within it that considers the entire life cycle of the data. To envision the data life cycle, which 
likely extends beyond any single funded performance period, the forecaster may need to consult an array of experts 
to understand how decisions made about data and the information resource affect the data life cycle and costs. 
When identifying how the information resource is to be used both in the present and future (step 1 in Table 4.1), 
the forecaster may refer to the request for application (RFA) from a funding agency, consider the goals and 
objectives of relevant research, and consult experts within the institution that will host the information resource 
about available assets. An RFA may require or provide guidance regarding specific data curatorial or preservation 
activities that will define the type of resource to be created or managed, or the researcher or research community 
may have specific needs or standards to be met. Aligning those activities with the activities associated with States 
1, 2, or 3 (see Tables 2.1, 2.2, and 2.3) will help the forecaster determine the data state of the information resource. 
Because the scientific enterprise benefits from preserving the long-term value of the data and from increasing the 
efficiency and effectiveness of long-term data curation and use, activities related to eventual transfer of data to 
other states need to be considered. To identify data characteristics, data contributors, and data users (step 2 in Table 
4.1), the cost forecaster will need to work with her institution, project funders, and perhaps the broader research 
community to identify or develop appropriate metrics to better understand and manage costs.  

In spite of the fact that metrics for determining the costs and value of biomedical research data are immature, 
the framework explicitly makes identification of the current and potential value of the data an integral part of the 
cost-forecasting process (step 3 of Table 4.1). The long-term value of data comes with their being discovered, 
aggregated, and reused. Repositories that commit to archiving all data submitted for some designated minimum 
period (i.e., to satisfy a research funding agency’s data archiving requirements), regardless of the current or future 
value of those data, risk using valuable resources for little return on investment. Chapter 3 provides information 
regarding the economics of cost forecasting and for data valuation. 

Identifying the personnel and infrastructure necessary in the short and long terms (step 4 of Table 4.1) 
requires an identification of the activities and subactivities associated with the desired data state. The forecaster 
will refer to Tables 2.1, 2.2, and 2.3 that describe the high-level activities and subactivities associated with each 
of the data states as well as the personnel who might be required for each activity to develop and maintain an 
efficient and sustainable data resource. The forecaster will need to consider the goals for the information resource 
under consideration to identify the appropriate activities. Table 2.4 describes many of the categories of personnel 
required for all the activities and subactivities, as well as their relative salary levels. The forecaster can work with 
the institution to determine how personnel resources might be acquired and then with those staff to help determine 
how physical infrastructure needs may be met. Some design or modification and implementation costs related 
to the information resource capabilities (e.g., persistent identifiers, citation management, and search) might be 
avoided if open-source software can be used. However, use of open-source software still incurs costs, such as those 
related to integrating with other repository components, updating the software as new versions are available, and 
harmonizing the user interface with the overall look and feel of the repository. Consulting with IT professionals, 
metadata librarians, software engineers, and many others may be necessary to compile the information necessary 
to identify the major cost drivers (step 5 in Table 4.1).

MAPPING COST DRIVERS TO ACTIVITIES IN EACH DATA STATE

The fifth step in the forecast is identifying the cost drivers and decision points associated with each antici-
pated activity and how those decisions might affect the ways data may be used, as well as the cost of those uses. 
If one were to forecast the costs of manufacturing a physical product (e.g., a digital camera), one would want to 
know how it will be used and distributed, its specific features (e.g., megapixels, memory capacity), and desired 
characteristics (e.g., long battery life, small form factor). It is also desirable to understand the properties of the 
components that go into the product (e.g., microprocessor power consumption, defect rate on lenses). Similarly, 
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in costing a biomedical information resource,1 its intended content, capabilities, and context—and the properties 
of data that will populate it—must be understood. In this section, those dimensions of a biomedical information 
resource likely to have the greatest effects on cost are considered. In each case, choices are laid out along the 
dimensions or range of variation in the data and the manner in which they may influence costs. Box 4.1 provides 
some examples in the biomedical research field regarding decisions and actions that affect costs in the short and 
long terms.

Table 4.2 is a generalized matrix developed by the committee that shows which cost drivers, identified by the 
committee and described later in this chapter, are most likely to affect the costs of specific activities in each of the 
data states described in Chapter 2. Although individual research activities, databases, and archives may generate 
costs differently than as depicted based on requirements for particular data sets or research platforms, Table 4.2 
provides useful information when conceptualizing costs into the future. In most cases, the cost of long-term data 
preservation will not be accrued by a single individual or institution, but rather responsibility at different stages 
may be transferred from, for example, a researcher to a data platform host. Understanding where costs will be 
accrued and who has managerial responsibility for them will inform decision makers for all data states. Box 4.2 
provides guidance on how to use Table 4.2. The individual cost drivers and decision points that can affect those 
cost drivers will be discussed in later sections. 

Table 4.2 is a high-level summary of the main cost drivers influencing each activity. Some of the activities, 
listed in the columns in Table 4.2, are affected by a large number of cost drivers. People engaged in those activi-
ties (or costing of them) need to be sure not to focus too narrowly on one or two of the cost drivers (rows in Table 
4.2) in decision making and planning. Activities affected by the most cost drivers are listed below. Definitions for 
all of these, and questions to guide decisions around them, are provided later in the chapter.

• I.C Knowledge Generation and Validation. This item encompasses subactivities for creating shareable 
research data. These activities are critical for promoting use and controlling preservation costs at later states 
in the data life cycle. Many of the cost drivers, such as metadata requirements, persistent identifiers, and 
quality control, reflect up-front work that benefits downstream use.

• II.B Functional Specification and Implementation. It is not surprising that this activity is influenced by 
many cost drivers, as it includes a large number of subactivities involving design or modification and 
implementation of all of the main repository components.

• II.F Data Aggregation and Linking. The large number of major cost drivers for this activity may indicate 
two general conclusions. One is that the nature, quality, and amount of data in a repository strongly influ-
ence the effort required for successful aggregation and linkage. The second is that data linkage, especially to 
external sources, creates dependencies that must be managed whenever data at either end of a link change.

• II.L Data Retention or Replacement. The number of cost drivers influencing these activities perhaps high-
lights the complexity of decisions about data retention, encompassing characteristics of the data, users and 
uses of the data, and constraints that regulate the data.

• III.B Ingest and Data Transformation. This activity has many cost drivers in common with Knowledge 
Generation and Validation. That similarity is not surprising—it reflects that decisions during the generation 
of data have a major influence on activities at the end of their lifetime (and about where costs are borne). 
For example, rigorous metadata requirements on the initial collectors of data require more effort of those 
people but simplify the job of those charged with archiving the data later.

It also is evident that certain cost drivers (rows in Table 4.2) affect many activities (columns in Table 4.2). 
When specifying and scoping a biomedical information resource, special attention should be given to these cost 
drivers because the ramifications of decisions related to them will strongly influence costs. The cost drivers that 
affect the most activities are listed below.

1  “Biomedical information resource” is used in this chapter as a generic term for a system for storing and accessing biomedical information, 
across all the states introduced in Chapter 3. It might be a group workspace in a single laboratory (State 1), a public repository (State 2), or a 
cold-storage archive (State 3), among other possibilities.
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BOX 4.1 

Actions That Affect the Cost of Data

The cost of preserving and providing access to data depends on choices made at a number of points 

across the data life cycle and on the presence of certain kinds of tools, institutional support, and incentives 

that affect the choices made at those points. These choices often predate the launch of an individual research 

project	 in	 which	 data	 are	 generated.	A	 number	 of	 factors	may	 affect	 the	 cost	 of	 preserving,	 archiving,	
and	promoting	access	to	data.	Funder	requirements	(e.g.,	specific	data-sharing	or	identifier	requirements),	
data	management	mandates,	 Institutional	 Review	Board	 specifications,	 federal	 regulations,	 and	 journal	
requirements	all	influence	costs	across	the	data	life	cycle.	Data	management	plans	that	incorporate	costs	
and value across the data life cycle may reduce the cost and time required for later data deposit and sharing.

Data	 for	 which	 a	 research	 community	 has	 developed	 shared	 standards	may	 result	 in	 lower	 costs	
for the community and decrease the cost of repository governance and maintenance while creating the 

potential for those data to be of higher scientific value. In some cases, tools may already exist that help 

researchers	prepare	data	according	to	those	standards	such	as	through	the	National	Institutes	for	Health	
(NIH)	National	Library	of	Medicine	(NLM)	clinical	trials	database,a which requires researchers to standardize 

study-level	metadata.	 The	National	 Data	 Service	Consortium	Sustainable	 Environment/Actionable	Datab 

and	the	Center	for	Open	Sciencec both provide research platforms that allow researchers to analyze and 

publish data directly to an active repository, although they do not require data standardization. The National 

Institute	of	Mental	Health	(NIMH)	Data	Archive	(NDA)	houses	several	 large	neuroimaging	studies	as	well	
as data collected from individual studies and has implemented standards that help to harmonize across 

them.d	Colecticae	 and	 the	Norwegian	Centre	 for	Research	Data’s	Nesstar	Publisherf both offer tools for 

managing metadata for rectangular, quantitative data published to community-normed standards.g The 

Stanford	Center	for	Reproducible	Neuroscienceh provides tools to standardize neuroimaging data based on 

emergent community standards.

Capture	of	provenance	metadata	in	the	primary	research	environment	for	potential	future	reuse	may	
reduce longer-term curation costs for an active repository. Similarly, making data discoverable and interop-

erable	may	be	less	expensive	if	data	collection	is	informed	by	prior	practices	and	shared	standards.	Costs	
of data preservation later in the digital life cycle may be reduced if researchers are provided with tools that 

allow them to curate data according to community standards and if they use those tools in the creation 

and analysis of data. Purging data from the primary research environment, after it has been validated and 

accepted by the active repository, reduces the long-term costs of the primary environment. Transformation 

of	data	sets	in	an	active	repository	into	a	state	suitable	for	long-term	content	preservation	(e.g.,	by	data	
compression followed by error-correcting coding) may protect against data corruption. The overall cost of 

a repository in which data are actively added or improved or for which tools for working with the data are 

integrated may be high, but the potential scientific benefit may be large. Similarly, the transformation of an 

active data management platform to a novel computational platform requires reinvestment in curation at 

costs	similar	to	initial	platform	development	costs	(see,	e.g.,	the	model	of	centralized	versus	decentralized	
curation discussed in this chapter). Purging the data sets from the active repository as access approaches 

zero reduces the cost of the active repository, but costs will be incurred at a future date if those data are 

to be once again made easily accessible. 

a	The	website	for	NLM’s	clinical	trials	database	is	www.ClinicalTrials.gov,	accessed	December	4,	2019.
b	The	website	for	the	National	Data	Service	Consortium	Sustainable	Environment/Actionable	Data	is	www.	sead-data.

net,	accessed	December	4,	2019.
c	The	website	for	the	Center	for	Open	Science	is	www.cos.io,	accessed	December	4,	2019.
d	The	website	for	NIMH’s	NDA	is	https://nda.nih.gov/,	accessed	January	11,	2020.
e	The	website	for	Colectica	is	https://www.colectica.com,	accessed	December	4,	2019.
f	The	website	for	the	Norwegian	Centre	for	Research	Data’s	Nesstar	Publisher	is	http://www.nesstar.com/software/

publisher.html,	accessed	December	4,	2019.
g	Both	Colectica	and	Nesstar	use	the	Data	Documentation	Initiative	(DDI)	metadata	standard.	The	website	for	DDI	

is	https://ddialliance.org,	accessed	December	4,	2019.
h	The	website	for	the	Stanford	Center	for	Reproducible	Neuroscience	is	http://reproducibility.stanford.edu/	resources/,	

accessed	December	4,	2019.
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• A. Content. That the size, complexity and diversity of data, and metadata requirements facets of content 
affect so many activities is not unexpected. The effort required in many activities scales directly with these 
aspects.

• H. Confidentiality, Ownership, and Security. The prevalence of these cost drivers across many activities—
especially confidentiality and security—derives in a large part from the prevalence of human-subjects and 
animal-model data in the biomedical domain.

• J. Standards, Regulatory, and Governance Concerns. The applicable standards cost driver influences 
a number of activities, which reflects the two sides of standards: there is effort required to conform to 
them, but dealing with data that conform to standards often facilitates other activities. The regulatory and 
legislative cost driver also impinges on many activities, which, again, possibly arises from the extensive 
use of human and animal data in biomedicine.

INDIVIDUAL COST DRIVERS IN THE DEVELOPMENT AND OPERATION  

OF A BIOMEDICAL INFORMATION RESOURCE

There is a wide variety of biomedical information that is worth preserving and sharing, from genomic 
sequences to clinical outcomes. Because of the variation in the content and other aspects, the costs of constructing, 
maintaining, and accessing such information can differ greatly. This section describes the main ways biomedical 
information resources may vary and why each variation is likely to affect costs or utility. The variations are 
grouped into more general categories in the next subsections, which are numbered to correspond with the categories 
provided in Table 4.2. When considering costs of alternatives, total costs related to managing, accessing, and using 
data need to be considered—both those costs borne by the operators of the resource as well as those of the users. 
Decisions regarding quality, delivery, or stewardship of data that will populate the resource can all drive up costs 
(or limit the value of the resource) as well. The more ambitious the plans for a biomedical information resource, 
the more personnel and financial resources will be required to support it but the greater potential benefit for users 
of the information resource and to scientific discovery. Thus, understanding the properties of the data is essential 
for estimating the costs involved with a biomedical information resource so that the forecaster can understand the 
short- and long-term trade-offs necessary related to each of the cost drivers. Cost drivers related to issues with 
input data and their disposition are called out in some of the subsections below. 

Table 4.2 will help the cost forecaster understand which information resource-related activities will likely be 
important cost drivers to short- and long-term costs. Questions to help the cost forecaster identify key decision 
points for each cost driver are provided. The questions are written at a high level and intended to help the forecaster 
identify areas where more detailed lines of inquiry are warranted. When forecasting costs, these are the types of 
questions a cost forecaster needs to ask about each cost driver. How the forecaster answers these questions affects 
not only the cost of managing a given data state but also future costs for users or future data state managers. 

The questions have been compiled into a blank table in Appendix E that could be used as a template when 
considering long-term costs. The template could help the forecaster organize the detailed narrative necessary to 
realistically assess activities that promote efficient and effective data preservation and use. The narrative can then 
drive a detailed quantitative analysis of the costs based on the resources available to the forecaster. Examples of 
how the template can be applied are provided in Chapter 5. Appendix F compares cost drivers for three hypotheti-
cal biomedical information resources (one for each data state).
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A. Content

A.1 Size ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

A.2 Complexity and diversity of data 
types

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

A.3 Metadata requirements ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

A.4 Depth versus breadth ✓ ✓ ✓ ✓

A.5 Processing level and fidelity ✓ ✓ ✓ ✓

A.6 Replaceability of data ✓ ✓ ✓

B. Capabilities

B.1 User annotation ✓ ✓ ✓ ✓

B.2 Persistent identifiers ✓ ✓ ✓ ✓ ✓ ✓ ✓

B.3 Citation ✓ ✓ ✓ ✓ ✓

B.4 Search capabilities ✓ ✓ ✓ ✓

B.5 Data linking and merging ✓ ✓ ✓

B.6 Use tracking ✓ ✓ ✓ ✓ ✓ ✓

B.7 Data analysis and visualization ✓ ✓ ✓

C. Control

C.1 Content control ✓ ✓ ✓ ✓

C.2 Quality control ✓ ✓ ✓ ✓ ✓ ✓ ✓

C.3 Access control ✓ ✓ ✓ ✓

C.4 Platform control ✓ ✓ ✓

D. External Context

D.1 Resource replication ✓ ✓

D.2 External information dependencies ✓ ✓ ✓ ✓

D.3 Distinctiveness ✓ ✓

TABLE 4.2 Drivers Affecting Cost of Data-Related Activities in the Three Data States
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E. Data Life Cycle

E.1 Anticipated growth ✓

E.2 Update and versions ✓ ✓ ✓ ✓

E.3 Useful lifetime ✓ ✓

E.4 Offline and deep storage ✓ ✓ ✓

F. Contributors and Users

F.1 Contributor base ✓ ✓ ✓ ✓ ✓ ✓ ✓

F.2 User base and usage scenarios ✓ ✓ ✓ ✓ ✓

F.3 Training and support requirements ✓ ✓ ✓ ✓ ✓ ✓

F.4 Outreach ✓ ✓ ✓ ✓

G. Availability

G.1 Tolerance for outages ✓ ✓ ✓ ✓ ✓ ✓ ✓

G.2 Currency ✓ ✓ ✓ ✓

G.3 Response time ✓ ✓ ✓ ✓ ✓ ✓

G.4 Local versus remote access ✓ ✓ ✓

H. Confidentiality, Ownership, and 
Security

H.1 Confidentiality ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

H.2 Ownership ✓ ✓ ✓ ✓ ✓

H.3 Security ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

I. Maintenance and Operations

I.1 Periodic integrity checking ✓ ✓ ✓ ✓ ✓

I.2 Data-transfer capacity ✓ ✓ ✓ ✓ ✓ ✓

I.3 Risk management ✓ ✓ ✓ ✓ ✓

I.4 System-reporting requirements ✓ ✓ ✓

I.5 Billing and collections ✓ ✓ ✓ ✓ ✓ ✓

J.  Standards, Regulatory, and 
Governance Concerns

J.1 Applicable standards ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

J.2 Regulatory and legislative 
environment

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

J.3 Governance ✓ ✓ ✓ ✓ ✓ ✓

J.4 External consultation ✓ ✓ ✓ ✓
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A. Content

The aspects covered in this section deal with the amount, kinds, and qualities of data that a biomedical infor-
mation resource is expected to host. 

A.1 Size

There are at least two facets to size—overall size (e.g., volume of data in bytes) and number of identifiable 
items. The overall size affects media costs, time required to replicate and transfer data, and perhaps time to verify 
or index data. The number of identifiable items can affect the sizes of indexes and amount of metadata (e.g., the 
descriptive, structural, administrative, reference, or statistical information about data found in a database), as well 
as the time to curate the data. Identifying data at a finer granularity can help make searches more specific and 
might help a user avoid downloading large amounts of extraneous information. 

Example decision points related to size:

1. How many files will be in a single data submission?
2. How large is an average data submission in total?
3. Are the data sizes likely to stay stable over the life of the resource?
4. What is the total amount of data expected?
5. In what kind of medium will data be captured in the short and long terms?

A.2 Complexity and Diversity of Data Types

Data in some biomedical information resources, such as The Cancer Genome Atlas,2 were collected expressly 
for the resource. In such a situation, the resource managers have strong influence over the specific formats, stan-
dards, required fields, and other elements. The resulting homogeneity in the data makes them easier to process. In 
other situations, the data that end up in the resource are originally collected for other purposes, such as a specific 
research project or patient care. In that case, one expects that the data will be more heterogeneous and not neces-
sarily conform to the conventions of the resource, thus requiring more effort to ingest and curate.

The items in an information resource might be structurally simple (e.g., deoxyribonucleic acid [DNA] 
sequences) or complex (e.g., patient medical histories). The resource might contain a single kind of data or 
several. The more data types and the greater their complexity, the greater the cost to design and maintain the 
storage schema, as well as the number and complexity of load scripts, quality control routines, query interfaces, 
and documentation. Cost-efficiently integrating multiple data types in a high-quality manner requires expertise in 
each of those data types.

The organization of data to be included in the resource will affect the effort required to assess whether the data 
should be included in the resource and the order in which they should be processed. For example, data items might be 
in separate files, organized into hierarchical collections, or perhaps grouped by species, chromosome number, patient 
identification, or phenotype. Such an arrangement can make it easier to select appropriate subsets for inclusion in the 
resource. In contrast, data items in a data set might all be in a single large file (e.g., the result of a backup), requiring 
a scan of the entire data set to extract the subsets appropriate for inclusion in the information resource.

Example decision points related to complexity and diversity of data types:

1. How complex is the underlying structure of the data?
2. How are the included data to be organized?
3. How complex is the experimental paradigm that produced the data?

2  The website for The Cancer Genome Atlas is https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga, ac-
cessed December 5, 2019.
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4. What sort of additional files might be necessary to upload with the data to properly understand them?
5. How many different data types are being produced?
6. What are the relationships among these data types (e.g., are the data correlated)?

A.3 Metadata Requirements

An information repository might contain more or less metadata per identifiable item. Possible metadata 
elements include contributor, provenance (source and record of possession), lineage (derivation history), data 
uncertainty or quality, and search attributes. It may be possible to derive some of those metadata, such as 
summarizations, from the data themselves. Other parts could depend on external context and need to be supplied by 
the producers or curators of the data. Still other metadata might be in a form intended for human rather than machine 
understanding, in which case human effort will be necessary to interpret them. What portion of the metadata falls 
in each case affects costs, as the former case can be automated, while the latter two incur labor costs. Those labor 
costs might be borne by those that produce the data or by those who curate the information resource. The metadata 
(or some part of it) may need to be uploaded to a clearinghouse—a platform dedicated for publishing metadata for 
the purpose of discoverability.3 Doing so will entail extra steps when adding data but will make them locatable 
by more people. Even small amounts of metadata can help with decisions about storage, archiving, or removal of 
data, thus saving long-term costs. One example is knowing if a data set represented is difficult or impossible to 
reobtain (i.e., “base” data)—either collected internally or obtained from an outside source—versus data that can 
be derived from base data. Another is whether the data have or were influenced by protected health information 
in any way. If the community has agreed on standards and tools, or if the targeted repository has data submission 
tools with standard data formats, the initial cost of managing data in the research environment may increase, but 
downstream costs may be reduced.

A data schema is a description of the data structure. At a minimum, the presence of a schema helps resource 
developers to understand the precise structure of the data they need to process. The absence of a schema is likely 
to require creation of special data processing software. The schema might be quite specific, such as a relational 
database schema, which lists the column names for each table, along with their data types, which columns must 
hold unique values, and other constraints, or it might include only column names or define possible structures. 
An Extensible Markup Language (XML) schema is an example of the latter. The schema might be held sepa-
rately from the data, as in the case of relational or XML schemas, or embedded with the data in the form of, for 
example, column names in a spreadsheet or the header in a hierarchical data format (HDF) file. Some schemas 
can be supplied in machine-readable form, allowing for automated or semi-automated processing. The presence 
of a data schema can help biomedical-information-resource developers and managers in multiple ways. It might 
support an automated means to upload the data into the resource’s data store or simplify scripts to do so. If data 
are guaranteed to conform to the schema, then less checking is required during data ingest. 

The provenance of a data set is an account of how the data came to be in their current state. It might indicate 
who collected or generated the data, where, and when. Having such information with the data in the repository 
can improve trust in the data, thereby increasing the value of a biomedical information resource. The provenance 
could also include the processing history of the data, which might reveal biases in the data or indicate the 
appropriateness of particular further processing. For example, indicating if outliers were cleaned from the data 
might affect the suitability of certain statistical analyses of the data. The provenance could also contain parameters 
relevant to the collection or generation of the data, such as settings of an instrument used to collect the data, or the 
configuration file for a computational model. That type of information supports correct interpretation of the data 
by the biomedical-information-resource developers. Without such information, those managing the resource may 
need to reverse-engineer the values of the relevant parameters (or seek them elsewhere). If the parameters cannot 
be recovered, it might not be possible to determine if the data meet the conditions for inclusion in the resource, 
necessitating their rejection.

3  An example of a metadata clearinghouse is the National Biological Information Infrastructure Metadata Clearinghouse hosted by the U.S. 
Geological Survey (see https://www.sciencebase.gov/catalog/item/4f4e48bee4b07f02db53a643).
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Example decision points related to metadata requirements:

1. How much metadata must be stored with each data object to make them findable, accessible, interoperable, 
and reusable (FAIR)?

2. Will metadata be entered manually by the submitter/curator?
3. Will the data to be deposited include a data schema, or will one be generated?
4. Is the provenance of a data set sufficiently described, or does it need to be?
5. How much metadata can be extracted computationally?

A.4 Depth Versus Breadth

A biomedical information resource might be directed at a certain class of data (e.g., DNA sequences or cell 
images), regardless of the kind of study that generated them. Alternatively, the resource might target all types of 
data arising out of a particular domain of study or from a specific community. For example, a resource that hosts 
data from brain-damage studies might include functional magnetic resonance imaging images, optical images 
of brain slices, genomic and proteomic analyses, cognitive function tests, and clinician reports. A resource with 
responsibility to collect a wide range of data will likely be more expensive per data unit, as schemas, search capa-
bilities, curation procedures, and other aspects of the resource design and management will need to be replicated 
on a per-data-type basis. Furthermore, as a field evolves and new experimental and computational techniques are 
developed, the resource potentially needs to extend its capabilities to handle data generated by those techniques. 
Decisions related to depth versus breadth of data will need to be informed by user needs and expectations. While 
it may be less expensive per data unit to have a resource focus on a single class of data, integration across multiple 
resources can be time intensive and costly for users. If researchers frequently use multiple data modalities, it may 
be more cost effective in the long term to design integration solutions early.

Example decision point related to depth versus breadth:

• Will the repository be restricted to certain data classes or types that the repository must support?

A.5 Processing Level and Fidelity

As data proceed from their raw form, through calibration, cleaning, and processing, to analysis, their volume 
generally shrinks. Thus, the point in this spectrum that a biomedical information resource targets for the data it 
collects can have a large effect on data volume. For example, storing all raw DNA reads from a sequencing run 
will require much more space than storing just a consensus sequence for the reads. Storing more-detailed versions 
of data incurs cost for the larger space and also for the effort of uploading and curating more data. However, 
the more-detailed data might support a larger range of uses. There are also potential space savings from storing 
approximate data rather than exact values. For example, DNA sequencing data can come with a quality score 
at each base position. Most current scoring schemes feature more than 40 different scores, which means that a 
quality score takes more space than the base it annotates. Replacing exact quality scores by 2-bit approximations 
could reduce storage by one-third.4 Whether such an approximation is acceptable must be decided based on the 
intended use of the data.

Structure of the data also affects the processing level. Data intended for a biomedical information resource might 
be more or less explicitly structured and therefore may require different levels of processing to be incorporated into 
the resource. Highly structured data residing in a relational database management system, or in comma-separated-
value files, may have easily discernible structures. Data might be in a semi-structured representation, such as in 

4  e.g., see Illumina, 2014, “Reducing Whole-Genome Data Storage Footprint,” Pub. No. 970-2012-013, Illumina, Inc., April 17, https://www.
illumina.com/Documents/products/whitepapers/whitepaper_datacompression.pdf. Accessed May 27, 2020.
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an XML data format, in which case more analysis and more complex scripts may be required to ingest the data. 
Data in simple text formats, or scans of text, may require more extensive processing to ingest the data.

Data intended for a biomedical resource might use a character or numeric encoding for values that differ from 
those used in the resource, in which case the data will need to be encoded after ingestion. A data source might also 
be compressed, which can have advantages and disadvantages. The smaller size of compressed data might reduce 
network-transfer times or intermediate storage of the raw data. On the other hand, the data will likely need to be 
decompressed, in whole or in part, to perform checks and manipulations at the resource.

Example decision points related to processing level and fidelity:

1. Do the raw data need to be stored?
2. Do processed data need to be stored?
3. Are there compression algorithms that can reduce the file size without compromising fidelity?
4. What kind of data structure requirements will the resource have? 
5. Is the data contributor or the repository responsible for any restructuring necessary?
6. How is the data structure verified?

A.6 Replaceability of Data

A biomedical information resource might be the “official” home for certain data sets or could simply be a 
replica of data whose master copy resides elsewhere. Even if the resource is the official home, it might be possible 
to regather the data in it through repeating experiments or calculations. The cost of replacing data (or the impos-
sibility of doing so) informs what are reasonable expenditures on redundancy and other means for loss prevention.

Example decision points related to replaceability of data:

1. Is the archive the primary steward of the data, or do copies exist elsewhere?
2. Can the data be easily recreated?

B. Capabilities

The previous section covered properties of the data themselves. This section covers aspects of a biomedical 
information resource that describe what information resource users are able to do with the data in the resource 
(i.e., without extracting the data into another environment). 

B.1 User Annotation

A biomedical information resource might support comments, annotations, and corrections on data items beyond 
those originally submitted by the contributors of the data. If so, there is a cost for developing such a facility and 
for overseeing its appropriate use. Human or machine interventions in a data resource also need to be documented, 
authenticated, and retained as part of the metadata.

Example decision points related to user annotation:

1. Will the repository have to provide user annotation capabilities?
2. What is the nature of these annotations?
3. Are they provided by humans or machines, and how will they be authenticated?
4. Are permissions required to annotate the data?
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B.2 Persistent Identifiers

A biomedical information resource might want or have to support persistent identifiers (PIDs) for data sets or 
data items, such as Digital Object Identifiers (DOIs).5 The host of the resource may have to pay directly for the 
ability to assign such identifiers or indirectly in participation in an organization that has that capability. Support 
of such identifiers also carries a requirement to maintain a mapping from identifiers to data entities even as those 
entities are modified or moved.

Example decision points related to persistent identifiers:

1. What PID scheme will be used by the archive?
2. Is there a cost associated with using the PID?
3. How many objects need to be identified?
4. Who will be responsible for keeping the PIDs resolvable?

B.3. Citation

A biomedical information resource might support citation of data items (or sets of items) at a granularity 
smaller than entire data sets. If so, there might need to be a facility that, given an item or sets of items, generates 
a citation and, conversely, given a citation, locates the corresponding items.

Example decision points related to citation:

1. Will users be able to create arbitrary subsets of data files and mint a PID for citation?
2. Will the repository provide machine-readable metadata for supporting data citation?
3. Will the repository provide export of data citations for use in reference managers?

B.4 Search Capabilities

Efficient search for items in a biomedical information resource, beyond simple look-up by a reference or 
access number, usually requires construction and maintenance of indexes over the data. Those indexes take space 
beyond what is required for the base data, plus time to construct and maintain. If there are many indexes, they can 
slow updating of the base data. Different kinds of searches require different kinds of indexes. For example, an 
index that supports look-up of items by exact match to a value might not support searching on a range of values. 
Full-text searches and approximate matching (such as for genomic sequences) require specialized index structures 
to execute efficiently.

Example decision points related to search capabilities:

1. Will the repository provide a search capability for data sets?
2. How much of the metadata will be included in search?
3. How complex are the queries that will be supported?
4. What types of features for search will be provided?
5. Will the repository deploy services to search the data directly?

5  The website for the DOI System is https://www.doi.org/, accessed December 4, 2019.
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B.5 Data Linking and Merging

A biomedical information resource might supply users with the ability to navigate from a data item to related 
items, such as from a DNA sequence region to a protein coded by a region of that sequence, or from a medication 
to a list of clinical studies for that medication. The resource might combine information from multiple contributors 
into a single entry, such as a functional annotation from one contributor on a gene sequence from a different 
contributor. Such capabilities mean that the resource will need to create appropriate links and perform merging 
operations when new data are added.6 Supporting such data interoperability is aided by the use of standards (e.g., 
ontologies and common data elements) but can be time consuming and expensive depending on the complexity 
of the data and their initial level of compliance.

Example decision points related to data linking and merging:

1. Will the data require/benefit from linkages to other related items?
2. Will the resource provide the ability to combine data across records based on common entities/standards?

B.6 Use Tracking

A biomedical information resource might track uploads, access, and downloads of data items to inform 
contributors and resource operators about their use. Statistics of such operations may incentivize researchers 
to contribute data by providing evidence of data use. They could inform life-cycle decisions such as when data 
could transition to another state, and they might be used to assess the long-term value of the data. In addition, the 
information could support billing and cost recovery. Tracking would likely have a minor effect on overall costs 
of operating the resource.

Example decision points related to use tracking:

1. Will the resource provide the ability to track uploads, views, and downloads?
2. If so, and if made available to users, how will this information be made available?
3. Will the resource track data citations to its data?

B.7 Data Analysis and Visualization

Generally, users of a biomedical information resource want to do more than view data. They might want to 
reformat data for use with a particular tool, visualize them in the context of other data, and conduct statistical 
analyses upon them, for example. The resource might provide services to perform such operations locally on the 
data. There might even be a requirement to provide general-purpose co-located computing, where a user can run 
arbitrary programs on the data. Providing such capabilities will incur costs for provisioning the computing cycles 
to support those operations. However, such costs might be offset by reductions in costs to resource operators by 
avoiding bulk downloads by users to perform computations locally. In considering costs to the wider scientific 
enterprise, supporting data analysis at the resource could avoid user costs of downloading and maintaining local 
copies, and could increase the value of the data by expanding the audience of researchers who could work with 
them. The operators of a resource might employ a credit- or token-based system to limit and track the use of com-
putational resources. Such an approach can help control computation costs, although there will be costs associated 
with implementing and administering such a mechanism. 

6  In this case, the committee is talking about linking and merging at the resource rather than before deposit.
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Example decision points related to data analysis and visualization:

1. What types of data analyses and visualizations will the repository support?
2. What types of other data operations will the repository support (e.g., file conversions, sequence comparison)?
3. Do these services require significant computational resources?
4. Who will pay for computational resources?

C. Control

This section covers aspects of a biomedical information resource that deal with control and oversight of the 
resource. 

C.1 Content Control

A biomedical information resource can be more permissive or more restrictive in what it chooses to include 
in its contents. At the permissive end, a resource might allow open posting of any data of the appropriate type. At 
the other end, there may be a review process to determine whether submissions are to be included in the resource. 
That review could be minimal—for example, an automated check that the submission is properly formatted—or 
more extensive—for example, a human review of metadata to assess suitability for inclusion. A more intensive 
review process increases labor costs but provides a means to limit the amount of data that is hosted.

Example decision points related to content control:

1. Will all appropriate data be accepted, or will there be a review process?
2. Will the review process be automated, or will it require human oversight?

C.2 Quality Control

A biomedical information resource may exercise more or less rigorous control on the quality of the informa-
tion within it. At one extreme, it might leave all quality control to be the responsibility of the data contributors. 
At the other, it might manually or automatically vet all incoming data to detect quality issues. There could also 
be quality assessments on derived products that are generated internally to the resource. More intensive quality 
control incurs higher costs, but it can increase the value of the resource for scientific and clinical use. Problems 
with quality, when encountered, entail increased review and (where possible) repair of data by someone. If repair 
is not possible, the value of the resource may be compromised. Quality-related properties that need to be verified 
are correctness, completeness, currency, and duplication.

Correctness is related to how accurate the data are; values in input data may be inaccurate for a variety of 
reasons (e.g., errors in data processing or transcription, noise in the instrumentation or method used to collect 
them, mislabeling of samples). There might be internal inconsistencies in the data or incompatibilities with external 
sources. Cross-links between records might be incorrect. The greater number of types and instances of correctness 
problems with the input data, the more effort is required by resource managers to address them. To the extent that 
such problems are not identified or addressed, the value of the resource can be compromised.

Validating the completeness of data means identifying missing items at the record or field level. Such gaps 
can entail costs for the resource because of added complexity in the processing to ingest the data and possible 
additional complexity in the data representations in the resource to cope with missing elements—for example, 
special flags for missing values.

The time sensitivity of data can impact the currency of data. Some kinds of biomedical data are relatively 
time insensitive (e.g., the amino-acid sequence of a particular protein). However, other data may have more value 
the more current they are (e.g., disease incidence). In that case, badly out-of-date data may limit the value of a 
biomedical information resource.
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Duplicated information within or between data sets will require more review or processing to remove dupli-
cation. A particular instance of duplication is when a contributed data set is revised periodically with corrections 
and additions. If those changes are not explicitly flagged, then the managers of the resource will need to compare 
each new version of the data set with previously submitted versions to avoid loading duplicate data.

The biomedical information resource may promulgate guidelines or validation routines that indicate issues 
with data or conformance with resource expectations and standards. While prevalidation of data quality by the 
data contributor shifts costs to the data contributor, it could result in lower overall effort, as the providers may be 
able to incorporate checks into their normal data processing practices. Also, detecting a problem with the data on 
the provider side avoids back-and-forth communication between contributor and resource managers to point out 
problems and get corrected data.

Example decision points related to quality control:

1. What quality control process will the repository support?
2. Will these be automated or require human oversight?
3. What level of data correctness will be required, and how will it be validated?
4. What gaps in the data at the record or field level will be tolerable?
5. Will any of the data be time sensitive, and how will data currency be ensured?
6. How will duplication within or between data sets be addressed?
7. Will prevalidation guidelines or routines be distributed by the resource to the data contributors?
8. Will human curation be necessary?

C.3 Access Control

A biomedical information resource might place restrictions on which users can see which data—for example, 
if data are embargoed from general release for a certain length of time or the resource might provide private 
workspaces for individual users or groups. The data may also be consented for particular uses, in which case 
consent information will need to be linked to particular data items and consulted when deciding access permissions. 
Such control means having a mechanism to identify users (authentication) and to track which are allowed access 
to what data (authorization). This capability adds costs both for managing user identifications and for developing 
access-control mechanisms. Supporting collaborative workspaces, blind review, and mandatory release schedules 
all complicate those mechanisms.

Example decision points related to access control:

1. What types of access control are required for the repository (e.g., will there be an embargo period)?
2. At what level are they instituted (e.g., individual users, individual data sets)?
3. Does use of the data require approval by a data access committee?

C.4 Platform Control

There might be limitations on what computing platforms are allowed for running a biomedical information 
resource. Third-party hosting (e.g., commercial cloud providers) might be prohibited, permitted, or required, or 
there may be restrictions on hosting or mirroring data overseas (e.g., if overseas data privacy laws regarding 
human-subjects research data may not be aligned with domestic policies). Such restrictions constrain implementa-
tion alternatives, which in turn can influence costs.

Example decision point related to platform control:

• Are there restrictions on the type of platform that may or must be used?
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D. External Context

This section considers the context of a biomedical information resource in relationship to other, external 
resources. 

D.1 Resource Replication

There might be a requirement to replicate a biomedical information resource at other sites, with other groups 
operating “mirror” versions of the resource. Mirroring might be required, for example, to provide more conve-
nient access to collaborators at a distant location. If there is such a requirement, then the original site will need to 
coordinate software updates and data releases with the mirror sites.

Example decision point related to resource replication:

• Is there a requirement to replicate the information resource at multiple sites (i.e., mirroring)?

D.2 External Information Dependencies

A biomedical information resource might have dependencies on other information sources. For example, a 
resource containing DNA sequences for an organism might depend on a reference sequence to provide position 
numbers to locate those samples. In another example, metadata records might require certain fields to come from 
a controlled vocabulary, such as the Medical Subject Headings (MeSH).7 Such a dependence might engender 
maintenance costs when the external source is updated.

Example decision point related to external information dependencies:

• Will the resource be dependent on information maintained by an outside source?

D.3 Distinctiveness

There might be other biomedical information resources with similar content and that support some of the 
same tasks. In such a case, it might be that such information resources can substitute for the resource in question, 
albeit with some “degradation” in result. The type and amount of such degradation can help calibrate the soft cost 
of risk of loss (see Appendix D).

Example decision point related to distinctiveness:

• Are there existing resources available that provide similar types of data and services?

E. Data Life Cycle

This section deals with aspects of a biomedical information resource that concern how it is expected to evolve 
over time.

E.1 Anticipated Growth

The ultimate size of a biomedical information resource, and the rate at which it grows to reach that size, 
influence annual maintenance and expansion costs. Will the resource reach “maturity,” where no new data are 

7  The website for the MeSH is https://www.nlm.nih.gov/mesh/meshhome.html, accessed December 12, 2019.
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expected because of the end of a project or program that supplies the data, or is it expected to continue growing 
throughout the lifetime of the resource?

Example decision points related to anticipated growth:

1. Is the repository expected to continuously grow over its lifetime?
2. Is the likely rate of growth in data and services known?
3. Is the use of the repository likely to grow over time?
4. Is the likely growth of the user base known?

E.2 Update and Versions

The frequency of updates and the need to retain past versions for a biomedical information resource affect 
operating costs. Some resources provide periodic releases, which batch updates and apply them all at once, 
whereas other resources are revised incrementally as updates come in. In the case of the periodic-release model, 
past releases (versions) might be maintained, for example, to support replicability of a study that used a particular 
release. Retaining past versions obviously incurs storage costs over just providing the most recent version, and 
decisions need to be made about if and how prior versions will be made available. In the case of the incremental 
model, the frequency of update might be a cost driver, if updates entail manual review or curation activities.

Example decision points related to updates and versions:

1. Will the deposited data require updates (e.g., in response to new data or error corrections)?
2. Will prior versions of the data need to be retained and made available locally or in a different resource?
3. How frequently will individual data sets be updated?

E.3 Useful Lifetime

Some data in a biomedical information resource might have a limited period of usefulness, or their utility 
might decline with time. For example, a collection of cell images might be superseded by later images from a 
higher-resolution technology. Deaccessioning or archiving such data will reduce operating costs. If there is a pre-
dictable end date for a resource as a whole, that knowledge is useful in predicting lifetime costs. Useful lifetime 
of data can be difficult to predict because even data collected decades ago can still be used for analysis if properly 
documented (see Box 4.3).

Example decision points related to useful lifetime:

1. Are the data to be housed likely to have a limited period of usefulness?
2. Does the resource have a defined period of time for which it will operate?
3. Does the resource have to provide a guarantee that the data will be available for a finite period of time 

(e.g., 10 years)?

E.4 Offline and Deep Storage

If it is possible that some data in a biomedical information resource do not need to be available online but 
still need to be retained, then they might be migrated to a less expensive form of storage. This report distinguishes 
between offline and deep storage. Data in offline storage can be brought back online in the resource, albeit with 
some delay. Data in deep storage (typically State 3 data) are not intended to be brought back online in the same 
resource. Rather, they are preserved in the event that someone wants to “rehydrate” them in the future, either 
for individual use or as part of another information resource. In the case of offline storage, there can be costs for 
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BOX 4.3 

Examples of Long-Lived Data

Deciding	how	long	to	keep	the	data	(i.e.,	the	useful	 life	span	of	a	data	set)	 is	difficult.	According	to	
Russ	Poldrack	(personal	communication,	April	15,	2019),	 imaging	studies	from	the	early	2000s	are	still	
used	(e.g.,	as	part	of	meta-analysis),	even	though	the	resolution	is	inferior	to	current	data.	Because	neu-

roimaging	early	on	invested	in	an	open	file	format	(the	Neuroimaging	Informatics	Technology	Initiativea), 

and	because	there	is	a	dominant	commercial	file	format	(Digital	Imaging	and	Communications	in	Medicine	
[DICOM]b),	data	from	the	1990s	can	still	be	read.	In	the	2000s,	NIH	established	a	pediatric	neuroimag-

ing	 database	 comprising	 several	 hundred	data	 sets	 from	normal	 children,	 the	NIH	Pediatric	MRI	Data	
Repository.c Although the database infrastructure is no longer independently maintained, the data sets are 

served	through	the	NIMH	NDA	and	have	been	ingested	into	additional	infrastructures	(e.g.,	the	Montreal	
Neurological Instituted).	These	data	are	still	being	used	for	research	purposes	in	2019.e

a	 The	 website	 for	 the	 Neuroimaging	 Informatics	 Technology	 Initiative	 is	 https://nifti.nimh.nih.gov/,	 accessed	
December	12,	2019.

b	The	website	for	DICOM	is	https://www.dicomstandard.org/,	accessed	December	12,	2019.
c	 The	website	 for	 the	NIH	 Pediatric	MRI	Data	Repository	 is	 https://nda.nih.gov/edit_collection.html?id=1151,	

	accessed	December	9,	2019.
d	The	website	for	the	Montreal	Neurological	Institute	is	https://www.mcgill.ca/neuro/,	accessed	December	12,	2019.
e	Some	of	these	resources	are	listed	here:	https://scholar.google.com/scholar?as_ylo=2019&q=NIHPD&hl=en&as_

sdt=0,5,	accessed	October	16,	2019.

offline data beyond basic storage costs, regardless of who is managing the offline storage.8 For example, several 
commercial cloud platforms have lower-cost archival storage services or tiers that assume only a small fraction 
will be accessed during any period. Access in excess of that fraction incurs additional cost. 

Rehydration costs can appropriately be ascribed to future users of data that are in deep storage. 

Example decision points related to offline and deep storage:

1. Can the resource take advantage of offline storage for data that are not heavily used?
2. Does the resource have a plan for moving unused data to deep storage (i.e., State 3)?

F. Contributors and Users

This section covers aspects of a biomedical information resource associated with user characteristics and 
numbers that might influence costs.

F.1 Contributor Base

The number of individuals or sources that generate information to be hosted can affect development and 
operating costs for a biomedical information resource. If data originate from the same source (e.g., a single 
instrument, as with sky surveys and particle-physics experiments or a single organization or community), then less 
effort is required to coordinate with data providers than in situations where data originate from many communities 
and organizations. In addition, if all contributors are internal to the same organization that hosts the information 

8  Note that cloud providers of archival storage are known to use tape to support that storage (e.g., Lantz, 2018).
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resource, good compliance with data formats and standards may be more likely and costs for review and curation 
might be less. Alternatively, data originating from a wide range of individual autonomous investigators spread 
across multiple disciplines may require more interactions between the resource managers and those investigators 
to collect them, and there will likely be more variation in the data to address.

How data are transferred to the resource will also affect costs. They may arrive periodically in large batches or 
incrementally in smaller amounts. In the extreme case, data might stream in continuously—for example, directly 
from wearable devices. Data transfer can be initiated by the data contributor (data push) or by those managing 
the resource (data pull). To the extent that data ingestion by the information resource has a manual component, 
more frequent arrivals means the more often a person has to manage that task. In the continuous case, automated 
processing will probably be a necessity, which will entail development costs.

The time and network resources required to transfer a data set from a provider to a data resource scales 
(although not necessarily linearly) with the size of a data set. However, in some cases a data set may be so large 
that network transfer is not feasible (or will not be complete in the required time frame). In such cases, physical 
transfer of storage media may be needed, which entails costs for purchasing the media, loading them, shipping 
them, and extracting the data at the resource.

Also affecting the cost of integrating contributed data into a resource are, for example, whether there are direct 
charges (e.g., purchasing costs, licensing fees) or indirect charges (e.g., membership fees to access) associated 
with acquiring the data  and whether the data contributor is willing to be responsible for the data and serve as their 
steward. The steward is the point of contact regarding the data who responds to questions about them, addresses 
errors or other problems associated with them, and tracks their current location(s). Data can be effectively 
“orphaned” if the data collector is no longer affiliated with the organization where the data were collected. Trying 
to locate, obtain, and understand data with no identifiable steward can require significant effort.

Example decision points related to the contributor base:

1. Is the number of contributors known? If not, can it be estimated?
2. Are all the data originating from the same source (e.g., a single instrument or a single organization)?
3. How will data be transferred into the data resource (e.g., periodic large batches, more frequent smaller data 

sets, constantly streamed, by physical transfer)? 
4. Will the data be pushed by the contributor or pulled by the resource? 
5. Are there direct or indirect fees associated with acquiring the data from a source?
6. Will a data steward be available from among the contributors to assist with any data integration into the 

data resource?

F.2 User Base and Usage Scenarios

The number of people accessing an information resource and the frequency and kinds of access can all influ-
ence costs for a biomedical information resource. A resource that serves an entire research community will likely 
see much more use than, say, an internal project repository for a single research group. While actual storage 
costs will probably not depend on the number of users (unless data must be replicated to serve high access rates), 
computation and network costs will rise with increased use. The kinds of access can also affect those costs. For 
example, retrieving single items will require less network bandwidth than a bulk download of a whole data set. 

Example decision points related to the user base and usage scenarios:

1. How many users will likely access the data?
2. What will be the frequency of access?
3. How will users access the data?
4. Will the resource be building analysis tools?
5. Will the resource support individual file download or bulk download?
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6. Will there be any fees for downloading/accessing the data?
7. How many different types of users must be supported?

F.3 Training and Support Requirements

There may be expectations, or it may be found beneficial, that operators of a biomedical information resource 
provide training for resource users. That training could be more or less labor intensive and involve conducting 
tutorials, preparing training materials, or maintaining help pages on a website. A “help desk” function might be 
required that provides either live consultation or message-based responses, both of which require training and 
staffing. On the other hand, investing in training of and consulting with users may result in easier data integration 
and lower future data-collection and curation costs.

Example decision points related to training and support requirements:

1. Will training for resource use be offered?
2. What form will the training take?
3. Will a “help desk” be provided?
4. When does live help need to be available?
5. What is the expected skill level of the user base?

F.4 Outreach

If the existence and features of a biomedical information resource need to be publicized, then there may be 
associated labor, travel, and media costs for preparing articles, giving conference presentations, producing news-
letters, conducting print or e-mail campaigns, reaching out on social media, and so forth. In some communities, 
there may be reticence or even resistance toward using shared information resources, which might require extensive 
outreach efforts to overcome. 

Example decision points related to outreach:

1. Does the existence of the repository need to be advertised?
2. How many conferences per year should resource representatives attend?
3. Will the resource have a booth at the conference for live demos or conduct hands-on tutorials?
4. Are users required by funders or journals to deposit data in the repository?

G. Availability

The aspects in this section relate to expectations about how available the data in a biomedical information 
resource will be. Data availability encompasses the reliability of the resource hosting the data, how quickly new 
data appear, how fast requests for data are serviced, and from where the data can be accessed.

G.1 Tolerance for Outages

Different biomedical information resources have different tolerances for system outages. While an outage 
of hours or days might be tolerable for a resource that supports, for example, retrospective analysis, a similar 
loss of availability might be highly undesirable for a resource that is used continuously every day in support of 
clinical decision making. A low tolerance for outages often entails data replication, which will incur storage and 
other costs, possibly including the cost of network bandwidth for transferring data to a backup site. Guarantees 
of high availability (for example, 99 percent up-time) require support staff to be on call around the clock, which 
is a large labor expense. 
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Example decision points related to tolerance for outages:

1. What is the tolerance for outages of the resource?
2. What measures will be taken to avoid and mitigate outages?
3. How quickly and completely does the resource need to recover from an outage?

G.2 Currency

Data submitted to a biomedical information resource may need to be available to users within a fixed time 
frame. It might be acceptable that new items appear in data resources in monthly or quarterly releases, but other 
types of data resources may need to be updated daily (e.g., outputs for flu forecasting models). This requirement 
might affect labor costs, since in the latter case there is no opportunity to amortize effort over all items in an 
update batch.

Example decision points related to currency:

1. How often will the data be released?
2. How soon do data need to be made available after they are received?

G.3 Response Time

A biomedical information resource may have a target or requirement for how quickly requests are serviced, 
either by a computer system or by a human agent. Interactive response times (a few seconds) might require repli-
cating the data and additional computing services, so that multiple requests for popular data can be handled at the 
same time. Interactive response times also limit what data can be held in lower-cost near-line or offline storage. 
There can also be a human element in response time, such as approvals for access or review of submitted data 
sets. In general, lower response times correlate with higher labor costs.

Example decision points related to response time:

1. Are there requirements for response time for service?
2. Are there requirements for responses from humans?

G.4 Local Versus Remote Access

While most biomedical information resources of which the committee is aware support remote access over 
the Internet, there are examples in other domains (e.g., film archives, defense-personnel information) where users 
must physically come to the resource to access it. Such a scenario generates space, staffing, and equipment costs 
for hosting users. Some resources may be accessed remotely over a network, but large data transfers may still 
entail shipping physical media (e.g., tapes, disks), which incurs preparation and shipping costs. 

Example decision points related to remote access:

1. Does the resource require that any data be shipped via physical media?
2. Will the resource be built using commercial clouds?
3. Do users have to travel to the resource to use the data?
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H. Confidentiality, Ownership, and Security

This section covers aspects of a biomedical information resource related to protecting the data and the rights 
of those associated with the data. These issues are complex subjects and warrant more attention than can be given 
in this report, but the questions provided here will allow the cost forecaster to identify the relevant cost drivers.

H.1 Confidentiality

A biomedical information resource may need to protect the confidentiality of the data it holds, because those 
data contain either personally identifiable information or sensitive intellectual property. In the case of personally 
identifiable information, there may be a need to deidentify information or restrict access. There may be additional 
requirements to track and audit use. If so, credentials and permissions will need to be assigned to users; systems, 
analytical output, and space to maintain use records will be required; and added system complexity for tracking 
access to and use of items will be necessary. All of these items entail added costs. Inclusion of machine-actionable 
metadata that capture restrictions on use could reduce cost.

Example decision points related to confidentiality:

1. Will any of the data require special protections?
2. Will any of the data have embargo periods or embargo-related limitations that may entail costs?
3. Are there any audit requirements for who has accessed or downloaded the data?

H.2 Ownership

If the data have been managed by a variety of entities (e.g., companies, laboratories, public repositories, 
or individual investigators and their staff), different custodians may have spent more or less time to locate and 
appropriately format data for forwarding to the resource, even given data-sharing requirements. Their data release 
processes might also be cumbersome for those wanting to use their data. In contrast, some data are maintained on 
behalf of patient collectives or disease organizations that actively promote and facilitate their use, possibly making 
such data easier and less expensive to use. 

If a biomedical information resource contains proprietary information, then there may be requirements to 
track ownership of particular data sets and to ensure that data use conforms with any licensing conditions and 
to the preferences of the participants from which it came. Support for tracking and conforming use may have costs 
beyond those paid to license the data sets.

Hospitals or clinics can have specific release forms for allowing the transfer of patient data. Collecting patient 
data from a large number of such establishments might mean obtaining and executing a different release form for 
each patient—a time-consuming and labor-intensive process. If these release forms only consent to certain uses, 
then use must be audited and tracked, which may incur additional costs. Inclusion of machine-actionable metadata 
that capture any ownership characteristics could reduce cost. 

Example decision points related to ownership:

1. If data are contributed from multiple sources, will there be a need to process multiple kinds of release 
forms? 

2. Will all the data be released by the data resource under the same license, or will different permissions be 
assigned to different data sets?

3. Will data submission agreements be necessary?



Life-Cycle Decisions for Biomedical Data: The Challenge of Forecasting Costs

Copyright National Academy of Sciences. All rights reserved.

68 LIFE-CYCLE DECISIONS FOR BIOMEDICAL DATA

H.3 Security

Similar to confidentiality, security for a biomedical information resource implies preventing unauthorized 
access, but it also implies protection against loss or corruption of its data, intentional or otherwise. Measures taken 
by a biomedical information resource likely include internal or external security audits, special operator and user 
training, active monitoring of the resource, applying security patches expediently, or using specially protected 
computing, storage, and networking platforms, all of which incur costs. 

Security might also encompass offering services such as ensuring a resource complies with Health Insurance 
Portability and Accountability Act and Health Information Technology for Economic and Clinical Health Act 
requirements. Sensitive data produced by or under the auspices of federal agencies have distinct security require-
ments. For example, if a Federal Information Security Act (FISMA)-certified environment is necessary to comply 
with the National Institute of Standards and Technology regulation associated with protecting controlled unclassi-
fied information in nonfederal systems and organizations (Ross et al., 2020), additional costs will be entailed. At a 
minimum there are costs to documenting FISMA compliance. Those costs increase if it is determined that a higher 
level of FISMA certification is required. If the data are kept in a cloud environment, certification associated with the 
Federal Risk and Authorization Management Plan (FedRAMP)9 may also be necessary, entailing additional costs.

Example decision points related to security:

1. What measures need to be taken to ensure the integrity and availability of the data?
2. Do these measures require using protected computing, storage, or networking platforms?

I. Maintenance and Operations 

This section covers aspects of a biomedical information resource related to obligations for maintenance and 
operation of the resource. 

I.1 Periodic Integrity Checking

As part of ongoing maintenance, operators of a biomedical information resource will need to assess the 
integrity of its hardware, software, and data. The frequency and detail of such assessments will affect operating 
costs. Processes put in place will flow from an understanding of error and failure rates and the tolerance for data 
corruption and loss.

Example decision points related to periodic integrity checking:

1. What processes will be put in place for checking the integrity of the hardware, software, and data?
2. How frequently will these checks be performed?

I.2 Data-Transfer Capacity

Insufficient data-transfer capacity of the facility that hosts a biomedical resource can place constraints on the 
operation of the resource. For example, limited connectivity can constrain the amount of data that can be down-
loaded from a resource, the ability to replicate the contents, or the ability to perform off-site backups.

Example decision point related to data-transfer capacity:

• Will the bandwidth available to the resource be sufficient for the data sizes and rates required?

9  The website for FedRAMP is https://www.fedramp.gov/, accessed April 6, 2020.
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I.3 Risk Management

With any biomedical information resource, there is a risk of corruption or loss of content. Who assumes that 
risk (and hence must take steps to ameliorate it) will influence where certain costs fall. If a resource is a data-sharing 
portal but not the repository of record for the data it holds, then the risk may fall largely on the contributors, who 
will bear the cost of maintaining backup copies of their data elsewhere. If, on the other hand, the resource is the 
“official” repository for the data it holds, the operators of the resource will be responsible for risk-mitigation mea-
sures in line with the perceived value of the data and hence bear the concomitant costs.  For sensitive information, 
there is also risk of leakage (i.e., unauthorized export of data to external recipients), either through unintentional 
or malicious action. Even if an information resource is not the repository of record for its data, it must bear the 
costs of mitigating this type of risk. In addition, a response plan might be necessary to address circumstances (e.g., 
unexpected loss of funding or dissolution of the organization hosting the resource) that force the early termination 
of the information resource. 

Example decision points related to risk management:

1. Will the repository be solely responsible for risk mitigation?
2. Is a response plan for unexpected termination required?

I.4 System-Reporting Requirements

The overseers and operators of a biomedical information resource may require regular reports on the status 
of the system, in terms of both content (e.g., number of items, storage space used) and computer-resource usage 
(e.g., central processing unit hours, network usage). Setting up such reports will likely be a one-time cost, with 
perhaps a small amount of recurring labor cost if the reports have to be invoked manually. 

Example decision point related to system-reporting requirements:

• What types of system reporting will the resource be required to do?

I.5 Billing and Collections

If the biomedical information resource charges for upload, access, and download of data, then there will need 
to be an operational function responsible for billing for and collection of those charges.

Example decision point related to billing and collections:

•	 Will there be charges for use of the resource?

J. Standards, Regulatory, and Governance Concerns

Standards for the interchange of biomedical data, for the description of various kinds of biomedical data 
objects, and for other data practices are important enablers for the research data ecosystem. This section considers 
community conventions, rules, policies, laws, and stakeholder concerns with which the operators of a biomedical 
information resource may have or want to comply. 

J.1 Applicable Standards

A biomedical information resource might have to conform to one or more standards for the content and format 
of the data hosted. Some standards are created and maintained by formal national or international standards-
development organizations; in other cases, they are developed and managed by ad hoc community mechanisms, 
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particularly when the scale of the community and the scope of the standard’s application are limited. Where well-
established and domain-based standards exist, and especially where tools also exist that automate the use of those 
standards at the time the data are generated, conformance to them may significantly lower the cost of later data 
ingest, curation, dissemination, and preservation. If tools do not yet exist, software routines to parse and extract 
needed data from the proprietary structures will likely need to be developed, possibly at significant expense. Even 
if the data as a whole do not match a standard, particular fields might be standardized—say, taken from a controlled 
vocabulary or a reference list of codes—in a way that matches the assumptions of the resource, thus avoiding 
the overhead associated with converting those fields. Highly structured data may also be more or less difficult to 
process, depending on whether they conform to a widely used standard (e.g., FASTQ file format for genomic-
sequence data [see, e.g., Cock et al., 2010] or HDF for array data10) or are in some system-specific format (e.g., 
for a particular manufacturer’s microscope or as used by a particular medical-records systems). 

If no standards exist, then they may need to be developed to increase the quality of the data sets and the efficiency 
of data ingest and use. This process can be costly up front, as it involves bringing together groups of experts, often 
repeatedly over time, to achieve and document consensus (see Box 4.4). Formal national and international standards 
development is slow, expensive, and highly structured: there are complex bureaucratic and procedural issues and 
elaborate governance formalities. Typically, most of the work is volunteer labor by experts, perhaps facilitated by a 
paid editor. Funding of formal standards bodies is beyond the scope of this report, but it is worth noting that research 
grants have been used to good effect to accelerate creating new less-formal community standards. 

A key aspect is whether the standard will evolve during the lifetime of the resource and whether the resource 
must conform to updated versions of the standard. If so, there will be associated costs for modifying the 
resource and possibly for restructuring or augmenting existing data holdings. A particularly challenging case is 
one in which a resource developed prior to the development of standards must be “retrofitted” to accommodate a 
standard that later emerges. The development of different national standards (e.g., the European Union’s General 
Data Protection Regulation)11 is another version of this challenge. Likewise, there could be standards-related costs 
associated with transforming data and metadata from one data state to another.

Example decision points related to applicable standards:

1. How many different standards will the resource have to support?
2. Do these standards exist?
 a. If not, is the resource expected to lead their development?
 b. What is the plan for accepting data while standards are in development?
 c. If so, are the standards mature (i.e., how much are they expected to evolve)?
3. Are the data validators and converters available for the standards, or do they have to be developed?
4. What is the plan for “retrofitting” data that have been uploaded without the standards in place?
5. How frequently will the standards update?
6. Do the standards require spatial transformations (e.g., will they need to be aligned to a common coordinate 

system)?
7. How many file formats will be supported?
8. Is there an open file format available?

J.2 Regulatory and Legislative Environment

A biomedical information resource may be bound by laws and government regulations, particularly if it 
maintains information on individuals. Those requirements may entail additional record keeping or notification of 

10  See the HDF Group at https://portal.hdfgroup.org/display/HDF5/Introduction+to+HDF5, accessed on May 12, 2020.
11  Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with 

regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection 
Regulation), 2016 O.J. (L 119), 1-88.



Life-Cycle Decisions for Biomedical Data: The Challenge of Forecasting Costs

Copyright National Academy of Sciences. All rights reserved.

THE COST-FORECASTING FRAMEWORK: IDENTIFYING COST DRIVERS IN THE BIOMEDICAL DATA LIFE CYCLE 71

BOX 4.4 

The Development and Evolution of Standards

The development and acceptance of a standard can take a significant amount of time and resources. 

As	 an	 illustration,	Neurodata	Without	Borders	 (NWB)a is a file format developed for describing neuro-

physiological	data	 (Teeters	et	al.,	 2015).	NWB	was	 initiated	 in	2014,	but	 the	 first	 version	was	deemed	
	insufficiently	developed	to	be	deployed	widely	(Rübel	et	al.,	2019).	In	response,	the	standard	was	exten-

sively	revised	and	released	in	January	2019	(Rübel		et	al.,	2019).	Rübel	and	others	(2019)	explained,	“It	
became	clear	that	in	order	to	achieve	[the	goals	of	the	project]	we	needed	an	advanced	software	archi-
tecture, a well-articulated data standards ecosystem, an open community software strategy, and advance-

ments	to	the	NWB:N	data	standard	itself.”	In	response,	a	working	group	to	develop	NWB	2.0	was	launched	
in	2017,	and	NWB	2.0	was	released	in	January	2019.	However,	it	has	not	yet	been	stress-tested	through	
implementations in the community, which may lead to another round of feedback. The challenge for infor-

mation resources is to understand when a standard is sufficiently stable that it is “safe” to invest in it as the 

basis of a software ecosystem. Standards organizations that undertake formal review of standards against 

a	set	of	criteria	and	can	help	with	the	process	of	evolution	of	standards	can	be	helpful	here.	Biomedicine	
is seeing some of these types of organizations emerge. For example, the International Neuroinformatics 

Coordinating	Facility	(INCF),b an international organization devoted to issues surrounding data sharing in 

neuroscience, has recently launched a standards review-and-endorsement process to help ensure that 

neuroscience	is	served	by	a	set	of	harmonized	standards;	the	Computational	Modeling	in	Biology	Network	
(COMBINE)	initiativec is providing a similar platform for computational biology.

a	The	website	for	NWB	is	https://www.nwb.org/,	accessed	December	4,	2019.
b	The	website	for	the	INCF	is	https://www.incf.org/,	accessed	December	4,	2019.
c	The	website	for	the	COMBINE	initiative	is	http://co.mbine.org/,	accessed	December	4,	2019.

those about whom information is maintained. The resource might be covered by an open-records act if it is main-
tained by a government agency. Obtaining compliance certification could involve costs associated with precisely 
documenting policies and procedures.

Example decision points related to the regulatory and legislative environment:

1. What laws and regulations cover the data and operation of the resource?
2. Is the resource covered by an open-records act?

J.3 Governance

A biomedical information resource may have a policy-setting body for itself or as part of a larger organization. 
Policies may be set either initially or on an ongoing basis. Having such a governing body incurs some personnel 
costs to engage with it and possibly for convening it. Following the guidance and directives of the governing body 
may entail changes or extensions to the resource, which will likely come with costs.

Example decision points related to governance:

1. Does the resource need to maintain an external advisory board?
2. Does the resource set policy for itself, or is it part of a larger organization?
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J.4 External Consultation

The developers of a biomedical information resource may need or want to consult with external  stakeholders—
data contributors, potential users, and funding agencies—about the initial resource design and about later updates. 
Such consultation can extend the timeline for resource development and maintenance, which might increase some 
costs, such as labor. 

Example decision points related to external consultation:

1. Will external stakeholders be consulted for initial design?
2. Will external stakeholders be consulted on an ongoing basis?

ATTACHING DOLLARS TO THE COST FORECAST

The committee applied its cost-forecasting framework to scenarios that exemplify numerous decisions about 
the treatment of data at different points in the data life cycle and in their various data states (see Box 2.1). The 
committee did not attempt to quantify the costs of data as an investigator or a data platform manager would do 
because there are too many variables related to the myriad of factors unique to the data, the institutional platform 
host, and the data contributors and user communities to be able to come up with meaningful numbers. However, 
now that the investigator or data platform manager has considered where the data are coming from, and how they 
will be used, it will be necessary to begin to quantify the costs.

Forecasting for a State 1 (Primary Research) Resource

A State 1 (i.e., the primary research environment) researcher creating a cost forecast will necessarily focus on 
costs that must be budgeted. Additional costs may be reported in tabulations for the public record (e.g., the “cost” 
of a discovery), sunk costs (e.g., equipment from the researcher’s prior research project), and costs borne by the 
host institution that are not reimbursed in paid overhead rates (e.g., that underwrite subsidies for IT services). 
The researcher will use the prices paid for services in the cost forecast, whether those service costs are less than 
what is being paid (e.g., to support institutional “taxes”), or if they actually cost more (e.g., those subsidized by 
her institution).

The State 1 researcher may face many choices throughout the course of the research, with alternatives that 
imply different time profiles for costs. One course of action may entail low up-front investment but higher long-
term operating costs, another the reverse. While the researcher may be bound by rules of the financing entity in 
selecting the preferred alternative, good decision making argues that the present discounted value of the alternatives 
be calculated, with the economically preferred alternative having the lowest present discounted value. However, 
if the funding entity pays expenses for only an arbitrary fixed number of years, it may be reluctant to pay the 
immediate cost of an up-front investment that cuts long-term operating costs, even if a present discounted value 
calculation would argue it should do so. This sort of shortsightedness is not confined to physical investments. 
It might involve a situation in which the individual researcher may not value what the larger community needs, 
such as the additional costs of preparing data to meet a long-term repository standard. In this case, both costs and 
benefits differ, requiring that both be weighed in making a decision. Although the funding entity may not sympa-
thize with taking the long view, the researcher needs to understand what might be the better course of action in 
designing a long-run strategy.

The State 1 researcher can use the data set characteristics, activities, and cost drivers described in this chapter 
and in the template in Appendix E. Many of the activities and cost drivers in the template in Appendix E may 
not be directly applicable to a State 1 information resource, but the forecaster needs to remain aware of potential 
future cost drivers so that decisions might be made that could keep life-cycle costs low. In most circumstances, 
labor costs will be the largest single element of her cost forecast. The activity list for State 1 (Table 2.1) can serve 
as a guide to the data steps that need to be considered. In the best of circumstances, the data set characteristics 
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provide a way to estimate the amounts of each labor type that will be required, based on past experiences of the 
researcher or of those at her institution. 

Since labor drives much of the cost, a rough first estimate might be informed by using data from any pilots of 
the proposed or current project and regressing the labor hours that were required for the development, population, 
and support of the pilot resource to the characteristics of the current or proposed resource. Labor costs will not 
necessarily increase linearly as the size and complexity of the resource increases given that some amount of 
efficiency of labor will be gained (i.e., the “learning curve”). If data from a pilot are not available, data from a 
similar research project might inform the estimate.

In many cases, that tabulated experience may not be available. The researcher could then resort to estimating 
the relative amount of each labor type, both within and potentially across activities (i.e., a set of ratios, based 
on experience and judgment). If one type of labor for one activity (perhaps based on a pilot) can be reasonably 
estimated, the ratios implied by such estimates will provide a way to forecast the quantity of the others. The 
institution may specify the rates that should be used for labor prices, but the tables in this report give her a backup 
resource. Since the State 1 researcher is typically looking at a relatively short time horizon, disruptors of the sort 
discussed in this report (see Chapter 7) are unlikely to play an important role, although to the extent they create 
trends that affect the near future she may want to modify the estimated prices involved to reflect that reality.

Forecasting for a State 2 (Active Repository) Resource

Cost forecasts for a State 2 (active) repository may have to address many of the same issues as discussed for a 
State 1 resource but with additional complexities. To the extent that the resource requires external funding, the first 
cost estimate will be one that focuses on the proposed budget. Sunk costs will be omitted from consideration (unless 
the funding entity allows for their cost recovery), and, as for the case of the State 1 researcher, costs subsumed in 
the overhead rate will be omitted. In preparing a proposed budget, the host institution will use the prices it faces. 
But for its strategic planning, especially for periods beyond that covered by any near-term financing, the State 2 
repository host would be well advised to prepare an estimate that includes all resources necessary to sustain the 
repository over the long run, even if some of those resources are currently “free” or significantly subsidized. The 
State 2 resource host will be in the repository business for many years, and any subsidy structure from which it 
now benefits could change. It should understand not only the costs for which it must budget today, but also the 
total cost of its repository responsibilities should it eventually have to cover that entire forecast cost.

Since this forecast will likewise be forward looking, sunk costs would still be omitted, but refreshment or 
replacement of investments must be included. For its “all-resource” forecast, the State 2 resource host should only 
use prices in those cases where they actually reflect what is required to produce the necessary input. Otherwise, 
the actual resources consumed should be the basis for the cost forecast. In situations where the social cost differs 
from the market price (e.g., environmental effects of generating power), the State 2 resource host will at least 
want to understand the approximate magnitude of that difference, given the interest of stakeholder communities. 

Considering the cost implications of alternative courses of action will be especially important for State 2 
resource hosts. Again, calculating the present discounted values of various options and courses of action will 
give the State 2 resource host a method to weigh the costs of one course of action against another. The present 
discounted value calculation will be particularly helpful given that a State 2 resource host must necessarily look 
a long way into the future, providing a way meaningfully to sum up the long stream of operating costs that will 
be encountered, as well as required periodic reinvestments.

While labor costs may generally be the largest single budget item, other costs are likely to be more signifi-
cant for the State 2 resource than for the State 1 resource. Physical facilities may be important, and licenses may 
constitute a significant element of expense. Software costs may be significant if proprietary software is used and 
licenses required, if existing software needs to be customized, or if entirely new code needs to be created. Purchased 
services are likely to be important, raising critical “build” versus “buy” choices for the State 2 resource host. An 
obvious such choice is the use of an in-house data environment versus that of a cloud provider (essentially, out-
sourcing). Note that cloud services may be provided by a commercial vendor, or through a research community 
cloud built on open-source software, such as that offered by the European Organization for Nuclear Research 
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(CERN).12 Service providers of any type offer no guarantee of price stability, making it particularly challenging to 
forecast costs, especially given the substantial expense entailed in transferring data from one provider to another. 

One of the several variables in selecting a service provider is whether the degree of security chosen will prove 
adequate over the long run and what the cost of upgrading security might be. Using a cloud provider does not 
relieve the State 2 resource host of security responsibilities, although it does change and, perhaps, reduce them. 
The cloud provider may have advantages related to, for example, economies of scale and ability to attract top-tier 
experts, but it may also represent a more attractive target for attackers. The cost of security across solution needs 
to be compared.

The State 2 resource host will likely have more experience than the State 1 researcher on which to base its 
estimates of the amount of labor required for each State 2 activity (see Table 2.2), and it may also be able to solicit 
advice from sister institutions. It may have the ability to pilot many of the repository activities for which it will 
be responsible. But to the extent it cannot construct labor forecasts based on experience or pilots, it can fall back 
on the technique sketched above for the State 1 researcher. Unlike the State 1 researcher, however, the State 2 
institution may be free to set wage rates—and because it will be operating the repository for many years, it will 
need to think about how real wage rates (i.e., adjusted for inflation) will change in the future. For professional 
activities, real wage rates have been increasing steadily for many years, and the State 2 institution will need to 
take into consideration that likely trajectory. (Taking into account fringe benefits, especially health care, real costs 
for other classes of labor have also been rising, although much more gently.) For those classes of labor it currently 
employs, the State 2 resource host could start with its current rates, modified to reflect its contemporary recruiting 
and retention experience, and use its own recent trends as the basis for at least the intermediate-term trajectory of 
what will be necessary to attract and keep the labor force it will need.

Changes in the labor market are only one of the several disruptors the State 2 institution must consider. The 
full range of the disruptors raised by this report could affect its cost forecast, creating a situation where complexity 
could overwhelm its understanding of what the long-term commitment it is undertaking might require. For that 
reason, it may be useful to first forecast based on the (unrealistic) assumption of no change, then discuss which 
disruptors might significantly affect the forecast, versus those whose effects might be more modest. 

Forecasting for a State 3 (Long-Term Preservation) Resource

However daunting it might be to forecast costs for State 1 and 2 resources, it could be more difficult to 
forecast costs for a State 3 (long-term preservation) resource. The forecaster may be making decisions about the 
format in which the data should be preserved and the nature of access to be supported years in advance of the 
actual transfer of data to a State 3 environment. Community guidance and standards may be helpful in making 
such decisions, with due allowances for how such guidance, standards, and access might evolve. Above all, 
decisions should be documented since they constitute the assumptions on which the forecast rests. If they are 
clearly stated, it will be easier to adjust for changed circumstances as the actual transition to a State 3 environment 
becomes likely. Once again, the characteristics of the data sets will probably be important predictors of storage 
costs and IT services; these will likely dominate the State 3 forecast. Labor costs may not be especially important 
once the data set is formatted for long-term retention, and facilities costs may be negligible. It is probably wise 
to use estimates of underlying costs for storage and IT services rather than current prices— planning for a State 
3 environment should assume that the State 3 resource managers will bear the actual costs (e.g., it will not 
enjoy subsidies). This approach also facilitates embedding appropriate trends in the forecast. Because the State 
3 environment will extend over many years of costs, it is essential to calculate present discounted values when 
comparing alternative courses of action. 

In a sense, the State 3 resource investment could be viewed as an option on the future availability of the data 
set. While there is no market for such options, that intellectual construct could help guide decisions regarding the 
State 3 resource. If preservation options make a data set more discoverable or more easily reconstructed and used, 

12  The website for CERN is https://home.cern/, accessed March 27, 2020.
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the potentially more valuable is that option. Conversely, decisions that make data harder to discover, reconstruct, 
and use, then the less valuable is that preservation option. 

Reliability of cost forecasts is a critical issue, especially for State 3 environments with their high degrees of 
uncertainty. While distributions for cost parameters may not be available, the forecaster should nonetheless attempt 
to establish ranges for parameter values that capture central tendencies. These can be used to estimate how much 
“reserve” for various contingencies should be established or at least guide managers regarding the “what ifs” to 
which they should pay attention. 

Data for Forecasting

As this discussion implies, the life-cycle forecasts of dollar values for each activity in the data states outlined 
in this report will depend on the specifics of the research project in the State 1 environment, the nature of the 
State 2 (active) repository, and the data preservation and access ambitions of the State 3 (long-term preservation) 
resource. Those differing dependencies make life-cycle forecast a unique undertaking. Is it possible to move beyond 
the qualitative observations on relative cost magnitudes of this report, perhaps based on a few top-level parametric 
forecasting equations, using just a handful of the key activities and data characteristics listed in Tables 2.1-2.3? 
In other cost-forecasting domains, the outcome has been the result of a multiyear sustained effort by dedicated 
professional staffs (e.g., for military weapon systems), capitalizing on detailed—and often proprietary—cost data. 
No such cadre now exists for the biomedical data challenge. Equally important, the committee could not discover 
any organized data-collection effort that such a cadre would need to create top-level forecasting tools. With the 
explosion of life science research and clinical data, and the hunger for good cost forecasts, establishing such a 
data-collection effort would be the first step to a better understanding of what will be needed, whether it is for the 
State 1 researcher, the State 2 active repository, or for State 3 long-term preservation. 

INFRASTRUCTURAL ELEMENTS NOT CONSIDERED IN THE COST MODEL

There are many infrastructural or data environment systems, standards, services, and activities that are essential 
to data preservation and access broadly, and to biomedical data in particular, but where it does not make sense to 
try to allocate costs to specific sources or collections of data. Much of this is general infrastructure that supports 
many other activities of the university or other data platform host institution. Other costs are more specific to the 
work in the biomedical sciences and the communication of scholarship in those disciplines. Here, components that 
are particularly important to preservation and access for biomedical data are addressed.

The organizations, governance, standards, systems, and common knowledge structures are viewed as “com-
munity” problems rather than research; thus, funders do not want to support their solutions as part of an individual 
research project. It is worth, at the funding program manager level, considering investments in reflecting these 
standards and knowledge structures in common tools that can help the relevant research community. At the level 
of funding bodies and stewardship institutions, consideration needs to be given on how to support all parts of this 
infrastructure, particularly operations and maintenance. 

Object Identifier Standards, Systems, and Governance

Identifiers are mechanisms for unambiguously referencing people, organizations, data objects, and things (e.g., 
genes, molecules, proteins, species). Typically, a sustainable organization needs to be emplaced to oversee and 
govern the assignment and use of identifiers, but funding is often not available for such oversight and governance. 
There will also be systems that look up information associated with an identifier. Perhaps the most critical identifier 
operationally is the DOI, most usually assigned through DataCite13 (see Box 4.5). It is important to recognize, 
however, that many large, important State 2 (active repository) data aggregations also assign identifiers outside 

13  The website for DataCite is https://datacite.org/, accessed December 5, 2019.
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of the DOI system; an example of this would be Genbank14 sequence identifiers, which are widely used in the 
scientific literature.

Personal Identifier Systems, Standards, and Governance

The cost of supporting the many identifiers is important for the production of good metadata and for accurate 
discovery by searching those metadata.  For example, productive reuse of data, once identified, is often dependent 
on being able to identify a point of contact associated with those data if the data are not compliant with current 
standards, if the metadata are not complete, or if there is some other query about the data. Assigning identifiers 
to researchers and including that information in data sets becomes important. An example of an organization that 
governs and assigns such PIDs is the Open Researcher and Contributor Identifier (ORCID).15 Repositories will 
need to understand the costs of using PIDs to identify contributors and contact people, and researchers will need 
to be trained on proper maintenance of their PIDs so that they may continue to be tracked if, for example, they 
change institutions. Using unambiguous PIDs, rather than normalizing personal names and dealing with variant 
name forms, will more efficiently provide better results when describing and searching.

Discovery Systems

It is important to recognize that, just as the formulation of preserving and storing data sets and related metadata 
is often oversimplified, oversimplification pervades the discussion of data discovery. The problem of aggregating 
and searching metadata for data sets held in a collection of repositories (e.g., the National Science Foundation 
Data Observation Network for Earth project for ecological and environmental data)16 is complex. As the number 
of information resources multiplies, discovery systems will be needed (and will need to be supported) that allow 
people to find relevant resources. It is unclear who will support, build, and operate the key discovery systems. 
As indicated, DataCite operates a registry, but its searching capabilities are somewhat limited. Google has built 
Google Cloud Public Datasets17 and Amazon Web services has built the Registry of Open Data,18 although these 
are still best viewed as experimental. Many State 2 systems offer some kinds of searching over information that 
they host, but those capabilities will not extend to other repositories. The literature offers an important pathway to 
resource discovery, and the National Center for Biotechnology Information has invested heavily over the years in 

14  The website for Genbank is https://www.ncbi.nlm.nih.gov/genbank/, accessed December 5, 2019.
15  The website for ORCID is https://orcid.org/, accessed December 5, 2019.
16  The website for the Data Observation Network for Earth project is https://www.dataone.org/, accessed December 5, 2019.
17  The website for Google Cloud Public Datasets is https://cloud.google.com/public-datasets/, accessed December 5, 2019.
18  The website for the Registry of Open Data is https://registry.opendata.aws/, accessed February 12, 2020.

BOX 4.5 

DataCite

DataCite	is	a	nonprofit	organization	that	manages	the	DOI-assignment	process	for	data	sets	and	oper-
ates	a	registry	that	can	be	used	to	discover	which	repositories	host	a	data	set	with	a	given	DOI.	Research	
community	organizations	can	be	members	of	DataCite	so	that	their	products	can	be	assigned	identifiers.	
DataCite	 is	funded	through	membership	and	service	fees	received	from	membership	organizations	and	
through	project	grants	from	program	sponsors,	including	the	National	Science	Foundation,	the	European	
Commission,	the	Horizon	2020	program,	the	French	National	Research	Agency,	the	Sloan	Foundation,	and	
the	National	Institutes	of	Health.	According	to	DataCite’s	2018	annual	review,	revenues	from	membership	
and	service	fees	that	year	were	601,167€	(roughly	$690,000	in	December	2018;	DataCite,	2018).
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interconnecting PubMed19 with some major State 2 platforms. As platforms for State 2 data aggregations multiply, 
there is also going to be a growing need for discovery tools, training, and outreach related to these resources.

Knowledge Structures

Standards and best practices for description of biomedical data objects rely not only on the use of identifiers 
as previously discussed but also on tools such as managed vocabularies and ontologies (i.e., knowledge structures). 
Many of these are highly specific to particular biomedical applications, and they often need regular maintenance 
to reflect new scientific developments. For example, NLM designed and maintains the MeSH thesaurus,20 which 
serves to index the data in multiple NLM databases, including PubMed. NLM also provides a resource, through 
its Unified Medical Language System (UMLS),21 that interlinks more than 200 terminologies in the biomedical 
domain. Some example terminologies include MeSH for the literature, SNOMED International22 for clinical 
applications, and The Gene Ontology Resource23 for genetic data. 
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In its statement of task (see Box 1.1), the committee was asked to apply the cost-forecasting framework to two 
case studies relevant to the National Library of Medicine’s (NLM’s) data resources. The case studies presented 
are based on hypothetical examples provided by NLM to the committee (personal communication, E. Kittrie, 
January 4, 2019). This chapter presents the first use case which describes decisions by a policy maker, program 
officer, or research group to estimate costs for a new repository hosting a large amount of data. Although the sce-
narios presented in this chapter and Chapter 6 represent traditional research environments, the framework could 
be applied to different research scenarios.

These case studies are not quantitative cost analyses. A quantitative forecast of a real-life scenario would 
require greater resources and time than the committee had to accomplish the task, and values obtained for the hypo-
thetical cases would be meaningless given the number of variables presented by the data, the institutions involved, 
the resources available, the requirements of the funding entity, and so on. Instead, the committee provides high-level 
examples of how an investigator, a data-resource developer, or a resource manager could use the framework to 
systematically identify all the cost components which they then can use to develop their own meaningful forecast. 
In a true quantitative forecast, many more details—as dictated by circumstance—would need to be considered. 

Cost forecasters creating or managing a State 1 (primary research) or State 2 (active) platform will unlikely 
be able to quantify the costs of data beyond the performance of their respective research projects. However, as 
stated in Chapter 4, understanding the potential future value of data and how decisions in early data states are made 
may affect the effectiveness and efficiency of future data preservation, curation, and use of the data. Considering 
the life cycle of data beyond the current data state and the resources necessary to transition between states will 
be increasingly important as data sets become bigger and more complex. Future cost ramifications could inform 
near-term decisions.

The cost forecasts take advantage of the cost-driver template in Appendix E. This template, based on the 
cost drivers in each state outlined in Table 4.2, assists in developing a narrative regarding the data life cycle. The 
approach to forecasting costs for the use cases follows the basic steps described in Table 4.1. 

5

Applying the Framework to a  
New State 2 Data Resource
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USE CASE 1: ESTIMATING COSTS ASSOCIATED WITH SETTING UP 

A NEW DATA REPOSITORY FOR THE U.S. BRAIN INITIATIVE

The cost-forecasting framework is applied to a new State 2 (active repository) platform. The study committee 
applied the framework as would a likely cost forecaster, in this case, a neuroscientist (see Box 5.1), and provides 
some information about existing platforms for context (see Box 5.2). 

BOX 5.1 

The Use Case 1 Cost Forecaster

The	Use	Case	1	persona	is	neuroscientist	at	University	X.	He	is	part	of	a	large	imaging	center,	and	he	
works with computer scientists to develop infrastructure to manage and analyze large microscopic imaging 

data	sets.	He	and	computer	science	colleagues	respond	to	a	request	for	application	(RFA)	announced	by	
the	National	Institutes	for	Health	(NIH)	Brain	Research	Through	Advancing	Innovative	Neurotechnologies	
(the	BRAIN	Initiative)a for investments in new technologies, many of which involve imaging. The researcher 

applies	the	cost-forecasting	framework	to	estimate	a	budget	for	a	5-year	project	for	a	new	platform.

a	The	website	for	the	BRAIN	Initiative	is	https://braininitiative.nih.gov/,	accessed	December	12,	2019.

BOX 5.2 

Existing BRAIN Repositories and Annual Budgets

The	BRAIN	Initiative	goal	is	to	increase	the	pace	of	innovative	technology	development	and	applica	tions	
to allow researchers to produce a dynamic picture of the brain. To establish the necessary neuro informatics 

infrastructure	 for	 data	 generated	 through	 funding,	 the	 BRAIN	 Initiative	 issued	RFAs	 to	 (1)	 	develop	 the	
necessary	standards	 to	support	 the	data	 types	generated	by	BRAIN	 investigators;	 (2)	establish	a	set	of	
specialized	archives	around	a	particular	data	type	or	technology	to	house	the	data;	and	(3)	promote	analysis	
and	processing	of	data.	Seven	repositories	have	been	funded	in	2017-2019.	The	range	of	repositories	and	
annual	budgets	are	listed	in	Table	5.2.1.	

Researchers	supported	by	the	BRAIN	Initiativea	must	submit	their	data	to	BRAIN-sanctioned	reposi-
tories,	ideally	on	a	continual	basis	(i.e.,	every	6	months).	Proposals	must	include	data	management	plans	
with	descriptions	of	data	to	be	shared,	standard(s)	to	be	used	to	describe	the	data	set,	the	data	archive(s)	
that will house the data, and the proposed timeline for submission to the archive and sharing data with the 

research	community.	Costs	of	complying	with	this	mandate	may	be	included	in	the	budgets.

continued
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TABLE 5.2.1 BRAIN	Initiative-Funded	Repositories	(2017-2019)	and	Annual	Budgets

Repository Data	Type Location Current	Size

Annual Award 

(Total	costs/Indirect	
costs/Direct	costs)

BRAIN	Image	
Library

Microscopic images University of 

Pittsburgh

2.3	million	files;	
120	terabytes	(TB)a

$1,054,315
$830,434
$223,881

Neuroscience 

Multi	 ‘Omic	
Archive	(NEMO)

‘Omics	data University of 

Maryland

112.4	TBb $1,247,018
$860,044
$386,974c

Data	Archive	
for	the	BRAIN	
Initiative

Human	neurophysiology University of 

California,	  
San	Diego

New $1,245,149
$806,242
$438,907d

OpenNeuro Neuroimaging Stanford 

University

5	TBe $908,521
$578,676
$329,845

Block	and	
Object	Storage	
Service  

Electron microscopy and 

x-ray microtomography

Johns	Hopkins	
University

New $593,507
$438,034
$155,473f

Distributed	
Archives for 

Neurophysiology 

Data	Integration

Neurophysiology Massachusetts 

Institute of 

Technology

New $1,349,674
$1,131,040
$218,634

Brain	Cell	Data	
Center	

Integrated data set for 

Brain	Cell	Census	based	
on multiple data types

Allen	Brain	
Institute

New $2,965,990
$2,233,081
$732,909g

a	120	TB	related	 to	BRAIN	project;	1.1	petabytes	(PB)	 total	as	of	July	2,	2019.	Personal	communication,	Greg	
Hood,	July	2,	2019.

b	Posted	on	NEMO	website,	https://nemoarchive.org/,	accessed	January	11,	2019.
c	Funding	for	2017	from	NIH	Research	Portfolio	Online	Reporting	Tools	(RePORTER).
d	Funding	for	2018	from	NIH	RePORTER.
e	Personal	communication,	R.	Poldrack,	Stanford	University,	April	15,	2019.
f	Funding	from	2018	from	NIH	RePORTER.
g	Funding	for	2017	from	NIH	RePORTER.

a	 See	National	 Institutes	 of	 Health,	 “Notice	 of	 Data	 Sharing	 Policy	 for	 the	 BRAIN	 Initiative,”	 NOT-MH-19-010,	
	Release	Date	January	22,	2019,	https://grants.nih.gov/grants/guide/notice-files/NOT-MH-19-010.html.

BOX 5.2 Continued

Applying the Framework to Use Case 1

Using the forecasting steps provided in Table 4.1, the researcher begins to construct the cost forecast.

Step 1. Determine the type of data resource environment, its data state(s), and how data might transition 

between those states during the data life cycle.

The first two columns in Table 5.1 list the data archive requirements as specified in the RFA. After considering 
the activities associated with each of the data states described in Tables 2.1, 2.2, and 2.3, the researcher concludes 
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TABLE 5.1 Specific Services Specified in the Request for Application Mapped to Data States, Activities, and 
Subactivities

Research 
Objective 
Number Archive Requirements as Specified in the BRAIN Initiative RFA-MH-17-255

States, Activities, and 
Subactivitiesa

1 The data archive is expected to use relevant standards that describe BRAIN Initiative 
experiments. Such standards may be developed under RFA-MH-17-256 or may already 
exist.

II.A.1, II.B.1

2 A data archive will develop a data submission pipeline ensuring appropriate quality 
control standards for laboratories that are trying to upload data. For example, if an 
experimental standard defines an allowable range of values for a particular data element, 
the submission pipeline should make sure that uploaded data respect the current data 
standard.

II.B.1, II.B.7,
II.E.2

3 Ideally, the data archive will create both a submission pipeline and a related validation 
tool to allow researchers to check the quality of their data even if they are not trying 
to upload data. . . . Data submission pipelines that originate with the data-collection 
instrument in the depositor’s laboratory and require minimal manual intervention would be 
ideal but are not required.

II.B.1, II.B.7, II.C

4 A data archive will work closely with BRAIN Initiative awardees and others to collect and 
archive relevant data sets.

II.A.3, II.D.1, II.D.2

5 Each data archive should plan for a help desk to work with those who are trying to upload 
data.

II.I.2

6 Each data archive must develop plans to make the data readily available to the broad 
research community and to citizen scientists, as appropriate.

II.B, II.I

7 Depending on the type of data, data submission agreements and data access agreements 
may be necessary.

II.D.2, II.D.3

8 In many cases, processed data may be as useful to the research community as the raw data 
produced in the laboratory. Each data archive should consider storing and curating the 
appropriate data (either raw or processed) and make them available to the community.

II.E, II.H

9 A data archive may propose evaluating deposited data and scoring them to allow the 
research community to have some guidance about data quality.

II.E.2, II.E.3

10 Each data archive should plan to assign persistent identifiers to deposited data and to 
processed data to allow the research community a very easy way to cite the data sets that 
are being used.

II.E.5

11 A data archive should allow researchers to have a space where they can share data 
privately to facilitate collaboration prior to publication. Such private enclaves must last 
for only a defined period of time before that data set is shared with the rest of the research 
community.

II.B.9

12 A data archive may help users deposit data into other sustainable databases, such as 
those supported by the National Center for Biotechnology Information, but this is not a 
requirement.

II.I.2, II.L.3

13 There may be cases where data are stored in more than one data archive. In those cases, a 
data archive funded under this funding opportunity announcement will ensure that the user 
community can find all relevant data using appropriate linkages or database federation 
strategies no matter where the data are actually stored.

II.F.2

14 Furthermore, each data archive will provide an interface that is accessible to anyone with 
a web browser.

II.B.7, II.H.3, II.H.4

15 A data archive will make appropriate query tools and summary data easily available to 
allow the research community to check whether data of interest are held in the archive.

II.B.3, II.B.4, II.B.8, 
II.B.10, II.H

16 The user interface should make the maximum amount of information available to the 
research community while considering user friendliness and ease of interpretation.

II.B.7, II.H

continued
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Research 
Objective 
Number Archive Requirements as Specified in the BRAIN Initiative RFA-MH-17-255

States, Activities, and 
Subactivitiesa

17 The website is expected to have a broad user base that will include both naïve users and 
experienced bioinformaticians, and should provide an interface that will accommodate 
both types of users.

II.B.7, II.H

18 In many cases, users will want to analyze or use visualization tools to interact with the 
data without downloading any data. Those interactions should be anticipated by the data 
archive.

II.B.3, II.B.5

19 Expensive computations could result from some analysis activities, and the data archive 
should explain plans to deal with such eventualities.

II.B.3, II.B.4, II.B.5,
II.I

20 A data archive may, but is not required to, use cloud storage and computing capabilities to 
enable the research community to analyze data without downloading them. A data archive 
should (but is not required to) allow users to bring their own analysis tools to the data.

II.A.3, II.B.1, II.K.1

21 Each data archive will be expected to have staff who are knowledgeable about informatics 
and the experimental data being collected. The informaticists will be responsible for 
coordination with other relevant informatics efforts.

II.B

22 In particular, a data archive will be expected to identify and federate the archive with 
other data repositories and knowledge bases, as appropriate.

II.F.2, II.F.3

23 This data archive integration should create ways for users to query all relevant data 
repositories for relevant information. Funded data archives will be members of a larger 
BRAIN Initiative Data Network that will work across BRAIN Initiative activities to 
promote integration of a variety of data types.

II.F.2, II.F.3

24 In addition, the data archive will interact, as appropriate, with informatics activities 
outside the BRAIN Initiative such as the NIH Big Data to Knowledge effort and the work 
of the International Neuroinformatics Coordinating Facility (INCF).

II.A

25 When possible, a data archive is expected to use existing infrastructures and standards. 
These could include persistent identifiers such as Digital Object Identifiers (DOIs) or 
Resource Identifiers.

II.B.10, II.E.4, II.E.5

a Activities are defined in Tables 2.1, 2.2, and 2.3 of this report. The Roman numeral refers to the data state, the capital letter refers to the major 
activity, and the Arabic numeral refers to the subactivity. The cost forecaster can use this information to consult Table 4.2 to identify likely cost 
drivers for each activity.

TABLE 5.1 Continued

that the proposed data resource will be an active repository and platform and therefore a State 2 resource. The 
researcher begins to match activities associated with a State 2 (Table 2.2) resource with the specific research objec-
tives described in the RFA and lists which State 2 activities found in Table 2.2 would be necessary to accomplish 
each of the research objectives (the third column in Table 5.1). The costs and cost drivers associated with the 
activities will be revisited later in the cost forecast by consulting Table 4.2.

Because the researcher is interested in preserving the long-term value of the data and increasing the efficiency 
and effectiveness of their long-term curation and use, the researcher also considers activities related to eventual 
transfer of data to another State 2 resource or long-term State 3 archive. These latter considerations were not 
activities specified in the RFA.

Step 2. Identify the characteristics of the data (Chapter 4), data contributors, and users.

The next sections summarize a high-level consideration of this step, although, in reality, this step would be 
revisited several times as resources are characterized; choices about the repository are refined; and characteristics 
of the data, data platform, and contributors and users are better defined through use of the template in Appendix E. 
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Data Characteristics (Sections A and E of the Cost-Driver Template in Appendix E)

• The files are large: TB per individual data set. 
• There are many files and large size of individual files. Raw data may be contained in thousands of individual 

files. For example, a single serial section electron microscopy data set covering less than 0.5 mm3 of cortex 
by Bock et al. (2011) comprised 36 TB of raw data and 10 TB after processing to stitch the individual tiles 
together and reconstruct the volume.

• Sizes are likely to increase over the life span of the resource.
• There are multiple modalities.
• The data are complex: two-, three-, and four-dimensional images.
• There are significant metadata requirements.

Because of the rapid development in algorithms for processing and reconstructing the data, both raw and 
processed data will likely need to be stored, and compression algorithms for high-resolution scientific imaging 
data are likely to interfere with the reuse of the data for many applications. Imaging will likely be from animal 
subjects, minimizing costs associated with security and confidentiality (Section H in Table 2.2). The repository 
has decided that all data will be offered under the same license, minimizing any costs associated with enforcing 
multiple permissions. 

Contributors/User Community (Section F of the Cost-Driver Template in Appendix E)

Assuming 200 BRAIN-funded users submit data twice a year, 400 independent submissions per year could be 
expected. Contributor support needs will likely be high, given data complexities and size, particularly in the early 
years when data validation and upload pipelines may not be fully mature. Data contributors will likely have a sense 
of urgency to upload backlogs of data before their grant funding runs out. If standards and best practices are not 
fully in place when the resource begins to acquire data, then a backlog of data will need curation. The resource has 
to decide whether to devote extra staff and funding to re-curating those data when standards and tools are in place.

The user community is also expected to be diverse, with scientists working in different environments. The 
RFA requires the resource to work closely with contributors (Table 5.1, research objective 4), maintain a help desk 
(research objective 5), and make data available to the broad research community, including citizen scientists as 
appropriate (research objective 6). Given the range of user skills to be accommodated—and the cost to develop 
intuitive user interfaces to do so—general help, training, and outreach materials are likely to be increased. Fre-
quent updating of help materials may be necessary during early phases, when the technology is changing on a 
regular basis.

Step 3. Identify the current and potential value of the data and how the data value might be maintained or 

increased with time.

The perceived and long-term value of data can be informed by answers to Sections A, D, and E of the cost-
driver template in Appendix E and through consultation with experts and colleagues. The perceived long-term 
value of the data in the proposed resource will depend on hard-to-estimate factors. Some data will derive from new 
and rapidly developing techniques. Colleagues and experts think that some data may be superseded as technolo-
gies improve. On the other hand, data that are the result of a complex experimental paradigm—for example, the 
carefully correlated light and electron microscopy work of Bock and others (2011)—may be quite valuable even 
if of lower quality. Well-annotated imaging data tend to be interpretable and usable for a long time in different 
contexts. The long-term value cannot be estimated at the time of proposal preparation, making decisions about 
the level of replication and access (e.g., transfer to a less expensive form of storage) difficult in the early stages.  
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Step 4. Identify the personnel and infrastructure likely necessary in the short and long terms.

The forecaster considers which of the activities described in Table 2.2 are relevant to the RFA requirements 
(Table 5.1) and the proposed database more deeply. This resource will not handle sensitive information; thus, some 
activities will not be necessary.  The forecaster next considers how these activities might be accomplished (and by 
whom), again referring to the list of expertise included for each activity in Table 2.2. To estimate personnel costs 
the forecaster needs to consider how long each task will take, the skill levels necessary, the availability of people 
with the skills, and the tool support or training necessary for the people to perform the tasks. In reality, many of 
the positions listed in Table 2.2 are likely not to be included or consulted when setting up a typical researcher-
led scientific infrastructure, but it is worth considering the value of including them and how their involvement 
influences overall cost. For example, many new resources struggle with metadata. Consulting a data librarian or 
records specialist early may help to reduce cost, improve quality, and increase FAIRness by providing advice on 
community standards for high-level metadata and specialized metadata schemas.

Because the repository infrastructure already exists in this fictional use case, many setup costs might be 
reduced, but significant customization will likely be necessary. If the infrastructure had to be developed from 
scratch, the forecasters might consider whether instances of existing infrastructure could be set up or whether they 
could partner with an existing repository to provide the back-end infrastructure.

Step 5. Identify the major cost drivers associated with each activity based on the steps above, including how 

decisions might affect future data use and its cost. 

Table 4.2 is consulted to identify the cost drivers often associated with a State 2 resource, and the cost-driver 
template found in Appendix E is completed (the template is based on the cost-driver questions found in Chapter 4). 
The completed template is presented as Table 5.2, following the discussion of Use Case 1, below. The completed 
template will help the forecaster determine which decision points will likely control costs now and in the future, 
and it will help the forecaster understand when specific costs will be borne and by whom. 

The responses to the cost driver questions shown in Table 5.2 allowed the forecaster to create a narrative to 
help him identify exactly what will be involved in establishing the State 2 (active repository) resource. From that 
narrative, the forecaster could determine how influential each of the respective costs is likely to be in the overall 
costs (listed below). In a quantitative cost forecast, the costs for the activities could then be quantified, and each 
of the major cost components (e.g., Box 3.2) worked out.

• A: Content → Likely high 
• B: Capabilities → Likely medium-high 
• C: Control → Likely medium 

• D: External Context → Likely low

• E: Data Life Cycle → Likely high

• F: Contributors and Users → Likely high

• G: Availability → Likely medium-high

• H: Confidentiality, etc. → Likely low

• I: Maintenance and Operations → Likely low

• J: Standards, etc. → Likely medium

Step 6. Estimate the costs for relevant cost components based on the characteristics of the data and 

information resource.

As noted elsewhere in the report, the ability to estimate actual costs is dependent on so many factors that the 
committee elected not to attempt this exercise. How data size can influence costs can be exemplified by using cost 
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estimators provided by commercial cloud services (in this case, the Amazon Simple Storage Service1 cost tools). 
The absolute size beyond a certain threshold may not impose many additional costs for cloud storage. For example, 
as of this writing, the cost to store up to 50 TB is $0.023 per gigabyte (GB)/month, whereas over 500 TB for a 
month brings the cost down to $0.021 per GB, according to that cost estimator. However, given the anticipated 
growth of the data, the storage cost is not insignificant in absolute terms. For one PB of data, the cost, absent any 
institutional discounts, would be $21,000 per month depending on level of access. Cost over time will need to be 
considered. Cloud service prices may change, or circumstances may warrant a change to a different provider with 
different cost structures, services, and data formatting requirements. The size of the data may also impose costs 
for functions such as external backup, replication, and data transfers (G.4), depending on what infrastructure is 
available to the resource. The forecaster will want to compare full costs of storage from multiple service providers, 
including the fully loaded costs of local computer resources.

The complexity of the data can also impose significant costs. The capabilities related to functional specifica-
tion and implementation ( Activity II.B) will need to be developed or modified and maintained and the standards 
for multiple data types and paradigms developed or implemented. These functions may need to be multiplied by 
the number of data types and modalities to be supported, depending on how well the tool set generalizes. 

Once the resource is mature and data access and use patterns emerge, some significant cost savings may be 
realized by moving unused or obsolete data to cold storage. Again, using commercial cloud provider cost tools 
illustrates how storage costs are affected by access and responsiveness requirements. For the Amazon Web Services 
S3 Intelligent Tier pricing model, designed for data where access is infrequent or unknown, the cost for storage 
that is accessed at high frequency is $0.021-$0.023 per 50-500 TB but only $0.0125 if infrequently accessed. If it 
is known that the data are infrequently accessed and users can tolerate slow retrieval times (minutes to hours), then 
the cost of access will drop to $0.004 per GB. For a 500-TB data set, the cost of storage would drop from $10,500 
per month to $2,000. Cold-storage options are best considered during the first funding period and in consultation 
with the community served so that expectations are clear.

The data and the user community characteristics will also be a major determinant of decisions about infrastruc-
ture for hosting and accessing the data, as well as the necessary user support levels. The RFA does not require that 
the resource utilize the cloud; the large size of the data and the unknown growth characteristics of both the data 
and the user community make the cloud attractive, as it can scale with increasing demand. Costs associated with 
data transfers, search, computational services, and downloads will need to be carefully monitored. Costs might 
be driven by unexpected demand surges (e.g., a data set is posted on social media and is heavily accessed). This 
fictional use case will protect itself from unexpected and uncontrollable charges by passing the cost for down-
load to the end user. Many cloud providers now provide tools and safeguards for monitoring and limiting costs. 
Taking advantage of local or government programs (e.g., Cloudbank and the Science and Technology Research 
Infrastructure for Discovery, Experimentation, and Sustainability) to make informed decisions and gain access to 
expertise about building platforms in the cloud could also lower costs. 

Last, although the RFA does not specify that the resource should develop an exit strategy, thinking about the 
long-term data and resource viability is good stewardship. Bilder and others (2015), in their principles of open 
scholarly infrastructures, recommend that every resource have a “living will” that describes how a resource would 
wind down. In the proposed large (multiple PB) hypothetical BRAIN repository, the costs of transferring data to 
another State 2 active repository or to a long-term archive could be significant. 
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TABLE 5.2 Completed Cost-Driver Template for Use Case 1: Setting up a BRAIN Archive

Category Cost Driver Decision Points/Issues

Relative 

Cost 

Potential 

(Low, 

Medium, 

High)

A. Content

A.1 Size (volume and 
number of items)

> size = higher 
costs

1. How many files will be in a single data submission?

 Varies, likely from 10 to 10,000.
2. How large is an average data submission in total?

 Multiple TB.
3.  Are the data sizes likely to stay stable over the life of the resource?

 No, file sizes will likely increase as technologies are developed.
4. What is the total amount of data expected?

 PBs.
5.  In what kind of medium will data be captured in the short and long 

terms?

 Data upload into the cloud for short and long term will be captured.

H

A.2 Complexity and 

Diversity of Data 

Types

> complexity + 
diversity = higher 
cost

1. How complex is the underlying structure of the data?

 Complex-image data.
2. How are the included data to be organized?

  To be determined after interviewing funded investigators. Likely individual 
data sets that include the raw and processed data, but need to determine 
whether the data should be organized according to studies or projects. 

3.  How complex is the experimental paradigm that produced the data?

  Varies—some simple acquisitions; some associated with complex behavioral 
paradigms.

4.  What sort of additional files might be necessary to upload with the data 

to properly understand them?

 Experimental protocols, fiducial maps.
5. How many different data types are being produced?

  Multiple types of imaging data (multimodal data—light and electron 
microscopy, multiple microscopy types within each; correlated physiology and 
genomics. 

6.  What are the relationships among these data types (e.g., are the data 

correlated)?

  Some correlated data sets; related data sets will be deposited in the 
appropriate repository.

H

A.3 Metadata 

Requirements

> metadata 
amounts + type = 
higher cost

1.  How much metadata must be stored with each data object to make them 

FAIR?

  Basic descriptive metadata, imaging parameters, experimental metadata, 
processing metadata, anatomical metadata. 

2.  Will metadata be entered manually by the submitter/curator?

  Yes, by both submitters and curators.
3.  Will the data to be deposited include a data schema, or will one be 

generated?

  Eventually, a common schema will be created for all data based on standards 
such as Open Microscopy Environment and those deriving from BRAIN.

4.  Is the provenance of a data set sufficiently described, or will it need to 

be?

  It will need to be described, as the processing pipelines are not standardized.
5.  How much metadata can be extracted computationally?

  Imaging parameters may be able to be extracted from image headers.

M

A.4 Depth Versus 

Breadth

> breadth = higher 
cost

Will the repository be restricted to certain data classes or types that the 

repository must support?

It will primarily focus on imaging data, but there will be multiple types of 
imaging data from multiple domains.

M
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Category Cost Driver Decision Points/Issues

Relative 

Cost 

Potential 

(Low, 

Medium, 

High)

A.5 Processing Level 

and Fidelity

> compression = 
lower cost

1.  Do the raw data need to be stored?

  Yes, as the reconstruction algorithms are rapidly developing.
2. Do processed data need to be stored? 

  Yes, it would be computationally intractable to reconstruct two-, three-, and 
four-dimensional data sets each time a user accesses them. Some data may 
be mapped to a common coordinate framework, and both the raw and aligned 
data will likely be stored.

3.  Are there compression algorithms that can reduce the file size without 

compromising fidelity?

  Some, but generally they result in signal loss, so it is not advised.
4.  What kind of data structure requirements will the resource have?

  The goal is a common data structure to organize the large numbers of raw 
files and any derived data, e.g., reconstructions. 

5.  Is the data contributor or the repository responsible for any restructuring 

necessary?

  Data contributor.
6.  How is the data structure verified?

  A validator will be developed as per the RFA. It may not be ready in year 1 
because of testing of data set structures based on data likely to be received.

H

A.6 Replaceability of 

Data

> replaceability = 
lower cost

1.  Is the archive the primary steward of the data, or do copies exist 

elsewhere?

  The resource is expected to assume stewardship of the data.
2.  Can the data be easily recreated?

  Not currently, but possibly in the future.

H

B. Capabilities

B.1 User Annotation

> user annotation 
functions = higher 
cost

1.  Will the repository have to provide user annotation capabilities?

  Given the size of the data, it would be ideal to have annotation capability 
available to the user base.

2.  What is the nature of these annotations?

  Anatomical delineations, molecular distributions.
3.  Are they provided by humans or machines, and how will they be 

authenticated?

  Mainly through machine-based segmentation. Users will have an account to 
annotate; annotations will be tied to their Open Researcher and Contributor 
Identifiers.

4.  Are permissions required to annotate the data?

  No, the data will be in the public domain and they are free to annotate, 
although stored annotations will have to be attributed to the individual 
researcher.

H

B.2 Persistent 

Identifiers

type of identifier 
= potential costs

1.  What persistent identifier (PID) scheme will be used by the archive?

  DOIs for data sets and for reconstructed images/volumes.
2.  Is there a cost associated with issuing the PID?

  Yes, but covered by institutional membership to DataCite.
3.  How many objects need to be identified?

  DOIs to data sets and reconstructions will be issued, but not individual files; 
therefore, two to five identifiers per data set.

4.  Who will be responsible for keeping the PIDs resolvable?

  The database administrator will be responsible for notifying DataCite of any 
changes in data object location.

L
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Category Cost Driver Decision Points/Issues

Relative 

Cost 

Potential 

(Low, 

Medium, 

High)

B.3 Citation

> citation 
functions = 
increased cost

1.  Will users be able to create arbitrary subsets of data files and mint a PID 

for citation?

  Yes.
2.  Will the repository provide machine-readable metadata for supporting 

data citation?

  No.
3.  Will the repository provide export of data citations for use in reference 

managers?

  No.

L

B.4 Search 

Capabilities

> search 
capabilities = 
increased cost

1.  Will the repository provide a search capability for data sets?

  Yes. The repository is also required to provide means to search other BRAIN 
repositories through the BRAIN Initiative Data Network.

2.  How much of the metadata will be included in search?

  Initially, the repository will support search via database-level metadata. More 
detailed fields may be added in response to user requirements.

3.  How complex are the queries that will be supported?

  Keyword search, structured search on basic metadata fields.
4.  What type of features for search will be provided?

  Synonym expansion using the Neuroscience Information Framework’s 
vocabulary services.

5.  Will the repository deploy services to search the data directly?

  Data-feature search capability is planned.

H

B.5 Data Linking 

and Merging

> linking and 
merging = 
increased cost

1.  Will the data require/benefit from linkages to other related items?

  Required to link to data in other BRAIN repositories.
2.  Will the resource provide the ability to combine data across records based 

on common entities/standards?

  Will build a knowledge graph on top of our data records so that we can 
combine across data records.

H

B.6 Use Tracking

> tracking = 
increased cost

1.  Will the resource provide the ability to track uploads, views, and 

downloads?

  Yes.
2.  If so, and if made available to users, how will this information be made 

available?

  Tracked and displayed per data set.
3.  Will the resource track data citations to its data?

  No.

L

B.7 Data Analysis 

and Visualization

> services = 
higher cost

1.  What type of data visualization will the repository support?

  Interactive viewing of images and three-dimensional volumes using image 
services.

2.  What types of other data operations will the repository support (e.g., file 

conversions, sequence comparison)?

  Will develop an image-feature search capability.
3.  Do these services require significant computational resources?

  Yes.
4.  Who will pay for these computations? 

  We will assume the costs of the search algorithms.

H
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Category Cost Driver Decision Points/Issues

Relative 

Cost 

Potential 

(Low, 

Medium, 

High)

C. Control

C.1 Content Control

> review 
processes = 
increased cost

1.  Will all appropriate data be accepted, or will there be a review process?

  All relevant data from BRAIN investigators will be accepted; Data from 
outside BRAIN will be accepted after the infrastructure is built.

2.  Will the review process be automated, or will it require human oversight?

  Data must pass our automated validation checks, but human curators will 
oversee the project and provide additional curation of metadata.

H

C.2 Quality Control

> quality control 
= increased cost

1.  What quality control processes will the repository support?

  Format and metadata review quality control on quality of data and 
reconstructions will be up to the submitter.

2.  Will these be automated or require human oversight?

  See C.1.
3.  What level of data correctness will be required, and how will it be 

validated?

  Data are expected to pass our validation checks with no errors.
4.  What gaps in the data at the record or field level will be tolerable?

  Difficult to estimate at this time. Most likely applicable at raw-data level—
missing or corrupted files may impact the quality of the reconstruction. 

5.  Will any of the data be time sensitive, and how will data currency be 

ensured?

  Not beyond ensuring that data referred to in publications are released after the 
agreed-upon embargo period.

6.  How will duplication within or between data sets be addressed?

  Given the size of the data, if any data are cross-referenced across data sets or 
resources, it will be in the form of a link and not a duplication of the data.

7.  Will prevalidation guidelines or routines be distributed by the resource to 

the data contributors?

  Yes, as per the RFA. Researchers should be able to validate their data as they 
are acquired. 

8.  Will human curation be necessary?

  Data submissions will be monitored in the early phase to determine whether 
human curators will be necessary to improve the quality of the data. While the 
hope is that automated tools may be sufficient, some human curation likely 
will be necessary.

L

C.3 Access Control

> controls = 
increased cost

1.  What types of access control are required for the repository (e.g., will 

there be an embargo period)? 

  Data are public; embargo period will be provided.
2.  At what level are they instituted (e.g., individual users, individual data 

sets)?

  Embargo periods will be instituted for individual data sets where only specific 
users, including reviewers if required, will have access to them. After the 
embargo period, all data are public.

3.  Does use of the data require approval by a data access committee?

  No.

M
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Category Cost Driver Decision Points/Issues

Relative 

Cost 

Potential 

(Low, 

Medium, 

High)

C.4 Platform Control

> platform 
restrictions = 
increased cost

Are there restrictions on the type of platform that may or must be used?

No, free to use the cloud if desired, and there are no requirements to use a 
specific cloud provider. Data will not be mirrored overseas.

L

D. External Context

D.1 Resource 

Replication

> replication = 
increased cost

Is there a requirement to replicate the information resource at multiple sites 

(i.e., mirroring)?

No.

L

D.2 External 

Information 

Dependencies

> external 
dependencies 
may or may not = 
increased cost

Will the resource be dependent on information maintained by an outside 

source?

Will use community ontologies for certain metadata. 

L

D.3 Distinctiveness

> distinctiveness 
= increased cost

Are there existing resources available that provide similar types of data and 

services?

Yes, the Cell Image Library. The EU also has a Bioimaging Database.a

L

E. Data Life Cycle

E.1 Anticipated 

Growth

> growth = 
increased costs

1.  Is the repository expected to continuously grow over its lifetime?

  Yes.
2.  Is the likely rate of growth in data and services known? 

  Not entirely.
3.  Is the use of the repository likely to grow over time?

  Yes.
4.  Is the likely growth of the user base known?

  No.

H

E.2 Update and 

Versions

> updates + 
multiple versions 
= increased cost

1.  Will the deposited data require updates (e.g., in response to new data or 

error corrctions)?

  Yes, some data will be submitted in batch mode, as the data need to be 
deposited at regular intervals. A policy on error correction will be developed 
(i.e., related to when corrections trigger a new DOI).

2.  Will prior versions of the data need to be retained and be made available 

locally or in a different resource? 

  Yes, if the data are in the public domain; no, if they are in the embargo phase.
3.  How frequently will individual data sets be updated?

  Unknown.

H

E.3 Useful Lifetime

limited lifetime = 
decreased cost

1.  Are the data to be housed likely to have a limited period of usefulness?

  Hard to predict; later acquisitions likely to have longer periods of usefulness.
2.  Does the resource have a defined period of time for which it will operate?

  No.
3.  Does the resource have to provide a guarantee that the data will be 

available for a finite period of time (e.g., 10 years)?

  No, there is no set period specified.

L
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Category Cost Driver Decision Points/Issues

Relative 

Cost 

Potential 

(Low, 

Medium, 

High)

E.4 Offline and Deep 

Storage

> offline/
deep storage = 
decreased costs

> transfers = 
increased cost

1.  Can the resource take advantage of offline storage for data that are not 

heavily used?

  As the resource grows, access to data sets will be monitored. Those not 
accessed heavily will be moved to less expensive storage.

2.  Does the resource have a plan for moving unused data to deep storage 

(i.e., State 3)?

  At the end of the life span of the project, data will be moved to a suitable 
State 3 archive; however, the specific archive has not yet been identified.

H

F. Contributors and Users

F.1 Contributor Base

> number and 
diversity of 
contributors = 
increased cost

1. Is the number of contributors known? If not, can it be estimated?

  The precise number is unknown, but it is assumed that one-third to one-
half of the 700 BRAIN grant awardees generate imaging data that would be 
appropriate for this resource. Assuming ~200-250 contributors.

2.  Are all data originating from the same source (e.g., a single instrument or 

a single organization)?

  No, the data will be coming from all different laboratories and therefore 
different environments and instruments.

3.  How will data be transferred into the data resource (e.g., periodic large 

batches, more frequent smaller data sets, constantly streamed, by physical 

transfer)? 

  Periodic large batches as specified by the data-sharing policy.
4.  Will the data be pushed by the contributor or pulled by the resource? 

  Pushed by the contributor.
5.  Are there direct or indirect fees associated with acquiring the data from a 

source?

  No.
6.  Will a data steward be available from among the contributors to assist 

with any data integration into the data resource?

  Unknown, but unlikely.

H
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Category Cost Driver Decision Points/Issues

Relative 

Cost 

Potential 

(Low, 

Medium, 

High)

F.2 User Base and 

Usage Scenarios

> access and 
diversity of users 
= increased cost

1.  How many users will likely access the data?

  Unknown, but assuming that it will be around 5,000 to 10,000 per month 
based on analytic data from similar resources.

2.  What will be the frequency of access?

  Difficult to estimate and likely depends on whether we get the image-analysis 
services running.

3.  How will users access the data?

  As these are large image data sets, most researchers will likely interact with 
the data using our image services and computational platform rather than 
downloading it. For some operations and tool sets, e.g., manual segmentation, 
it may be necessary to download the data or transfer them to another cloud.

4.  Will the resource be building analysis tools?

  No, beyond basic functions, the RFA states that the resource does not have to 
build analysis pipelines or tools.

5.  Will the resource support individual file download or bulk download?

  Download will be at the level of data sets (all relevant files) and individual 
files. No bulk download will be provided. However, it is anticipated that 
researchers will not download data but bring their compute needs to the data.

6.  Will there be any fees for downloading/accessing the data?

  If cloud provider used, users will pay for downloads and for the deployment 
of their algorithms. 

7.  How many different types of users must be supported?

  Three different types of users are anticipated: (1) neuroscience researchers 
with domain expertise, (2) computational researchers with little domain 
expertise, and (3) citizen scientists, as per the RFA.

H

F.3 Training 

and Support 

Requirements

> training + 
services = 
increased cost

1.  Will training for resource use be offered?

  Yes.
2.  What form will the training take?

  Online tutorials, hackathons, webinars, live demos at conferences.
3.  Will a “help desk” be provided?

  Yes, as per the RFA.
4.  When does live help need to be available?

  During normal business hours. 
5.  What is the expected skill level of the user base?

  As indicated in F.2., the resource will need to support a broad user base with 
a range of skills.

H

F.4 Outreach

> outreach = 
increased costs

1.  Does the existence of the repository need to be advertised?

  Yes, to attract outside users. It is assumed that BRAIN awardees will know of 
our existence. 

2.  How many conferences per year should resource representatives attend?

  At least two.
3.  Will the resource have a booth at the conference for live demos or to 

conduct hands-on tutorials?

  Booths at at least one conference per year for live demos. 
4.  Are users required by funders or journals to deposit data in the 

repository?

  Yes.

M
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Category Cost Driver Decision Points/Issues

Relative 

Cost 

Potential 

(Low, 

Medium, 

High)

G. Availability

G.1 Tolerance for 

Outages

< tolerance 
for outages = 
increased costs

1.  What is the tolerance for outages for the resource?

  As users from around the world are expected, the resource will be up 24/7, 
except for scheduled maintenance. However, it is difficult to predict the 
amount of usage for the resource at this time. If the resource is heavily 
used, the tolerance for outages will be less and we will aim for > 99 percent 
availability. 

2.  What measures will be taken to avoid and mitigate outages?

  A fully redundant system with high fault tolerance will be implemented as 
the resource scales up. Such redundancy would roughly double the cost of 
maintaining the system. However, as this level of tolerance will not be needed 
in the first few years, databases and system architecture will be designed such 
that it will be easy to fully replicate the system in the future, if level of usage 
demands it.  

3.  How quickly and completely does the resource need to recover from an 

outage?

  As researchers are required to submit their data to the archive to meet their 
requirements, the data will likely be used by third parties. Outages not due 
to regular maintenance will be kept to under 30 minutes. However, even the 
major commercial cloud providers can experience outages that last for several 
hours. Given the size of the data, replicating the full resource at multiple 
sites, including our local site, would be cost prohibitive. So although rare, 
outages that last longer may occur.

M

G.2 Currency

> currency = 
increased cost

1.  How often will the data be released?

  Data sets will be released to embargo as soon as they are uploaded; when the 
embargo period passes, they will be automatically released to the public with 
a DOI and the appropriate license. 

2.  How soon do data need to be made available after they are received?

  Will have to be negotiated with individual users, but we expect within 1 week 
on average.

M

G.3 Response Time

> responsiveness 
= increased cost

1.  Are there requirements for response time for service?

  For interactive browsing of the two- and three-dimensional image data, very 
responsive image services needed.

2.  Are there requirements for responses from humans?

  Users should receive an automated response for any help request immediately 
and a human follow-up within 1 business day.

M

G.4 Local Versus 

Remote Access

> cloud could lead 
to increased costs

1.  Does the resource require that any data be shipped via physical media?

  Yes. Depending on the size of the data set and the bandwidth available, data 
may need to be shipped back and forth via physical media.

2.  Will the resource be built using commercial clouds?

  Yes, commercial clouds for storage and computation will be used. 
3.  Do users have to travel to the resource to use the data?

  No. All access is through the web.

H

TABLE 5.2 Continued

continued



Life-Cycle Decisions for Biomedical Data: The Challenge of Forecasting Costs

Copyright National Academy of Sciences. All rights reserved.

94 LIFE-CYCLE DECISIONS FOR BIOMEDICAL DATA

Category Cost Driver Decision Points/Issues

Relative 

Cost 

Potential 

(Low, 

Medium, 

High)

H. Confidentiality, Ownership, and Security

H.1 Confidentiality

> confidentiality = 
increased cost

1.  Will any of the data require special protections?

  No, identified human data will not be hosted.
2.  Will any of the data have embargo periods or embargo-related limitations 

that may entail costs?

  There are initial costs for implementing embargo features; ongoing costs will 
be minor.

3.  Are there any audit requirements for who has accessed or downloaded the 

data?

  No.

L

H.2 Ownership

> ownership = 
increased costs

1.  If data are contributed from multiple sources, will there be a need to 

process multiple kinds of release forms?

  No, all data will be released under the same license and it will be an open 
license per the requirements of the BRAIN Initiative for public data.

2.  Will all the data be released under the same license, or will different 

permissions be assigned to different data sets?

  All data will be released under the same license, CC-4.0-BY, as per 
requirements by the funder.

3.  Will data submission agreements be necessary?

  Not anticipated. Data acquired under BRAIN are required to be submitted to 
an archive and made available.

L

H.3 Security

> security = 
increased cost

1.  What measures need to be taken to ensure the integrity and availability 

of the data?

  Standard practices will be used. 
2.  Do these measures require using protected computing, storage, or 

networking platforms?

  No.

L

I. Maintenance and Operations

I.1 Periodic Integrity 

Checking

> integrity 
checking = 
increased cost

1.  What processes will be put in place for checking the integrity of the 

hardware, software, and data?

  A hashing function will be implemented to ensure data integrity. Checksums 
will be used for each data upload and download.

2.  How frequently will these checks be performed?

  Every 3 to 6 months for system checks. At every upload and download for 
data use.

M

I.2 Data-Transfer 

Capacity

> data-transfer 
upgrades = 
increased cost

Will the bandwidth available to the resource be sufficient for the data sizes 

and rates required?

Campus connectivity was recently upgraded, so no internal problems anticipated, 
but there is no control over our submitters and users. See G.4.

L

I.3 Risk 

Management

> risk mitigation 
= increased cost

1.  Will the repository be solely responsible for risk mitigation?

  As the repository of record, responsibility for the data assumed and therefore 
appropriate backup strategies will be implemented.

2.  Is a response plan for unexpected termination required?

  No requirements were given to have an exit plan and we would assume that 
funding would be given by NIH to terminate our resource and transfer the 
data to an archive of their choosing.

H

TABLE 5.2 Continued
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Category Cost Driver Decision Points/Issues

Relative 

Cost 

Potential 

(Low, 

Medium, 

High)

I.4 System-

Reporting 

Requirements

> system-reporting 
requirements = 
increased costs

What types of system reporting will the resource be required to do?

No specific information has been requested in the RFA; monthly reports 
on acquisitions, total size, and amount of use will be generated for internal 
purposes.

L

I.5 Billing and 

Collections

Will there be charges for use of the resource?

There will not be a charge for accessing data within our resource, nor for 
invoking services we provide. However, users will be required to bear costs 
associated with download and any custom computations they want to perform.

J. Standards, Regulatory, and Governance Concerns

J.1 Applicable 

Standards

> mature 
standards = 
decreased costs

1.  How many different standards will the resource have to support?

  Descriptive metadata standards, data standards for different types of 
light microscopy and electron microscopy data, ontologies or controlled 
vocabularies for anatomy, imaging, cellular components, gene/protein names.

2.  Do these standards exist?

  Some do.
 a.  If not, is the resource expected to lead their development?

   The RFA specifies that the resource is to use relevant standards, but that it 
is not responsible for the creation of the standards.

 b.  What is the plan for accepting data while standards are in development?

   Data will be accepted as soon as the infrastructure is ready, regardless of 
the state of the standards. Human curators will review all metadata to avoid 
common problems like cryptic abbreviations and nonstandard usage of 
terms.

 c.  If so, are the standards mature?

   With the exception of descriptive metadata.
3.  Are the data validators and converters available for the standards, or do 

they have to be developed?

  No, they have to be developed as per the RFA.
4.  What is the plan for “retrofitting” data that have been uploaded without 

the standards in place?

  Data sets will be tagged accordingly, but unless specifically requested to do 
so, data will not be re-curated absent automated tools to do so.

5.  How frequently will the standards update?

  The first release of a standard will be subject to extensive revision and so the 
standards will not be implemented until vetted by the community. The INCF 
standards review and endorsement process will be helpful here.

6.  Do the standards require spatial transformations?

  Some data may be aligned to a common coordinate system to spatially align 
it with other data. Transformation coordinates and perhaps aligned files 
(depending on the volume of this type of data) will be stored.

7.  How many file formats will be supported?

  Resource will be built around open file formats for large images using the 
Bioformats recommendation. The user will ensure that their data are in the 
required format.

8.  Is there an open file format available?

  Yes. See previous item.

H
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Category Cost Driver Decision Points/Issues

Relative 

Cost 

Potential 

(Low, 

Medium, 

High)

J.2 Regulatory 

and Legislative 

Environment

> regulation = 
increased cost

1.  What laws and regulations cover the data and operation of the resource?

  The resource is expected to have a large user base in Europe, so the resource 
will be General Data Privacy Regulation compliant. The website will meet 
accessibility requirements of the Americans with Disabilities Act and the 
institution. The resource will not include human-subjects data.

2.  Is the resource covered by an open-records act?

  No.

L

J.3 Governance

> outside 
governance = 
increased costs

1.  Does the resource need to maintain an external advisory board (EAB)?

  There is no requirement for an EAB.
2.  Does the resource set policy for itself, or is it part of a larger 

organization?

  Subject to BRAIN Initiative polices; otherwise, policy set by the resource.

L

J.4 External 

Consultation

> consultations = 
increased time = 
increased costs

1.  Will external stakeholders be consulted for initial design?

  Yes, outreach ahead of designing our website and services will be conducted.
2.  Will external stakeholders be consulted on an ongoing basis? 

  Yes, agile user testing for all new features will be employed.

M

a The website for Euro Bioimaging is https://www.eurobioimaging.eu/, accessed January 11, 2020.

TABLE 5.2 Continued
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Per the statement of task, the cost-forecasting framework was applied to a second scenario, in this case, to 
the development of a new data set in a State 1 (primary research) platform. 

USE CASE 2: ESTIMATING COSTS ASSOCIATED WITH A PRIMARY RESEARCH DATA SET

The cost-forecasting framework is applied to a proposed State 1 (primary research) data platform. The study 
committee applied the framework as might a young investigator (see Box 6.1). Box 6.2 demonstrates the logic intro-
duced by the forecaster who, although enthusiastic, might be less experienced and unaware of available resources. 

Applying the Framework to Use Case 2

Using the forecasting steps in provided in Table 4.1, the forecaster (in this case, the researcher) begins to 
construct the cost forecast. 

Step 1. Determine the type of data resource environment, its data state(s), and how data might transition 

between those states during the data life cycle.

The forecaster examines the request for application (RFA) for requirements related to data management. Com-
paring the RFA requirements with the descriptions of the data states in Chapter 2, the forecaster determines this 
will be a State 1 (primary research) platform for her laboratory’s use. However, the forecaster also plans to transfer 
the data to a State 2 active repository. Funding for transfer activities between platforms will also be considered. 

Step 2. Identify the characteristics of the data (Chapter 4), data contributors, and users.

In light of needs, goals, and RFA requirements, the following preliminary assumptions about the data are made 
that will be refined throughout the conduct of the cost forecast.

6

Applying the Framework to a New Data Set
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BOX 6.1 

The Use Case 2 Forecaster

A	young	investigator	is	exploring	functional	magnetic	resonance	imaging	(fMRI)	as	a	measuring	tech-

nique	for	determining	anatomical	correlates	for	cognitive	decline	 in	patients	diagnosed	with	Alzheimer’s	
disease. The investigator is deciding whether to use conventional methods or to try new multiband imaging 

techniques	in	development.	The	researcher/forecaster	explores	several	funding	options,	finding	that	the	
National	Institute	on	Aging	(NIA)	has	announced	funding.	NIA	requires	that	all	genomic	data	on	Alzheimer’s	
disease will be deposited in one of their databases, but she is not sure whether the policies cover her 

neuroimaging	data.	She	is	aware,	however,	that	changes	to	the	National	Institutes	of	Health	(NIH)	data	
management and sharing policies are coming. If implemented, details regarding data stewardship and how 

and when data will be made available will need to be provided.

BOX 6.2 

A Demonstration of Information Gathering to Inform Use Case 2

A cost forecaster, in this case a researcher in a primary research environment, gathers information 

prior	to	preparing	a	proposal	(see	Box	6.1).	She	first	tries	to	identify	the	state	of	the	art	in	fMRI	imaging	in	
Alzheimer’s	disease	through	the	literature	but	wonders	if	there	are	data	sets	in	the	public	domain	that	might	
be used for exploratory work. Not knowing where to look, she conducts an online search using the key-

words	“Alzheimer’s	disease	+	data	+	fMRI”,	which	returns	mostly	articles.	She	has	heard	of	and	searches	
the	Alzheimer’s	Disease	Neuroimaging	Initiative	(ADNI),a	but	it	does	not	have	fMRI	data.	OpenNeuro	has	
no	publicly	available	fMRI	data.	She	is	not	aware	of	the	NeuroImaging	Tools	and	Resources	Collabora-

tory	 (	NITRC)b	 or	 the	Neuroscience	 Information	Framework	 (NIF),c	 two	NIH	Blueprint	 for	Neuroscience	
	Researchd	initiatives	that	could	point	toward	potential	resources	(e.g.,	NeuroVault,e the Open Access Series 

of	 Imaging	Studies	(OASIS),f	or	 the	1000	Functional	Connectomes	Project).g A Google data set search 

lists	only	epidemiology	studies.	The	Human	Connectome	Projecth	has	a	 resting	state	 fMRI	 longitudinal	
study	under	way,	the	Alzheimer’s	Disease	Connectome	Project,	but	the	data	will	not	be	available	for	sev-

eral months.i	She	reads	Alzheimer’s	studies	in	the	literature	and	hopes	that	a	few	made	data	available	or	
referenced	public	data	sets.	She	concludes	that	no	suitable	public	data	are	available.	Had	the	researcher/
forecaster some way to know about available resources, she might have found data sets to inform her 

research direction, strategies, and her data management plan. This knowledge might have yielded cost 

savings and informed her, for example, of existing data sets that might have been aggregated or even that 

her study might not need to be conducted at all.

When	considering	how	to	share	her	neuroimaging	data	when	the	study	 is	complete,	 the	 forecaster/
researcher	wonders	if	the	NIH	pilot	program	with	figsharej is an option. She consults a data librarian at her 

institution for help designing her data management plan. The librarian searches the list of repositories on the 

National	Library	of	Medicine’s	websitek	and	sees	that	the	OpenfMRI	database	(now	OpenNeuro)	takes	fMRI	
data. Figshare has no specific requirements for formats or metadata, while OpenNeuro requires her data 

to	be	in	Brain	Imaging	Data	Structure	(BIDS)	format.l In either case, she will have to deidentify her data to 

publish them. The data librarian notes that while it may be easier and perhaps less costly in the short term 

to publish in figshare, data shared through a more specific repository such as OpenNeuro are aggregated 

with similar data and generally formatted to a common standard, likely giving the data greater value and 

visibility. Further, domain-specific repositories tend to have supporting software for upload and analysis. 

In	fact,	the	researcher	finds	that	the	BIDS	community	is	building	a	series	of	applications	that	significantly	
lower the cost of use. 
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The	researcher/forecaster	decides	to	deposit	data	in	OpenNeuro	and	prepares	her	data	management	
accordingly.	OpenNeuro	 runs	a	validator	 that	ensures	 format	compliance,	so	 it	will	be	 the	 researcher’s	
responsibility	to	ensure	data	conform	to	the	BIDS	format.	She	may	or	may	not	be	aware	that	there	is	a	
metadata	specification	designed	for	neuroimaging	(Maumet	et	al.,	2016)	that	will	help	guide	the	descrip-

tion of data and that harmonize specific variables with other data. Although not required by OpenNeuro, 

the	researcher/forecaster	is	aware	that	rich	metadata	are	critical	for	data	reuse,	not	only	by	others	but	in	
her own laboratory as well. 

By	 submitting	 data	 to	 a	 State	 2	 repository,	 data	 stewardship	 is	 transferred	 to	 the	 repository.	 The	
 researcher can continue to benefit from the data, although they have been processed to comply with the 

Health	 Insurance	Portability	 and	Accountability	Act	 (HIPAA)	 requirements.	 The	 researcher	must	 decide	
whether to preserve the original data for the long term and about the disposition of other unpublished data 

related	to	the	study.	Decisions	must	also	be	made	regarding	how	preserved	data	will	be	stored	long	term	
(i.e.,	by	herself,	or	through	institutional	or	commercial	cloud	resources).	After	consulting	with	a	data	librarian	
and	her	information	technology	(IT)	department,	the	researcher	decides	against	storing	preserved	data	long	
term herself because institutional or cloud services can ensure the data are backed up appropriately and 

migrated	to	new	platforms	as	necessary.	Her	institution	has	contracts	with	a	cloud	provider	that	provides	
generous	storage	allowances,	but	the	cloud	is	not	HIPAA-compliant.	She	therefore	contracts	with	institutional	
IT services for long-term data management. The data librarian provides the researcher with a metadata 

template to ensure that the data can be retrieved reliably and that critical information about privacy and 

data ownership are documented. 

  
a The	website	for	the	ADNI is	http://adni.loni.usc.edu/,	accessed	April	15,	2020.
b The website for  NITRC is	https://www.nitrc.org/,	accessed	April	15,	2020.
c The website for NIF is	https://neuinfo.org/,	accessed	April	15,	2020.
d The website for the	NIH	Blueprint	for	Neuroscience	Research is	https://neuroscienceblueprint.nih.gov/,	accessed	

April	15,	2020.
e The website for NeuroVault is	https://neurovault.org/,	accessed	April	15,	2020.
f The website for OASIS is	https://www.oasis-brains.org/,	accessed	April	15,	2020.
g The website for the	1000	Functional	Connectomes	Project is	https://www.nitrc.org/projects/fcon_1000/,	accessed	

April	15,	2020.
h The website for The	Human	Connectome	Project is	http://www.humanconnectomeproject.org/,	accessed	April	15,	

2020.
i The website for The	Alzheimer’s	Disease	Connectome	Project	is	https://humanconnectome.org/study/alzheimers-

disease-connectome-project,	accessed	April	15,	2020.
j The website for Figshare is	 https://datascience.nih.gov/news/nih-funded-researchers-invited-use-nih-

figshare#:~:targetText=NIH%20Figshare%20is%20a%20one,.com%2Ff%2Ffaq%20,	accessed	April	15,	2020.
k The website for the National Library of Medicine is	https://www.nlm.nih.gov/NIHbmic/nih_data_sharing_	repositories.

html,	accessed	April	15,	2020.
l The website for the	BIDS is	https://bids.neuroimaging.io/,	accessed	April	15,	2020.

BOX 6.2 Continued
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Data Characteristics (Section A, Appendix E)

• The data are moderate in size: gigabytes (GB) per individual data set (several mature packages currently 
support fMRI).

• There are a moderate number of files and moderate size of individual files.
• Sizes of data sets will be stable over the life of the project.
• There are multiple neuroimaging modalities.
• The data are complex.
• There are significant metadata requirements.
• Data will come from a single contributor.

Data acquisition costs can be estimated because the number of subjects will be known ahead of time through 
institutional approvals. If the researcher decides to use a newer technology (e.g., multiband imaging), data sizes 
will increase fourfold to fivefold and the computational methods for processing and analyzing the data are less 
well known. In that case, the raw k-space data1 will be kept available for reprocessing as new algorithms and 
approaches emerge.

As the forecaster, at this point, is only estimating the costs for her own use of the data, she skips the ques-
tions regarding the user community (Section F, Appendix E) but does keep in mind that the data may be of value 
to others in the future. 

Step 3. Identify the current and potential value of the data and how the data value might be maintained or 

increased with time.

Perceived value is difficult to predict. However, all data sets underlying the results of a study will be made 
public so that the data can be inspected and reanalyzed. The availability of public data sets may also encourage 
technology development if she chooses to use more advanced techniques. As outlined in Box 6.2, if the data are 
well annotated and prepared according to community standards, they might be an important source of information 
and data for designing future studies.

Step 4. Identify the personnel and infrastructure likely necessary in the short and long terms.

Based on consideration of State 1 (primary research) and activities necessary to prepare data for State 2 
(active) as described in Tables 2.1 and 2.2, respectively, the forecaster identifies the relevant major activities. The 
project objectives, informed by the RFA, the relevant activities, and personnel necessary (based on Table 2.1) are 
listed in Table 6.1. 

Step 5. Identify the major cost drivers associated with each activity based on the steps above, including how 

decisions might affect future data use and its cost. 

Table 4.2 is consulted to understand the likely important cost drivers for a State 1 resource, and the cost-
driver template in Appendix E is filled in too (see Table 6.2 shown after the discussion of the use case). In this 
application of the framework, the guiding questions in Chapter 4 and the template about cost drivers are not all 
applicable, and so the forecaster revises the template to help delineate costs and decision points in as complete a 
manner as possible. 

The relative costs related to data acquisition for this use case are straightforward to predict using the cost-
forecasting framework. Relative costs associated with cost drivers identified in Table 4.2 are provided below based 
on the assessment made while filling out Table 6.2. In a real-world application of the cost-forecasting framework, 
these costs would be quantified with the help of State 2 (active) repository resources.

1  K-space data are arrays of numbers that represent different spatial frequencies of the image.
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• A: Content → Likely low-medium

• B: Capabilities → Likely low

• C: Control → Likely medium 
• D: External Context → Likely low

• E: Data Life Cycle → Likely low-medium

• F: Contributers and Users → Likely low-medium

• G: Availability → Likely low-medium

• H: Confidentiality, etc. → Likely medium

• I: Maintenance and Operations → Likely low

• J: Standards, etc. → Likely medium-high

TABLE 6.1 Map of the Use Case 2 Scenario to Data States, Activities, and Subactivities 

Project Objectives and Tasks
States, Activities, and 
Subactivitiesa Personnel

1.  Review of the literature and publicly available resources 
leads to a proposal to assess the feasibility of fMRI 
measurement techniques for this purpose.

I.B.1 Researcher, data scientist, software 
engineer, research domain project 
manager, policy specialist, 
administrative staff

2.  Consider various funding sources and determine that 
potential funders expect collected data to be publicly 
shared.

I.A.1, I.B.2 Researcher, records management 
specialist, data scientist, data librarian, 
education specialist, policy specialist, 
software engineer, research domain 
project manager, administration staff

3.  Assess suitability of existing repositories for the ultimate 
data deposit. Outline in data management plan the 
management and sharing approaches and costs estimates 
while data are under her stewardship. Consent methods for 
sharing data described.

I.B.3., I.B.4, I.B.5 Researcher, data scientist, software 
engineer, research domain project 
manager, policy specialist, 
administrative staff

4.  Consider available tools for collecting, processing, and 
validating data using community-accepted standards. 
Considers documentation and curation levels required.

I.A.2, I.A.3, I.C Researcher, records management 
specialist, data scientist, data librarian, 
metadata librarian, education specialist, 
policy specialist, research domain 
project manager, research domain 
curator, software engineer

5.  Data management processes are in place that maintain 
primary and derived data (given evolving technologies). 
Derived data may include data in deidentified form.

I.C.3 Researcher, metadata librarian, data 
scientist, research domain project 
manager, research domain curator, 
software engineer

6.  Deposit data in chosen repository on a regular schedule or 
when all data collection and analysis are complete.

I.D Researcher, research domain project 
manager, IT project manager, software 
engineer, data wrangler

a The activity numerals correspond with labels in columns of Table 2.1.



Life-Cycle Decisions for Biomedical Data: The Challenge of Forecasting Costs

Copyright National Academy of Sciences. All rights reserved.

102 LIFE-CYCLE DECISIONS FOR BIOMEDICAL DATA

TABLE 6.2 Decision Points for Use Case 2 

Category Cost Driver Decision Points/Issues

Relative Cost 

Potential (Low, 

Medium, High)

A. Content

A.1 Size (volume 

and number of 

items)

> size = higher 
costs

1.  What is the order of magnitude of data that will be produced? 

  GB.
2.  How large is an average data set?

  Per subject ~ 10 GB (multiple scans over time).
3.  Are the data sizes likely to stay stable over the life of the project?

  Yes.
4.  What is the total amount of data expected?

  ~400 GB.
5.  How many individual files in a typical data set?

  Hundreds.
6.  If the data are to be transferred to a repository for long-term 

management, is there a cost depending on size?

  No. Data will be submitted to OpenNeuro, which currently does not have 
costs associated with these data.

7.  Are there publicly available data that can be used to augment these 

data or perform preliminary analyses?

  No relevant data were found.

L-M

A.2 Complexity and 

Diversity of 

Data Types

> complexity + 
diversity = higher 
cost

1.  How complex is the underlying structure of the data?

  Complex-image data.
2.  How complex is the experimental paradigm that produced the data?

  Standard fMRI block design.
3.  What sort of additional data are acquired along with the primary data?

  Cognitive assessments, statistical maps, demographic data.
4.  How many different data types are being produced?

  Multiple modalities.
5.  What are the relationships among these data types—for example, are 

the data correlated?

  Not applicable.

M

A.3 Metadata 

Requirements

> metadata 
amounts + type = 
higher cost

1.  How much metadata must be stored with the data to make them 

findable, accessible, interoperable, and reusable?

  Basic descriptive metadata, imaging parameters, experimental metadata, 
processing metadata, anatomical metadata. 

2.  How are metadata recorded?

  In data file headers, in Neuro Imaging Data Model (NIDM), in laboratory 
notebooks, in BIDS manifests.

M

A.4 Depth Versus 

Breadth

> breadth = 
higher cost

1.  Is this study part of a multicenter study? 

  No.
2.  How many institutions/collaborators are involved?

  Not applicable.

L
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Category Cost Driver Decision Points/Issues

Relative Cost 

Potential (Low, 

Medium, High)

A.5 Processing Level 

and Fidelity

> compression = 
lower cost

1.  Do the raw data need to be stored?

  K-space data not stored for standard fMRI. Will likely store k-space data if 
multiband imaging used.

2.  Do processed data need to be stored? 

  Yes. Analyses are performed on the reconstructed data.
3.  Are there compression algorithms that can reduce the file size without 

compromising fidelity?

  Data files are not that large, so compression not typically used. 
4.  What kind of data structure requirements will the resource have?

  No particular structure enforced by imaging center. Data submitted to 
OpenNeuro must be organized according to the BIDS standard.

5.  Is the data contributor or the repository responsible for any 

restructuring necessary?

  Researcher is responsible for restructuring data transferred to OpenNeuro.
6.  How is the data structure verified?

  BIDS validator will likely implement it within our imaging pipeline.

H

A.6 Replaceability  

of Data

> replaceability = 
lower cost

1.  Are there existing data sets that might be used instead of gathering 

primary data?

  Not to our knowledge.
2.  Are the data managed by an institutional repository? 

  Our imaging center provides primary storage.
3.  Are there copies of the data elsewhere?

  Local copy of data kept on a workstation in laboratory.
4.  Can the data be easily recreated?

  No. It would be expensive to retest subjects. Disease progression 
information would be lost.

L

B. Capabilities

B.1 User Annotation

> user annotation 
functions = 
higher cost

1.  How long does it take to annotate/segment a data set?

  Processing does not take very long. 
2.  Is the process largely manual or automated?

  Analysis data annotation is fully automated; experimental and descriptive 
metadata is added manually.

3.  Are these annotations stored with the data?

  They are in a separate file.
4.  Is the relationship (provenance) between the data file and the 

annotations recorded in the metadata?

  No, the association is captured through file-naming conventions.

L

B.2 Persistent 

Identifiers

type of identifier 
= potential costs

1.  What persistent identifiers are used when annotating these data (e.g., 

Open Researcher and Contributor Identifiers, Ontology IDs)?

  None.
2.  How are these persistent identifiers accessed?

  Not applicable.

L

B.3 Citation

> citation 
functions = 
increased cost

1.  Are the contributors to the production of a data set recorded in the 

metadata?

  No. 
2.  Is there a plan to submit the data to a repository that supports data 

citation?

  Yes.

L

TABLE 6.2 Continued

continued
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Category Cost Driver Decision Points/Issues

Relative Cost 

Potential (Low, 

Medium, High)

B.4 Search 

Capabilities

> advanced 
search may lead 
to decreased cost

1.  Does the platform where the data are stored provide any search 

functions?

  Just the native functions of the storage system (search on file name, 
creation date, owner, etc.).

2.  Was a search performed to locate data sets that might be relevant to 

this study?

  Yes.
3.  What tools were used?

  OpenNeuro; PubMed.

L

B.7 Data 

Analysis and 

Visualization

> services = 
higher cost

1.  What type of data visualization tools are required?

  Interactive viewing of images and 3D volumes; visualization of statistical 
maps. Freely available open-source tools used.

2.  What types of other data operations need to be supported?

  Processing pipelines for the data; signal-extraction tools.
3.  Do these services require significant computational resources?

  Moderate.
4.  Is there an explicit cost associated with compute resources? 

  Basic compute time is included with the fee paid to imaging center; many 
operations run locally on workstation. 

L

C. Control

C.2 Quality Control

> quality control 
= increased cost

1.  What quality control processes are used?

  Some automated and manual inspection of the data for issues such as 
motion artifacts.

2.  Does the public data repository have any quality control requirements?

  OpenNeuro requires the data to be in BIDS format, so BIDS validator run.

L

C.3 Access Control

> controls = 
increased cost

1.  What types of access control are required for the data? 

  Human-subjects data—institutional requirements for handling human-
subjects data followed. Only qualified laboratory personnel can access the 
data.

2.  How is access to data managed, e.g., data access committees?

  The principal investigator is responsible for managing access to the data.

L

C.4 Platform 

Control

> platform 
restrictions = 
increased cost

Are there restrictions on the type of platform that must be used for 

storing or analyzing the data?

Yes. Data infrastructure must adhere to our institution’s security requirements 
for storing human-subjects data.

M

D. External Context

D.1 Resource 

Replication

> replication = 
increased cost

Is there a requirement to replicate the information resource at multiple 

sites (i.e., mirroring)?

The imaging center backs up primary data to a local private cloud. Costs 
associated with replication are included in our fee to the imaging center.

L

D.2 External 

Information 

Dependencies

> external 
dependencies 
may or may not = 
increased cost

Will the resource be dependent on information maintained by an outside 

source?

No.

L

TABLE 6.2 Continued
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Category Cost Driver Decision Points/Issues

Relative Cost 

Potential (Low, 

Medium, High)

E. Data Life Cycle

E.1 Anticipated 

Growth

> growth = 
increased costs

1.  Is the total amount of data to be generated over the course of the 

project known?

  Yes.
2.  Are there any factors that might affect the amount of data?

  Not likely. The possibility that techniques used could increase data sizes 
has been accounted for, but approval gained to obtain data from a specified 
number of subjects and the processing pipelines, and so on, are well 
established.

L

E.2 Update and 

Versions

> updates + 
multiple versions 
= increased cost

1.  Are multiple versions of the data created?

  Yes, sometimes we have to reprocess individual subjects. 
2.  If so, how are they managed locally? 

  Through the file names.

M

E.3 Useful Lifetime

limited lifetime = 
decreased cost

1.  Are the data likely to have a limited period of usefulness?

  Hard to predict; it will depend on the rate at which imaging technology 
evolves and whether new processing approaches are developed to compare 
our data to data collected by new instruments.

2.  Are there specific data retention institutional or regulatory 

requirements for these data?

  Copies of all study data generally kept for at least 5 years after the study is 
completed.

L

E.4 Offline and 

Deep Storage

> offline/
deep storage = 
decreased costs

> transfers = 
increased cost

1.  For long-term storage of laboratory data, are there offline/deep storage 

resources available?

  Yes, the institution runs a data archive for faculty research.
2.  Is there a plan for migrating laboratory data to a State 3 archive for 

long-term preservation?

  Yes, data will be placed in the institutional archive after the study is 
completed.

M

F. Contributors and Users

F.1 Contributor Base

> number and 
diversity of 
contributors = 
increased cost

1. Is the number of contributors known? If not, can it be estimated?

  Just our laboratory members.
2.  Are all the data originating from the same source (e.g., a single 

instrument or a single organization)?

  Yes.

L

F.2 User Base and 

Usage Scenarios

> access and 
diversity of users 
= increased cost

1.  How many users will likely access the data?

  Laboratory members (currently six).
2.  What will be the frequency of access?

  Data accessed daily during the study and processing phase.
3.  How will users access the data?

  Necessary compute infrastructure is available—the data will be on local 
machines.

4.  Will the resource be building analysis tools?

  Yes, customized pipelines for processing our data, based on open-source 
toolkits, are built. 

5.  How many different types of users must be supported?

  Not applicable.

L

TABLE 6.2 Continued

continued



Life-Cycle Decisions for Biomedical Data: The Challenge of Forecasting Costs

Copyright National Academy of Sciences. All rights reserved.

106 LIFE-CYCLE DECISIONS FOR BIOMEDICAL DATA

Category Cost Driver Decision Points/Issues

Relative Cost 

Potential (Low, 

Medium, High)

F.3 Training 

and Support 

Requirements

> training + 
services = 
increased cost

1.  Is special training required for data upload to the repository?

  Yes.
2.  What form will the training take?

  Online tutorials and workshops.
3.  How long will this training take?

  We will attend a training workshop on BIDS. 
4.  What is the skill level required for data wrangling?

  Moderate knowledge of neuroimaging and computer skills.

M

G. Availability

G.1 Tolerance for 

Outages

> reliability = 
increased costs

  What is the tolerance for outages of the resource?

  Access to the data reliably is necessary. Will maintain adequate backups 
and system performance; scheduled outages for system patches and 
upgrades are tolerable.

M

G.4 Local Versus 

Remote Access

> cloud could 
lead to increased 
costs

1.  Does the resource require that any data be shipped via physical media?

  No, that is not likely. We have adequate bandwidth to transmit our data 
where required.

2.  Will commercial clouds be used?

  No, not for primary storage. 

L

H. Confidentiality, Ownership, and Security

H.1 Confidentiality

> confidentiality 
= increased cost

1.  Will any of the data require special protections?

  Yes, they are human-subjects data.
2.  Are there any audit requirements for those who have accessed or 

downloaded the data?

  No, we expect no users outside of laboratory staff.

M

H.2 Ownership

> ownership = 
increased costs

1.  Do rights to use the data have to be negotiated with collaborators, 

institutions, commercial entities, or funders?

  No.
2.  Will all data be released under the same license, or will different 

permissions be assigned to different data sets?

  Data will be released under the license used by OpenNeuro.
3.  Will data submission agreements be necessary?

  No.

L

H.3 Security

> security = 
increased cost

1.  What types of security measures must be taken to protect against loss 

or corruption of data?

  Standard practices will be used. 
2.  Do these measures require using protected computing, storage, or 

networking platforms?

  Yes.

L

I. Maintenance and Operations

I.1 Periodic 

Integrity 

Checking

> integrity 
checking = 
increased cost

1.  What processes will be put in place for checking the integrity of the 

hardware, software, and data?

  We do not have any specific processes for this. 
2.  How frequently will these checks be performed?

  Not applicable.

L

TABLE 6.2 Continued
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Category Cost Driver Decision Points/Issues

Relative Cost 

Potential (Low, 

Medium, High)

I.2 Data-Transfer 

Capacity

> data-transfer 
upgrades = 
increased cost

Will the bandwidth available be sufficient for the data sizes and rates 

required for transfer/access?

Yes. Campus connectivity recently upgraded. No problems anticipated. 

L

I.3 Risk 

Management

> risk mitigation 
= increased cost

1.  Will the researcher be solely responsible for risk mitigation?

  Yes
2.  Is a response plan for unexpected termination required?

  No

H

I.4 System-

Reporting 

Requirement

> system 
reporting-
requirements = 
increased costs

What types of system reporting will the resource be required to do?

None.
L

I.5 Billing and 

Collections

Will there be charges for use of the resource?

No. All laboratory members have free access.

J. Standards, Regulatory, and Governance Concerns

J.1 Applicable 

Standards

> mature 
standards = 
decreased costs

1.  How many different standards will be needed for the data?

  Will use BIDS and NIDM along with standard registration tools to a 
common coordinate space.

2.  Do these standards exist?

  Yes.
3.  Has the researcher worked with the standards before?

  Yes.
4.  Are the standards mature?

  Yes.
5.  Are tools (e.g., data validators and converters) available for the 

standards, or do they have to be developed?

  Yes.
6.  How frequently will the standards update?

  BIDS is a fairly mature standard. It is currently on version 1.2.1.
7.  Do the standards require spatial transformations?

  Yes.
8.  How many file formats will be supported?

  Digital Imaging and Communications in Medicine used.
9.  Is there an open file format available?

  Yes. Neuroimaging Informatics Technology Initiative.

H

J.2 Regulatory 

and Legislative 

Environment

> regulation = 
increased cost

1.  What laws and regulations cover the data and operation of the 

resource?

  HIPAA.
2.  Is the resource covered by an open-records act?

  Not applicable.

L

J.3 Governance

> outside 
governance = 
increased costs

1.  How are decisions regarding data use managed? 

  Not applicable, no use outside the laboratory (i.e., no collaborators).
2.  Is a formal data-sharing agreement in place among the collaborators?

  Not applicable.

L

TABLE 6.2 Continued
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Decisions made in the project planning stage, and the information resources available to the researcher during 
that planning, can influence the overall project costs, the study outcomes, and future data curation and preserva-
tion. For example, given that data might be transferred to a repository that has submission requirements, additional 
data preparation costs may be incurred. If the forecaster/researcher uses no formal data management software in 
the laboratory, a decision can be made to include additional costs in the budget to account for the effort. Funds 
could be requested for a data manager or wrangler to manage the data and set up the necessary infrastructure to 
adhere to data formatting standards. Automated pipelines could also assist transfer to a State 2 active repository 
on a regular basis. Cost to implement those pipelines may be greater up front but could also save many human 
hours over the duration of the project. 

Because an individual forecaster, in this case a primary research environment researcher, cannot be responsible 
for estimating all costs for data management in perpetuity, the goal in applying the forecasting framework should be 
to estimate costs incurred during data acquisition and stewardship while they are in the researcher’s control (i.e., the 
costs incurred while data are in State 1). However, the forecaster needs to be aware of requirements for long-term 
stewardship and be ready with the resources required (e.g., time, money, personnel) to prepare data for transfer to a 
State 2 (active) repository if to be shared or, if not, to a State 3 repository for long-term preservation. 

Step 6. Estimate the costs for relevant cost components based on the characteristics of the data and 

information resource.

In a quantitative cost forecast, the costs for the activities in the previous section would be quantified for each 
of the major cost components (e.g., Box 3.2).  As noted previously in the report, quantifying costs is dependent on 
numerous case-specific factors such as the objectives for the information resource, the personnel and infrastructural 
resources available to the forecaster, and host institution requirements. In a real cost forecast, all of these would 
be considered to arrive at monetary values.

REFERENCE
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In this report, a disruptor is anything that may cause radical changes to the ways research is conducted and data 
are collected, used, archived, or preserved. Disruptors may be positive or negative and may raise or lower the cost 
of data management and preservation. This chapter considers some of the future developments and disruptors in 
data technologies and data science that may reduce or increase data costs in the next 5 to 10 years. Recent examples 
of disruptors affecting biomedical research are the widespread use of high-resolution imaging instruments (e.g., 
electron microscopes [Courtland, 2018; Guzzinati et al., 2018]); the decreasing cost of sequencing, the rate of which 
even surpasses Moore’s law (Wetterstran, 2019); and the advent and accessibility of cloud storage and computing. 
The use of high-resolution imaging instruments alongside the decreasing cost of sequencing has resulted in the 
ability to collect huge volumes of data, while cloud computing has resulted in new ways to store, aggregate, and 
analyze data. Cloud computing, however, has also resulted in new or different costs that many researchers do not 
yet fully understand. Those costs must be considered in the context of potential gains in capacity or functionality.

There is no way to fully anticipate factors that might radically affect the costs of future data preservation, 
archiving, and use. This chapter focuses on certain emerging challenges spanning different dimensions, including 

• biomedical data volume and variety,
• advances in machine learning and artificial intelligence (AI),
• changes in storage technologies and practices,
• future computing technologies,
• workforce-development challenges, 
• legal and policy disruptors, and 
• human-subjects research.

This illustrative list gives examples of disruptors likely to affect costs of data management and use in the next 
5 to 10 years. Although quantifying the contributions of these disruptors to long-term data-preservation costs is 
beyond the scope of the study committee’s charge, these issues warrant attention so that associated cost changes 
can be anticipated and minimized or exploited to some extent. 

7

Potential Disruptors to Forecasting Costs
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BIOMEDICAL DATA VOLUME AND VARIETY 

The biomedical sciences have generated steady streams of data for decades, but there have been sudden orders-
of-magnitude increases in data collection in particular domains. Over the past decade, emerging and evolving data 
from sources such as next-generation sequencing, correlated light and electron microscopic imaging, and multiscale 
high-performance computing simulations have led to large increases in the volumes of data that can be collected 
and have pushed biomedical research into the realm of “big data.” There are many centralized core facilities serv-
ing research communities, such as the National Center for Microscopy and Imaging Research,1 that can produce 
extremely large live data feeds. Many researchers and laboratories have already acquired or will acquire volumes 
of data that cannot, at present, be completely analyzed. 

Imaging tools are undergoing a revolution, and new microscopy technologies produce ever more detailed 
images, leading to a data-size explosion. Both large centers and conventional research laboratories are exploring 
imaging regimes that cross fundamental length scales: from tens of centimeters to angstroms. These image data 
sets are on the order of tens of terabytes per project and accumulate petabytes of data per year per instrument. 
The scales of such data are critical to advance further understanding of key biological processes. Other areas of 
biomedical research are experiencing similar growths in data volume, including genomics, where next-generation 
sequence data are introducing unprecedented challenges in data management, organization, and analysis. Electronic 
medical records and small data collected at individual laboratories that must be aggregated with existing data sets 
also present challenges to efficient data analysis in the quest for actionable knowledge. 

In the foreseeable future, the biomedical research community will experience spurts in data growth that will 
tend to either (1) add a dimension to the data space or (2) extend a dimension by an order of magnitude. This 
growth may be related to, for example, the following:

• Gene sequencing. Moving from sample-level sequencing, to cell-level sequencing (representing a new 
dimension), to “cell in context” sequencing (representing yet another new dimension—the cell location 
in terms of both its position in the body and surrounding cell types and other structures). The shift from 
per-sample sequencing to per-cell sequencing results in 1,800 times as much data per subject (Ameur et 
al., 2011).

• Population size (extending a dimension). Moving from a sample size of 100 or 1,000 to 1,000,000.
• Time dimension. Images of the same cell or piece of tissue over time, or gene sequencing the same individual 

cell or tissue at multiple points in time (e.g., to establish a “healthy” baseline and then watch precursors 
of disease develop).

• Sequencing depth. Going from a coverage depth (i.e., how many times, on average, each location in a 
sequence of interest is sequenced) of 30 times or so to 100 times and more to find rare transcripts or mutants 
(such as in RNA-Seq).

• Reanalysis of existing images or reimaging samples. New techniques or methods allowing greater resolu-
tion or precision.

The ever-expanding data-collection capability continues to impose challenges to biomedical science applica-
tions owing to its volume, velocity, variety, veracity, and variability (e.g., Ristevski and Chen, 2018) but promises 
transformative advances. However, the size and complexity of those data sets are overwhelming existing repository 
structures and are pushing the boundaries of the current capabilities of technologies to access, manage, integrate, 
and analyze them at scale. Increasingly, biomedical data are too voluminous for a single platform, too unstructured 
for a traditional database system, or too continuous to store for analysis at a later time. More than ever, such chal-
lenges or possible cost increases associated with big data must be considered in the context of additional value 
and novel opportunities for scientific understanding at different scales.

1  The website for the National Center for Microscopy and Imaging Research is https://ncmir.ucsd.edu/, accessed December 13, 2019.
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ADVANCES IN MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE 

The above-mentioned volumes of data shifted the bottleneck in biomedical sciences from data availability 
to the generation of insight from data. This shift has resulted in increased use of the newest advances in machine 
learning and AI in biomedical sciences. A simple search for the term “machine learning” in medical literature 
on Semantic Scholar2 reflects this increasing use. Continuous automatic annotation of data and metadata gen-
eration is one growing use of machine learning. Any biomedical researcher using big data needs to be able to 
reduce the size and complexity of the data while adding more meaning and value to them with the addition of 
richer metadata. This trend is already evident in many parts of the field (Shah et al., 2019; Zhu et al., 2019). 
Automated metadata generation using techniques that allow regular updates to volumes of data increases the 
need for active and more costly storage approaches. Automated data analysis requires programmatic access to 
data. Increased use of services that enable data search and access as well as findable, accessible, interoperable, 
reusable (FAIR), and responsible use will likely result in the need for additional or new human resources and 
talent development.

AI offers the potential to lower costs by automating ethical and regulatory processes. There is growing use 
of deep learning as an approach to AI in biomedical science, although many challenges, including interpretability 
(Xu and Jackson, 2019), remain. This creates the need for AI-ready solutions and systems in which data curation 
and storage are no longer independent of their analyses. For instance, the Broad Institute has developed and 
tested a Data Use Oversight System (DUOS)3 meant to reduce the person-hour costs of data access committees. 
These committees are staffed by highly trained professionals who consider requests to access data for secondary 
research purposes in light of the restrictions on data use that are built into consent forms or other governance 
commitments. DUOS semi-automates this process by building ontologies into both consent forms and secondary 
data access request forms. Other costs associated with responsible data use and sharing might be lowered through 
use of automated processes that have the additional benefit of placing more control over data in the hands of 
participants—for example, an automated process by which participants with revised preferences for secondary 
use or sharing of their data could unilaterally change the access policies that apply to their data and could lower 
costs associated with manual tracking and updating of participant preferences.

On the other hand, AI has the potential to be a negative disruptor that drives up costs associated with ethics 
and regulation by upending assumptions about which data are nonidentifiable4 or deidentifiable.5 For instance, AI 
makes it easier to re-identify facial and cranial images. There are also concerns about AI-based hacking, upending 
assumptions about the security of data. 

Changes in Storage Technologies and Practices

Biomedical big data from many sources today place different constraints on data management, from their 
acquisition and movement, to storage and access. Greater constraints on physical data storage are posed by the 
need for bandwidth and computing to move and analyze data. The doubling of storage capacity represented by 
Kryder’s law (Walter, 2005), which has slowed down over the past decade owing to different approaches to stor-
age and cloud computing, is likely to increase storage costs over time. These changes could easily affect free and 
infinite storage by adding charges to computing and networking around the data, most of which are not built for 
multicloud solution scenarios.

As discussed in the previous section, there will likely be a shift away from merely storing data toward 
approaches that allow continuous extraction of value from data using machine learning and AI techniques. This 
shift will affect raw data coming off the sources in active and passive archives and include models and knowledge 

2  The website for Semantic Scholar is https://www.semanticscholar.org/search?q=%22machine%20learning%22&sort=relevance&fos= 
medicine, accessed December 13, 2019.

3  The website for the DUOS is https://duos.broadinstitute.org/, accessed December 13, 2019.
4  See 45 C.F.R. § 46.102(f)(2).
5  See the Health Insurance Portability and Accountability Act of 1996, Pub. L. No. 104-191, 100 Stat. 2548 (1996).
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generated from data. Connections to open knowledge networks that enable the search and access of data generate 
a new set of requirements around how data are stored and used.

These factors have influenced a major shift in how data storage has been managed in the past decade, and 
new technologies will likely continue to stress the capabilities of data storage systems. Today’s storage systems are 
multifaceted and software driven in a way that optimizes storage performance for various uses. Next-generation 
storage systems are being built around AI-integrated approaches that enable users to monitor storage performance 
for its use rather than bitbucket costs. Although the cost implications of these approaches and their use are not 
trivial and are difficult to estimate for scientific users, the storage systems have already led to major cost-cutting 
efficiencies for enterprise use. Software-defined and hybrid storage approaches (Donald, 2019) are also potential 
areas that will disrupt how scientific data are stored and managed as AI-ready entities.

Future Computing Technologies

In addition to the disruption in data generation and intelligent value-driven storage, the analysis and computing 
costs of data will have a large role in the cost structure over the next 5 to 10 years. Further advances in moving 
computation to data are likely to continue to shift the cost of data, from download and storage (e.g., from the 
cloud) and toward computing. New cloud cost models will be the determinant factor for the effects of this shift 
on the overall cost of data. This concept might be encapsulated as a shift away from data sets to data streams. In 
addition, emerging edge computing6 architectures are expected to disrupt central repository-driven computation 
and privacy strategies to a more distributed mode for the generation of insight from data, especially on biomedical 
data sensed via “Internet of Things” devices that capture data in real time for health monitoring and alert-generation 
scenarios. Last, the increasing number of non–von Neuman architectures and machine learning accelerators will 
require careful consideration regarding co-locating data and computing based on the models that need to make 
use of co-dependent composable services at the digital continuum. 

DEVELOPMENTS WITH POTENTIAL COST SAVINGS 

Of all existing technologies, a few may reduce costs within shorter time frames. These range from new 
approaches to managing cloud use to analyzing data through service and managing the integrity of data. A few 
examples include the following:

• Scalable search approaches and libraries that can combine many types of searches on heterogeneous data 
systems across distributed storage platforms. Use of such searches could have implications for costs associ-
ated with metadata. Elasticsearch7 is an example of a service offering this type of capability.

• Blockchain is a chain of timestamped hashes of information that enable a number of applications to pre-
serve data integrity and ownership as well as lead to a new credit-economy discussion around data (e.g., 
exemplified by LunaDNA8). The potential uses for this technology in the biomedical sciences range from 
patient-controlled data access to researchers managing who has access to their data and for how long.

• Open Knowledge Networks are community efforts to develop national-scale data infrastructure (see, e.g., 
OSTP, 2018). Universities, funders, and companies are working on knowledge networks that would provide 
greater and richer access (e.g., semantic) to data through more accessible interfaces (e.g., natural language). 
Arguably, such networks have not yet achieved widespread adoption, but they merit some examination for 
potential impact on costs.

• The National Science Foundation (NSF) CloudBank is a collaborative NSF award (with a $5 million grant)9 
to make accessing the cloud easier and less costly. It aims to be helpful for many stakeholders, including 

6  In edge computing, data are first processed at a center geographically closer to the data sources. The resulting smaller or compressed 
information is then sent to the cloud for computing. This process reduces latency periods.

7  The website for Elasticsearch is https://www.elastic.co/, accessed December 13, 2019.
8  The website for LunaDNA is https://www.lunadna.com/, accessed December 13, 2019.
9  The website for the CloudBank award is https://www.nsf.gov/awardsearch/showAward?AWD_ID=1925001, accessed December 13, 2019.
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LEGAL AND POLICY DISRUPTORS

The legal and policy environments—and the evolution of those environments—are another source of potential 
disruption that may affect costs. Some challenges to forecasting the costs of data curation, dissemination, and pres-
ervation arise as unintended consequences of U.S. science policy. For example, the NSF policy against cost sharing, 
intended to provide a level playing field for researchers from differently resourced institutions, may obscure cost 
information about data preservation and access that occurs after or as an adjunct activity to the central research 
activity. Federal Statistical Research Data Centers (FSRDCs) are an important dissemination mechanism for a set 
of confidential, high-value, population-level biomedical data produced by the National Center for Health Statistics 
and other statistical agencies. FSRDCs are supported by universities (“institutional partners”) and member federal 
statistical agencies. There are currently 30 secure enclaves across the United States, through which thousands of 
researchers access data. It is reasonable for science and health agencies to ask about costs to provide access via 
such data centers. NSF has provided funding for most of these enclaves, but that funding is explicitly intended 
to cover start-up costs and requires ongoing support from institutional partners or individual, externally funded 
research projects. However, NSF, in pursuit of its goal of fair access to external funding, has decided to not require 
applicants to demonstrate their plans for financial sustainability (and in fact prohibits prospective research data 
centers from including those plans in funding proposals). Thus, neither NSF nor the federal statistical agencies 
has any information about the ongoing costs to the institutional partners of maintaining this data-dissemination 
infrastructure—no one knows how much it costs to disseminate these data. This situation could become an addi-
tional disruptor to sustainability, especially as data and data infrastructure become increasingly large and complex. 

Other disruptors generated as a result of changing legislation and policy are related to data privacy. Illustrative 
examples are developed in the next sections concerning, respectively, when data are considered to be “identifi-
able” and when and under what circumstances it is permitted or seen as appropriate to collect, store, or share data. 

Data Identifiability

Current regulatory definitions of data and tissue “identifiability” are volatile. The Common Rule is a set of 
regulations in place since 1991 that applies, directly, to HSR conducted or funded by most federal departments and 
agencies and, indirectly, to virtually all academic (and some industry) HSR by institutional policy. It defines data 
as “identifiable” when “the identity of the subject is or may readily be ascertained by the investigator or associated 
with the information” (45 C.F.R. § 46.102(f)(2)). This definition of (non-)“identifiable” under the Common Rule 
is critical to how data (and tissue) are collected, preserved, and accessed. (The distinct but related concept of “dei-
dentified” under the Health Insurance Portability and Accountability Act [HIPAA] carries similar consequences.) 
Research with existing data and tissue (whether originally collected for research, clinical, administrative, or other 
purposes) that meet the Common Rule’s definition of “nonidentifiable” does not involve “human subjects” as 
the Common Rule defines that term, and therefore such research falls outside of the Common Rule, including its 
default rules requiring Institutional Review Board (IRB) review and informed consent. The rationale behind this 
policy was that the main risk of research that involves neither intervention nor interaction but only analysis of 
existing data is informational privacy; analysis of data that cannot be linked to an individual’s identity does not 
pose such a risk. Historically, IRBs and other governance and compliance actors have considered genomic data 
not to constitute “identifiers” in and of themselves, without being linked to additional information.

From 2011 to 2017, federal regulators engaged in public notice-and-comment rulemaking to revise the 
Common Rule, whose substance had not been significantly changed since 1991. Among the most controversial 
proposals was altering the definition of “human subject” to include both identifiable and nonidentifiable bio-
specimens. That change would have defined research using existing tissue samples that were stripped of identifiers 
as HSR and therefore subject to IRB review and consent. 

The rationale behind the proposal was twofold. First, a series of academic reidentification “attacks” dem-
onstrated the possibility, under certain circumstances, of reidentifying genomic and a wide variety of other data 
(e.g., consumer and geolocation data) that were considered to be nonidentifiable (Narayanan and Shmatikov, 2008; 
El Emam et al., 2011; Gymrek et al., 2013; De Montjoye et al., 2013; Gambs et al., 2014; De Montjoye et al., 
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2015). These attacks cast doubt on the assumption that research with data considered to be nonidentifiable under 
the Common Rule does not implicate participant privacy. Second, some commentators were of the opinion that 
people have autonomy interests in controlling the use of their data for various projects, even if those data are never 
associated with them as individuals (Javitt, 2010; Mello and Wolf, 2010; Tarini and Lantos, 2013).

The proposed rule would apply only prospectively, so that researchers would not be required to recontact and 
consent those whose tissue comprises existing biobanks. Nevertheless, the research community was largely opposed 
to the proposal; in fact, every stakeholder category failed to receive public comments to support the proposal. As 
a result, the revised Common Rule does not include the proposed redefinition of identifiability. 

The current Common Rule does, however, require federal departments and agencies to reconsider, within 
the first year of the new rule going into effect, and at least once every 4 years thereafter, both the definition of 
“identifiable” data and biospecimens and whether any “technologies or techniques” applied to biospecimens, such 
as whole-genome sequencing, should be considered to generate data that are necessarily identifiable. If regulators 
determine there is a need to alter the definition of “identifiable,” then agencies are to develop interpretive guid-
ance to achieve this goal. Similarly, if regulators determine that technologies determined to necessarily gener-
ate identifiable data shall be placed on a public list following a public notice-and-comment period. Under such 
circumstances, agencies could then issue guidance recommending that limited IRB review and broad consent be 
required for research involving those technologies without public notice or comment (Lynch and Meyer, 2017). 

Agency guidance is not legally binding and, presumably, as with the proposal to change to the Common Rule 
itself, it would only apply prospectively. Still, processes developed or modified, implemented, and relied on for the 
collection, archiving, and secondary use of nonidentifiable data would likely be deemed no longer fit for purpose 
in a new regime under which best practice is to consider those data identifiable. New processes would need to be 
developed and implemented at both the State 1 (researcher) and State 2 (active repository) levels, which are costly 
endeavors. (State 3 [long term] is not included because the Common Rule applies only to research use of data to 
contribute to generalizable knowledge, not to the mere act of storing it. To the extent that State 3 does not include 
access as a key component, changes to the Common Rule’s understanding of identifiability would not apply directly.) 
And because agency guidance development is not subject to the time schedules of public notice-and-comment 
rulemaking, regulated entities might have relatively little notice.

Permissible Data Collection, Storage, and Sharing

In reaction to events such as the Cambridge Analytica scandal (see Davies, 2015), regulators sometimes enact 
data protection laws that impose substantial burdens on regulated entities and do not always consider the impact 
on research. For instance, the EU General Data Privacy Regulation (GDPR),10 which went into effect on May 25, 
2018, enacted sweeping changes in how nonanonymous personal data, including data that might immediately or 
eventually be used in research, may be collected, stored, and disseminated. The GDPR has a global impact, apply-
ing to data collected from individuals residing in the EU at the time of data processing.

To date, the United States has had no such comprehensive privacy law. Instead, it has a patchwork of federal 
and state laws, such as HIPAA, the Common Rule, and the Family Educational Rights and Privacy Act.11 The 2018 
California Consumer Privacy Act (CCPA)12 covers individual, identifiable data and went into effect on January 
1, 2020. Although the CCPA (unlike the GDPR) obligates only for-profit businesses, and specifically excludes 
data that are already subject to federal privacy laws (e.g., HIPAA) and information collected for a clinical trial 
subject to the Common Rule, biomedical researchers increasingly collaborate with for-profit businesses around 
non-HIPAA data, including consumer wearables, mobile health apps, and genetic data from direct-to-consumer 
testing companies. The anticipated impact on research of the GDPR and the CCPA are approximately the same: 
both contain various exceptions for research (e.g., the right to erasure, or so-called right to be forgotten, has only 

10  The website for GDPR is https://gdpr-info.eu/, accessed December 13, 2019.
11  See 20 U.S.C. § 1232g; 34 C.F.R. Part 99.
12  See Assembly Bill No. 375, an act to add Title 1.81.5 (commencing with Section 1798.100) to Part 4 of Division 3 of the Civil Code, 

relating to privacy.
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limited applicability to research data) while still regulating (some) research activity, and in both cases the actual 
impact on research remains unknown. In April 2019, U.S. Senator Edward J. Markey introduced into Congress 
the much more sweeping Privacy Bill of Rights Act13 that closely resembles the GDPR and applies to “any person 
that collects or otherwise obtains personal information.” 

CHANGING UNDERSTANDING OF HUMAN-SUBJECTS POLICY

When research data are about human beings, a variety of laws, policies, and norms are likely to apply through-
out the data life cycle. Compliance with each of these laws, policies, and norms has associated costs, often in the 
form of administration, tracking, and training. In State 1 (the primary research environment described in Chapter 2), 
data are captured initially through interaction or intervention with humans for research use, existing data may 
be collected for new research or nonresearch use (e.g., clinical or administrative purposes), or a research project 
might include both kinds of data capture. 

Researchers may already be familiar with HSR activities and their legal requirements, as researchers bear 
at least some of the associated burdens. These activities include HSR ethics training for everyone engaged in 
the research and a variety of prospective reviews of the research protocol. IRBs review a research proposal or 
determine that it is either exempt HSR or not HSR (e.g., because it involves analysis only of existing data that 
include no personal information that could lead to the identification of an individual—nonidentifiable data). Other 
reviews might also apply. Data subject to HIPAA14 might require a review by a Privacy Board (if the IRB is not 
also acting as the covered entity’s Privacy Board) and a review by an institution’s information security office. If 
research involves consent from or notice by the human subject, those materials and processes must be developed 
and, often, pretested for participant comprehension or operational feasibility. In some cases, consent processes 
will require creating new institutional infrastructure that has its own costs. For example, a biobank (i.e., a type of 
repository for biological samples) that uses a “front door” opt-in consent will have to train the relevant staff to 
solicit such consent. That consent process will then have to be integrated into the clinical workflow, and patients’ 
enrollment status will need to be recorded and perhaps incorporated into the electronic medical record. Successful 
large-scale research projects such as biobanks often involve potentially extensive and costly participant incentives 
or engagement activities (e.g., “results” might be provided to participants for engagement or other purposes, or 
something else of value might be provided). Innovative consent methodologies may also carry costs. For instance, 
some large research projects—especially those such as biobanks, where data are collected under broad, rather than 
study-specific, consent—take a more or less “dynamic” approach to consent, in which participants are invited to 
change the way their data are used in response to changing circumstances. The ongoing communication of the 
project(s) status to participants and inviting and implementing their evolving consent preferences requires a signifi-
cant investment of time and, to varying degrees, material costs. Another kind of consent—tiered consent—enables 
different participants to choose the degree of data collection, use, or sharing they authorize. Tiered consent may 
involve costly tracking to ensure adherence to those heterogeneous preferences. State 1 HSR activity costs are 
direct costs charged to the funder, while activity costs associated with accessing data in States 2 and 3 are indirect 
costs that are typically at least offset by grant funding.

The costs of HSR activities associated with State 2 (i.e., active repository) acquisition, aggregation, and sup-
port for access are less visible to researchers because they often are externalized onto repositories. As a result, 
those costs are more difficult for researchers to anticipate. When data are transferred to a repository, they may 
need to be deidentified (i.e., personally identifying information removed), consistent with HIPAA requirements, 
or otherwise anonymized or pseudonymized. Participants generally have a right to withdraw their data from a data 
set, which requires the repository to remove those data and update related resources as necessary. If secondary data 
use is restricted, for example, by the terms of consent, a data use agreement, prospective review (e.g., by a data 
access committee), or auditing might be required to enforce those restrictions. Often, some data in a data set are 
more sensitive than others, such that tiers of data access among users is necessary. The least sensitive data may be 

13  U.S. Congress, Senate, Privacy Bill of Rights Act, S.1214, 116th Congress, introduced April 11, 2019.
14  Health Insurance Portability and Accountability Act of 1996, Pub. L. No. 104-191, 100 Stat. 2548 (1996).
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openly accessible to any users, while other tiers of data are available only to certain people, under certain circum-
stances, or for certain purposes. Determining criteria for each tier of access and sorting the data accordingly could 
be laborious and therefore incur cost. The more sensitive the data, the more repositories might want to develop 
sandboxes15 or enclaves where researchers can access and analyze those data but not remove them. The develop-
ment of sandboxes and enclaves, and their periodic update in light of new research purposes or new technological 
requirements, imposes costs. A good example of many of these mechanisms is the National Institutes of Health 
(NIH) All of Us Research Program,16 which plans to use three tiers of access, identity verification, a researcher 
code of conduct, voluntary prospective review of sensitive projects by a Resource Access Board, a “data passport” 
(to allow access to registered or controlled-access data sets) and sandbox, and retrospective data use audits, to 
preserve data privacy and security and participant trust. Merely developing these governance mechanisms required 
significant person-hours before actual data access began.

In State 3 (long-term preservation), the primary HSR activity is ensuring that data placed in a long-term archive 
continue to adhere to current legal and governance requirements. For instance, data considered or perceived as 
nonidentifiable when generated may later become identifiable (e.g., because additional information about the data 
sources becomes available or reidentification techniques are developed) or are redefined as identifiable under new 
laws or policies (see the section “Legal and Policy Disruptors” in this chapter).

OTHER POTENTIAL DISRUPTORS

There are many other potential disruptors that are not discussed in this report but that could affect long-term 
costs within the next 5 to 10 years or beyond. Examples include

•	 open data practices;
•	 long-term resilience of technology production; 
•	 evolving requirements for cybersecurity (e.g., surreptitious cyberattacks to corrupt data; data misuse and 

theft that undercut support of repositories);
•	 influences of the FAIR data principles, open science, and Responsible Data movements, particularly of 

increasing acceptance and adoption of standards;
•	 transfer learning;
•	 investigating connected data that cross spatial and temporal scales and modalities;
•	 transitioning from needing specialized expertise to providing self-contained tools and resources;
•	 risks associated with third-party vendors (particularly if they capture a large share of the biomedical data 

market); and 
•	 natural disasters that disrupt technology production in the long term.

Although the committee did not deliberate on the effects of those disruptors, they may warrant further atten-
tion by the biomedical research community.
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The cost-forecasting framework presented in this report directs the forecaster through a series of questions 
related to the cost drivers identified in Chapter 4 and summarized in a template in Appendix E. The framework, 
if used properly, could drive an analysis of the infrastructure and management activities needed at various points 
in the data life cycle, and the expertise that will need to be engaged. Understanding personnel needs is at least as 
important as understanding infrastructure costs because personnel costs associated with data and data platform 
management are likely to dominate total costs.

It is not part of common practice to think about data management budgets beyond the current funding period; 
however, creating a research and data environment that allows long-term, efficient, and cost-effective data dis-
covery and data reuse requires long-term planning. That planning, in turn, requires that all involved in the scien-
tific endeavor—researchers, research institutions, data curators and managers, data resource hosts, and funding 
institutions—embrace long-term planning approaches, regardless of the state of the data platform (i.e., primary 
research, active repository, or long-term preservation) being managed. This chapter presents strategies, actions, 
and advances that could be applied by members of the biomedical research community to create an environment 
conducive to long-term cost forecasts. The reader will need to determine how best to apply these based on his or 
her role in the scientific endeavor and on the data environment in which he or she works.

STRATEGIES

Efficient long-term data management is more likely if data resource managers, cost forecasters, and institu-
tions that support them apply the strategies presented below (in italics). 

•	 Create data environments that foster discoverability and interpretability through long-term plan-

ning and investment throughout the data life cycle. Data sharing is not equivalent to data reuse, and 
developing processes that allow efficient data preservation, archiving, and access to facilitate data reuse 
could benefit scientific discovery. 

Advances in biomedical and information sciences result in larger and more complex data sets. The  growing 
volumes of complex data exacerbate the challenges already faced by those who generate, use, or manage data. 
Members of the U.S. biomedical research community understand that scientific discovery is a key benefit of 

8

Fostering the Data Management Environment
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data preservation, aggregation, and access. That community increasingly advocates for the sharing of data to 
advance the scientific enterprise (e.g., NASEM, 2018). However, it is data reuse—not just data sharing—that is the 
objective. Making data discoverable and interpretable, and therefore reusable, requires forethought and sustained 
long-term investment.

•	 Incorporate data management activities throughout the data life cycle to strengthen data curation 

and preservation. Up-front costs may be increased, but data value may also increase, and the overall cost 
of research may be reduced.

There is a need for a cultural change within the biomedical research community related to data management. 
Curation activities are often left to the end of the funding period when few resources (or interest, time, or energy) 
remain. Instead, long-term data curation and data management needs ought to be considered throughout the course 
of research and the management of information resources. Data management and curation needs are vital in all 
data states, including during primary research. 

•	 Incorporate the expertise and resources needed to create and curate metadata throughout the data 

life cycle, and in the transition between data states into the cost forecast. Data discoverability and 
reusability depend on adherence to community-accepted data and metadata standards. 

The potential value of data will not be realized without strategic curatorial decisions by knowledgeable 
experts resulting in metadata that facilitate data discoverability and interpretability. That expertise needs to be 
anticipated and included in project budgets. Understanding the expertise and resources needed to create and curate 
metadata during the different data states and in the transition between states is vital and needs to be supported 
and encouraged by all within the biomedical research community, including institutions and funding agencies. At 
the individual-institution level, data-preservation efforts more likely will succeed if, for example, researchers are 
involved in decision-making and preservation efforts. Closer interactions between data librarians and researchers 
would result in a more efficient enterprise.

•	 Weigh the benefits, risks (e.g., data loss), and costs (both up-front and anticipated) of data stor-

age and computation options before selecting among options. A service may look attractive from an 
immediate-financing perspective, but service-provider strategies require vetting and verification, including 
examination of exit or transition strategies and costs. Long-term costs need to be informed by a provider’s 
risk-management strategies.

Substantial attention to confidentiality, ownership, and security; to standards, regulatory, and governance 
concerns; to access control; and to the various disruptors described in Chapter 7 will always be required, regard-
less of storage and computational options chosen. The risk-management strategy of service providers, and of any 
evolution that strategy undergoes with time, needs to be understood and addressed. The institution managing an 
information resource is not absolved from information technology responsibilities if commercial vendors are 
chosen to provide services.

ACTIONS

Individuals and select institutions within specific biomedical sectors may collaborate to increase the efficiency 
of data management efforts, but there is little guidance available from funding agencies and the institutions that 
support biomedical data resources on practices for long-term management and cost forecasting for the biomedical 
research community. The actions described below, especially if taken by funding agencies and institutions that 
support data resources, could expand the capacity of data producers and managers to make sound management 
decisions and cost forecasts.
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•	 Explicitly recognize the value of State 2 data resources (i.e., active repositories) to the enhanced cura-

tion, discoverability, and use of data. This recognition is absent among the funding entities, researchers, 
and institutions supporting research, most of which apply the more traditional data management approach 
of transitioning data directly from the primary research environment (i.e., State 1) to long-term archiving 
(i.e., State 3). 

Many recent advances in biomedical research have been possible because of new technologies that allow 
efficient aggregation, search, and compute of data in ways previously not possible. It is the State 2 environment 
in which analytic tools and data can be brought together to allow the sophisticated data manipulation necessary 
to produce those advances. However, creating State 2 platforms implies investments in ingesting and validating 
data, and the number of cost drivers affecting State 2 platforms is greater than for State 3 platforms. Developing 
and operating a sophisticated State 2 aggregating platform requires an organization, developers, user-interface 
 designers, training and documentation, help desks, and community building. Current storage costs (even total 
storage costs) are only one—and, in many cases, probably not the dominant—factor in total system costs. Further, 
many researchers consider preparing data for public sharing (e.g., moving data from the State 1 primary research 
environment to a State 2 active repository and platform) to be burdensome and a task that provides little personal 
benefit. The biomedical research community needs to recognize that the long-term benefits of properly support-
ing State 2 data resources outweigh the costs and short-term burdens of establishing the resources and preparing 
data for them.

• Structure cost forecasts for State 2 resources around communities and research programs rather 

than individual research efforts. Because State 2 resources serve communities of researchers, it may 
not be appropriate to allocate the costs of managing data in a State 2 resource back to the individual data 
contributor. 

State 2 platform costs generally do not track data from an individual researcher or research project, and the 
present study committee is not able to identify a good analysis of fixed versus incremental costs associated with 
individual streams of data contributed to active repositories. The committee was unable to find good examples 
of how State 2 data management costs—such as those incurred to bring data into compliance with community-
developed standards—might be allocated back to the individual researchers who contributed the data. Because 
communities of researchers are involved, cost forecasting in this setting is better structured around communities 
and research programs rather than individual research efforts.

• Support standardization efforts, including developing tools and methodologies to estimate the cost 

of standards development, encouraging the use of those tools and standards as part of the funding 

programs where appropriate, and explicitly supporting metadata preparation. Support could take the 
form of funding and the provision of tools. Issuing clarifying language about the use of federal funds for 
data preservation beyond the performance period of the project that collected them would also help assist 
in the development and promotion of the use of community standards and metadata preparation.

As has been stated throughout this report, data that do not comply with standards or that have not been docu-
mented with appropriate metadata are of lesser value because they cannot be easily aggregated with other data 
or, more simply, may not be able to be found or understood. Existing incentives for researchers to deposit data in 
useful formats when standards exist are weak, and requirements to do so lack enforcement. Where no standards 
exist, data may be collected but then must be retrofit to comply with standards that are established. This process 
may occur years after the data were collected and possibly long after the supporting research grant has run out, 
and the last expert has moved on to other efforts. Few mechanisms exist to pay for retrofitting data, and perhaps 
little interest or incentive to do so exists on the part of the researcher, as she may have moved on to other projects 
or have little training in data management. Even if the researcher could anticipate and accurately forecast the cost 
of compliance, grants are not structured to allow money to be “held aside” until standards are established. Fund-
ing agencies can assist by contributing to tools for estimating the cost of standards development and metadata 
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preparation, by explicitly funding metadata preparation, and by issuing clarifying language about the use of federal 
funds to preserve data beyond the end of the grant. 

• Identify incentives, tools, and training for adopting good data management practices, including 

cost-forecasting practices, which facilitate sustainable long-term data preservation, curation, and 

access. Such activities would benefit the entire biomedical research community, including the institutions 
and funding entities that support research. To support these endeavors, funding entities need to better 
understand research-community needs, help the community to define desired outcomes, support training, 
develop realistic and actionable metrics for success, and provide near-term incentives for success.

The biomedical research community, including the institutions and those that fund research, needs to provide 
incentives for adopting good data management practices, including good cost-forecasting practices, that facilitate 
sustainable long-term data preservation, curation, and access. Researchers often lack the skills needed for efficient 
and effective data management, which translates to a lack of meaningful management and good data stewardship, 
and little understanding of the real costs of effective management or of how to forecast them. Based on interactions 
with various stakeholders during the conduct of this study, data management training for researchers is needed 
and desired. Training could help change the biomedical research culture so that good data management and cost 
forecasting become the norm in responsible research. 

An incentive for researchers to more accurately account for the uncertainties associated with sharing data and 
future reuse might be for funders to place greater emphasis on such accounting in data management plans (DMPs) 
in grant proposals (discussed later in this chapter). Researchers would see an immediate benefit (i.e., research 
funding is contingent on action), and the prompt to take action is coming when the researchers are establishing 
their processes for research conduct (thus providing a timely prompt). But clear guidance for the researcher is 
also necessary for DMPs to be meaningful. For example, requests for application for funding sometimes seem to 
require new data resources to be all things for all stakeholders and even include potentially contradictory require-
ments. Incorporating better-directed guidance and training of individuals in data management would increase the 
likelihood of the desired outcomes.

Publishers and journals could also provide incentives, for example, by requiring data citations. Efforts to 
implement formal data citation across publishers (Cousijn et al., 2018; Fenner et al., 2019) are gaining traction, 
and most publishers at least informally accept data citations, although fully machine-readable data citations are 
still rare. Fully actionable data citations, however, require the infrastructure of a State 2 active repository or State 3 
long-term preservation archive to ensure compliance with “findable, accessible, interoperable, and reusable” 
data principles (Wilkinson et al., 2016). Thus, by requiring data citations, publishers and journals can motivate 
 researchers to use such infrastructure more consistently and possibly earlier. 

Data management capacity might be increased by incorporating greater detail in, for example, training offered 
through the Collaborative Institutional Training Initiative (CITI) Program’s Responsible Conduct for Research 
modules.1 Requiring independent proof of training as a requirement of receiving awards might improve capacity, 
as might encouraging multidisciplinary training much like that offered through the Integrative Graduate Educa-
tion and Research Traineeship (IGERT)2 program at scale, perhaps through multiagency support. Research on the 
normative outcomes of any increase in benefits resulting from improved data management skills could inform 
future training efforts.

Another incentive for researchers to participate constructively in data management, and especially State 2 
resource planning, is providing them the opportunity to influence a superior computational environment. A data 
science platform could support complex research environments that free the researcher to focus on the science rather 
than on data collection and management. This capability could effectively reduce a State 1 environment to data 

1  The website for the CITI Program’s Responsible Conduct for Research modules is https://about.citiprogram.org/en/series/responsible-
conduct-of-research-rcr/, accessed December 19, 2019.

2  The website for the IGERT award is https://nsf.gov/awardsearch/showAward?AWD_ID=0903629&HistoricalAwards=false, accessed 
December 19, 2019.
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(i.e., signal) capture. This idea underscores the benefit of a closer interaction between the data curators of State 2 
platforms and individual researchers, recognizing that there are a variety of approaches to building and managing 
archives. This approach would co-locate the costs of supporting computing and analytics with an active repository.

• Understand the charges associated with storage and computation in a data resource, regardless of 

who “pays the bill,” when making decisions about data and workflows. Institutions supporting research 
might develop mechanisms to inform researchers of the actual costs paid for the services rendered to them 
and encourage them to limit those costs.

Regardless of who provides the resources, there is a lack of visibility regarding storage costs in individual 
laboratories, institutions, and community resources. Understanding the charges associated with storage and compu-
tation in a data resource is vital for researchers making decisions about their own data and workflows. Researchers 
are often unaware of costs associated with data management in part because they typically are not responsible 
directly for those costs. Costs may be invisible to them if borne by their institutions or by a data-resource-platform 
manager (see Box 3.3). Purchased services (e.g., storage and computing) may be important, although the ability 
of individual researchers working in a primary research environment to forecast and manage those costs depends 
on the transparency of the information-technology environment. Mechanisms are needed to inform researchers of 
the actual costs paid for the services rendered to them, even if they are not directly charged. 

ADVANCES FOR PRACTICE

Successful cost forecasting and sustainable management depend largely on an environment that supports 
decision makers, whether they are researchers, data scientists, data resource managers, or funding agencies. 
Methodologies for forecasting the life-cycle costs for preserving, archiving, and accessing biomedical data are 
immature and few tools and resources are available for those to quantify long-term costs with confidence and 
aid better understanding of uncertainties that can be tracked. Addressing the necessary advances identified below 
could facilitate the change in culture needed among decision makers to create such an environment. The following 
activities, likely to be enabled at an agency or research-institution level, could advance practices and drive future 
improvements in the ability to forecast costs.

•	 Recognize explicitly that scientific data constitute an asset and that data stewardship requires sup-

port. Biomedical research data and data resources are vital to the delivery of good science, and, ultimately, 
to the public good. The universities and institutions that support or enable research and host data resources, 
in turn, benefit from the recognition of that support.

Measuring data value in monetary terms is difficult, and yet it is the potential value of data that warrants the 
financial investments associated with their preservation. Unlike physical infrastructure, biomedical research data 
and the resources that house them are assets that contribute to the delivery of good science and, ultimately, the 
public good. The institutions that host or enable that public good will likely benefit from the recognition received 
for supporting such assets. Even so, there is only so much that can be done on the project or platform level. Cur-
rently, it is impossible to look across all data in the distributed biomedicine data enterprise to learn what data sets 
exist. Persistent metadata repositories are needed that include data set and research object identifiers.

• Systematically collect data on costs associated with the biomedical research data enterprise to allow 

the translation of the framework outlined in this report into resources and methodologies that would 

benefit individual researchers and repository institutions. A clear locus of responsibility for compiling 
this information systematically is necessary.

The true costs of preserving, archiving, and accessing biomedical research data need to be investigated in a 
systematic way at the funding-program-manager level rather than at the individual researcher or project level. Cost 
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information at the researcher level could be collected at the outset of many projects when funds are requested, 
through DMPs, and tracked when progress is evaluated. Information thus collected so far has neither been uni-
formly integrated into award decisions nor transmitted to other parties involved. Researchers working in a State 
1 primary research environment are often required to keep data for a prescribed period of time but are typically 
not responsible for costs or management beyond this.

Costs in the longer run (e.g., States 2 and 3) generally become an institutional responsibility. But institutional-
level planning horizons are often only 1 or 2 years ahead rather than the many years required to realize the promise 
of current and future repositories. Some federal agencies (e.g., Department of Defense and Department of Energy) 
sustain a cadre of cost analysts and consider gathering the data needed for estimating costs as an important agency 
responsibility. Those agencies treat cost estimation as a profession and invest in training, recognizing success, 
critiquing failures, and encouraging assembly of cost-related data. The biomedical research data-preservation 
enterprise has become an undertaking that warrants a similar cadre to augment domain expertise and expertise in 
data science. 

•	 Develop easier mechanisms for creating and maintaining DMPs, automatically incorporating data 

and metadata into resources, and improving citations for data to work together with other research 

products. By providing these mechanisms, funders and research institutions could help improve efficiency, 
return value for stakeholders, and increase the likelihood that stakeholders will make sound data-related 
decisions.

DMPs (see Appendix B) are typically static documents prepared as a mandatory—but not necessarily 
influential—part of the funding process. Placing more emphasis on quantified cost forecasts during the development 
of the DMP and the award process may be one way to incentivize early planning and communication, even if cost 
forecasts are uncertain. However, placing greater emphasis on cost forecasting at that time does not mean that the 
forecasts will become more precise estimates, rather they could be considered accurate reflections of uncertainties. 
Cost forecasts and DMPs need to evolve and be updated as research progresses and as associated data and the 
resources and technologies available to manage those data evolve. Monitored evolution of a DMP (e.g., at mid-
term evaluations or at the end of the award period when making payment on awards) might inform eligibility for 
future funding. Machine-actionable DMP (e.g., Simms et al., 2017; see Appendix B) technologies may address 
issues related to realistic and evolving data management. 

FACTORS FOR SUCCESSFUL ADOPTION OF DATA-FORECASTING APPROACHES

The current system for funding research cannot accommodate data life-cycle cost forecasting. For instance, 
the quantity, quality, and format of data collected might be uncertain when a proposal is written. They may 
become increasingly less uncertain a year into the award and when a grant is only partially spent out. During an 
information-gathering workshop organized by the committee (NASEM, 2020; see Appendix A for agenda), par-
ticipants described incentives to do cost forecasting, with much discussion of how both incentives (“carrots”) and 
rules and enforcement (“sticks”) were important. Participants described how developing those rules and educating 
the community about the value of implementing them was fundamental to cost forecasting becoming a part of the 
responsible conduct of research (rather than a bureaucratic chore).

The culture change for the biomedical research community described in this report needs to be driven by com-
munity engagement. The Behavioral Insights Team3 in the United Kingdom developed principles for encouraging 
desired outcomes, which might be applicable in the development and management of community repositories 
(Service et al., 2010). They recommend making processes easy, attractive, social, and timely (the “EAST” prin-
ciples). People are more likely to engage in desired behavior if doing so is easy. To the greatest extent possible, it 
should be made easy for researchers and other stakeholders to make good data-related decisions from the onset. 
Research funders, research institutions, and journals are in positions to offer incentives, but processes need to be 

3  The website for the Behavioral Insights Team is https://www.bi.team/, accessed December 19, 2019.
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driven by researchers so as to meet their needs and so they fully understand and agree to the value returned to 
them for their efforts. The ultimate beneficiaries of such efforts, of course, are the scientific enterprise and our 
nation’s citizens, whose well-being biomedical science seeks to advance. 
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FIRST COMMITTEE MEETING

Washington, D.C. 

February 27-28, 2019

National Library of Medicine (NLM) Interpretation of Study Statement of Task

Patricia Brennan, Director, NLM

NLM Program Organization, Services, Products, Resources, and Current NLM Decision Processes for 

Preserving/Archiving/Accessing/Deaccessioning Data

Patricia Brennan, Director, NLM

Jim Ostell, Director, National Center for Biotechnology Information (NCBI) at NLM

National Institutes of Health (NIH) Strategic Plan for Data Science

Susan Gregurick, Director, Division of Biomedical Technology, Bioinformatics, and Computational Biology, 

National Institute of General Medical Sciences and Senior Advisor for the NIH Office of Data Science Strategy

Panel Discussion with Representatives of NLM Leadership

Ivor D’Souza, NLM Chief Information Officer

Kim Pruitt, Acting Chief, Information Engineering Branch at NCBI at NLM

Dina Paltoo, NLM Assistant Director for Policy

SECOND COMMITTEE MEETING

Washington, D.C. 

March 12-13, 2019

Cost Management of Big Data: Perspectives from Outside NIH

Jeffrey Spies, Founder, 221B LLC

Anita de Waard, Vice President of Research and Collaborations, Elsevier

A 

Meetings and Presentations
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THIRD COMMITTEE MEETING

Washington, D.C. 

May 6-7, 2019

Disruptors in Digital Archiving: Presentation from the U.S. National Archives

Leslie Johnston, Director of Digital Preservation, U.S. National Archives 

Disruptors in the Cloud

Vamshidhar Kommineni, Principal Project Manager, Azure Blob Storage, Microsoft

Indicators of Data Management Costs at the European Organization for Nuclear Research

Simone Campana, Deputy Project Leader of the Worldwide Computing Grid

WORKSHOP

Washington, D.C. 

July 11-12, 2019

Welcome and Introductory Remarks 
David Chu, Institute for Defense Analyses

Tyler Kloefkorn, National Academies

Sammantha Magsino, National Academies

Sponsor Expectations 
Patricia Flatley Brennan, NLM

The Burdens and Benefits of “Long Tail” Data Sharing 

Adam Ferguson, University of California, San Francisco

Panel Discussion: Researchers’ Perspectives—Managing Risks and Forecasting Costs for Long-Term Data 

Preservation 

Moderator: Margaret Levenstein, University of Michigan

Nuno Bandeira, University of California, San Diego

Jessie Tenenbaum, Duke University and the North Carolina Department of Health and Human Services

Georgia (Gina) Tourassi, Oak Ridge National Laboratory

Robert Williams, University of Tennessee Health Science Center

Panel Discussion: Addressing Data Risks and Their Costs 

Moderator: Michelle Meyer, Geisinger

Amy O’Hara, Georgetown University 

Brad Malin, Vanderbilt University Medical Center

Trevor Owens, U.S. Library of Congress

Breakout Sessions—Tools and Practices That NLM Could Use to Help Researchers and Funders Better 

Integrate Risk Management Practices and Considerations into Data Preservation, Archiving, and  Accessing 

Decisions 

Data—What’s It Going to Cost, and What’s in It for Me? 

Phil Bourne, University of Virginia
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Precisely Practicing Medicine from 700 Trillion Points of Data 
Atul Butte, University of California, San Francisco

Open Discussion—Reflections, Plans for Day 2, Coordination with Study 

Alexa McCray, Harvard Medical School

Panel Discussion: Incentives, Mechanisms, and Practices for Improved Awareness of Cost Consequences 

in Data Decisions 

Moderator: Lars Vilhuber, Cornell University

John Chodacki, University of California Curation Center, California Digital Library

Melissa Cragin, San Diego Supercomputer Center

Wendy Nilsen, National Science Foundation

Lucy Ofiesh, Center for Open Science

Breakout Sessions—Methods to Encourage NIH-Funded Researchers to Consider, Update, and Track 

Lifetime Data Costs 

Panel Discussion: Researchers’ Perspectives—Reflections and Next Steps 

Moderator: Margaret Levenstein, University of Michigan

Nuno Bandeira, University of California, San Diego

Jessie Tenenbaum, Duke University and the North Carolina Department of Health and Human Services

Georgia (Gina) Tourassi, Oak Ridge National Laboratory

Robert Williams, University of Tennessee Health Science Center

Closing Remarks—Themes and Opportunities 

Maryann Martone, University of California, San Diego

FOURTH COMMITTEE MEETING

Washington, D.C. 

September 17-18, 2019

No open session presentations were held during this meeting.

FIFTH COMMITTEE MEETING

Washington, D.C. 

October 29-30, 2019

No open session presentations were held during this meeting.
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SITE VISITS

National Center for Microscopy and Imaging Research 

La Jolla, California

September 11, 2019

National Center for Microscopy and Imaging Research

Mark Ellisman, Director

Steven Peltier, Deputy Director

Willy Wong, Software Technical Lead

Matthew Madany, Researcher

Sean Penticoff, Information Technology Manager

Matthias Haberl, Postdoctoral Fellow

University of California, San Diego/San Diego Supercomputer Center Advanced Cyber-Infrastructure 

Development Lab

La Jolla, California

September 12, 2019

UCSD/SDSC Advanced Cyber-Infrastructure Development Lab

Jim Short, San Diego Supercomputer Center

Mike Norman, San Diego Supercomputer Center

Sandeep Chandar, San Diego Supercomputer Center

Brian Balderston, San Diego Supercomputer Center

Christine Kirkpatrick, San Diego Supercomputer Center

David Minor, University of California, San Diego Library

Sibyl Schaefer, University of California, San Diego Library

Jeffrey Burke, San Diego Supercomputer Center and Retired Senior Vice President at Seagate

Scott Kahn, Chief Information Officer at LunaDNA, previously Chief Information Officer at Illumina

National Institutes of Health

Bethesda, Maryland

September 18, 2019

National Institute of Mental Health

Greg Farber, Director of the Office of Technology Development and Coordination

National Institute of Nursing Research

Jessica Gill, Lasker Clinical Research Scholar

National Institute of Allergy and Infectious Diseases

John McGowan, Deputy Director for Science Management

Jill Harper, Director for the Office of Biodefense Research and Surety

National Human Genome Research Institute

Eric Green, Director 

Valentina Di Francesco, Lead Program Director, Computational Genomics and Data Science, Division of 

Genome Sciences
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Carolyn M. Hutter, Director, Division of Genome Sciences

Ajay Pillai, Program Director, Molecular Libraries Program, Division of Genome Sciences

Shurjo K. Sen, Program Director, Division of Genome Sciences

Ken Wiley, Program Director, Division of Genomic Medicine

Dana-Farber Cancer Institute

Boston, Massachusetts

September 25, 2019

Participants

Eliezer Van Allen

Moritz Kircher

Robert Gray

Laura MacConaill

Clifford Meyer

Daphne Haas-Kogan

Hugo Aerts

Bruce Johnson 

Harvard Medical School

Cambridge, Massachusetts

September 25, 2019

 

Participants

Hosts: Mercè Crosas, David Golan, Caroline Shamu

Faculty
Brent Coull

Chris Harvey

Jason Key

Steve McCarroll

Sean Megason

Jeremy Muhlich

Peter Park 

Jon Seidman 

Piotr Sliz

Artem Sokolov

Peter Sorger

Yaoyu Wang

Ista Zahn

Libraries
Steve Abrams

Ceilyn Boyd

Julie Goldman

Emily Gustainis

Meghan Kerr

Amber LaFountain

Scott Lapinski
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Elaine Martin

Stuart Snydman

Amy Van Epps 

Suzanne Wones

Research Computing and Information Technology
Paul Edmons

Mason Miranda

Deb Scott

Paul Williams

The Broad Institute of the Massachusetts Institute of Technology and Harvard

Cambridge, Massachusetts

September 26, 2019

Introduction to the Data Science Platform (DSP)

Anthony Philippakis

Patient Facing Platforms

Andrew Zimmer, Jen Lapan

Data Engineering

Kathleen Tibbetts, Kristian Cibulskis

Overview of Terra

Clare Bernard, Kristian Cibulskis

Meeting with Daniel MacArthur

Overview of the Genome Analysis Toolkit

Eric Banks

ML4CVD: Machine Learning for Cardiovascular Disease

Puneet Batra

Security at Broad

David Bernick

Tour of DSP and Agile Overview

Diolinda Vaz

Amazon Web Services

Seattle, Washington

October 23, 2019

Participants

Marcy Collinson

Aaron Friedman



Life-Cycle Decisions for Biomedical Data: The Challenge of Forecasting Costs

Copyright National Academy of Sciences. All rights reserved.

APPENDIX A 135

Elliot Menschik

Ann Merrihew

Sanjay Padhi

Kam Syed

Institute for Systems Biology

Seattle, Washington

October 24, 2019

Participants

Jim Heath

Nathan Price

Sui Huang

Jennifer Hadlock

Andrew Magis

John Earls

Christian Diener

Allen Institute

Seattle, Washington

October 25, 2019

Brain Science

Michael Hawrylycz

Lydia Ng

Shoaib Mufti

Christof Koch

Carol Thompson

Tyler Mollenkopf

Rob Young

John Phillips

Cell Science

Basu Chaudhuri

Immunology

Paul Meijer

Fred Hutchinson Cancer Research Center

Seattle, Washington

October 25, 2019

Participants

Elizabeth Boyd

David Browdy

Marior Dorer

Rachel Galbraith
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Jennifer Griffith

Brenda Kostelecky

Elizabeth Masnari

Anders McConachie

Dirk Petersen

Niki Robinson

Bonnie Schae

Matthew Trunnell
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A data management plan (DMP) is a formal document that outlines data types and formats, dissemination and 
sharing plans, roles and responsibilities, and preservation plans for data generated by a project. Various federal 
research funders, including the National Science Foundation (NSF) and various institutes of the National Institutes 
of Health (NIH) require grantees to propose a DMP, but specific requirements are not uniform among the agencies. 
Quality and utility of DMPs are an issue, with the perception that DMPs are an “annoying administrative exercise” 
(Simms et al., 2017). The typical DMP is a text document written as a verbose narrative. 

Various guidance documents and templates for DMP production evolved (e.g., the National Network of 
 Libraries of Medicine [NNLM]1), and a first generation of tools to facilitate the production of DMPs was created, 
and are widely available. Some examples of tools include DMPTool (California Digital Libraries),2 the DMPOnline 
(Digital Curation Centre—UK),3 and the Interdisciplinary Earth Data Alliance (IEDA) DMP Tool.4 Generally, those 
tools guided the creation of Microsoft Word or PDF documents and incorporated templates for use with various 
funders. More recently, a second generation of those tools was created, with the goal of making DMPs “machine 
actionable” (i.e., written so that computer programs can parse the content cleanly and take action based on the 
information in such machine-actionable DMPs [maDMPs]). Newer DMP tools incorporate richer information, 
such as a list of acceptable repositories, and better guidance, with richer prefillable information. 

While the creation of a DMP guides the researcher in formulating a data management process, the role of the 
DMP in the evaluation of grant proposals and in post-award evaluations is less clear. Most grant agencies require 
a DMP but do not explicitly score DMPs or integrate them formally into scoring a proposal under consideration 
for funding. For instance, NIH scoring guidelines5 make no reference to DMPs, although data-sharing plans are 
a required element of proposals (in fact, the word “data” does not appear in the scoring guide). The NSF-wide 

1  The NNLM website providing a collection of data management guides is https://nnlm.gov/data/data-management-plan, accessed January 14, 
2020.

2  The website for DMPTool is https://dmptool.org/, accessed January 14, 2020.
3  The website for DMPOnline is https://dmponline.dcc.ac.uk/, accessed January 14, 2020.
4  The website for the IEDA DMP is https://www.iedadata.org/dmp/, accessed January 14, 2020.
5  The website describing the NIH scoring guidance is https://grants.nih.gov/grants/policy/review/rev_prep/scoring.htm, accessed January 14, 

2020.

B

Active Data Management Plans as a Planning Tool 
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Proposal and Award Policies and Procedures Guide6 notes a requirement for (two-page) DMPs but only as a supple-
mentary material, leaving the evaluation thereof in the realm of individual divisions and program managers. The 
IEDA, acting as a repository for observational geoscience data, provides researchers with the ability to generate 
a Data Compliance Report7 based on their NSF award number. The resulting output can be used “to demonstrate 
that your data are registered with IEDA systems and you are compliant with NSF Data Policies,” but it is not 
clear how much weight that carries in post-award evaluation or in subsequent proposals. The NSF Directorate 
for Biological Sciences notes a requirement for inclusion in annual and final reports, as well as part of “Results 
of prior NSF Support” in subsequent proposals, but, again, it is not clear what weight these are given during the 
evaluation process.8 The Canadian “Tri-Agency Statement of Principles on Digital Data Management”9 highlights 
researcher and institution responsibilities only with respect to the development of and compliance with DMPs, and 
the Canadian Institutes of Health Research’s Peer Review Manual10 does not include DMPs in its scoring criteria.

Halbert (2013) and Keralis and colleagues (2013) identify lack of consistency across funding agencies as 
a barrier for a consistent response by researchers and data librarians to data management challenges (see also 
 Williams et al., 2017). The development of the second generation of DMP tools may be seen as a direct result 
of these findings and the attempt to construct a “meta-DMP” that provides consistent guidance regardless of the 
underlying agency reporting requirement.

maDMPs, also referred to as dynamic DMPs (Simms and Jones, 2017; Simms et al., 2017) or data manage-
ment records (Morgan and Janke, 2017), may be useful for forecasting of costs of data preservation. They are 
specifically proposed as a more formal (machine-readable) document, allowing for data exchange across various 
entities, in particular across the entire data life cycle. Integration with funders, as well as institutional and com-
munity capacity planning, are specifically identified (Simms et al., 2017). maDMPs are evolving, and a standard 
has not yet emerged, although several use cases and implementations (Morgan and Janke, 2017) exist. At the time 
of writing, working groups at the Research Data Alliance11 and FORCE1112 (Chodacki et al., 2016) are working 
on use cases from a variety of disciplines and coordinating on standards. In particular, maDMPs target metadata 
such as quantity and type of data, regardless of storage location, allowing for an assessment of time-varying cost 
of storing such data. They strongly encourage use of persistant identifiers for people, institutions, and assets, so 
that maDMPs are globally intelligible (Bakos et al., 2018).
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The main text identifies certain job descriptions with associated salary ranges, from L (low) to VH (very high). 
This appendix identifies possible job titles and associated salary ranges observed in workplace and occupational 
surveys conducted by the Bureau of Labor Statistics (BLS, 2019a).

DATA USED

Occupational Employment Statistics

Collection methods, estimation methodology, and coverage are described in BLS (2019b). The committee 
downloaded the data from https://www.bls.gov/oes/special.requests/oesm18nat.zip on October 30, 2019. From the 
downloaded data, national_M2018_dl.xlsx was used.

Occupational Information Network

The Occupational Information Network (O*NET) database is a U.S. Department of Labor–sponsored database 
developed by the National Center for O*Net Development.1 The database provides standardized descriptions of 
hundreds of occupations within the U.S. economy. The database comprises worker attributes and job characteristics. 
Information is collected using a two-stage design in which the following occurs:

• A statistically random sample of businesses expected to employ workers in the targeted occupations is 
identified. 

• A random sample of workers in those occupations within those businesses is selected. Data are collected 
by surveying job incumbents using a randomly assigned standardized questionnaire on occupation charac-
teristics, out of three questionnaires. Additional questions cover tasks and demographic information.

• Abilities and skills information is developed by occupational analysts using the updated information from 
incumbent workers (National Center for O*NET Development, 2019a).

1  See https://www.onetonline.org/, accessed August 12, 2020.

C

Identifying Salary Ranges for Jobs 
Relevant to the Data Life Cycle
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A data dictionary (National Center for O*NET Development, 2019b) provides additional information.
Version 23_2 of the data (National Center for O*NET Development, 2019c)2 was used for committee deter-

mination of salaries. Both Occupation Data.xlsx and Alternate Titles.xlsx were used.

METHODS

Mapping Job Titles to Standard Occupational Classifications

O*NET is structured around Standard Occupational Classification (SOC; BLS, 2019c). The committee’s main 
text has a normative list of job descriptions based on data management practiced at university libraries. These may 
not match reported standard occupation titles. The O*NET data provide a long but not exhaustive list of alternate 
mentions of job titles for specific occupations (Alternate Titles.xlsx). Using both the standard occupation title as 
well as the alternative mention, the normative job title is matched via probabilistic matching, using the Jaro-Winkler 
distance (Winkler, 1990) as implemented in the R package fuzzyjoin (Robinson, 2019). All reasonable matches 
(d < 0.05) were kept to obtain a list of similar occupations and their SOC codes.

Mapping SOC into Salary Ranges

Occupational Employment Statistics computes for each SOC code a salary range, comprising annual salary and 
hourly wages, and characterized by the 25th and 75th percentile, as well as the median. The annual salary distribu-
tions were attached to each of the identified occupations (Table C.1), and then these statistics were collapsed to a 
triplet of information for each normative job description (Table C.2). To do so, the minimum of all observed 25th 
percentiles, the median of all observed medians, and the maximum of all observed 75th percentiles were chosen. No 
weights were applied. An alternative implementation might use the employment shares to create weighted statistics. 
Reliability statistics were not computed, as the resulting table is meant to be indicative, not precise. 

RESULTS

Table C.1 lists the annual salaries, as of 2018, by job title (median, and the 25th and 75th percentile), for all 
occupations identified as having similar names as the normative description in Chapter 2. Blank salaries (“NA”) 
indicate that no occupation code could be found on O*NET based on the normative description. Table C.2 lists 
the ranges, as defined above, for each of the normative descriptions (Chapter 2), based on the underlying occupa-
tions identified. Table C.3 lists the statistics associated with each of the salary categories, from low to very high. 
While the categories are defined based on the experience of members of the committee, ex ante, they match up 
well with observed median salaries in 2018.

FULL CODE AND DATA

The code and data underlying this appendix, including an exhaustive list of the committee’s edits (inclu-
sions and exclusions) to the list of occupations, are available at https://github.com/labordynamicsinstitute/
job-description-and-wages.
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TABLE C.1 Annual Salaries (2018) by Job Title for Occupations 

Job Title Title SOC Alternative Title

25th 
Percentile 
($)

Median 
Income 
($)

75th 
Percentile 
($)

Researcher Industrial Ecologists 19-2041 Researcher 53,580 71,130 94,590

Researcher Anthropologists 19-3091 Researcher 48,020 62,410 80,230

Researcher Historians 19-3093 Researcher 40,670 61,140 85,700

Researcher Biofuels/Biodiesel Technology 
and Product Development 
Managers

11-9041 Scientist 112,400 140,760 173,180

Researcher Mathematicians 15-2021 Scientist 73,490 101,900 126,070

Researcher Chemical Engineers 17-2041 Scientist 81,900 104,910 133,320

Researcher Nanosystems Engineers 17-2199 Scientist 69,890 96,980 126,200

Researcher Manufacturing Engineering 
Technologists

17-3029 Scientist 47,500 63,200 80,670

Researcher Biologists 19-1020 Scientist 56,730 77,550 103,540

Researcher Biochemists and Biophysicists 19-1021 Scientist 64,230 93,280 129,950

Researcher Bioinformatics Scientists 19-1029 Scientist 60,250 79,590 98,040

Researcher Medical Scientists, Except 
Epidemiologists

19-1042 Scientist 59,580 84,810 118,040

Researcher Chemists 19-2031 Scientist 56,290 76,890 103,820

Researcher Hydrologists 19-2043 Scientist 61,280 79,370 100,090

Researcher Remote Sensing Scientists and 
Technologists

19-2099 Scientist 75,830 107,230 136,930

Researcher Geographers 19-3092 Scientist 63,270 80,300 96,980

Data Librarian Librarians 25-4021 NA 46,130 59,050 74,740

Data Librarian Library Science Teachers, 
Postsecondary

25-1082 Librarian 56,550 71,560 90,550

Data Librarian Archivists 25-4011 Librarian 38,090 52,240 71,250

Metadata Librarian Librarians 25-4021 NA 46,130 59,050 74,740

Metadata Librarian Library Science Teachers, 
Postsecondary

25-1082 Librarian 56,550 71,560 90,550

Metadata Librarian Archivists 25-4011 Librarian 38,090 52,240 71,250

Records 
Management 
Specialist

Librarians 25-4021 NA 46,130 59,050 74,740

Records 
Management 
Specialist

Library Science Teachers, 
Postsecondary

25-1082 Librarian 56,550 71,560 90,550

Records 
Management 
Specialist

Archivists 25-4011 Librarian 38,090 52,240 71,250

Curator Curators 25-4012 NA 39,580 53,780 72,830

Curator Archivists 25-4011 NA 38,090 52,240 71,250

Curator Archeologists 19-3091 Curator 48,020 62,410 80,230
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Job Title Title SOC Alternative Title

25th 
Percentile 
($)

Median 
Income 
($)

75th 
Percentile 
($)

Research Domain 
Curator

Biofuels/Biodiesel Technology 
and Product Development 
Managers

11-9041 Scientist 112,400 140,760 173,180

Research Domain 
Curator

Mathematicians 15-2021 Scientist 73,490 101,900 126,070

Research Domain 
Curator

Chemical Engineers 17-2041 Scientist 81,900 104,910 133,320

Research Domain 
Curator

Nanosystems Engineers 17-2199 Scientist 69,890 96,980 126,200

Research Domain 
Curator

Manufacturing Engineering 
Technologists

17-3029 Scientist 47,500 63,200 80,670

Research Domain 
Curator

Biologists 19-1020 Scientist 56,730 77,550 103,540

Research Domain 
Curator

Biochemists and Biophysicists 19-1021 Scientist 64,230 93,280 129,950

Research Domain 
Curator

Bioinformatics Scientists 19-1029 Scientist 60,250 79,590 98,040

Research Domain 
Curator

Medical Scientists, Except 
Epidemiologists

19-1042 Scientist 59,580 84,810 118,040

Research Domain 
Curator

Chemists 19-2031 Scientist 56,290 76,890 103,820

Research Domain 
Curator

Climate Change Analysts 19-2041 Scientist 53,580 71,130 94,590

Research Domain 
Curator

Hydrologists 19-2043 Scientist 61,280 79,370 100,090

Research Domain 
Curator

Remote Sensing Scientists and 
Technologists

19-2099 Scientist 75,830 107,230 136,930

Research Domain 
Curator

Anthropologists 19-3091 Scientist 48,020 62,410 80,230

Research Domain 
Curator

Geographers 19-3092 Scientist 63,270 80,300 96,980

Research Domain 
Project Manager

Biofuels/Biodiesel Technology 
and Product Development 
Managers

11-9041 Scientist 112,400 140,760 173,180

Research Domain 
Project Manager

Mathematicians 15-2021 Scientist 73,490 101,900 126,070

Research Domain 
Project Manager

Chemical Engineers 17-2041 Scientist 81,900 104,910 133,320

Research Domain 
Project Manager

Nanosystems Engineers 17-2199 Scientist 69,890 96,980 126,200

Research Domain 
Project Manager

Manufacturing Engineering 
Technologists

17-3029 Scientist 47,500 63,200 80,670

Research Domain 
Project Manager

Biologists 19-1020 Scientist 56,730 77,550 103,540

Research Domain 
Project Manager

Biochemists and Biophysicists 19-1021 Scientist 64,230 93,280 129,950

TABLE C.1 Continued

continued
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Job Title Title SOC Alternative Title

25th 
Percentile 
($)

Median 
Income 
($)

75th 
Percentile 
($)

Research Domain 
Project Manager

Bioinformatics Scientists 19-1029 Scientist 60,250 79,590 98,040

Research Domain 
Project Manager

Medical Scientists, Except 
Epidemiologists

19-1042 Scientist 59,580 84,810 118,040

Research Domain 
Project Manager

Chemists 19-2031 Scientist 56,290 76,890 103,820

Research Domain 
Project Manager

Climate Change Analysts 19-2041 Scientist 53,580 71,130 94,590

Research Domain 
Project Manager

Hydrologists 19-2043 Scientist 61,280 79,370 100,090

Research Domain 
Project Manager

Remote Sensing Scientists and 
Technologists

19-2099 Scientist 75,830 107,230 136,930

Research Domain 
Project Manager

Anthropologists 19-3091 Scientist 48,020 62,410 80,230

Research Domain 
Project Manager

Geographers 19-3092 Scientist 63,270 80,300 96,980

Informatician Computer Systems Analysts 15-1121 NA 68,730 887,40 113,460

Informatician Information Technology Project 
Managers

15-1199 IT Specialist 66,410 90,270 117,070

Data Wrangler Information Technology Project 
Managers

15-1199 IT Specialist 66,410 90,270 117,070

Education 
Specialist

Health Educators 21-1091 Education 
Specialist

39,800 54,220 74,660

Education 
Specialist

Special Education Teachers, 
Secondary School

25-2054 Education 
Specialist

48,630 60,600 77,820

Education 
Specialist

Instructional Coordinators 25-9031 Education 
Specialist

49,280 64,450 82,860

Communication 
Specialist

Public Relations Specialists 27-3031 Communication 
Specialist

44,490 60,000 81,550

Software Engineer Computer and Information 
Research Scientists

15-1111 Software 
Engineer

91,650 118,370 149,470

Software Engineer Software Developers, 
Applications

15-1132 Software 
Engineer

79,340 103,620 130,460

Software Engineer Software Developers, Systems 
Software

15-1133 Software 
Engineer

85,610 110,000 139,550

IT Security 
Specialist

Security Management Specialists 13-1199 NA 52,200 70,530 94,890

IT Systems 
Engineer

Computer and Information 
Systems Managers

11-3021 NA 110,110 142,530 180,190

IT Systems 
Engineer

Information Technology Project 
Managers

15-1199 IT Specialist 66,410 90,270 117,070

IT Project Manager Computer and Information 
Systems Managers

11-3021 NA 110,110 142,530 180,190

IT Project Manager Information Technology Project 
Managers

15-1199 IS/IT Project 
Manager

66,410 90,270 117,070

TABLE C.1 Continued
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Job Title Title SOC Alternative Title

25th 
Percentile 
($)

Median 
Income 
($)

75th 
Percentile 
($)

Project Manager Construction Managers 11-9021 Project Manager 70,670 93,370 123,720

Project Manager Architectural and Engineering 
Managers

11-9041 Project Manager 112,400 140,760 173,180

Project Manager Managers, All Other 11-9199 Project Manager 75,460 107,480 143,230

Project Manager Information Technology Project 
Managers

15-1199 Project Manager 66,410 90,270 117,070

Project Manager Environmental Engineers 17-2081 Project Manager 66,590 87,620 112,230

Project Manager Wind Energy Engineers 17-2199 Project Manager 69,890 96,980 126,200

Project Manager Environmental Restoration 
Planners

19-2041 Project Manager 53,580 71,130 94,590

Project Manager Social Science Research 
Assistants

19-4061 Project Manager 35,450 46,640 60,830

Project Manager Remote Sensing Technicians 19-4099 Project Manager 37,940 49,670 63,340

Project Manager Technical Directors/Managers 27-2012 Project Manager 48,520 71,680 110,350

Project Manager Intelligence Analysts 33-3021 Project Manager 57,560 81,920 107,000

Senior Staff NA NA NA NA NA NA

Policy Specialist NA NA NA NA NA NA

Administrative 
Staff

First-Line Supervisors of Office 
and Administrative Support 
Workers

43-1011 NA 42,750 55,810 71,550

Administrative 
Staff

Executive Secretaries and 
Executive Administrative 
Assistants

43-6011 NA 46,530 59,340 74,460

Administrative 
Staff

Secretaries and Administrative 
Assistants, Except Legal, 
Medical, and Executive

43-6014 NA 28,930 36,630 46,230

Administrative 
Staff

Business Operations Specialists, 
All Other

13-1199 Administrative 
Assistant

52,200 70,530 94,890

Administrative 
Staff

Billing and Posting Clerks 43-3021 Administrative 
Assistant

31,870 37,800 46,350

Administrative 
Staff

New Accounts Clerks 43-4141 Administrative 
Assistant

30,300 35,800 42,050

Administrative 
Staff

Medical Secretaries 43-6013 Administrative 
Assistant

29,580 35,760 43,200

Facilities Manager General and Operations 
Managers

11-1021 Facilities 
Manager

65,650 100,930 157,120

Facilities Manager Administrative Services 
Managers

11-3011 Facilities 
Manager

71,850 96,180 127,100

Facilities Manager Property, Real Estate, and 
Community Association 
Managers

11-9141 Facilities 
Manager

41,210 58,340 85,120

Facilities Manager First-Line Supervisors of 
Housekeeping and Janitorial 
Workers

37-1011 Facilities 
Manager

31,020 39,940 52,280

TABLE C.1 Continued

continued
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Job Title Title SOC Alternative Title

25th 
Percentile 
($)

Median 
Income 
($)

75th 
Percentile 
($)

Facilities Manager First-Line Supervisors of Office 
and Administrative Support 
Workers

43-1011 Facilities 
Manager

42,750 55,810 71,550

Facilities Manager First-Line Supervisors of 
Mechanics, Installers, and 
Repairers

49-1011 Facilities 
Manager

51,430 66,140 83,980

Facilities Manager Maintenance and Repair 
Workers, General

49-9071 Facilities 
Manager

29,560 38,300 50,100

Data Scientist Computer and Information 
Research Scientists

15-1111 Data Scientist 91,650 118,370 149,470

NOTE: IT, information technology; SOC, Standard Occupational Classification.

TABLE C.1 Continued

TABLE C.2 Salary Ranges for Job Classifications as Defined in Chapter 2

Job Title 25th Percentile ($) Median Salary ($) 75th Percentile ($)

Administrative Staff 28,930 37,800 94,890

Communication Specialist 44,490 60,000 81,550

Curator 38,090 53,780 80,230

Data Librarian 38,090 59,050 90,550

Data Scientist 91,650 118,370 149,470

Data Wrangler 66,410 90,270 117,070

Education Specialist 39,800 60,600 82,860

Facilities Manager 29,560 58,340 157,120

Informatician 66,410 89,505 117,070

IT Project Manager 66,410 116,400 180,190

IT Security Specialist 52,200 70,530 94,890

IT Systems Engineer 66,410 116,400 180,190

Metadata Librarian 38,090 59,050 90,550

Policy Specialist Inf NA -Inf

Project Manager 35,450 87,620 173,180

Records Management Specialist 38,090 59,050 90,550

Research Domain Curator 47,500 80,300 173,180

Research Domain Project Manager 47,500 80,300 173,180

Researcher 40,670 79,945 173,180

Senior Staff Inf NA -Inf

Software Engineer 79,340 110,000 149,470
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TABLE C.3 Statistics Across Each of the Salary Categories (used in Chapter 2 of this report)

Relative Salary 25th Percentile ($) Median Salary ($) 75th Percentile ($) N Missing

Low 28,930 37,800 94,890 7 0

Medium 29,560 61,505 173,180 34 0

High 40,670 80,300 180,190 50 1

Very High 52,200 103,620 180,190 10 1



Life-Cycle Decisions for Biomedical Data: The Challenge of Forecasting Costs

Copyright National Academy of Sciences. All rights reserved.

148

Not all costs for creating and sustaining a biomedical information resource show up in the budget of the 
organizational units creating the data or operating the resource. Some “soft costs” might show in other parts of 
an organization as effort expended by users of the resource or as lost or delayed opportunities. Merrill (2017) 
identified seven categories of soft costs for long-term digital preservation in a corporate setting (see Box D.1).

Merrill’s enumeration of soft costs is not necessarily exhaustive for the biomedical-information domain. There 
may be other soft costs to consider. For example, there is investigator burden: the effort required by researchers 
to submit their data to a repository. Another soft cost is loss of confidence: data in a resource lose value when 
users do not use that resource owing to a lack of trust in it or a concern about the results obtained from it. Such 
loss might arise because there is not enough information to replicate the process that generated the data or to audit 
their handling once received by a resource. Loss could also arise from lack of curation of the resource or uncertain 
interpretation of the data owing to no or little metadata.

DIFFICULTY IN QUANTIFYING SOFT COSTS

Merrill (2017) notes that “soft costs are important, but may be hard to isolate, define, or measure. Many soft 
costs are qualitative in nature. At times they can become hard costs when unusual events happen (like declaring a 
disaster, or in a pre-trial rush to access data). Project related benefits (staff efficiency, risk) are usually characterized 
by soft costs, since the IT department does not have the burden to measure or reduce these costs.” Putting a dollar 
amount to soft costs so that they can be compared directly to hard costs does not seem feasible in most cases, but 
it is often possible to compare the relative soft costs of alternative approaches. For example, considering Merrill’s 
soft cost of discovery time, there might be two approaches to supporting a repository of genetic sequences. In 
the first approach, the sequences can be retrieved only by accession number and organism name. In the second 
approach, there is an additional index that allows searching by sequence similarity. Discovery time is expected to 
be lower in the second approach for a task such as determining if a new sequence duplicates an existing sequence. 
As another example, consider Merrill’s cost of performance. One option for the sequence repository would be to 
internally support a service for alignment of a deposited sequence to an appropriate reference sequence. A second 
option is not to support such a service. In that case, an investigator needing a reference alignment would need to 
download the sequence in question, find the appropriate reference sequence somewhere, and locate and apply an 
appropriate tool to perform the alignment. Clearly, the second option has a higher cost of performance.

D

Soft Costs for Digital Preservation
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BOX D.1 

Soft Costs as Defined by Merrill (2017)

•	 Provisioning time “is the time and local effort required to acquire and present capacity for the retention 

period. Internal processes, procurement, provisioning steps, and delivery lead-time all contribute to this 

cost”	(Merrill,	2017).	This	category	does	not	include	the	direct	costs	for	storage	capacity	itself,	nor	the	
ongoing costs of operating that capacity. An attraction of cloud storage is that provisioning time can be 

reduced from months to minutes. Long provisioning times can be detrimental to research if they delay 

results or access to those results by others.

•	 Discovery time “is the time it takes a person or an application to find digital content. The format may 

have	some	impact	on	this	time,	as	well	the	robustness	of	the	meta-data	management	system.	Risks	
can	arise	if	 the	time	required	to	discover	(and	restore)	are	unsatisfactory”	(	Merrill,	2017).	A	resource	
might get little or no use if locating information within it is cumbersome, say because of limited search 

capability.

•	 Time to restore	is	“how	long	a	person	(or	an	application)	has	to	wait	for	the	data	to	be	restored	(to	the	
last	bit)	after	the	request	is	made”	(Merrill,	2017).	This	soft	cost	would	pertain	to	cases	in	which	data	in	
a repository have to be moved from offline to online storage before they are accessed. 

•	 Cost of expansion “of the repository must be planned since the ever-increasing growth in stored in-

formation	will	 require	 future	 increased	capacity”	 (Merrill,	2017).	Merrill	classifies	expansion	as	a	soft	
cost	because	it	does	not	appear	in	current	budgets.	However,	in	considering	options	for	a	biomedical	
information resource, the future expansion costs for different options is an important facet.

•	 Risk of loss (or loss expectancy) “is a calculated cost associated with the probability of losing data or 

digital content. The loss can occur from a variety of sources, including media failure, theft, corruption, 

transmission	error,	sabotage,	etc.”	(Merrill,	2017).	While	Merrill	posits	that	this	cost	can	be	calculated	
in the commercial setting, it manifests as opportunity cost in the biomedical research setting, which is 

difficult to quantify. It is difficult to assign a dollar value to delayed or forgone discoveries, especially as 

the nature of those potential discoveries is challenging to foresee. In the biomedical research setting, 

this cost might have to be  approached as setting a tolerable likelihood of loss and evaluating alternative 

approaches by whether they fall within that likelihood.

•	 Cost of performance “is often a perceived issue with how long IT tasks take to complete. In a few cases 

performance can be linked to company revenue or direct costs, but usually is a point of complaint for 

the	IT	department.	If	projects	can	demonstrate	business	impact	due	to	slow	or	inconsistent	access	or	
retrieval,	then	performance	can	become	a	hard	cost	to	the	preservation	architecture”	(Merrill,	2017).	This	
soft cost is one of the most relevant—but also one of the most difficult—to measure. Limitations on data, 

search, and services can all restrict or delay tasks that researchers want to perform with the information 

in	a	repository,	thus	retarding	or	reducing	discovery	(or,	in	cases	in	which	a	repository	supports	clinical	
uses, compromising treatment). Thus, there are at least two aspects to these costs: the additional time 

for	tasks	that	are	eventually	completed	and	the	lost	knowledge	from	tasks	that	are	forgone.	While	the	
first aspect can be characterized by the relative ease of performance for alternative approaches, even 

a qualitative comparison of the second aspect seems daunting. Another complication to this soft cost 

is that it needs to be evaluated in the context of available alternatives. In considering approaches to 

Repository	C	(or	whether	 to	establish	Repository	C	at	all),	 it	 is	necessary	 to	consider	whether	 there	
is	an	alternative	Repository	D	that	would	support	at	least	some	of	the	tasks	that	Repository	C	would	
support.

•	 Cost of procurement is “the time it takes to select, quote, bid, negotiate and purchase infrastructure for 

digital preservation . . . This cycle is heavily weighted with staff from procurement. This cycle tends to 

occur every few years when older equipment needs to be replaced. In cloud or consumption models, 

the	provisioning	process	 is	self-serviced.	This	cost	 is	different	 from	provisioning	 time	(see	above)	 in	
that time and effort are internal to IT, and lead-times are planned such that capacity is ready when it is 

needed. Provisioning time for required future resources will be reduced since the procurement process 
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is	greatly	simplified”	(Merrill,	2017).	How	relevant	this	soft	cost	 is	to	the	biomedical	domain	depends	
to a large degree on the particular organizational structure around the group providing an information 

resource. If the group is in a large agency, then some cost of procurement could be soft costs, since 

some responsibility for procurement might fall to another unit within the organization. In contrast, a 

group within a nonprofit dedicated to maintaining a specific information resource could be managing 

procurement itself. In either case, future procurement costs need to be considered.

BOX D.1 Continued

Thus, while soft costs generally cannot be quantified easily, they can be compared across approaches. The 
committee believes that it is possible to do so in a disciplined manner. For example, for discovery time, one could 
make a list of search types that a repository user might want and tabulate for each alternative approach whether 
or not it supports each search type. Similarly, for cost of performance, one could make a list of likely tasks that a 
researcher might want to perform with the data. Then for a given approach, one could determine whether it “Does 
Not Support,” “Partially Supports,” or “Supports” each particular task. With such information, one could easily 
determine whether Approach C “dominates” Approach D, in terms of C having equal or lower soft costs than D 
across all facets, or isolate the trade-off points between C and D: on what specific facets does C have higher or 
lower soft costs than D?

It is tempting to ignore soft costs in forecasting, since they may not be quantitative or they accrue outside the 
immediate organizational unit. However, they help characterize the usability and value of data for a community. 
Considering only hard costs might drive one to select options with low direct costs but that are difficult to use and 
provide little value (in which case, why support the resource at all?).
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Table E.1 is a template that compiles all the questions regarding the cost drivers described in Chapter 4 in a 
single place. Information about the definitions of all terms used is found in Chapter 4.

TABLE E.1 Cost-Driver Template

Category Cost Driver Decision Points/Issues

Relative Cost 

Potential (Low, 

Medium, High)

A. Content

A.1 Size (volume 

and number of 

items)

1. How many files will be in a single data submission?
2. How large is an average data submission in total?
3. Are the data sizes likely to stay stable over the life of the resource?
4. What is the total amount of data expected?
5. In what kind of medium will data be captured in the short and long terms?

A.2 Complexity and 

Diversity of 

Data Types

1. How complex is the underlying structure of the data?
2. How are the included data to be organized?
3. How complex is the experimental paradigm that produced the data?
4. What sort of additional files might be necessary to upload with the data to 

properly understand them?
5. How many different data types are being produced?
6. What are the relationships among these data types (e.g., are the data 

correlated)?

A.3 Metadata 

Requirements

1. How much metadata must be stored with each data object to make them 
findable, accessible, interoperable, and reusable (FAIR)?

2. Will metadata be entered manually by the submitter/curator?
3. Will the data to be deposited include a data schema, or will one be 

generated?
4. Is the provenance of a data set sufficiently described, or will it need to be?
5. How much metadata can be extracted computationally?

A.4 Depth Versus 

Breadth

Will the repository be restricted to certain data classes or types that the 
repository must support?

E

Template to Map Cost Drivers to 
Data Resource Properties

continued
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Category Cost Driver Decision Points/Issues

Relative Cost 

Potential (Low, 

Medium, High)

A.5 Processing Level 

and Fidelity

1. Do the raw data need to be stored?
2. Do processed data need to be stored?
3. Are there compression algorithms that can reduce the file size without 

compromising fidelity?
4. What kind of data structure requirements will the resource have?
5. Is the data contributor or the repository responsible for any restructuring 

necessary?
6. How is the data structure verified?

A.6 Replaceability of 

Data

1. Is the archive the primary steward of the data, or do copies exist 
elsewhere?

2. Can the data be easily recreated?

B. Capabilities

B.1 User Annotation 1. Will the repository have to provide user annotation capabilities?
2. What is the nature of these annotations?
3. Are they provided by humans or machines, and how will they be 

authenticated?
4. Are permissions required to annotate the data?

B.2 Persistent 

Identifiers

1. What persistent identifier (PID) scheme will be used by the archive?
2. Is there a cost associated with using the PID?
3. How many objects need to be identified?
4. Who will be responsible for keeping the PIDs resolvable?

B.3 Citation 1. Will users be able to create arbitrary subsets of data files and mint a PID 
for citation?

2. Will the repository provide machine-readable metadata for supporting data 
citation?

3. Will the repository provide export of data citations for use in reference 
managers?

B.4 Search 

Capabilities

1. Will the repository provide a search capability for data sets?
2. How much of the metadata will be included in search?
3. How complex are the queries that will be supported?
4. What types of features for search will be provided?
5. Will the repository deploy services to search the data directly?

B.5 Data Linking 

and Merging

1. Will the data require/benefit from linkages to other related items?
2. Will the resource provide the ability to combine data across records based 

on common entities/standards?

B.6 Use Tracking 1. Will the resource provide the ability to track uploads, views, and 
downloads?

2. If so, and if made available to users, how will this information be made 
available?

3. Will the resource track data citations to its data?

B.7 Data 

Analysis and 

Visualization

1. What types of data analyses and visualizations will the repository support?
2. What types of other data operations will the repository support (e.g., file 

conversions, sequence comparison)?
3. Do these services require significant computational resources?
4. Who will pay for computational resources?

C. Control

C.1 Content Control 1. Will all appropriate data be accepted or will there be a review process?
2. Will the review process be automated or will it require human oversight?

TABLE E.1 Continued
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Category Cost Driver Decision Points/Issues

Relative Cost 

Potential (Low, 

Medium, High)

C.2 Quality Control 1. What quality control process will the repository support?
2. Will these be automated or require human oversight?
3. What level of data correctness will be required, and how will it be 

validated?
4. What gaps in the data at the record or field level will be tolerable?
5. Will any of the data be time sensitive, and how will data currency be 

ensured?
6. How will duplication within or between data sets be addressed?
7. Will prevalidation guidelines or routines be distributed by the resource to 

the data contributors?
8. Will human curation be necessary?

C.3 Access Control 1. What types of access control are required for the repository (e.g., will there 
be an embargo period)?

2. At what level are they instituted (e.g., individual users, individual data 
sets)?

3. Does use of the data require approval by a data access committee?

C.4 Platform 

Control

Are there restrictions on the type of platform that may or must be used?

D. External Context

D.1 Resource 

Replication

Is there a requirement to replicate the information resource at multiple sites 
(i.e., mirroring)?

D.2 External 

Information 

Dependencies

Will the resource be dependent on information maintained by an outside 
source? 

D.3 Distinctiveness Are there existing resources available that provide similar types of data and 
services?

E. Data Life Cycle

E.1 Anticipated 

Growth

1. Is the repository expected to continuously grow over its lifetime?
2. Is the likely rate of growth in data and services known?
3. Is the use of the repository likely to grow over time?
4. Is the likely growth of the user base known?

E.2 Update and 

Versions

1. Will the deposited data require updates (e.g., in response to new data or 
error corrections)?

2. Will prior versions of the data need to be retained and made available 
locally or in a different resource?

3. How frequently will individual data sets be updated?

E.3 Useful Lifetime 1. Are the data to be housed likely to have a limited period of usefulness?
2. Does the resource have a defined period of time for which it will operate?
3. Does the resource have to provide a guarantee that the data will be 

available for a finite period of time (e.g., 10 years)?

E.4 Offline and 

Deep Storage

1. Can the resource take advantage of offline storage for data that are not 
heavily used?

2. Does the resource have a plan for moving unused data to deep storage (i.e., 
State 3)?

TABLE E.1 Continued

continued
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Category Cost Driver Decision Points/Issues

Relative Cost 

Potential (Low, 

Medium, High)

F. Contributors and Users

F.1 Contributor 

Base

1. Is the number of contributors known? If not, can it be estimated?
2. Are all the data originating from the same source (e.g., a single instrument 

or a single organization)?
3. How will data be transferred into the data resource (e.g., periodic large 

batches, more frequent smaller data sets, constantly streamed, by physical 
transfer)?

4. Will the data be pushed by the contributor or pulled by the resource?
5. Are there direct or indirect fees associated with acquiring the data from a 

source?
6. Will a data steward be available from among the contributors to assist with 

any data integration into the data resource?

F.2 User Base and 

Usage Scenarios

1. How many users will likely access the data?
2. What will be the frequency of access?
3. How will users access the data?
4. Will the resource be building analysis tools?
5. Will the resource support individual file download or bulk download?
6. Will there be any fees for downloading/accessing the data?
7. How many different types of users must be supported?

F.3 Training 

and Support 

Requirements

1. Will training for resource use be offered?
2. What form will the training take?
3. Will a “help desk” be provided?
4. When does live help need to be available?
5. What is the expected skill level of the user base?

F.4 Outreach 1. Does the existence of the repository need to be advertised?
2. How many conferences per year should resource representatives attend?
3. Will the resource have a booth at the conference for live demos or conduct 

hands-on tutorials?
4. Are users required by funders or journals to deposit data in the repository?

G. Availability

G.1 Tolerance for 

Outages

1. What is the tolerance for outages of the resource?
2. What measures will be taken to avoid and mitigate outages?
3. How quickly and completely does the resource need to recover from an outage?

G.2 Currency 1. How often will the data be released?
2. How soon do data need to be made available after they are received?

G.3 Response Time 1. Are there requirements for response time for service?
2. Are there requirements for responses from humans?

G.4 Local Versus 

Remote Access

1. Does the resource require that any data be shipped via physical media?
2. Will the resource be built using commercial clouds?
3. Do users have to travel to the resource to use the data?

H. Confidentiality, Ownership, and Security

H.1 Confidentiality 1. Will any of the data require special protections?
2. Will any of the data have embargo periods or embargo-related limitations 

that may entail costs?
3. Are there any audit requirements for who has accessed or downloaded the 

data?

H.2 Ownership 1. If data are contributed from multiple sources, will there be a need to 
process multiple kinds of release forms? 

2. Will all the data be released by the data resource under the same license, or 
will different permissions be assigned to different data sets?

3. Will data submission agreements be necessary?

TABLE E.1 Continued
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Category Cost Driver Decision Points/Issues

Relative Cost 

Potential (Low, 

Medium, High)

H.3 Security 1. What measures need to be taken to ensure the integrity and availability of 
the data?

2. Do these measures require using protected computing, storage, or 
networking platforms?

I. Maintenance and Operations

I.1 Periodic 

Integrity 

Checking

1. What processes will be put in place for checking the integrity of the 
hardware, software, and data?

2. How frequently will these checks be performed?

I.2 Data-Transfer 

Capacity

Will the bandwidth available to the resource be sufficient for the data sizes 
and rates required?

I.3 Risk 

Management

1. Will the repository be solely responsible for risk mitigation?
2. Is a response plan for unexpected termination required?

I.4 System-

Reporting 

Requirements

What types of system reporting will the resource be required to do?

I.5 Billing and 

Collections

Will there be charges for use of the resource?

J. Standards, Regulatory, and Governance Concerns

J.1 Applicable 

Standards

1. How many different standards will the resource have to support?
2. Do these standards exist?

a. If not, is the resource expected to lead their development?
b. What is the plan for accepting data while standards are in development?
c. If so, are the standards mature (i.e., how much are they expected to 

evolve)?
3. Are the data validators and converters available for the standards, or do 

they have to be developed?
4. What is the plan for “retrofitting” data that have been uploaded without the 

standards in place?
5. How frequently will the standards update?
6. Do the standards require spatial transformations (e.g., will they need to be 

aligned to a common coordinate system)?
7. How many file formats will be supported?
8. Is there an open file format available?

J.2 Regulatory 

and Legislative 

Environment

1. What laws and regulations cover the data and operation of the resource?
2. Is the resource covered by an open-records act?

J.3 Governance 1. Does the resource need to maintain an external advisory board?
2. Does the resource set policy for itself, or is it part of a larger organization?

J.4 External 

Consultation

1. Will external stakeholders be consulted for initial design?
2. Will external stakeholders be consulted on an ongoing basis?

TABLE E.1 Continued



Life-Cycle Decisions for Biomedical Data: The Challenge of Forecasting Costs

Copyright National Academy of Sciences. All rights reserved.

156

Three hypothetical data resources—one representing each of the three data states described in Chapter 2—are 
described in Box F.1, which provides descriptions of the three hypothetical data states used in tabulated com-
parisons. Table F.1 then describes characteristics of those hypothetical data resources for the purpose of comparison.

F

Comparison of the Contents Across 
the Three Data States
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BOX F.1 

Comparison of the Contents Across the Three Data States

Three examples of hypothetical biomedical information resources are provided below, one for each 

of	the	data	states	described	in	Chapter	2.	Characteristics	of	data	that	might	be	found	in	each	of	the	data	
state platforms are described. 

State 1 Example:

A research group is studying the effects of mutation of a particular gene in a model organism—say, 

mouse. The group is collecting several kinds of data, including exome data, gene sequences, cell and 

tissue images, history and treatment of the individual mice used, and biosample tracking data. The group 

is	also	downloading	data	on	 the	specific	gene	under	study	and	a	reference	mouse	genome	(or	portion	
thereof). The group gathers these data in a collective workspace, perhaps on a local network drive, or is 

using	a	commercial	service,	such	as	Dropbox.	

State 2 Example:

A	public	repository	holds	longitudinal	human	genome,	exome,	and	ribonucleic	acid	(RNA)	sequence	
information. Each individual in the collection has been sequenced with one or more modes at multiple points 

in time. Such data could be used for various studies, such as early disease markers, onset of mutations, 

and	results	of	drug	treatment.	Contributors	of	data	are	expected	to	“reconsent”	any	participant	before	his	
or her information is submitted to the repository. The repository applies standard processing pipelines to 

certain uploaded data, such as generating variant calls from genome sequence data. The information in 

the repository is “data at work” in the sense that users can perform certain operations on the data within 

the repository.

State 3 Example:

A	university	maintains	a	data	archive	for	projects	completed	on	campus	to	meet	university,	govern-

ment, and research sponsor data-retention requirements. The archive might be viewed as one holding data 

that are not expected to be used in place, rather than the active data described in the previous examples. 

Investigators wanting to use data from the archive will generally download them into their own computing 

environments	and	 interact	with	 them	there.	Data	contributors	are	 investigators	at	 the	university,	but	 the	
potential users may be quite broad.
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TABLE F.1 Characteristics of Hypothetical Information Resources for Comparison

State 1 (A) Content Characteristics State 2 (A) Content Characteristics State 3 (A) Content Characteristics

Small numbers of items and total storage; 
moderately diverse data types held. 

Metadata requirements, if any, are 
informal. Coverage is broad enough to 
include the types of information generated 
or downloaded. Raw and more processed 
versions of data stored. The data are 
replaceable, but rerunning experiments 
would be required.

Modest number of items in the repository: 
thousands of individuals, with 1-3 
sequence types at 2-10 time points. 
Some items are large (e.g., full-genome 
sequences). Limited number of data 
types—a few types of sequence data 
plus text for medical histories. Certain 
demographic and medical data in a 
specific structured format, to support 
searching expected from contributors. 
Repository is narrowly focused on 
sequence data. Submissions to the 
repository have some level of processing 
(assembled sequence or RNA abundance, 
for example, rather than raw sequence 
reads). Since the data reflect the past 
states of individuals, they are replaceable 
only if biospecimens have been retained. 

Large archive (in bytes), but the number 
of items will be proportional to the 
number of projects—a unit of storage 
may include all the data deposited from 
a single project. Must accept data of any 
type but does not have to perform type-
specific operations (e.g., gene-sequence 
matching). There will be metadata 
requirements for data sets deposited, 
although they might not be extensive 
(e.g., information on the depositor, 
project, sponsor, citations to related 
papers, textual description). Archive 
holdings will be broad and correspond 
to the range of investigations at the 
university but generally not deep unless 
there is a large concentration of work 
in one area. The data span a wide range 
of processing levels and fidelities; some 
may be unique and nonreplaceable.

State 1 (B) Capability Characteristics State 2 (B) Capability Characteristics State 3 (B) Capability Characteristics

Passive repository with few capabilities; 
users likely extract data from it and 
work with it on their own computers. 
Some keyword-based searching might be 
possible.

Supports user annotation, has persistent 
identifiers, and provides means to cite 
both the repository and the original 
contributors of data. Supports searches 
based on the structured metadata supplied 
by contributors and on data characteristics 
(e.g., number of time points for an 
individual or type of sequence data). All 
data items for a given individual linked 
together. Data usage is tracked at per-
item and per-user levels. Supports a range 
of analyses and visualizations locally 
in the repository (e.g., extracting a time 
series for a gene across all items for an 
individual or charting the differences 
between two items). 

User annotation is unlikely; data sets 
not expected to change or be augmented 
after deposit. University might provide 
persistent identifiers for data sets, but 
persistent identifiers (e.g., Digital Object 
Identifiers associated with a data set may 
already exist. Citation supported only 
full-data set level. Search capabilities 
limited to faceted search over metadata, 
augmented with keyword search of 
textual data elements. Hierarchical 
browsing of data sets along thematic 
lines possible. Linking and merging 
of data items not expected. Data set 
download numbers will be tracked. 
Analysis and visualization of data not 
supported on the platform.

State 1 (C) Control Characteristics State 2 (C) Control Characteristics State 3 (C) Control Characteristics

Informal content control (e.g., laboratory 
policies on what is appropriate for shared 
workspace). Quality control focused 
on experiment protocols for collecting 
project data. Access control restricted 
to project members and likely relies on 
file-system permissions. No platform 
restrictions.

All repository submissions are curated 
for formatting, conformance to 
appropriate standards, quality issues, 
and completeness of metadata. Access 
is carefully controlled. Users and their 
proposed studies using the data must 
be approved by a review board. Since 
individuals can be reidentified from 
genomic information, the repository needs 
to run on a high-trust platform.

Mainly related to whether data are 
appropriately packaged and documented 
for deposit; potential data size limits 
accepted. Quality control is limited to 
metadata completeness and correctness. 
Only appropriate university community 
members may deposit data sets. Access 
for downloading may be limited if 
sensitive or proprietary information is in 
any of the data sets. Simply searching 
the archive will not require authorization. 
Possible restrictions on platform dictated 
by the university if the school wants to 
keep the archive on its own server or if 
there is an institutional arrangement with 
a particular commercial cloud provider.
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State 1 (D) External Context 

Characteristics

State 2 (D) External Context 

Characteristics

State 3 (D) External Context 

Characteristics

No requirements to replicate data 
outside resource (workspace is internal 
to project). Possible dependencies on 
external data sets (e.g., gene variant cells 
relative to a reference mouse genome). 
Data distinctiveness dependent on 
whether other groups are studying the 
same gene.

To retain access control, the repository 
not replicated elsewhere. Data are 
mostly self-contained, although some 
of the metadata may be drawn from 
controlled vocabularies. The repository is 
fairly unique, with its focus on the time 
dimension.

No obligation to replicate the archive as 
a whole at other sites; specific data sets 
may be required to be replicated offsite, 
but data creator responsible for such 
replication. Generally, no dependencies 
on external data sets; archive unable to 
track or maintain external dependencies 
(data in read-only mode). No general 
characterization of distinctiveness of 
archive as a whole; that will vary among 
data sets.

State 1 (E) Data Life-Cycle 

Characteristics

State 2 (E) Data Life-Cycle 

Characteristics

State 3 (E) Data Life-Cycle 

Characteristics

Likely steady growth over course of 
project; growth after project if used for 
new studies. Rare updates to raw data; 
some data processing might be repeated 
with different parameters or reference 
sets; formal versioning unlikely. Useful 
lifetime of data might extend to follow-
on studies in the same laboratory. If data 
useful to wider community, then they 
will probably be made available through 
a public repository. Fully processed 
might be moved to archival or offline 
storage if storage needs of project outstrip 
workspace size.

Repository will likely grow at an 
increasing rate each year as more 
individuals are added and new sequences 
are submitted for existing individuals. 
Repository updated incrementally as new 
data arrive and are approved. Certain 
information may be versioned, such 
as different versions of variant calls 
relative to different versions of the human 
reference genome. Given the temporal 
aspect, the data are unlikely to be 
superseded by other sources. Data in the 
repository are expected to stay online.

Archive growth will occur at accelerated 
rate; number of data sets deposited 
annually may be stable, but amount of 
data collected per project is expected 
to increase. Data sets in archive not 
typically updated (except, perhaps, if 
corrected or withdrawn). New versions 
of data sets may be deposited. Useful 
lifetime of data sets varies. Large 
portions of the archive may be held 
in offline or deep storage, with only 
metadata kept online for searching.

State 1 (F) Contributor and User 

Characteristics

State 2 (F) Contributor and User 

Characteristics

State 3 (F) Contributor and User 

Characteristics

Project members; no requirements 
for accommodating large numbers of 
contributors or users. No outreach 
required. Informal training and support 
provided by existing laboratory members.

Contributors and users from the same 
research community. The number of 
contributors will be limited compared 
to general sequence repositories (most 
sequencing projects not collecting data 
across time). The user base is relatively 
larger and could include most of the 
contributors, as they may want to 
compare their data to other sources. Most 
users will carry out initial data search 
and analysis on platform, downloading 
only small subsets or analysis results. 
Contributors and users will require 
training and support, and there will be 
outreach to both groups.

Contributors include investigators 
currently or formerly with the university. 
Users could be almost anyone. Deposits 
on the order of tens per week. Archive 
searches common, but downloads 
infrequent for most data sets. Training 
and support requirements skewed toward 
data contributors (e.g., education on what 
can and should be deposited; consultation 
on data preparation). Outreach activities 
focused within the university to make 
researchers aware of archive and what 
should be deposited.

TABLE F.1 Continued
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State 1 (G) Availability Characteristics State 2 (G) Availability Characteristics State 3 (G) Availability Characteristics

Short-duration outages inconvenient but 
tolerable. Currency of data is important. 
Interactive response times likely not 
necessary. Local access the norm, but 
remote access might be desirable for off-
site collaborators.

Short outages are permissible for 
maintenance or upgrades. Currency 
of the data is not critical; contributors 
may be submitting data well after the 
collection point. Response time approval 
of submissions should be within a week. 
Searches should run interactively, but 
some of the more complex analyses might 
take minutes or hours. It is important that 
there be enough computing resources to 
support a modest number of simultaneous 
users. The resource is available remotely 
via a web interface.

Must not lose submissions, but brief 
outages acceptable. Currency not critical 
(data deposited at project end). Some 
requirements of investigators for data 
sharing within a time frame following 
publication or project end; deposits may 
need to be vetted and brought online 
quickly. Archive searching will be 
interactive, but downloads within hours 
or days tolerable, especially for off-
line material. The archive is remotely 
accessible.

State 1 (H) Confidentiality, Ownership, 

and Security

State 2 (H) Confidentiality, Ownership, 

and Security

State 3 (H) Confidentiality, Ownership, 

and Security

No personal health information (no 
human subjects). Potential ownership 
concerns for data downloaded from 
elsewhere, but not for data generated in 
the laboratory. Security important for 
keeping data and results private until 
publication and preventing loss or damage 
to data by unauthorized users.

Data in the repository come from human 
subjects and are confidential. All data 
usage should be auditable, to document 
compliance with access policies. Inclusion 
of data in the repository is consented, but 
participants allowed to revoke consent. 
Thus, submitted data and any additional 
results derived therefrom must be 
traceable to a participant or participants. 
Repository operators will arrange periodic 
external audits of their security practices. 

Data sets may contain personal or 
proprietary information and thus are 
confidential. Processes necessary 
for reviewing data access requests. 
Ownership of most data resides with the 
university (or possibly the investigator), 
but data produced on contract research 
might be externally owned and require 
tracking. Security against unauthorized 
modifications and against unauthorized 
access (if confidentiality or ownership 
issues involved) required.

State 1 (I) Maintenance and Operations 

Characteristics

State 2 (I) Maintenance and Operations 

Characteristics

State 3 (I) Maintenance and 

Operations Characteristics

Hardware and software integrity checked 
by others if workspace is on a network 
drive or commercial service. Data 
integrity checks (if any) performed 
by project members. Backups will be 
managed by project team or affiliated 
staff if workspace is on a local server; 
otherwise, others will manage backups to 
mitigate hardware failure risk. Minimal 
system-reporting requirements (e.g., 
lists of space usage by user; monitoring 
remaining free space). 

Integrity checks on the data are conducted 
monthly, as well as a report produced on 
any anomalies. Monthly reports required 
on size of holdings, per-item and per-user 
access frequency, and compute usage. 
The operators of the resource cannot 
assume that contributors retain their data 
on a long-term basis; hence, they are 
responsible for risk management.

University responsible for integrity 
checking of hardware and software if 
archive is maintained locally. Accidental 
corruption of data sets unlikely (given 
no data set updating). Offline data sets 
should be checked periodically for 
readability. Risk-of-loss management 
necessary if archive contains copies of 
record of data sets. Minimal systems-
reporting requirements (e.g., monthly 
download summaries and space usage).

State 1 (J) Standards, Regulatory, and 

Governance Concerns

State 2 (J) Standards, Regulatory, and 

Governance Concerns

State 3 (J) Standards, Regulatory, and 

Governance Concerns

Relevant standards for some types of data 
(e.g., sequencing data and their analysis 
products), but common software tools 
are available to generate data according 
to standards. Possibly some future 
requirements from project sponsors or 
host institutions for sharing and archiving 
data. Likely no governing body for 
project-specific resource.

Community standards exist for all the 
main types of sequence-based data hosted; 
repository conforms to these. Sequence 
data may not be explicitly categorized 
as personally identifiable information in 
some government regulations (e.g., Health 
Insurance Portability and Accountability 
Act); they might be in the future and 
repository operators treat it as such. An 
advisory board helps develop repository 
acquisition and use policies.

Archive will enforce archive-level 
standards for metadata on deposited data 
sets but will not check or enforce data 
set-specific standards. Main source of 
regulation and governance will be based 
on university rules, policies, and possible 
oversight from offices or committees on 
campus.

TABLE F.1 Continued
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energy physics, multiscale biomedical science, smart cities, and smart manufacturing. She is a co-initiator of the 
popular open-source Kepler Scientific Workflow System and the co-author of publications related to computational 
data science at the intersection of workflows, provenance, distributed computing, big data, reproducibility, and 
software modeling in many different application areas. Among the awards she has received are the 2015 Institute 
of Electrical and Electronics Engineers (IEEE) Technical Committee on Scalable Computing Award for Excellence 
in Scalable Computing for Early Career Researchers and the 2017 Association for Computing Machinery (ACM) 
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 Special Interest Group on High Performance Computing’s Emerging Woman Leader in Technical Computing 
Award.

GOLAM SAYEED CHOUDHURY is the associate dean for research data management and Hodson Director of 
the Digital Research and Curation Center at the Sheridan Libraries of Johns Hopkins University. Choudhury is 
also a member of the executive committee for the Institute of Data Intensive Engineering and Science based at 
Johns Hopkins. Choudhury is a President Obama appointee to the National Museum and Library Services Board. 
He was a member of the National Academies Board on Research Data and Information and the Blue Ribbon 
Task Force on Sustainable Digital Preservation and Access. He has testified for the Research Subcommittee of 
the  Congressional Committee on Science, Space, and Technology. He was a member of the board of the National 
Information Standards Organization, OpenAIRE2020, DuraSpace, the Inter-university Consortium for Political and 
Social Research (ICPSR) Council, Digital Library Federation advisory committee, Library of Congress National 
Digital Stewardship Alliance Coordinating Committee, Federation of Earth Scientists Information Partnership 
Executive Committee, and the Project MUSE Advisory Board. Choudhury was a member of the EDUCAUSE 
Center for Analysis and Research Data Curation Working Group. He has been a Senior Presidential Fellow with 
the Council on Library and Information Resources, a lecturer in the Department of Computer Science at Johns 
Hopkins, and a research fellow at the Graduate School of Library and Information Science at the University of 
Illinois at Urbana-Champaign. He is the recipient of the 2012 Online Computer Library Center, Incorporated/
Library and Information Technology Association Kilgour Award. Choudhury has served as principal investigator 
for projects funded through the National Science Foundation, Institute of Museum and Library Services, Library 
of Congress National Digital Information Infrastructure and Preservation Program, Alfred P. Sloan Foundation, 
Andrew W. Mellon Foundation, Microsoft Research, and a Maryland-based venture capital group. He is the product 
owner for the Data Conservancy, which focuses on the development of data curation infrastructure, and the Public 
Access Submission System, which supports simultaneous submission of articles to PubMed Central and institu-
tional repositories. He has oversight for data curation research and development and data archive implementation 
at the Sheridan Libraries at Johns Hopkins University. Choudhury has published articles in journals such as the 
International Journal of Digital Curation, D-Lib, the Journal of Digital Information, First Monday, and Library 

Trends. He has served on committees for the Digital Curation Conference, Open Repositories, Joint Conference on 
Digital Libraries, and Web-Wise. He has presented at various conferences including EDUCAUSE, the Coalition for 
Networked Information, Jisc-Coalition for Networked Information, Digital Library Federation, American Library 
Association, Association of College and Research Libraries, and international venues including the International 
Federation of Library Associations and Institutions, the Kanazawa Information Technology Roundtable, eResearch 
Australasia, the North America-China Conference, eResearch New Zealand, and the Arabian-Gulf Chapter of the 
Special Libraries Conference.

MARGARET LEVENSTEIN is director of ICPSR; research professor at the Institute for Social Research and the 
School of Information; and adjunct professor of business economics and public policy at the Stephen M. Ross 
School of Business. She has taught economics at the University of Michigan since 1990. She serves as co-executive 
director of the Michigan Federal Statistical Research Data Center (FSRDC) and co-chair of the Executive Commit-
tee of the FSRDC national network. She is the associate chair of the American Economic Association’s Committee 
on the Status of Women in the Economics Profession and past president of the Business History Conference. She 
is principal investigator of CenHRS, a Sloan Foundation–funded project building an enhancement to the Health 
and Retirement Study based on linkages to administrative and survey data on Health and Retirement Study 
employers and co-workers. She is principal investigator of a National Science Foundation (NSF)-funded project 
to establish a repository of linked data and data linkage algorithms at ICPSR; a Sloan and NSF-funded effort to 
establish a Researcher Passport using open badges for credentialed, trusted researchers to access restricted data; 
and an NSF-funded project conducting experiments to encourage citizen-scientists to improve research metadata. 
She received a Ph.D. in economics from Yale University and a B.A. from Barnard College, Columbia University. 
She is the author of numerous studies on competition and collusion, the development of information systems, and 
using “organic” data to improve social and economic measurement.
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CLIFFORD LYNCH has been the executive director of the Coalition for Networked Information (CNI) since 1997. 
CNI, jointly sponsored by the Association of Research Libraries and EDUCAUSE, includes about 200 member 
organizations concerned with the intelligent uses of information technology and networked information to enhance 
scholarship and intellectual life. CNI’s wide-ranging agenda includes work in digital preservation, data intensive 
scholarship, teaching, learning and technology, and infrastructure and standards development. Prior to joining CNI, 
Lynch spent 18 years at the University of California Office of the President, including the last 10 as Director of 
Library Automation. Lynch, who holds a Ph.D. in computer science from the University of California,  Berkeley, is 
an adjunct professor at Berkeley’s School of Information. He is both a past president and recipient of the Award of 
Merit of the American Society for Information Science and a fellow of the American Association for the Advance-
ment of Science, the ACM, and the National Information Standards Organization. He served as co-chair of the 
National Academies Board on Research Data and Information from 2011 to 2016, and he is active on numerous 
advisory boards and visiting committees. His work has been recognized by the American Library Association’s 
Lippincott Award, the EDUCAUSE Leadership Award in Public Policy and Practice, and the American Society 
for Engineering Education’s Homer Bernhardt Award.

DAVID MAIER is Maseeh Professor of Emerging Technologies at Portland State University. Prior to his current 
position, he was on the faculty at the State University of New York, Stony Brook, and Oregon Graduate Institute. 
He has spent extended visits with Inria, the University of Wisconsin, Madison, Microsoft Research, and the National 
University of Singapore. He is the author of books on relational databases, logic programming, and object-oriented 
databases, as well as papers on database theory, object-oriented technology, scientific databases, and dataspace 
management. He is a recognized expert on the challenges of large-scale data in the sciences. He received an NSF 
Young Investigator Award in 1984 and was awarded the 1997 ACM Special Interest Group on Management of 
Data’s Innovations Award for his contributions in objects and databases. He is also an ACM Fellow and IEEE Senior 
Member. He holds a dual B.A. in mathematics and in computer science from the University of Oregon (Honors 
College, 1974) and a Ph.D. in electrical engineering and computer science from Princeton University (1978).

CHARLES MANSKI has been Board of Trustees Professor in Economics at Northwestern University since 1997. 
He previously was a faculty member at the University of Wisconsin, Madison (1983-1998), the Hebrew Univer-
sity of Jerusalem (1979-1983), and Carnegie Mellon University (1973-1980). He received his B.S. and Ph.D. in 
economics from the Massachusetts Institute of Technology (MIT) in 1970 and 1973, respectively. He has received 
honorary doctorates from the University of Rome “Tor Vergata” (2006) and the Hebrew University of Jerusalem 
(2018). Manski’s research spans econometrics, judgment and decision, and analysis of public policy. He is author 
of Public Policy in an Uncertain World (Harvard, 2013), Identification for Prediction and Decision (Harvard, 
2007), Social Choice with Partial Knowledge of Treatment Response (Princeton, 2005), Partial Identification of 

Probability Distributions (Springer, 2003), Identification Problems in the Social Sciences (Harvard, 1995), and 
Analog Estimation Methods in Econometrics (Chapman and Hall, 1988); co-author of College Choice in America 
(Harvard, 1983); and co-editor of Evaluating Welfare and Training Programs (Harvard, 1992) and Structural 

Analysis of Discrete Data with Econometric Applications (MIT, 1981). He has served as director of the Institute 
for Research on Poverty (1988-1991), chair of the Board of Overseers of the Panel Study of Income Dynamics 
(1994-1998), and chair of the National Research Council Committee on Data and Research for Policy on Illegal 
Drugs (1998-2001). Editorial service includes terms as editor of the Journal of Human Resources (1991-1994), 
co-editor of the Econometric Society Monograph Series (1983-1988), member of the editorial board of the Annual 

Review of Economics (2007-2013), member of the Report Review Committee of the National Research Council 
(2010-2018), and associate editor of the Annals of Applied Statistics (2006-2010), Econometrica (1980-1988), 
Journal of Economic Perspectives (1986-1989), Journal of the American Statistical Association (1983-1985, 
2002-2004), and Transportation Science (1978-1984). Manski is an elected member of the National Academy of 
Sciences. He is an elected fellow of the American Academy of Arts and Sciences, the Econometric Society, the 
American Statistical Association, and the American Association for the Advancement of Science, distinguished 
fellow of the American Economic Association, and corresponding fellow of the British Academy.
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MARYANN MARTONE is a professor emerita at UCSD but still maintains an active laboratory and currently 
serves as the chair of the University of California Academic Senate Committee on Academic Computing and 
Communications. She received her B.A. from Wellesley College in biological psychology and ancient Greek 
and her Ph.D. in neuroscience from UCSD. She started her career as a neuroanatomist, specializing in light and 
electron microscopy, but her main research for the past 15 years focused on informatics for neuroscience (i.e., 
neuroinformatics). She led the Neuroscience Information Framework (NIF), a national project to establish a 
uniform resource description framework for neuroscience, and the National Institute of Diabetes and Digestive 
and Kidney Diseases Information Network (dkNET), a portal for connecting researchers in digestive, kidney, and 
metabolic disease to data, tools, and materials. She just completed 5 years as editor-in-chief of Brain and Behav-

ior, an open-access journal, and has just launched a new journal as editor-in-chief, NeuroCommons, with BMC. 
Dr. Martone is past president of FORCE11, an organization dedicated to advancing scholarly communication and 
e-scholarship. She completed 2 years as the chair of the Council on Training, Science, and Infrastructure for the 
International Neuroinformatics Coordinating Facility and is now the chair of the Governing Board. Since retir-
ing, she served as the director of biological sciences for Hypothesis, a technology nonprofit developing an open 
annotation layer for the web (2015-2018), and founded SciCrunch, a technology start-up based on technologies 
developed by NIF and dkNET.

ALEXA T. McCRAY is professor of medicine at Harvard Medical School and the Department of Medicine, Beth 
Israel Deaconess Medical Center. She conducts research on knowledge representation and discovery, with a spe-
cial focus on the significant problems that persist in the curation, dissemination, and exchange of scientific and 
clinical information in biomedicine and health. McCray is the former director of the Lister Hill National Center 
for Biomedical Communications, a research division of the National Library of Medicine at the National Institutes 
of Health (NIH). While at NIH, she directed the design and development of a number of national information 
resources, including ClinicalTrials.gov. Before joining NIH, she was on the research staff of IBM’s T.J. Watson 
Research Center. She received her Ph.D. from Georgetown University and for 3 years was on the faculty there. 
She conducted predoctoral research at MIT. McCray joined Harvard Medical School in 2005, where she was 
founding co-director of the Center for Biomedical Informatics and associate director of the Francis A. Countway 
Library of Medicine. McCray was elected to the National Academy of Medicine in 2001. She is chair of the 
National Academies Board on Research Data and Information. She is a fellow of the American Association for the 
Advancement of Science, a fellow of the American College of Medical Informatics (ACMI), an honorary fellow of 
the International Medical Informatics Association, and a founding fellow of the International Academy of Health 
Sciences Informatics. She is a past president of ACMI and a past member of the boards of both the American 
Medical Informatics Association and the International Medical Informatics Association. She is a former editor-in-
chief of Methods of Information in Medicine, and she is a past member of the editorial board of the Journal of the 

American Medical Informatics Association. She chaired the 2018 National Academies of Sciences, Engineering, 
and Medicine consensus study entitled Open Science by Design: Realizing a Vision for 21st Century Research.

MICHELLE MEYER is an assistant professor and associate director, research ethics, in the Center for Translational 
Bioethics and Health Care Policy at Geisinger, a large, integrated health system in Pennsylvania and New Jersey, 
where she chairs the Institutional Review Board (IRB) Leadership Committee and directs the Research Ethics 
Advice and Consultation Service. She is also faculty co-director of Geisinger’s Behavioral Insights Team (a.k.a. 
“nudge unit”) in Geisinger’s Steele Institute for Health Innovation. Her empirical and normative research focuses 
on judgment and decision making by patients, clinicians, research participants, and IRBs that has implications 
for law, ethics, and policy. She has served on the advisory board of the Social Science Genetic Association Con-
sortium; the board of directors of the Open Humans Foundation (formerly PersonalGenomes.org); the Ethics and 
Compliance Advisory Board of PatientsLikeMe; the American Psychological Association’s Commission on Ethics 
Processes; the ClinGen Working Group on Complex Diseases; a National Academy of Medicine/Patient-Centered 
Outcomes Research Institute working group on generating stakeholder support and demand for health data sharing, 
linkage, and use; and a Defense Advanced Research Projects Agency–funded technical exchange on complex social 
systems. She developed a commissioned white paper addressing ethical issues raised by plans for developing a 
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new data-sharing institute. In most of those roles, she has focused on consent; data privacy; and data access and 
use, especially with respect to genomic data. Immediately before joining the faculty at Geisinger, Meyer was an 
assistant professor and director of bioethics policy in the Clarkson University-Icahn School of Medicine at Mount 
Sinai School of Medicine Bioethics Program and adjunct faculty at Albany Law School. Previously, she was an 
academic fellow at the Petrie-Flom Center for Health Law Policy, Biotechnology, and Bioethics at Harvard Law 
School; a Greenwall Fellow in Bioethics and Health Policy at The Johns Hopkins and Georgetown Universities; 
and a research fellow at the John F. Kennedy School of Government at Harvard. She earned a Ph.D. in religious 
studies, with a focus on practical ethics, from the University of Virginia under the supervision of James F. Childress 
and a J.D. from Harvard Law School, where she was an editor of the Harvard Law Review. Following law school, 
she clerked for Judge Stanley Marcus of the U.S. Court of Appeals for the Eleventh Circuit. She graduated summa 
cum laude from Dartmouth College.

WILLIAM STEAD is chief strategy officer for Vanderbilt University Medical Center (VUMC). In this capacity, 
he facilitates structured decision making to achieve strategic goals and concept development to nurture system 
innovation. Dr. Stead received his B.A., M.D., and residency training in internal medicine and nephrology from 
Duke University. He remained on Duke’s faculty in nephrology as the physician in the physician-engineer part-
nership that developed The Medical Record, one of the first practical electronic medical record systems. He also 
helped Duke build one of the first patient-centered hospital information systems (IBM’s PCS/ADS). He came to 
VUMC in 1991 and holds appointments as the McKesson Foundation Professor of Biomedical Informatics and 
Professor of Medicine. For two decades, he guided development of the Department of Biomedical Informatics 
and operational units providing information infrastructure to support health care, education, and research programs 
of the Medical Center. He aligned organizational structure, informatics architecture, and change management to 
bring cutting-edge research in decision support, visualization, natural language processing, data mining, and data 
privacy into clinical practice. His current focus is on system-based care, learning and research leading toward 
personalized medicine, and population health management. Dr. Stead is a founding fellow of both the American 
College of Medical Informatics and the American Institute for Engineering in Biology and Medicine. He served 
as founding editor-in-chief of the Journal of the American Medical Informatics Association. His awards include 
the Collen Award for Excellence in Medical Informatics and the Lindberg Award for Innovation in  Informatics. 
Most recently, the American Medical Informatics Association named the Award for Thought Leadership in Infor-
matics in his honor. He served as president of the American College of Medical Informatics, chairman of the 
Board of Regents of the National Library of Medicine, presidential appointee to the Commission on Systemic 
Inter operability, chair of the National Research Council Committee on Engaging the Computer Science Research 
Community in Health Care Informatics, and co-chair of the Institute of Medicine Committee on the Recommended 
Social and Behavioral Domains and Measures for Electronic Health Records. He chairs the National Commit-
tee for Vital and Health Statistics of the Department of Health and Human Services and the Technical Advisory 
Committee of the Center for Medical Interoperability. He is a member of the Council of the National Academy of 
Medicine and the American Medical Association’s Journal Oversight Committee. In addition to his academic and 
advisory responsibilities, Dr. Stead is a director of HealthStream.

LARS VILHUBER is presently on the faculty of the Department of Economics at Cornell University, executive 
director of the ILR School’s Labor Dynamics Institute, a senior research associate at the ILR School at Cornell 
University, Ithaca, and affiliated with the U.S. Census Bureau (Center for Economic Studies). He holds a Ph.D. 
in economics from Université de Montréal, Montreal, Canada, having previously studied economics at the Uni-
versität Bonn, Germany, and Fernuniversität Hagen, Germany. He has worked in both academic and government 
research positions and continues to consult and collaborate with government and statistical agencies in Canada, 
the United States, and Europe. His research interests lie in the dynamics of the labor market: working with highly 
detailed longitudinally linked data, he has analyzed the effects and causes of mass layoffs, worker mobility, and the 
interaction between housing and the local labor market. Over the years, he has also gained extensive expertise on 
the data needs of economists and other social scientists, having been involved in the creation and maintenance of 
several data systems designed with analysis, publication, replicability, and maintenance of large-scale code bases 
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in mind. His research in statistical disclosure limitation issues is a direct consequence of his profound interest in 
making data available in a multitude of formats to the broadest possible audience. His knowledge about various 
data enclave systems comes from both personal experience and the desire to improve the experience of others. He 
is data editor of the American Economic Association and managing editor of the Journal of Privacy and Confi-

dentiality; chair of the Scientific Advisory Committee of the Centre d’accès sécurisé aux données in France; and 
senior advisor of the New York FSRDCs in the United States. 
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ABIDE Autism Brain Imaging Data Exchange
ADNI Alzheimer’s Disease Neuroimaging Initiative
AI artificial intelligence

BCBC Beta Cell Biology Consortium
BIDS Brain Imaging Data Structure
BLAST Basic Local Alignment Search Tool
BRAIN Brain Research Through Advancing Innovative Neurotechnologies
BVI business value of information

CCPA California Consumer Privacy Act
CERN European Organization for Nuclear Research
CITI Collaborative Institutional Training Initiative
COMBINE Computational Modeling in Biology Network
CVI cost value of information

DICOM Digital Imaging and Communications in Medicine
DMP data management plan
DNA Deoxyribonucleic acid 
DOI Digital Object Identifier
DUOS Data Use Oversight System

EAB external advisory board
ERC European Research Council

FAIR findable, accessible, interoperable, and reusable 
FASTQ A text-based format used for storing biological sequence data and quality scores

H

Acronyms
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FedRAMP Federal Risk and Authorization Management Plan
FISMA Federal Information Security Act
fMRI functional magnetic resonance imaging
FSRDC Federal Statistical Research Data Center

GB gigabyte
GDPR General Data Privacy Regulation

HDF hierarchical data format
HIPAA Health Insurance Portability and Accountability Act of 1996
HSR human-subjects research

IEDA Interdisciplinary Earth Data Alliance
IGERT Integrative Graduate Education and Research Traineeship
INCF International Neuroinformatics Coordinating Facility
IRB Institutional Review Board
IT information technology
IVI intrinsic value of information

maDMP machine-actionable data management plan
MeSH Medical Subject Headings

NCBI National Center for Biotechnology Information
NDA National Institute of Mental Health Data Archive
NEMO Neuroscience Multi ‘Omic Archive
NIA National Institute on Aging
NIDDK National Institute of Diabetes and Digestive and Kidney Diseases
NIDM Neuro Imaging Data Model
NIF Neuroscience Information Framework
NIH National Institutes of Health
NIH RePORTER NIH Research Portfolio Online Reporting Tools
NIMH National Institute of Mental Health
NITRC  NeuroImaging Tools and Resources Collaboratory
NLM National Library of Medicine
NNLM National Network of Libraries of Medicine
NSF National Science Foundation
NWB  Neurodata Without Borders

O*NET Occupational Information Network
OASIS Open Access Series of Imaging Studies
ORCID Open Researcher and Contributor Identifier

PB petabyte
PID persistent identifier, personal identifier

RFA request for application
RNA ribonucleic acid
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SOC Standard Occupational Classification

TB terabyte

UMLS Unified Medical Language System

XML Extensible Markup Language
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