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Mathematical reasoning flexibility across physics contexts is a desirable learning outcome 
of introductory physics, where the “math world” and “physical world” meet. 
Physics Quantitative Literacy (PQL) is a set of interconnected skills and habits of mind that 
support quantitative reasoning about the physical world. The Physics Inventory of Quantitative 
Literacy (PIQL), which we are currently refining and validating, assesses students’ proportional 
reasoning, co-variational reasoning, and reasoning with signed quantities in physics contexts. In 
this paper, we apply a Conceptual Blending Theory analysis of two exemplar PIQL items to 
demonstrate how we are using this theory to help develop an instrument that represents the kind 
of blended reasoning that characterizes expertise in physics. A Conceptual Blending Theory 
analysis allows for assessment of hierarchical partially correct reasoning patterns, and thereby 
holds potential to map the emergence of mathematical reasoning flexibility throughout the 
introductory physics sequence.  
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Introductory physics is characterized by using simple mathematics in sophisticated ways.  
Physics equations tell stories. For example, to an expert, a= – 9.8 m/s2 + – b(2m/s), the equation 
is recognized as describing the acceleration of an object that is in free fall and experiencing air 
resistance. The two forces causing the acceleration in this case are the gravitational force and the 
force of air resistance. The coordinate system is set by the choice of sign for the acceleration due 
to gravity, “downwards” in this case is chosen to be in the negative direction. At this instant, the 
object is moving upwards at 2 m/s since the one-dimensional velocity vector is in the positive 
direction. The negative signs in front of each of the two terms on the right-hand sign of the 
equation carry different meanings. The first negative sign is an arbitrary choice that determines 
the coordinate system, while the negative sign on the second term indicates that whatever the 
sign of the velocity is, this contribution to the (vector) acceleration will be in the direction that is 
opposite to the direction of motion. So, the sign of the velocity, and the sign of the contribution 
from gravity must agree with the choice of coordinate system, but the sign in front of the second 
term does not because it indicates opposition, which is independent of the coordinate system 
used. Black and Wittman provide evidence that many of these nuances are lost on physics majors 
at the junior level, even though the mathematics involved is at the precaclulus level, and they are 
well beyond that stage in their mathematics course taking (Black & Wittmann, 2009). 

Even as students move beyond the introductory sequence to using newly learned 
mathematics (calculus, linear algebra, differential equations), there is mounting evidence that 
although they don’t struggle to execute the mathematics, they don’t really understand why they 
do what they do, and they’d like to (Caballero, Wilcox, Doughty, & Pollock, 2015). 
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In the work described in this paper, our intention is to understand and assess the nature of 
student reasoning about the quantitative models that make up introductory physics, as the air 
resistance equation above exemplifies. Sherin’s Symbolic Forms provides a framework of the 
kind of reasoning most physics instructors would like to see in their students as the outcome of 
having taken an introductory physics course (Sherin, 2001). While Symbolic Forms emerge from 
observations of students engaged in successful problem solving, the students in Sherin’s study 
are high achieving students in their last semester of introductory physics at an elite institution. 
Most students who take introductory physics are less sophisticated mathematically and come 
from less educationally privileged backgrounds. We consider Symbolic Forms as a learning 
objective of the introductory physics course. 

In the next sections, we describe the Physics Inventory of Quantitative Literacy (PIQL), 
which is designed to help assess this learning objective, and Conceptual Blending Theory (CBT), 
which provides a framework for understanding the integration of mathematical and physical 
reasoning (Fauconnier & Turner, 2008). The purpose of this paper is to examine items from the 
PIQL through the lens of CBT. We argue that CBT analysis lends itself to the development of an 
inventory that promotes a growth mindset associated with mathematical reasoning in physics. 

Physics Inventory of Quantitative Literacy (PIQL) 
Physics, as perhaps the most fundamental and the most transparently quantitative science 

discipline, should play a central role in helping students develop quantitative literacy (Steen, 
2004). We coin Physics Quantitative Literacy (PQL) to refer to the rich ways that physics 
experts blend conceptual and procedural mathematics to formulate and apply quantitative 
models. Quantification is a foundation for PQL, using established mathematics to invent and 
apply novel quantities to describe natural phenomena (Thompson, 2010; Brahmia, 2019). These 
quantities then allow for the investigation of patterns and relationships, which in turn anchor the 
quantitative models that are the hallmark of physics as a discipline. PQL, involving sophisticated 
use of elementary mathematics at least as much as elementary applications of advanced 
mathematics, is more challenging for students than many instructors may realize (Rebello, Cui, 
Bennett, Zollman, & Ozimek, 2007; Brahmia & Boudreaux, 2016). 

Although the mathematics involved in introductory physics quantification is typically algebra 
or arithmetic, a conceptual understanding of this mathematics is fundamental to the sophisticated 
task of reasoning in the context of strange new physics quantities. Despite its importance, little 
work had been done to measure progress of PQL in introductory physics students as a result of 
instruction. The Physics Inventory of Quantitative Literacy (PIQL) is a valid and reliable 
reasoning inventory that is under development by the authors with the intention of being used to 
track changes in student quantitative reasoning over the course of the introductory physics 
sequence. Carefully validated forced-response questions probe student reasoning about 
quantification in introductory-level physics contexts. Analysis of PIQL results allows us to track 
progress in students' PQL and determine features of PQL that are particularly challenging. 

We’ve identified three facets as the basis of quantification in introductory physics: 
proportional reasoning, reasoning about signed quantities, and co-variational reasoning. The 
choice of these three facets as foundational for physics quantitative literacy was supported by 
work done in both physics education research and mathematics education research. Much of our 
thinking about the domain of co-variational reasoning originates in mathematics (Carlson, 
Oehrtman, and Engelke, 2010). The development of the Pre-calculus Concept Assessment served 
as a foundation for our thinking about covariation in physics. 
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Concept and reasoning inventories, by nature, use expert-like reasoning and understanding as 
a metric with which to assess student reasoning. In the process of developing items for the PIQL, 
we developed an organizational framework by which to characterize the different uses of the 
negative sign in contexts of introductory physics (Brahmia, Olsho, Smith & Boudreaux, 2018). 
This framework proved useful not only in the development of assessment items for the PIQL, but 
also, potentially, for instructors and researchers in characterizing student understanding of the 
different meanings of the negative sign in physics contexts. We continued work on a framework 
for the natures of proportional reasoning in introductory physics (Boudreaux, Kanim & Brahmia, 
2015) and have begun work for an analogous framework for co-variational reasoning. 

In its current state, the PIQL items (including the distractors) are representative of expert 
natures of proportional reasoning, co-variational reasoning and reasoning with signed quantities. 
The item distractors emerge from open-ended version analysis of student responses, which are 
then refined to align with validated expert natures. We conduct student think-aloud interviews to 
refine or reject items. We use CBT (Fauconnier & Turner, 2008) as a framing for the analysis of 
student responses to help inform both item refinement and implications for instruction. 

Results from the Physics Inventory of Quantitative Literacy (PIQL) administered in large-
enrollment calculus-base courses - when the items are scored dichotomously (either all correct or 
incorrect)  -  indicates only a very modest improvement in students' quantitative reasoning as a 
result of introductory-level physics instruction. By incorporating patterns that emerge from a 
CBT analysis, we are encouraged at the potential to recognize hierarchy in students “incorrect” 
answering, and thereby be able to better understand, and assess, the development of PQL over 
the course of the introductory physics sequence.  

Conceptual Blending Theory 
Conceptual Blending theory (Fauconnier & Turner, 2008) describes a cognitive process in 

which a unique mental space is formed from two (or more) separate mental spaces. The blended 
space can be thought of as a product of the input spaces, rather than a separable sum. We view 
the development of expert mathematization in physics occurring not through a simple addition of 
new elements (physics quantities) to an existing cognitive structure (arithmetic), but rather 
through the creation of a new and independent cognitive space.  This space, in which creative, 
quantitative analysis of physical phenomena can occur, involves a continuous interdependence of 
thinking, most of which is subconscious, about the mathematical and physical worlds.  

The following are elements found in any blend (see Fig. 1a). This static diagram represents 
connections that activate and deactivate. It is not depicting actual stages in a temporal way. 

x Input spaces: contains the concepts involved 
x Generic Space: structure that the inputs share, and maps onto input spaces 
x Blended Space: related to generic space but contain more structure in which the 

inputs are indistinguishable 
x Projections: represented by lines connecting the rectangles; project in either direction 

As an example of CBT analysis, we present an abridged version of their Buddhist Monk 
problem. The reasoning is abstract and cognitively complex; its analysis is shown in Fig. 1(b). 

A monk begins at dawn one day walking up the mountain, reaches the top sunset, stays 
several days then he begins at dawn to walk back and reaches the bottom at sunset. Make 
no assumptions about his starting or stopping or about the pace of the trips. Is there a place 
on the path that the monk occupies at the same hour of the day on the two separate 
journeys? 
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Figure 1. (a) Elements of a typical conceptual blend, (b) CBT analysis of Buddhist Monk problem 

CBT Analysis of PIQL Items 
In what follows, we present a CBT analysis of Alex and Jessie solving two PIQL 

proportional reasoning items to illustrate our method. We use dotted lines in the CBT analysis to 
indicate unstable knowledge. 

PIQL Item 1 

 

 

 

 

 

 

Figure 2. (a) Alex’s work showing multiple attempts to make sense of the general variable “M”, (b) CBT analysis  

Although Alex’s reasoning, when considered dichotomously as correct or incorrect, is in fact 
incorrect, there are resources used that are productive here. Alex recognized that they were 
looking for an invariant quantity, but their reasoning broke down when trying to reason with a 
general variable. In physics, we often pose questions in which the value of a quantity is 
represented by a general variable. Its value doesn’t change during the problem, but it can take on 
any value. Many students, like Alex, struggle to activate mathematical reasoning that is familiar 
to them when they are asked to reason with quantities represented as general variables. There is 
weakness in the projection between the blended space and the input spaces. The generic space is 
stable though, and can be considered a resource. 

PIQL Item 2 
Interviewer: Describe your thinking as you find a solution to this problem. 
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Jessie: Okay, so in this problem, we essentially have a triangle and we know two sides of the 
triangle and can find the third. And if the third side of the triangle, like the hypotenuse is 
longer, then it’ll be like less steep. It’s like the taller it is and then narrower the base, the 
steeper the actual slope of the slide. And you can just Pythagorean theorem this. 

 
Figure 3. CBT analysis of Jesse’s reasoning 

The most common student responses to this question are shown in the blend in Fig. 3. Jessie 
activates the generic space shown in Fig. 3, but it is unstable; they aren’t creating an independent 
quantity. Jessie shows weakness in the projection process between the blend and each of the two 
input spaces. They never reconcile that the hypotenuse is appropriate only if the height is held 
constant, in which case it is also unnecessary since the length alone would represent the 
steepness. In addition, they fall back on a common heuristic of a physics classroom, where a 
productive resource for Jessie when working with vector components is to “Pythagorean theorem 
this” to find a measurable quantity (e.g. speed from the components of a velocity vector).  

Discussion 
This CBT analysis facilitates parsing out specifically where student reasoning is productive, 

and where problems lie. Invariant reasoning is a resource for Alex, and Jesse recognized the need 
to create a single new quantity from two others. These resources can seed future interventions. In 
both cases, we see the projection between the blend and the input spaces is unstable, and for 
Alex (and many students) quantity expressed as a general variable destabilizes reasoning. 
Neither student was completely wrong. The CBT analysis provides seeds on which reasoning can 
grow, providing a potential pathway to help students strengthen their PQL. 
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