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In this study, we focus on a student’s meanings for lines and points in the context of graphing 
covarying quantities. Specifically, we illustrate a student conceiving a line as representing a 
direction of movement of a dot on a coordinate plane. Consequently, the student did not conceive 
a dot moving in the coordinate plane as leaving a trace of infinitely many points; similarly, 
points on a line did not exist until they were physically and visually plotted. We conclude that the 
student’s meanings for lines and points had a significant impact on his graphing activities, in 
particular, on his construction of emergent shape thinking. 
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Graphing is critical for understanding various ideas in mathematics (Kaput, 2008; Leinhardt, 
Zaslavsky, & Stein, 1990; Thompson & Carlson, 2017). Despite its importance, students 
experience a number of challenges in interpreting and making sense of graphs that may affect 
their learning of many topics in algebra and calculus (e.g., Clement, 1989; Leinhardt et al., 1990; 
Moore & Thompson, 2015). In addressing those challenges and difficulties, a number of 
researchers have suggested that quantitative and covariational reasoning is productive for 
students’ construction of graphing meanings (e.g., Carlson, 1998; Frank, 2017; Johnson, 
McClintock, & Hornbein, 2017; Saldanha & Thompson, 1998; Thompson, Hatfield, Yoon, 
Joshua & Byerley, 2017). Specifically, some researchers (e.g., Frank, 2017, 2018; Moore & 
Thompson, 2015) have emphasized that a productive meaning for a graph is conceiving it as an 
emergent trace of points that unite two covarying quantities’ magnitudes and/or values (i.e., 
emergent shape thinking). In this paper, we contribute to extant theorization of emergent shape 
thinking by demonstrating how a student’s meanings for lines and points influenced his 
construction of emergent shape thinking. In particular, the student’s meaning for a line as 
indicating a direction of movement of a dot was a contraindication of him conceiving of a graph 
as an emergent trace of a point, and an implication of his meaning for a line is that it constrained 
him from thinking of a line as consisting of infinitely many points.  

It is worth noting that, in this study, we situated students’ learning about quantities’ 
relationships within contexts emphasizing the quantities’ magnitudes independent of numerical 
values. By a quantity’s magnitude, we mean the general sense of the quantitative size of an 
object’s measurable attribute (e.g., length), whereas, by quantity’s value, we mean the result of 
measuring that attribute. Researchers have argued that reasoning with quantities’ magnitudes 
supports students in understanding quantities’ covariational relationships (Liang, Stevens, 
Tasova, & Moore, 2018; Thompson, Carlson, Byerley, & Hatfield, 2014).  

Background 

Emergent Shape Thinking 
Moore and Thompson (2015) introduced the notion of emergent shape thinking to describe a 

person who envisions a graph “simultaneously as what is made (a trace) and how it is made 
(covariation)” (p. 785). This conception involves (1) representing two inter-dependent quantities’ 
magnitudes and/or values varying on each axis of a coordinate system, (2) forming a 



multiplicative object (Saldanha & Thompson, 1998; Thompson, 2011; Thompson et al., 2017) by 
uniting those two quantities’ magnitudes or values as a single object, and (3) assimilating the 
process of a multiplicative object moving within the plane in ways invariant with the two 
covarying quantities as generating a graph, or conceiving a given graph as an emergent record of 
all instantiated moments of the simultaneous coordination of two covarying quantities. In this 
study, we report on a student who demonstrated compelling evidence of the first two elements of 
emergent shape thinking that are listed above; however, demonstrated a contraindication of the 
third element of emergent shape thinking due to his meanings for points and lines. 

Students’ understanding of points on a line 
Researchers (e.g., Kerslake, 1981; Mansfield, 1985) have investigated how students 

conceived points and lines in the context of graphing. They have revealed that students 
(especially secondary level students) tend to “see” points on a line only if they are visually 
marked on a graph. For example, Manfield (1985) reported that some secondary and 
undergraduate students did not perceive points in between two marked points on a line, and some 
students only perceived endpoints of a straight line on a paper or points on the vertices of a 
zigzag line. These authors also reported on students who believed no line has points until they 
are placed on the line. Similarly, Kerslake (1981) reported that about 89% of secondary students 
(N=1798) did not conceive of infinitely many points on a line. When asked how many points are 
on a straight line that goes through three points, several students answered “three” or the number 
of places where the line and a coordinate grid intersect. Although there were some students being 
aware that there were many points (e.g., “lots” or “hundreds” p. 123) on a line, Kerslake reported 
that their conception was still constrained “by the physical constraints of actually drawing the 
points” (p. 123). For example, a student said there are points “as many as there is room for” on 
the line in between two points plotted (p. 123). In this study, we found a student whose meanings 
for points on a line was similar to that of the students reported by these aforementioned 
researchers. We contribute to these findings by discussing how such meanings constrained his 
construction of emergent shape thinking.  

Method 
We conducted a semester-long teaching experiment (Steffe & Thompson, 2000) with four 

secondary students. In the teaching experiment, we aimed to investigate the mental actions 
involved in the students’ conceiving situations quantitatively and representing particular 
quantitative relationships on number lines and coordinate systems. In this paper, we focus on one 
of the four students, Zane, since his meanings for the lines and points were consistent and clearly 
described by him throughout the teaching experiment. We believe it is important to document his 
ways of thinking in order to add nuances to our models of students’ thinking in a graphing 
activity in terms of emergent shape thinking.   

Zane participated in 16 one-hour long videotaped teaching experiment sessions over the 
course of seven weeks. The first author was the teacher-researcher (TR), and the second author 
served as the witness-researcher (WR). Before conducting the teaching experiment, the TR 
developed an initial sequence of tasks by considering particular design principles focused on 
graphing covarying quantities (e.g., Frank, 2017; Moore & Thompson, 2015; Thompson & 
Carlson, 2017). The TR revised and implemented those tasks based on on-going inferences and 
analysis of Zane’s thinking. Each task was designed with a dynamic geometry software and 
displayed on a tablet device. We recorded all sessions using two video cameras to capture Zane’s 
work and his gestures and a screen recorder to capture Zane’s activities on the tablet device. We 



transcribed the video and digitized Zane’s written work for both on-going and retrospective 
conceptual analyses (Thompson, 2008). Our analysis relied on the generative and axial methods 
(Corbin & Strauss, 2008), and it was guided by an attempt to developing working models of 
Zane’s thinking based on his observable and audible behaviors. 

In this paper, we report data from Zane’s activity in the Swimming Pool Task adapted from 
Swan (1985). We presented Zane a dynamic diagram of a pool (see Figure 1a), where he could 
fill or drain the pool by dragging a point on a given slider. We designed the task to support Zane 
in reasoning with the inter-dependence relationship between two continuously co-varying 
quantities: amount of water (AoW) and depth of water (DoW) in the pool.  

 
(a)     (b) 

Figure 1.(a) A diagram of the pool (b) illustration of Zane’s partitioning activity. 

Analysis and Findings 
In this section, we illustrate Zane’s meanings for his graphs, including the tick marks, points, 

and lines as he perceived on the graphs. Then, we discuss how these meanings influence his 
assimilation of what we perceive to be an emergent trace of a point.   

Zane’s construction and interpretation of his displayed graphs  
We asked Zane to sketch a graph that shows the relationship between AoW and DoW as the 

pool fills up. Zane started with drawing tick marks on each axis and plotting points 
corresponding to two related tick marks (see his color-coded points and tick marks in Figure 2a 
and 2b), then he connected those points with line segments. He initially constructed Figure 2a 
and adjusted his graph to Figure 2b to represent bigger increments at the top half of the pool. He 
also drew arrows to show “increase” and “decrease” in both quantities (Figure 2a). 

           
(a)      (b)      (c)   

Figure 2. (a) Zane’s first draft, (b) Zane’s second draft, and (c) Zane moving his fingers on axes. 

Meanings for tick marks. When questioned about his tick marks, Zane referred to the 
quantity’s magnitude by drawing a line segment from the origin to the tick mark on the axis. He 
also used his fingers to simulate the quantities’ variation as the TR played the animation to fill 



the empty pool. He initially placed his left and right index fingers at the origin saying “I started 
from zero” and then moved his left index finger up along the vertical and his right index finger to 
the right along the horizontal axis (Figure 2c). While he was moving his fingers, we inferred that 
he wanted to make sure both fingers hit each corresponding tick marks at the same time so as to 
match AoW and DoW as he perceived in the animation. 

In order to determine if Zane perceived quantities’ magnitudes in between his tick marks, the 
TR asked him if he moved his fingers by jumping from one tick mark to another. He responded 
that he moved his fingers continuously and described an intermediate state:  

Because, I mean, on the thing [pointing to the pool in Figure 1b], it is not like very 
jumping up [moving up his finger very fast from the bottom of the pool]. It is really just, 
like, because the water can be [pointing to the orange shaded area at the bottom of the 
pool, Figure 1b] also a half of it too [pointing to the water level in Figure 1b].  
In summary, we infer that Zane could simultaneously coordinate both quantities’ variations 

on the Cartesian coordinate system. He conceived of the distance from each finger to the origin 
as representing the magnitude of AoW or DoW, and he could keep track of the two quantities’ 
variations simultaneously and continuously, including intermediate states between tick marks. 

Meanings for points. As the conversation continued, the TR tried to gain insights into the 
extent to which he coordinated those tick marks on the axes to construct meaning of points on 
the graph. The TR asked Zane to show the point on his graph that shows the AoW and DoW 
when the pool is full. Zane first pointed to the far right and top purple tick marks on each axis 
(see Figure 2b, also see his gesture illustrated in Figure 3a), and then, he pointed to the 
corresponding purple point on the plane (see Figure 2b). His actions showed that he could 
associate these two tick marks on each axis to the point on the plane. Then the TR asked him to 
move his fingers correspondingly on each axis as we played the animation. The following 
excerpt demonstrates his activity:   

TR: I am gonna take out water. You are gonna 
Zane: Go down [moving his right and left index finger to the left and down, along the 

horizontal and vertical axis respectively. Then, he put his finger back in their original 
position at the very end tick marks on each axis, see Figure 3a]. 

TR: Yes. But, when you do this, you gotta imagine what happens to this point [pointing to the 
corresponding point] ... when I start changing, you are gonna move your fingers and 
imagine what happens to the corresponding point. 

Zane: [We played the animation and Zane moved his left and right index fingers smoothly on 
each axis to the left and down, respectively. The TR stopped the animation where the 
water level is within the area that are shaded in green [see Figure 1b], and he 
immediately stopped moving his both fingers, see Figure 3b]. 

TR: Okay. Where is the corresponding point?  
Zane: [He simultaneously moved his left index finger to the right horizontally and right index 

finger up vertically, and stopped when the two fingers met; see Figure 3c ] like right here. 
[Then he plotted a point on his graph and added two corresponding tick marks on each 
axis]. 

We interpreted that Zane was able to conceive of a point on the plane as a multiplicative 
object that simultaneously unites the two quantities’ variations. Later, he described a point 
moving up and down along the line as representing both quantities’ increases and decreases at 
the same time, saying “the dot represents both.” That is, he held in mind two quantities 
associated with a point and imagined variation of the two quantities as the point moved.  



 
(a)     (b)     (c) 

Figure 3. (a) the location of Zane’s fingers before the animation started, (b) the place where Zane stopped, and (c) 
Zane pointing to the corresponding point where both fingers met. 

Meanings for lines. When questioned why he connected the points with lines, Zane 
responded that the line shows “where the dots go.” Additionally, he said, “it also helps to person 
who comes in, they will understand that the line is probably moving down and up.” We infer that 
Zane conceived of a line on the coordinate plane as showing a path of movement of a dot in 
either direction. We hypothesized that this meaning for a line might be related to his meaning 
constructed outside a graphing context prior to the study. Therefore, the TR drew a straight line 
on a blank paper and asked him how he would define a line. He responded, “a point, hmm, 
something that goes and never stops.” The TR followed up, “What is that goes and never stops?” 
After an eight-second pause, he said “hmm, from a start point [placed his right index finger on 
the left end side of the line] to an end point [moves his finger to the right end side of the line]. We 
inferred that Zane conceived a line as describing how an object moves from one location to 
another, and this was compatible with his understanding of lines in the graphical context.  

Based on this inference, the WR hypothesized that he might not conceive of a line as 
consisting of infinitely many points. To test this hypothesis, the WR asked him, “how many 
points do we need to plot in order to fully describe what is going on here?” Zane added three 
additional points on each segment between the points that he originally plotted on his graph (see 
Figure 2b) and said “24”. The WR then asked him to compare two graphs, a graph with 24 dots 
plotted and another graph that includes a line, and discuss how they were similar or different. He 
replied “wait, did the person who has the line also have 24 points too?” We inferred from his 
activity that, for him, a line with dots and a line without dots are different graphs and the dots are 
critical components that convey additional information to a line.  

As an additional evidence, when asked whether his graph (see Figure 4a) shows every single 
moment of how the two quantities vary in the situation, Zane said no because in order to show it, 
you need to plot an additional point. We infer that, for Zane, lines do not have points until they 
are visually plotted. He needed to physically plot additional points to represent moments in 
between two available points, even if there is a line connecting them. That is, he did not conceive 
of his line as showing these extra moments. In the next section, we demonstrate that such 
meaning for a line played a role in his construction and interpretation of what we perceived to be 
in-progress trace. 

Zane’s Interpretations of an Emergent Trace 
Given these interpretations of Zane’s meanings for tick marks, lines, and points, the TR 

hypothesized that he likely did not interpret his prior finger activity (Figure 2c and Figure 3) as 
generating infinitely many coordinate points. To test this hypothesis, the TR showed him an 
animation on an tablet device (see https://youtu.be/97EOENUM_co) and asked: “is this trace 
[Figure 4b] showing us the relationship between depth of water and amount of water for this 

https://youtu.be/97EOENUM_co


pool?” He replied “no” and struggled to make sense of what the animation was showing, which 
suggested that he did not perceive the animation as a simulation of his prior graphing activity on 
paper.  

The WR asked Zane whether those dots1 on his paper (see Figure 4a) are “part of the line on 
the computer.” Zane replied, “there is only one dot,” pointing to the animating dot that produced 
the trace (see his gesture in Figure 4c). When asked “is there any other dots on this graph?” he 
shook his head. Moreover, he interpreted his graph (Figure 4a) as having more dots than the one 
produced in the animation (Figure 4b), commenting that mine is better because “mine have more 
dots”.  

Zane also claimed that he could not construct his graph in the same way as the animation did 
due to physical constraints of human, saying, “well, I cannot do that, because, like, can you do 
dots and dots [tapping his right index finger very fast along his graph shown in Figure 4a] and 
trace it?” This is an additional contraindication that he conceived of graphing a line as a way to 
represent infinitely many points.  

 
(a)     (b)     (c) 

Figure 4. (a) Zane’s last draft and (b) an instance of the animation, and (c) Zane pointing to the “only” point on the 
trace. 

In summary, despite his success in the finger activity and being able to conceive of a point as 
a multiplicative object, Zane assimilated his activity as well as the animation as one dot moving 
along a line path instead of one dot generating infinitely many points by leaving a trace. We 
claimed that his meaning for a line as describing a direction of movement (as opposed to 
consisting of infinitely many points) played a critical role in his construction and constrained him 
from conceiving a graph as an emergent, in-progress trace (i.e., the third component of emergent 
shape thinking). 

Discussion 
Moore and Thompson (2015) and Frank (2017, 2018) emphasized the important role of 

forming a multiplicative object in students’ development of emergent shape thinking. What we 
have found in this study is that multiplicative object is a necessary but not sufficient condition 

 
1 We use the word dot instead of point when we have evidence of Zane referring to a visual circular object that is 
plotted on the plane, but do not have explicit evidence of him holding the two quantities in mind (i.e., conceiving a 
multiplicative objective) at the moment. By using the word “dot”, we are also genuine to Zane’s language in this 
activity. 



for emergent shape thinking. We found that Zane constructed a meaning for individual points as 
multiplicative objects, and he could do the finger tool activity (i.e., moving index fingers on each 
axis) smoothly to represent continuous, simultaneous co-variation of two quantities. However, he 
interpreted his activity of connecting points on his graph as representing a direction of movement 
of one point from one location to another; hence he did not imagine a segment or a line as 
including infinitely many points and representing every moment of the quantities’ covariation. In 
turn, he did not perceive an emergent trace generated by a continuously moving point as a line. 
Thus, we claim that Zane’s meanings for lines and points constrained him from developing a 
meaning of graphs consistent with emergent shape thinking (i.e., a graph as an emergent trace of 
points). Given the results provided by this study and other researchers (e.g., Manfield, 1985; 
Kerslake, 1981) regarding students’ understanding of lines and points, it is important that we 
take into account students’ meanings for lines and points constructed in other contexts and 
consider how those meanings may influence students’ construction of graphing meanings. 

Although we report on findings from a secondary student, the implication of this study is 
important for both the secondary and the undergraduate mathematics education community. We 
are drawing on the construct, emergent shape thinking, that was initially developed from 
undergraduate students. The results of this study regarding a secondary student’s meanings 
afford us a better understanding of students’ graphing activity, including their construction of 
emergent shape thinking. Prior researchers (e.g., Frank, 2017) have reported on students’ 
difficulty with constructing an emergent meaning for graphs, and the case of Zane suggests that 
one source of such difficulty can be students’ meanings for lines and points in general. If 
students conceived of a line as showing one point’s movement, it would be difficult for them to 
assimilate a line graph as an emergent trace that includes infinitely many points, despite being 
able to conceiving each point as a representation of two quantities’ magnitudes (and/or values) at 
a particular moment. Consequently, they would need to physically plot points to show quantities’ 
magnitudes (and/or values) at any specified moments (i.e., a pointwise meaning for a graph). 
Thus, we conjecture that meanings for lines and points consistent with Zane’s might help explain 
students’ difficulties with constructing and representing smooth and continuous images of 
covariation in graphical contexts (Castillo-Garsow, Johnson, & Moore, 2013). 

Our analysis supports the affordance of Castillo-Garsow’s (2012) distinction between “a 
problem situation, the method used to solve it, and the reasoning that derives or selects that 
method” (p. 56) when characterizing students’ covariational reasoning. Zane conceptualized two 
quantities’ covariation continuously regarding the pool situation; however, he used a discrete 
method (i.e., plotting points) when constructing his graph due to a constrain implied by his 
meanings of lines. We argue that it is important for researchers to be aware of such a discrepancy 
and be aware that a pointwise graph activity (i.e., plotting the points first, and then connecting 
them) does not necessarily imply that their images of quantities’ covariation is discrete, and vice 
versa. When characterizing students’ covariational reasoning, it is important for us to take into 
account students’ activities and reasoning in various context (e.g., situations, graphs in different 
coordinate systems, and number lines) before we make claims about their covariational 
reasoning. We believe identifying this inconsistency and its causes can allow us to better 
advance students’ understandings of graphs.  
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