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Researchers are producing a growing number of studies that illustrate the importance of 
quantitative and covariational reasoning for students’ mathematical development. These 
researchers’ contributions often are in the context of learning of specific topics or developing 
particular reasoning processes. In both contexts, researchers are detailed in their descriptions of 
the intended topics or reasoning processes. There is, however, a lack of specificity relative to 
generalized criteria for the construction of a concept. We address this lack of specificity by 
introducing the construct of an abstracted quantitative structure. We discuss the construct, ideas 
informing its development and criteria, and empirical examples of student actions that illustrate 
its use. We also discuss potential implications for research and teaching. 
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Steffe and Thompson enacted and sustained research programs that have characterized 
students’ (and teachers’) mathematical development in terms of their conceiving and reasoning 
about measurable or countable attributes (see Steffe & Olive, 2010; Thompson & Carlson, 2017). 
Thompson (1990, 2011) formalized such reasoning into a system of mental operations he termed 
quantitative reasoning. Over the past few decades, other researchers have adopted quantitative 
reasoning to investigate students’ and teachers’ meanings in various ways. Some researchers 
have adopted quantitative reasoning to characterize individuals’ meanings within specific topical 
or representational areas including exponential relationships (Castillo-Garsow, 2010; Ellis, 
Özgür, Kulow, Williams, & Amidon, 2015), graphs or coordinate systems (Frank, 2017; Lee, 
2017; Lee, Moore, & Tasova, 2019), and function (Oehrtman, Carlson, & Thompson, 2008; 
Paoletti & Moore, 2018). Other researchers have adopted quantitative reasoning to characterize 
types of individuals’ reasoning. A predominant example is reasoning about quantities changing 
in tandem, or covarying (e.g., Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Johnson, 2012, 2015b; 
Saldanha & Thompson, 1998; Stalvey & Vidakovic, 2015). 

We introduce the construct abstracted quantitative structure that marries and extends these 
two research themes by offering framing criteria for concept construction. Defined generally, an 
abstracted quantitative structure is a system of quantitative operations a person has interiorized to 
the extent they can operate as if it is independent of specific figurative material. That person can 
thus re-present this structure in several ways including to accommodate to novel experiences 
permitting the associated quantitative operations. As we illustrate in this paper, an abstracted 
quantitative structure is a type of quantitative reasoning that has implications for an individual’s 
meanings within specific topical or representational areas, and her or his engagement in other 
related forms of reasoning. In what follows, we first discuss background information on 
quantitative (and covariational) reasoning that underpins the abstracted quantitative structure 
construct. We then provide a more formal definition for an abstracted quantitative structure and 
data to illustrate both indications and contraindications of individuals having constructed such a 
structure. We close with its implications for research and teaching. 



Background 

Quantitative Reasoning 
Thompson (2011) defined quantitative reasoning as the mental operations involved in 

conceiving a context as entailing measurable attributes (i.e., quantities) and relationships 
between those attributes (i.e., quantitative relationships). A premise of quantitative reasoning is 
that quantities and their relationships are idiosyncratic constructions that occur and develop over 
time (e.g., hours, weeks, or even years). A researcher or a teacher cannot take quantities or their 
relationships as a given when working with students or teachers (Izsák, 2003; Moore, 2013; 
Thompson, 2011). Furthermore, and reflecting one implication of the present work, a researcher 
or teacher should not assume a student has constructed a system of quantities and their 
relationships based on actions within only one context (e.g., situation, graph, or formula). 

Thompson (Smith III & Thompson, 2008; Thompson, 1990) distinguished between 
quantitative operations/magnitudes and arithmetic operations/measures to differentiate between 
the mental actions involved in constructing a quantity via a quantitative relationship and the 
actions used to determine a quantity’s numerical measure. Following Thompson (1990), we 
illustrate these distinctions using a comparison between two heights. Thompson (1990) described 
that an additive comparison requires one to construct an image of the measurable attribute that 
indicates by how much one height exceeds the other height (Figure 1). Constructing such a 
quantity through the quantitative operation of comparing two other quantities additively does not 
depend on having numerical measures, nor does it require executing a calculation; an important 
aspect of Thompson’s quantitative reasoning is that it foregrounds constructing and operating on 
magnitudes (i.e., amount-ness) of quantities in the context of figurative material (e.g., coordinate 
systems and phenomena) that permit those operations. Arithmetic operations, on the other hand, 
are those operations between numerical measures such as addition, subtraction, multiplication, 
etc. that one uses to determine a quantity’s measure, and are often in the context of inscriptions 
or glyphs that signify quantities but do not provide the perceptual material to operate on 
quantitatively (Moore, Stevens, Paoletti, Hobson, & Liang, online). 

 
Figure 1. An image of an additive comparison based in magnitudes 

Covariational Reasoning 
A form of quantitative reasoning involves constructing relationships between two quantities 

that vary in tandem, or covariational reasoning (Carlson et al., 2002; Saldanha & Thompson, 
1998; Thompson & Carlson, 2017). Researchers have conveyed that covariational reasoning is 
critical for key concepts of K–16 mathematics including function (Carlson, 1998; Oehrtman et 
al., 2008), modeling dynamic situations (Carlson et al., 2002; Johnson, 2012, 2015b; Paoletti & 
Moore, 2017), and calculus (Johnson, 2015a; Thompson, 1994; Thompson & Silverman, 2007). 
Researchers have also illustrated that covariational reasoning is critical to constructing function 
classes (Ellis, 2007; Lobato & Siebert, 2002; Moore, 2014). 

Carlson et al. (2002), Confrey and Smith (1995), Ellis (2011), Johnson (2015a, 2015b), and 
Thompson and Carlson (2017) are researchers who have detailed covariation frameworks and 
mental actions. Due to space constraints and the empirical examples we use below, we narrow 
our focus to a mental action (or operation) identified by Carlson et al. (2002). A critical mental 



action, especially for differentiating between various function classes, is to compare amounts of 
change (Figure 2, MA3). MA3 is also important for understanding and justifying that a graph 
and its curvature appropriately model covarying quantities of a situation (Figure 3) (Stevens & 
Moore, 2016). Furthermore, and as we illustrate in more detail below, such reasoning enables 
understanding invariance among different representations of quantities’ covariation (Moore, 
Paoletti, & Musgrave, 2013), which is the foundation for an abstracted quantitative structure.  

Mental Action Descriptions of Mental Actions 
MA1 Coordinating the value of one variable with changes in the other 
MA2 Coordinating direction of change of one variable with changes in the other variable 
MA3 Coordinating amount of change of one variable with changes in the other variable 

MA4 Coordinating the average rate-of-change of the function with uniform increments of change 
in the input variable 

MA5 Coordinating the instantaneous rate of change of the function with continuous changes in the 
independent variable for the entire domain of the function 

Figure 2. Carlson et al. (2002, p. 357) covariational reasoning mental actions. 

 
Figure 3. For equal increases in arc length from the 3 o’clock position, height increases by decreasing amounts. 

Figurative and Operative Thought 
Piagetian notions of figurative and operative thought (Piaget, 2001; Steffe, 1991; Thompson, 

1985) also inform our characterization of an abstracted quantitative structure. These two 
constructs enable differentiating between thought based in and constrained to figurative material 
(e.g., perceptual objects and sensorimotor actions)—termed figurative thought—and thought in 
which figurative material is subordinate to logico-mathematical operations, their re-presentation, 
and possibly their transformations—termed operative thought. Quantitative and covariational 
reasoning are examples of operative thought due to their basis in logico-mathematical operations 
(Steffe & Olive, 2010). To illustrate the figurative and operative distinction, Steffe (1991) 
characterized a child’s counting scheme as figurative if his counting required re-presenting 
particular sensorimotor actions and operative if it entailed unitized records of counting that did 
not require the child to re-present particular perceptual material or sensorimotor experience. As 
another example, Moore et al. (online) illustrated figurative graphing meanings in which 
prospective secondary teachers’ graphing actions were constrained to particular perceptual 
features (e.g., drawing a graph solely left-to-right) even when they perceived those features as 
constraining their graphing of a conceived relationship. In contrast, Moore et al. (online) 
described that a prospective secondary teacher’s graphing meaning is operative in the event that 
the perceptual and sensorimotor features of their graphing actions are persistently dominated by 
the mental operations associated with re-presenting quantitative and covariational operations 
across various attempts to construct graphical re-presentations. 



Abstracted Quantitative Structure 
Our notion of an abstracted quantitative structure draws on the aforementioned constructs to 

apply and extend von Glasersfeld’s (1982) definition of concept to the area of quantitative and 
covariational reasoning. von Glaserfeld defined a concept as, “any structure that has been 
abstracted from the process of experiential construction as recurrently usable…must be stable 
enough to be re-presented in the absence of perceptual ‘input’” (p. 194). In the introduction, we 
defined an abstracted quantitative structure as a system of quantitative (including covariational) 
operations a person has interiorized to the extent he or she can operate as if it is independent of 
specific figurative material. Using von Glaserfeld’s framing, an abstracted quantitative structure 
is a system of quantitative operations that an individual has interiorized so that it:  

1. is recurrently usable beyond its initial experiential construction; 
2. can be re-presented in the absence of available perceptual material including that in 

which it was initially constructed;  
3. can be transformed to accommodate to novel contexts permitting the associated 

quantitative operations, see generalizing assimilation (Steffe & Thompson, 2000); 
4. is anticipated as re-presentable in any figurative material that permits the associated 

quantitative operations.  
Clarifying 2., an individual having constructed an abstracted quantitative structure can re-

present it in thought and through the regeneration of previous experiences. Clarifying 3., a 
feature of an abstracted quantitative structure is that it can accommodate novel contexts through 
additional processes of experiential construction within the context of figurative material in 
which such construction has not previously occurred. This action is a hallmark of operative 
thought because it entails an individual transforming and using operations of their quantitative 
structure to accommodate to novel quantities and associated figurative material, as opposed to 
having fragments of figurative activity dominate their thought (Thompson, 1985). This action is 
also a hallmark of quantitative reasoning because it enables conceiving mathematical 
equivalence in a context differing figuratively from that in which a quantitative structure has 
been previously constructed (Moore et al., 2013). Clarifying 4., an abstracted quantitative 
structure’s mathematical properties (e.g., quantities’ covariation) are anticipated independent of 
any particular instantiation of them, thus understood as not tied to any particular quantities and 
associated figurative material. It is in this way that the quantitative operations of an abstracted 
quantitative structure are abstract; the individual not only understands that the operations are re-
presentable in previous experiences, but she also anticipates that the operations could be relevant 
to novel but not yet had experiences (e.g., some coordinate system not yet experienced). 

We next use empirical examples to illustrate the extent students have constructed an 
abstracted quantitative structure. Each example is drawn from a study that either used clinical 
interview (Ginsburg, 1997) or teaching experiment (Steffe & Thompson, 2000) methodologies to 
build second-order models of student thinking (Ulrich, Tillema, Hackenberg, & Norton, 2014). It 
was in our reflecting on these second-order models (and those developed during other studies) 
that we identified themes in their reasoning, one of which is the notion of an abstracted 
quantitative structure. We acknowledge the way we have defined abstracted quantitative 
structure presents an inherent problem in attempts to characterize a student as having or having 
not constructed such. First, it is impossible to investigate a student’s reasoning in every context 
in which an abstracted quantitative structure could be relevant. Second, to characterize a 
students’ quantitative reasoning necessarily involves focusing on their enactment of operations in 
the context of particular figurative material. No conceptual structure is truly representation free, 



as “operations have to operate on something and that something is the figurative material 
contained in the operations, figurative material that has its origin in the construction of the 
operations” (L. P. Steffe, personal communication, July 24, 2019). For this reason, we find it 
necessary to use the criteria above to discuss a student’s actions in terms of indications and 
contraindications of her or him having constructed an abstracted quantitative structure.  

A Contraindication of Re-Presentation 
Critical criteria of an abstracted quantitative structure are the ability to re-present that 

structure in the absence of available perceptual material and the ability to transform its 
operations to accommodate to novel contexts. As a contraindication of these criteria, consider 
Lydia’s actions during a teaching experiment focused on trigonometric relationships and re-
presentation (Liang & Moore, 2018). Prior to the actions presented here, Lydia had constructed 
incremental changes compatible with those presented in Figure 3 (left). We took her actions to 
indicate her reasoning quantitatively and subsequently presented her the Which One? task. The 
task (Figure 4, left) presented numerous red segments that varied in tandem as the user varied a 
horizontal (blue) segment, which represented the rider’s arc length traveled along the circle. We 
asked her to choose the red segment that covaried with the blue segment in a way compatible 
with the vertical height and arc length of the rider. We conjectured this would help determine the 
extent she could re-present her previous actions in a similar context with less perceptual material 
available (i.e., the circle) and novel material (i.e., the red and blue segments). 

Lydia became perturbed as to whether or not the horizontal red segment should vary at a 
changing rate with respect to the horizontal blue segment. After much effort, she abandoned 
considering the segments in the horizontal orientation and re-oriented them vertically. She chose 
the correct segment by checking whether the heights matched pointwise within the displayed 
circle (Figure 4, middle). Both her questioning how the red segments should vary with respect to 
the blue segment and her requiring re-orienting the red segments were a contraindication of her 
having constructed an abstracted quantitative structure. We thus returned her to the question of 
whether the chosen red segment and blue segment entailed the same quantitative relationship as 
she identified in her previous activity (see Figure 3, left; from Liang and Moore (2018)): 

Lydia: Not really…Um, I don’t know. [laughs] Because that was just like something that I 
had seen for the first time, so I don’t know if that will like show in every other 
case…Well, for a theory to hold true, it like – it needs to be true in other occasions, um, 
unless defined to one occasion.  

TR.: So is what we’re looking at right now different than what we were looking at with the 
Ferris wheel?  

Lydia: No. It’s – No…Because I saw what I saw, and I saw that difference in the Ferris 
wheel, but I don’t see it here, and so –  

TR.: And by you “don’t see it here,” you mean you don’t see it in that red segment?  
Lydia: Yes.  
As the interaction continued, Lydia expressed uncertainty as to how to determine if the blue 

segment and her chosen red segment entailed the same relationship as she had illustrated in her 
previous activity, although she knew the segments were correct pointwise. As a further 
contraindication of her having constructed an abstracted quantitative structure, it was only after 
much subsequent teacher-researcher guiding and their introducing perceptual material using their 
pens (Figure 4, right) that she was able to conceive the red and blue segments’ covariation as 
compatible with the relationship she had constructed in the Ferris wheel situation. 



Liang and Moore (2018) illustrated Lydia’s repeated engagement in quantitative and 
covariational reasoning eventually led to her re-presenting quantitative operations including 
transforming those operations in novel contexts. This enabled her to conceive mathematical 
equivalence across numerous contexts including situations, oriented segments, and Cartesian 
graphs. As indication of having constructed abstracted quantitative structures, Lydia re-presented 
particular quantitative operations in contexts without given perceptual material (Lee et al., 2019). 

 
Figure 4. (left) Which One?, (middle) Lydia checking segment pointwise, and (right) Lydia attempting to re-present 

a quantitative structure with assistance.  

An Indication of Re-Presentation and Accommodation 
We turn to two prospective secondary teachers’—Kate and Jack—actions when asked to 

determine a formula for an unnamed polar coordinate system graph (Figure 5, which is r = 
sin(q); see Moore et al. (2013) for the detailed study). After investigating a few points, Kate and 
Jack conjectured that r = sin(q) is the appropriate formula and drew a Cartesian sine graph to 
explore their conjecture (from Moore et al., 2013, p. 468). Important to note, Kate and Jack were 
not familiar with graphing the sine relationship in the polar coordinate system. 

 
Figure 5. Kate and Jack covary quantities with respect to the given graph (from Moore et al., 2013, p. 467).  

Kate: This gets us from zero to right here is zero again [tracing along Cartesian horizontal 
axis from 0 to π]. So, we start here [pointing to the pole in the polar coordinate system].  

Jack: Ya, and you’re sweeping around because [making circular motion with pen], theta’s 
increasing, distance from the origin increases and then decreases again [Jack traces along 
Cartesian graph from 0 to π as Kate traces along corresponding part of the polar graph].  

TR.: OK, so you’re saying as theta increases the distance from the origin does what? 
Jack: It increases until pi over 2 [Kate traces along polar graph] and then it starts decreasing 

[Kate traces along polar graph as Jack traces along Cartesian graph]. 
TR.: And then what happens from like pi to two pi. 
Kate: It’s the same. 
Jack: Um, same idea except your, the radius is going to be negative, so it gets more in the 

negative direction of the angle we’re sweeping out [using marker to sweep out a ray from 
π to 3π/2 radians – see Figure 5] until three pi over two where it’s negative one away and 
then it gets closer to zero [continuing to rotate marker].  

TR.: OK, so from three pi over two to two pi, can you show me where on this graph [pointing 
to polar graph] we would start from and end at? 



Kate: This is the biggest in magnitude, so it’s the furthest away [placing a finger on a ray 
defining 3π/2 and a finger at (1, π/2)], and then [the distance from the pole] gets smaller 
in magnitude [simultaneously tracing one index finger along an arc from 3π/2 to 2π and 
the other index finger along the graph – see Figure 5]. 

Kate and Jack’s actions indicate their having constructed (or constructing) an abstracted 
quantitative structure associated with the sine relationship. They transformed and re-presented 
the quantitative and covariational operations they associated with a Cartesian graph to 
accommodate to a polar coordinate system displayed graph. This re-presentation enabled them to 
conceive two graphs as representing equivalent quantitative structures despite their perceptual 
differences, which is a contraindication of their reasoning being dominated by figurative aspects 
of thought. We note that Kate and Jack did not provide evidence related to criteria 4. Such 
evidence would involve their identifying the potential of not yet experienced coordinate systems 
and associated graphs that enable re-presenting the same quantitative structure. 

Discussion and Implications 
We envision the construct of an abstract quantitative structure as useful in several ways. 

First, it provides criteria to research and distinguish between students’ meanings in terms of their 
foregrounding figurative material and activity and their foregrounding logico-mathematical 
operations such as a quantitative structure. In our description of Lydia’s activity, we underscore 
that she did not encounter much difficulty assimilating the figurative material; she was able to 
assimilate the segments and their variation to quantitative operations. Rather, Lydia struggled to 
accommodate the relationship she constructed with previous figurative material in a way that she 
could re-present it with novel figurative material. Seeing how difficult it was for Lydia to re-
present a relationship within a circular context further demonstrates how powerful Kate and 
Jack’s reasoning was because not only did they re-present a quantitative structure in a novel 
context, but they abstracted the associated operations such that they could identify the same 
relationship within a perceptually different representational system. We, therefore, call for 
researchers and educators to attend not only to students’ meanings for various representations 
(e.g., Cartesian coordinate system, polar coordinate system, formulas, tables, etc.), but also to the 
quantitative structures students construct and the extent they can re-present (and potentially 
transform) those structures. In doing so, we can obtain more detailed insights to the extent 
students construct mental operations in which figurative material is a consequence of those 
operations including how those operations enable accommodating to novel contexts. 

Second, we hypothesize that students’ abstracted quantitative structures play an important 
role in their productive generalization (Ellis, 2007) and transfer (Lobato & Siebert, 2002). 
Researchers have recently characterized the role of different forms of abstraction in 
generalization (Ellis, Tillema, Lockwood, & Moore, 2017). Researchers have also recently 
characterized different forms of transfer including how a student’s novel activity can result in 
cognitive reorganizations regarding their previous activity (Hohensee, 2014; Lobato, 
Rhodehamel, & Hohensee, 2012). We envision students’ construction of abstracted quantitative 
structures to be a province of each, and we argue that future research should explore these 
potential relationships as it relates to students’ mathematical development.  

Acknowledgments 
This material is based upon work supported by the National Science Foundation under Grants 
No. DRL-1350342, No. DRL-1419973, and No. DUE-1920538. 



References 
Carlson, M. P. (1998). A cross-sectional investigation of the development of the function 

concept. In E. Dubinsky, A. H. Schoenfeld, & J. J. Kaput (Eds.), Research in collegiate 
mathematics education, III. Issues in Mathematics Education (Vol. 7, pp. 114-162). 

Carlson, M. P., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational 
reasoning while modeling dynamic events: A framework and a study. Journal for Research 
in Mathematics Education, 33(5), 352-378.  

Castillo-Garsow, C. (2010). Teaching the Verhulst model: A teaching experiment in 
covariational reasoning and exponential growth. Ph.D. Dissertation. Arizona State 
University: USA.   

Confrey, J., & Smith, E. (1995). Splitting, covariation, and their role in the development of 
exponential functions. Journal for Research in Mathematics Education, 26(66-86).  

Ellis, A. B. (2007). The influence of reasoning with emergent quantities on students' 
generalizations. Cognition and Instruction, 25(4), 439-478.  

Ellis, A. B. (2011). Generalizing-promoting actions: How classroom collaborations can support 
students' mathematical generalizations. Journal for Research in Mathematics Education, 
42(4), 308-345.  

Ellis, A. B., Özgür, Z., Kulow, T., Williams, C. C., & Amidon, J. (2015). Quantifying 
exponential growth: Three conceptual shifts in coordinating multiplicative and additive 
growth. The Journal of Mathematical Behavior, 39, 135-155.  

Ellis, A. B., Tillema, E., Lockwood, E., & Moore, K. C. (2017). Generalization across domains: 
The relating-forming-extending framework. In E. Galindo & J. Newton (Eds.), Proceedings 
of the 39th annual meeting of the North American Chapter of the International Group for the 
Psychology of Mathematics Education (pp. 677-684). Indianapolis, IN: Hoosier Association 
of Mathematics Teacher Educators. 

Frank, K. (2017). Examining the development of students' covariational reasoning in the context 
of graphing. Ph.D. Dissertation. Arizona State University: USA.   

Ginsburg, H. P. (1997). Entering the child's mind: The clinical interview in psychological 
research and practice. New York, NY: Cambridge University Press. 

Hohensee, C. (2014). Backward Transfer: An Investigation of the Influence of Quadratic 
Functions Instruction on Students’ Prior Ways of Reasoning About Linear Functions. 
Mathematical Thinking and Learning, 16(2), 135-174. doi:10.1080/10986065.2014.889503 

Izsák, A. (2003). "We want a statement that Is always true": Criteria for good algebraic 
representations and the development of modeling knowledge. Journal for Research in 
Mathematics Education, 34(3), 191-227.  

Johnson, H. L. (2012). Reasoning about variation in the intensity of change in covarying 
quantities involved in rate of change. The Journal of Mathematical Behavior, 31(3), 313-330.  

Johnson, H. L. (2015a). Secondary students’ quantification of ratio and rate: A framework for 
reasoning about change in covarying quantities. Mathematical Thinking and Learning, 17(1), 
64-90.  

Johnson, H. L. (2015b). Together yet separate: Students’ associating amounts of change in 
quantities involved in rate of change. Educational Studies in Mathematics, 1-22.  

Lee, H. Y. (2017). Students’ construction of spatial coordinate systems. Ph.D. Dissertation. 
University of Georgia: USA.   

Lee, H. Y., Moore, K. C., & Tasova, H. I. (2019). Reasoning within quantitative frames of 
reference: The case of Lydia. The Journal of Mathematical Behavior, 53, 81-95.  



Liang, B., & Moore, K. C. (2018). Figurative thought and a student's reasoning about "amounts" 
of change. In A. Weinberg, C. Rasmussen, J. Rabin, M. Wawro, & S. Brown (Eds.), 
Proceedings of the Twenty-First Annual Conference on Research in Undergraduate 
Mathematics Education (pp. 271-285). San Diego, CA: San Diego State University. 

Lobato, J., Rhodehamel, B., & Hohensee, C. (2012). "Noticing" as an alternative transfer of 
learning process. Journal of the Learning Sciences, 21(3), 433-482.  

Lobato, J., & Siebert, D. (2002). Quantitative reasoning in a reconceived view of transfer. The 
Journal of Mathematical Behavior, 21, 87-116.  

Moore, K. C. (2013). Making sense by measuring arcs: A teaching experiment in angle measure. 
Educational Studies in Mathematics, 83(2), 225-245. doi:10.1007/s10649-012-9450-6 

Moore, K. C. (2014). Quantitative reasoning and the sine function: The case of Zac. Journal for 
Research in Mathematics Education, 45(1), 102-138.  

Moore, K. C., Paoletti, T., & Musgrave, S. (2013). Covariational reasoning and invariance 
among coordinate systems. The Journal of Mathematical Behavior, 32(3), 461-473.  

Moore, K. C., Stevens, I. E., Paoletti, T., Hobson, N. L. F., & Liang, B. (online). Pre-service 
teachers’ figurative and operative graphing actions. The Journal of Mathematical Behavior.  

Oehrtman, M., Carlson, M. P., & Thompson, P. W. (2008). Foundational reasoning abilities that 
promote coherence in students' function understanding. In M. P. Carlson & C. L. Rasmussen 
(Eds.), Making the connection: Research and teaching in undergraduate mathematics 
education (pp. 27-42). Washington, D.C.: Mathematical Association of America. 

Paoletti, T., & Moore, K. C. (2017). The parametric nature of two students’ covariational 
reasoning. The Journal of Mathematical Behavior, 48, 137-151.  

Paoletti, T., & Moore, K. C. (2018). A covariational understanding of function: Putting a horse 
before the cart. For the Learning of Mathematics, 38(3), 37-43.  

Piaget, J. (2001). Studies in reflecting abstraction. Hove, UK: Psychology Press Ltd. 
Saldanha, L. A., & Thompson, P. W. (1998). Re-thinking co-variation from a quantitative 

perspective: Simultaneous continuous variation. In S. B. Berensen, K. R. Dawkings, M. 
Blanton, W. N. Coulombe, J. Kolb, K. Norwood, & L. Stiff (Eds.), Proceedings of the 20th 
Annual Meeting of the North American Chapter of the International Group for the 
Psychology of Mathematics Education (Vol. 1, pp. 298-303). Columbus, OH: ERIC 
Clearinghouse for Science, Mathematics, and Environmental Education. 

Smith III, J. P., & Thompson, P. W. (2008). Quantitative reasoning and the development of 
algebraic reasoning. In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the 
Early Grades (pp. 95-132). New York, NY: Lawrence Erlbaum Associates. 

Stalvey, H. E., & Vidakovic, D. (2015). Students’ reasoning about relationships between 
variables in a real-world problem. The Journal of Mathematical Behavior, 40, 192-210.  

Steffe, L. P. (1991). The learning paradox: A plausible counterexample. In L. P. Steffe (Ed.), 
Epistemological foundations of mathematical experience (pp. 26-44). New York: Springer-
Verlag. 

Steffe, L. P., & Olive, J. (2010). Children's Fractional Knowledge. New York, NY: Springer. 
Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying 

principles and essential elements. In R. A. Lesh & A. E. Kelly (Eds.), Handbook of research 
design in mathematics and science education (pp. 267-307). Hillside, NJ: Erlbaum. 

Stevens, I. E., & Moore, K. C. (2016). The Ferris wheel and justifications of curvature. In M. B. 
Wood, E. E. Turner, M. Civil, & J. A. Eli (Eds.), Proceedings of the 38th annual meeting of 



the North American Chapter of the International Group for the Psychology of Mathematics 
Education (pp. 644-651). Tucson, AZ: The University of Arizona. 

Thompson, P. W. (1985). Experience, problem solving, and learning mathematics: 
Considerations in developing mathematics curricula. In E. A. Silver (Ed.), Teaching and 
learning mathematical problem solving: Multiple research perspectives (pp. 189-243). 
Hillsdale, NJ: Erlbaum. 

Thompson, P. W. (1990). A cognitive model of quantity-based algebraic reasoning. Paper 
presented at the Annual Meeting of the American Educational Research Association, San 
Francisco, CA.  

Thompson, P. W. (1994). Images of rate and operational understanding of the fundamental 
theorem of calculus. Educational Studies in Mathematics, 26(2-3), 229-274.  

Thompson, P. W. (2011). Quantitative reasoning and mathematical modeling. In S. Chamberlin, 
L. L. Hatfield, & S. Belbase (Eds.), New perspectives and directions for collaborative 
research in mathematics education: Papers from a planning conference for WISDOM^e (pp. 
33-57). Laramie, WY: University of Wyoming. 

Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: Foundational 
ways of thinking mathematically. In J. Cai (Ed.), Compendium for Research in Mathematics 
Education (pp. 421-456). Reston, VA: National Council of Teachers of Mathematics. 

Thompson, P. W., & Silverman, J. (2007). The concept of accumulations in calculus. In M. P. 
Carlson & C. L. Rasmussen (Eds.), Making the connection: Research and teaching in 
undergraduate mathematics (pp. 117-131). Washington, DC: Mathematical Association of 
America. 

Ulrich, C., Tillema, E. S., Hackenberg, A. J., & Norton, A. (2014). Constructivist model 
building: Empirical examples from mathematics education. Constructivist Foundations, 9(3), 
328-339.  

von Glasersfeld, E. (1982). Subitizing: The role of figural patterns in the development of 
numerical concepts. Archives de Psychologie, 50, 191-218.  

 


