CODE: COMPILER-BASED NEURON-AWARE ENSEMBLE TRAINING

Ettore M. G. Trainiti' Thanapon Noraset! David Demeter' Doug Downey !> Simone Campanoni '

ABSTRACT

Deep Neural Networks (DNNs) are redefining the state-of-the-art performance in a variety of tasks like speech
recognition and image classification. These impressive results are often enabled by ensembling many DNNs
together. Surprisingly, ensembling is often done by training several DNN instances from scratch and combining
them. This paper shows that there is significant redundancy in today’s way of ensembling. The novelty we propose
is CODE, a compiler approach designed to automatically generate DNN ensembles while avoiding unnecessary
retraining among its DNNs. For this purpose, CODE introduces neuron-level analyses and transformations aimed
at identifying and removing redundant computation from the networks that compose the ensemble. Removing
redundancy enables CODE to train large DNN ensembles in a fraction of the time and memory footprint needed
by current techniques. These savings can be leveraged by CODE to increase the output quality of its ensembles.

1 INTRODUCTION

Deep Neural Networks (DNNs) are redefining the state-
of-the-art performance on a growing number of tasks in
many different domains. For example, in speech recogni-
tion, encoder-decoder DNNSs have set new benchmarks in
performance (Chiu et al., 2017). Likewise, the leaderboards
of the ImageNet image classification challenge are domi-
nated by DNN approaches such as residual convolutional
neural networks (He et al., 2016; Wang et al., 2017). These
impressive results have enabled many new applications and
are at the heart of products like Apple Siri and Tesla AutoPi-
lot.

DNNs achieve high-quality results after extensive training,
which takes a significant amount of time. The importance of
this problem has been highlighted by Facebook VP Jérome
Pesenti, who stated that rapidly increasing training time is a
major problem at Facebook (Johnson, 2019).

There are two main reasons why DNN training takes so
long. First, training a single DNN requires tuning a massive
number of parameters. These parameters define the enor-
mous solution space that must be searched in order to find
a setting that results in strong DNN output quality. Opti-
mization techniques that are variants of stochastic gradient
descent are effective at finding high quality DNNSs, but re-
quire many iterations over large datasets. Today, several

'Department of Computer Science, Northwestern University,
Evanston, IL, USA
2Allen Institute for AI, Seattle, WA, USA. Correspondence to:
Ettore M. G. Trainiti <ettrai @u.northwestern.edu>.

Proceedings of the 4th MLSys Conference, San Jose, CA, USA,
2021. Copyright 2021 by the author(s).

powerful hardware accelerators like GPUs or TPUs are nec-
essary to explore this space fast enough to keep the training
time down to acceptable levels. The second reason that
results in increased DNN training time is a technique known
as ensembling: often, the best output-quality is achieved by
training multiple independent DNN instances and combin-
ing them. This technique is common practice in the machine
learning domain (Deng & Platt, 2014; Hansen & Salamon,
1990; Sharkey, 2012). This paper aims at reducing training
time resulting from homogeneous DNN ensembling.

Ensembling is leveraged in a variety of domains (e.g., im-
age classification, language modeling) in which DNNs are
employed (He et al., 2016; Hu et al., 2018; Jozefowicz
et al., 2016; Liu et al., 2019; Wan et al., 2013; Yang et al.,
2019). In all of these domains the approach used to ensem-
ble N DNNs is the following. After randomly setting the
parameters of all DNN instances, each DNN instance has
its parameters tuned independently from any other instance.
Once training is completed, the DNN designer manually
ensembles all these trained DNNs. To do so, the designer
introduces a dispatching layer and a collecting layer. The
former dispatches a given input to every DNN that is partic-
ipating in the ensemble. The latter collects the outputs of
these DNNs and aggregates them using a criterion chosen
by the designer. The output of the DNNs ensemble is the
result of this aggregation.

We believe there is an important opportunity to improve the
current DNNs ensembling approach. The opportunity we
found lies in a redundancy we observed in the training of the
networks that together compose the ensemble. We observed
this redundancy exists because there is a common sub-
network between these DNN instances: this sub-network

CODE: Compiler-based Neuron-aware Ensemble training

5 15
L
b \
T L B
2 | |
2 slgmo ‘ 777
wn
& o ’ (. J [’
\ C C
G ok X X < < C (>
NCTT N SRR i g RS Sy
P~\<a"‘ \e*\\\ P~\e* \age\ C\,ogs\ & P&o

Figure 1. An ensemble of DNNs performs better than a single
DNN. The ensemble effect is the output quality difference between
an ensemble and the best single DNN that participates in it. The
output quality of the benchmarks are reported in Table 1.

represents a semantically-equivalent computation. Training
this sub-network from scratch for all DNN instances that
compose the ensemble is unnecessary. This sub-network
spans across layers of the neural network; hence, detecting it
requires analyses that reach the fine granularity of a neuron.
This requirement suggests the need for an automatic tool.
In this paper we introduce this tool: CODE, the Compiler
Of Deep Ensembles.

CODE is a compiler that automatically trains and ensembles
DNNs while significantly reducing the ensemble’s training
time by avoiding retraining the common sub-network. Sim-
ilar to conventional compilers that involve Code Analysis
and Transformation (CAT) to recognize and remove redun-
dant computation performed by the instructions of a pro-
gram (Aho et al., 1986), CODE introduces Neuron Analysis
and Transformation (NAT) to recognize and remove redun-
dant computation performed by the trained neurons of a
DNN. The neuron-level redundancy elimination performed
by the NATSs introduced in this paper is what allows CODE
to train an ensemble of DNNs much faster than current
approaches.

We tested CODE on 8 benchmarks: CODE significantly
reduces the ensemble training time of all of the benchmarks
considered. In more detail, CODE trains homogenous en-
sembles of DNNs that reach the same output quality of
today’s ensembles by using on average only 43.51% of the
original training time. Exploiting the training time savings
achieved by CODE can result in up to 8.3% additional out-
put quality while not exceeding the original training time.
Furthermore, CODE generates ensembles having on average
only 52.38% of the original memory footprint. When free
from training time constraints, CODE reaches higher output
quality than current ensembling approaches.

The paper we present makes the following contributions:

(i) We show the redundancy that exists in today’s ap-
proaches to train homogeneous ensembles of DNNs

(i) We introduce Neuron Analyses and Transformations
to automatically detect and remove redundant training

VGG_|
AlexNet_|
AlexNet_M
AlexNet_C
Classifier_M
Classifier_C

0 20 40 60 80 100
Redundant Models [%]

Figure 2. The DNNs that compose an ensemble often generate the
same outcomes, making their contribution redundant.

(iii) We present the first neuron-aware compiler capable of
automatically ensembling DNNs while significantly
reducing unnecessary neuron retraining

(iv) We demonstrate the potential of CODE that exists even
when relying only on commodity hardware.

2 OPPORTUNITY

A DNN ensemble generates higher-quality outputs com-
pared to a single DNN instance (Jozefowicz et al., 2016).
We validated this effect on the DNNs considered in this pa-
per. To measure this effect, we compared the output quality
of an ensemble of independently trained DNNs with the one
obtained by a single DNN. Figure 1 shows their difference,
also known as ensemble effect, for the benchmarks described
in Section 4 and reported in Table 1. The benchmark nam-
ing convention we used is Network_Dataset (e.g., VGG
trained on the ImageNet dataset is labeled VGG_T).

All benchmarks but AlexNet_M have important ensem-
ble effects. AlexNet_M shows a small ensemble effect
(+0.13%) because the quality of the single DNN instance
is already high (99.21%), leaving almost no room for im-
provements. This ensemble effect results in a final ensemble
output accuracy of 99.34%.

The ensemble effect largely results from ensemble hetero-
geneity: different DNN instances within the ensemble are
likely to reside in different local minima of the parameter
solution space. These different optima are a consequence
of the different initial states that each DNN started training
from. An ensemble of DNNs takes advantage of this local
minima heterogeneity.

Our observation is that the heterogeneity of the DNNs local
optima is also shown through the DNNs output differences.
While these differences are fundamental to generate the
ensemble effect (Figure 1), we observe that output differ-
ences exist only for a small fraction of the network instances
within a DNN ensemble. To examine this characteristic, we
considered the output outcomes originating from DNNs
used for classification tasks. Figure 2 shows the fraction

CODE: Compiler-based Neuron-aware Ensemble training

TensorFlow graph
describing a DNN

Peer DNN w/o dead neurons |

]

Main DNN w/o
dead neurons and
w/o the common
sub-network

Redundancy
elimination

Validation dataset

Common sub-network

DNN generation

DNN w/o

Ensembling DNN
dead neurons and ensemble

w/o the common A
sub-network

Ensemble cardinality|

CODE

Output combining
function J

Figure 3. The CODE methodology. Highlighted elements are the three phases of CODE.

of independently trained DNN instances that generate an
output that was already generated by at least another DNN
instance of the ensemble. These fractions suggest the exis-
tence of redundancy between the networks participating in
the ensembles. To compute the values shown in Figure 2,
we applied the following formula:

S (N -U)

R:
N x 1T

Where R is the redundancy, N is the number of networks
that compose the ensemble (shown in Table 1), I is the
number of the inputs, and for a given input ¢ the term U; is
the number of unique outputs produced by the DNNs part
of the ensemble.

Our research hypothesis is that there is a significant
amount of redundancy across DNN instances that partic-
ipate in a DNN ensemble. In other words, some intrinsic
aspects of the inputs are equally learned by all the DNN in-
stances within the ensemble. We call these equally-learned
aspects the common sub-network of an ensemble. We be-
lieve that re-learning the common sub-network for all DNN
instances that compose an ensemble is not strictly needed.
This unnecessary redundancy can be removed.

Our empirical evaluation on homogeneous ensembles in
Section 4 strongly suggests that our research hypothesis is
valid. This hypothesis gave us a new opportunity: to auto-
matically detect the common sub-network by comparing N
DNN instances. Once identified, the common sub-network
can be extracted and linked to new DNNs ahead of train-
ing such that it will be part of their initialization. Training
these additional DNN instances will only require tuning
parameters that do not belong to the common sub-network
of the ensemble. In particular, the new DNNs5 that will be
part of the ensemble will only “learn” aspects of the inputs
that contribute to the ensemble effect. This optimization is
automatically implemented and delivered to the end user by
CODE.

3 CODE METHODOLOGY

CODE is capable of automatically ensembling DNNs while
limiting unnecessary parameter retraining thanks to trans-
formations specifically designed to analyze, identify, and
remove inter-network neuron redundancy. An overview of
CODE’s approach is shown in Figure 3, reported above.

The savings obtained by CODE (both in terms of training
time and memory used by a DNN ensemble) come from
removing two sources of redundancy we have identified.
The first source of redundancy is a consequence of the fact
that DNNs are often over-sized. This source of redundancy
can be detected by analyzing the contribution of a neuron to
the DNN outputs. A neuron can be safely removed if, for
all of its inputs, it does not contribute to the final outputs of
the DNN. We call these neurons dead neurons. The second
and main source of redundancy comes from the existence
of common sub-networks. Common sub-networks are col-
lections of connected neurons that behave in a semantically-
equivalent way across different networks. After the detec-
tion and confinement of this novel source of redundancy, the
training of new DNNss to be added to the ensemble will only
cover parameters that are not part of the extracted common
sub-network. What follows is the description of the three
phases carried by CODE: Redundancy Elimination, DNN
generation, and Ensembling.

3.1 Phase 1: Redundancy Elimination

This phase starts with the training of two DNNs that follow
the DNN architecture given as input to CODE. These two
training sessions, including their parameters initialization,
are done independently. We call these trained models main
and peer DNNS.

We chose to train conventionally only the main and peer
DNNs because of two reasons. The first is that when more
DNNss are trained conventionally, CODE has less room to
reduce ensemble training time. The training time saved
by CODE comes from unconventionally training the other
DNNs that participate in the ensemble. The second reason
is that analyzing only the main and the peer DNNs led us to
already obtain important training time savings as Section 4

CODE: Compiler-based Neuron-aware Ensemble training

TensorFlow graph Main DNN +
s Dead Neuron | Dead neurons Dead Neuron| |, Peer DNN w/o
Training Analysis Elimination "{__dead neurons
Peer DNN
v
— Common Neuron Dependence .
Sunenork | o |<{Neuron Dependence) . fin o 7o
n i ead neurons
Extraction Analysis

Main DNN w/o
dead neurons and

w/o the common

Redundancy elimination

-

L sub-network

Common
sub-network

Figure 4. The redundancy elimination phase of CODE.

demonstrates empirically. It is anyways possible for CODE
to analyze more than two conventionally-trained DNNs.

Once the main and peer DNNs are trained, CODE can start
the identification of the first source of redundancy thanks to
its Dead Neuron Analysis (DNA). DNA detects all the dead
neurons of a DNN. We consider a neuron to be dead when
its activations do not influence the outputs of the DNN it
belongs to. To this end, the DNA checks if the activations
of a neuron are zero for all inputs considered. Neurons that
meet this condition are considered dead. The DNA included
in CODE conservatively generates the list of dead neurons
from the intersection of neurons that are dead in all DNN’s
given as input. This differs from the conventional approach
of deleting dead neurons from a single DNN after its train-
ing. In more detail, we chose to delete only the neurons
that are dead for all DNNs because a neuron can be dead
in a network, but alive in another. This subtle difference
can contribute to the ensemble DNNs’ heterogeneity which
translates into better ensemble output quality. To make
sure this assumption is not too conservative, we tested it.
We found our assumption to be true in the benchmarks we
considered: removing dead neurons that are alive in one net-
work but dead in the other (i.e., the conventional approach)
significantly reduced the ensemble output quality.

The list of neurons generated by the DNA is then given
to the Dead Neuron Elimination (DNE) component. This
component removes those neurons from a given network, in
our case, it removes them from the main and peer models by
properly modifying and reshaping their parameter tensors.
This concludes the removal of the first source of redundancy
identified by CODE.

The second source of redundancy to be removed by CODE
is the one given by the existence of common sub-networks
across homogeneous DNNs. To start the identification of
neurons that will become part of the common sub-network,
CODE performs what we call the Neuron Dependence
Analysis (NDA). The idea that inspired our NDA is simple:
connected neurons that strongly influence each other need to

be kept together. In machine learning this concept is called
“firing together” and it is used in Hebbian learning (Hebb,
1949; Hecht-Nielsen, 1992) for hopfield networks. NDA
leverages the activations of each pair of connected neurons
in a DNN to understand whether they should be connected
in the Neuron Dependence Graph (NDG). To do this, NDA
counts the fraction of inputs that makes both neurons “fire”
together. For this test, we encoded a custom firing condition
for each different neuron activation function. Connected
neurons that often fire together are linked by an edge in the
NDG. An edge between nodes of the NDG represents the
constraint that connected neurons cannot be separated. In
other words, either they both are selected to be part of the
common sub-network or neither one is. The output of the
NDA is the NDG where all identified neurons dependencies
of a DNN are stored.

Once the NDGs of the main and peer network have been
obtained, CODE can perform its most crucial step: the
Common Sub-Network Extraction (CSNE). The CSNE iden-
tifies and removes the set of semantically-equivalent neu-
rons between the main and the peer DNNs while satisfying
the constraints specified in the NDGs. The CSNE extracts
these neurons from the main DNN by reshaping its ten-
sors and placing them in what is going to be the Common
Sub-Network (CSN). We define semantically-equivalence
as follows. A neuron n,, of the main DNN is semantically-
equivalent to a neuron n,, of the peer DNN if and only if all
the following conditions are met:

(i) n, and n,, belong to the same layer in their correspon-
dent DNNs

(ii) n., and n,, fire together often enough (e.g., more than
80% of the time, across the inputs considered)

(iii) there is a high correlation (e.g., more than 0.8) between
the sequence of activations of n,,, and the sequence of
activations of n,,

(iv) all the predecessor neurons that n,, depends on are
part of the common sub-network.

CODE: Compiler-based Neuron-aware Ensemble training

Dataln

Output

Dataln

Output

Data Out

Data In

Layer 2

Layer 3

©

Figure 5. CODE ensembles are structurally different from vanilla
ensembles.

(a) Ensemble made of independently trained networks

(b) Ensemble generated by CODE

(c) Structure of a single CODE DNN instance

Condition (i) makes sure that n,,, and n,, belong to a com-
patible location (e.g., layer1) in their correspondent DNNss.
Conditions (ii) and (iii) check that n,,, and n, behave sim-
ilarly for most inputs considered. Condition (iii) relies on
the conventional correlation formula (Rice, 2006) reported
here for convenience:

cov(M, P)

Correlation,,, n, =
OMO P

where M and P are the vectors of the outputs of 7, and n,.
Finally, condition (iv) guarantees that the dependencies of
neuron n,,, specified in the NDG of the DNN n,,, belongs
to, are satisfied.

The algorithm used by CSNE flags semantically-equivalent
neurons until no neurons satisfy the conditions specified
above. When convergence is reached, the set of neurons to
be added to the common sub-network is removed from the
main model via functional preserving transformations. The
removed neurons are then packed into a collection of tensors
that represent the extracted common sub-network. This

common sub-network that will be used by CODE during its
next phase called DNN generation. In Appendix A we show
a direct comparison between the impact of DNE and CSNE.
For completeness, we also tried to randomly select neurons
to be added to the common sub-network: this led to obtain
critical losses in terms of the output quality of the final
ensembles. In Appendix B we share more about our random
neuron selection trials.

3.2 Phase 2: DNN Generation

Having already trained the main and peer models, the DNN
generation phase of CODE deals with the training of the
remaining (N — 2) DNNs that will be part of the ensemble.
The only parameters of these DNNSs that need to be trained
are the ones not included in the common sub-network ex-
tracted by the redundancy elimination phase. These train-
able parameters are randomly initialized before training.
In addition, the necessary common sub-network is linked
to each DNN before its training. The result of this phase
is (N — 2) trained CODE DNNs. One example of CODE
DNN is shown in Figure 5c. The parameters that will be
trained in a CODE DNN are labeled as "Train".

3.3 Phase 3: Ensembling

The Ensembler of CODE combines /N DNNss to output the
final DNN ensemble. In more detail, the Ensembler links the
common sub-network to the main DNN and to the (N — 2)
CODE DNNs. It then adds these networks and the peer
DNN to the collection of DNNs that will be ensembled. The
Ensembler extends this collection by introducing a compo-
nent to distribute the input to all N DNNs and to collect
all the DNN outputs. The DNNSs outputs are combined as
specified by the ensembling criterion provided to CODE by
the user. Figure 5b shows the ensemble structure that the
Ensembler outputs as a TensorFlow graph. Thus, the off-the-
shelf TensorFlow stack can be used to perform inference on
the DNN ensemble.

3.4 Relationship with Compilers

Our approach takes inspiration from techniques used in
the Computer Systems domain. Within the Compiler com-
munity, these techniques are called Code Analysis and
Transformations (CATSs). Given the nature of DNNs work-
loads and their finer grain units, we decided to call ours
Neuron Analysis and Transformations (NATs). Specifically,
in this work we have defined and implemented four NATS:
Dead Neuron Analysis (DNA), Dead Neuron Elimination
(DNE), Neuron Dependence Analysis (NDA), Common
Sub-Network Extraction (CSNE). DNA and DNE are sim-
ilar in spirit to the dead code elimination CAT, NDA and
CSNE are inspired by common sub-expression elimination
performed by conventional compilers (Aho et al., 1986).

CODE: Compiler-based Neuron-aware Ensemble training

3.5 Implementation

CODE lives in ~30,000 lines of code. We wrote CODE
using a combination of Python and C++ code. Python has
been used to interact with the TensorFlow stack. C++ has
been used to implement the core of CODE, including all
NATSs described in Section 3.1. The time spent inside NATSs
is negligible (less than 0.05% of the total training time)
thanks to a careful parallelization and vectorization of their
code using OpenMP 4.5.

4 EMPIRICAL EVALUATION

We evaluated CODE on several benchmarks and we com-
pared its results with a baseline of homogeneous ensembles
of independently trained DNNs. All experiments leveraged
TensorFlow r1.12 on a single Nvidia GTX 1080Ti GPU.

4.1 Benchmarks

The naming convention we used for the benchmaks we
evaluated is Network_Dataset. For example, AlexNet
trained on the MNIST dataset is called AlexNet_ M.

The set of networks we tested CODE on include the follow-
ing DNNGs:

Autoencoder: an unsupervised learning network. It is made
of five fully connected hidden layers: encodel, encode2,
code, decodel, decode2. Layers encodel and decode2 have
the same neuron cardinality, and so do layers encode2 and
decodel. Autoencoder’s task is to generate a noiseless im-
age starting from a noisy input image. Its output quality
over a dataset is measured in terms of mean squared er-
ror (MSE) between the original images and the output im-
ages. Our network code is an adapted version of (Kazemi)
where convolutional layers have been replaced with fully
connected layers, and image noise has been obtained by
applying dropout (Srivastava et al., 2014) to the input layer.

Classifier: a network meant to learn how to classify an
input over a number of predefined classes. Its structure
consists of four fully connected hidden layers with different
neuron cardinalities. Its output quality over a dataset is
measured in terms of accuracy, i.e. correct predictions over
total predictions. We adapted our code from the DNN shown
in (Sopyla).

AlexNet (Krizhevsky et al., 2012): a network designed for
image classification. This network comes in two variants:
four hidden layers(Krizhevsky, a) and eight hidden lay-
ers (Krizhevsky, b). We adapted our code from the version
distributed by Google (Google, a). Unlike the other two net-
works, AlexNet makes use of convolutional layers. These
particular layers take advantage of the spatial location of the
input fed to them. AlexNet output quality is measured in
terms of accuracy.

VGG (Simonyan & Zisserman, 2014): a deeper network
designed for image classification. This network comes
in six different configurations: we used configuration
D. We adapted our code from the version distributed by
Google (Google, b). Like AlexNet, this network leverages
convolutional layers. A peculiarity of this network is the
use of stacked convolutional layers. VGG output quality is
measured in terms of accuracy.

The datasets we used for our tests include:

MNIST (LeCun et al.): a dataset composed of 70000 entries
containing handwritten digits. Each entry is pair of a 28x28
pixels gray-scale image and its corresponding digit label.

CIFARI10 (Krizhevsky et al.): a dataset of 60000 images
of objects categorized in 10 different classes. Each 32x32
pixels color image is labeled according to the class it belongs

non

to, e.g. "airplane”, "automobile", "dog", "frog".

ImageNet (Russakovsky et al., 2015): one of the state-of-
the-art datasets for image classification and object detection.
The variant we used (ILSVRC, a) contains over 1.2 million
entries of color images distributed over 1000 classes. These
images have different sizes: we resized them to have a
minimum length or height of 256 pixels and took the central
256x256 pixels crop, as described in (Krizhevsky et al.,
2012).

For each dataset, with the exception of ImageNet, we did
not perform any data preprocessing other than normalizing
the input features of each image (from pixel with values
[0,255] to [0,1]).

When training AlexNet on ImageNet, we computed the
mean image over the whole dataset and then subtracted it
from every image given as input to the network. When train-
ing VGG on Imagenet, we computed the mean RGB pixel
over the whole dataset and then subtracted it from every
pixel of any image given as input to the network.

During training on ImageNet, we performed data augmen-
tation by providing the network with one random 224x224
pixels image crop taken from the initial 256x256 pixels
central crop.

4.2 Ensembling criteria

We considered multiple ensembling criteria, including ma-
jority voting, averaging, products of probability distribu-
tions, and max. We chose the ones that gave the best output
quality for ensembles of independently trained DNNGs.

When accuracy is the metric used to measure the output
quality of a model, we apply the following ensembling
criterion. For an ensemble of N models that outputs K class
probabilities per input, the ensemble output probabilities for

CODE: Compiler-based Neuron-aware Ensemble training

Table 1. Reported below are training time and output quality of baseline ensembles of independently trained DNNs to reach diminishing
returns on our test platform. We also report the time needed for CODE to reach or beat the output quality achieved by the baseline.

Benchmark ‘ Network ‘ Dataset ‘ Metric ‘ Single Model ‘ Ensemble ‘ Ensemble Training Time ‘ Cardinality ‘ Approach ‘
VGG_I VGG-16 | ImageNet | Top-1 Accuracy | 57.82% gg'g?? ‘2‘8 g 82 E (5)8 2 181 ggsgllzne
. 0
AlexNet_I AlexNet ImageNet | Top-1 Accuracy 46.12% g;gg;‘i g g (I)Z E ‘1“3" $ 162 ggggle
AlexNet_M AlexNet MNIST | Top-1 Accuracy 99.21% gggizz i E gé 2 ?(9) (lé?)s]e)l]lane
AlexNet_C | AlexNet | CIFARIO | Top-1 Accuracy | 69.05% ;ggz) ; E ;g 2 ig g?)s]‘;l]‘;e
. 0
Classifier M | Classifier | MNIST | Top-1 Accuracy | 95.76% gg'ggzj 12 2 ;g g?;]‘;]l‘a“e
Classifier_C Classifier CIFARI10 | Top-1 Accuracy 48.90% gji ;ZZ 32 2 g; geg]f;l]lane
Autoenc_M | Autoencoder | MNIST MSE 9.87 23(1) li 2 g gaosle)l]lzne
Autoenc_C | Autoencoder | CIFARI0 MSE 72.30 2(9)' 5(7) 32 = i(z) gi‘)s]‘;l]‘ane
_ 100 E—— ; ~ 100 -
S 80 raining time saved | % 80 Memory saved
o <
E 60 s 601-
2 40 S 401
C .
T 20 E 201
'_
°) Y oo W =0
OG- &~ (& SBIPNTS SS g e 25 oY & & & oM ¢
N\ S NSV el s gt o0l o @ NCP TN WS NS el C g o0Cr o0Cr
WP o e o e o s e neh P\e@ et (,\659\\ 0o o o

Figure 6. Training time needed by CODE to achieve the same
output quality of the baseline of Table 1.

the 7" input are computed as:
N
Py, = H Oijk
j=1

Where Py, is the predicted probability of input ¢ to belong
to class k, Oy, is the output probability for class & of the
5" model in the ensemble for the i*” input. The predicted
label L; of a given input is computed as
L; =max{Py,..., Pk}

The accuracy metric is computed as the number of correctly
predicted labels over the total number of inputs. The higher
the accuracy, the better.

When cumulative MSE is the metric used to measure the
output quality of model, we apply the following ensembling
criterion. For an ensemble of NV models where K is the
number of dimensions of each input, the ensemble output
value for the k" dimension of the 7*" input is computed as:

N
Zj:l Oiji
Vik = — N

Figure 7. CODE Ensembles memory footprint with respect to base-
line for the entries of Table 1.

Where O, is the output value for dimension k of the j th
model in the ensemble for the i*" input. The MSE is then
computed between the ensemble output V; and the expected
output F;. The sum of all the MSEs gives us the cumulative
MSE metric. The lower the MSE, the better.

4.3 DNN Training

We leveraged the off-the-shelf Tensorflow software stack to
train every DNN on a single GPU. Parallel training of each
single DNN is anyways possible by leveraging frameworks
such as Horovod (Sergeev & Del Balso, 2018). Learning
rate tuning has been done for the baseline runs, and the
same learning rate has been used for CODE runs. Weight
decay has not been used during training and learning rate
decay has only been used for AlexNet_TI and VGG_I
benchmarks. Early stopping has been leveraged to halt the
training session when no output quality improvement on the
validation set has been observed for 5 consecutive training
epochs.

The measurements we report have been obtained by running
each experiment multiple times. AlexNet_TI has been
run 3 times and VGG_T has been run only once due to the
extensive amount of time it required to complete a single

CODE: Compiler-based Neuron-aware Ensemble training

run on our machine. All other benchmarks shown in Table 1
have been run for 30 times. We reported the output quality
median of baseline and CODE ensembles, together with
their training times, in Table 1.

4.4 Results

Training time savings Training a DNN ensemble requires
the choice of its cardinality, i.e. how many models will
be part of the ensemble. For each entry in Table 1, we re-
ported the baseline ensemble cardinality Npgserine that led
to diminishing returns in terms of output quality scored by
each of our benchmarks. Baseline ensembles are made of
independently trained networks.

CODE ensembles have been trained by following the ap-
proach described in Section 3. For each benchmark, we
measured the total training time needed by CODE to obtain
at least the same output quality of the baseline ensemble
and reported its cardinality Ncopg. The results of these
comparisons are reported in Table 1 and Figure 6. Thanks to
its NATs, CODE obtained the output quality of the baseline
ensembles in a fraction of the time. On average, CODE
reaches the same or better baseline ensemble output qual-
ity using only 43.51% of the baseline training time. The
combined advantages of redundancy reduction and avoiding
the retraining of the common sub-network are the keys that
led CODE to achieve important training time savings. It is
worth noting that, on our machine, CODE NATSs accounted
for less than 0.05% of the total ensemble training time.

For completeness, we computed the total memory footprint
of the CODE ensembles reported in Table 1. To do so, we
used the following formula:

TPpyn + (Ncope — 1) - TPcopepyy + CSN

NBaseline ' TPDNN

M =

Where M is the memory footprint of the CODE ensemble
with respect to the baseline ensemble, 7P is the number of
trainable parameters, C'S N is the number of non-trainable
parameters stored in the common sub-network, and Ncopg
and Npgseline are ensemble cardinalities. These results are
shown in Figure 7. On average, CODE ensembles have
52.38% of the baseline memory footprint. These memory
savings result from the sharing of the common sub-network
enforced by CODE.

Higher output quality The training time savings we just
described can be exploited by CODE to achieve higher
output quality. While not exceeding the training times of
the baseline ensembles specified in Table 1, CODE can
invest those savings by training more DNNs to add to its
ensembles. In Table 2 we show the extra output quality that
CODE obtained when given the same training time budget
as the baseline. CODE increases the output quality of most
benchmarks (up to 8.3%) without exceeding the training

time used by the baseline.

For completeness, we also measured and reported the extra
output quality gained when no training time constraints are
given to both the baseline and CODE, i.e. when any number
of models can be added to the ensemble. We observed
that the baseline does not meaningfully increase its output
quality even when its training time budget is left unbounded.
On the other hand, CODE obtains higher output quality
out of its trained ensembles. More on this phenomenon in
Appendix C.

S RELATED WORK

We show the relevance of ensembling DNNs and present the
spectrum of community investments. We divide prior work
related to improving DNNs into multiple categories: fast
ensembling, optimizing training time, optimizing inference
time, software stacks.

5.1 Ensembling Deep Neural Networks

Combining the outputs of multiple DNNs is a common
technique used to perform better on a given metric (e.g. ac-
curacy, MSE) for a given task (e.g. classification, object de-
tection). Ensembling can be performed across networks (e.g.
Inception-V4 (Szegedy et al., 2017), GoogLeNet (Szegedy
et al., 2015)) and/or within networks (Shazeer et al., 2017).
The outcomes of the last five (ILSVRC, b;c;d;e;f) ImageNet
Large Scale Visual Recognition Challenges (Russakovsky
et al., 2015) are a strong proof of this trend: ensembling
models proved to be the winning strategy in terms of task
performance. In unsupervised language modeling, ensem-
bles of multiple models often outperform single models by
large margins (Jozefowicz et al., 2016). Another example
of the importance of ensembling is shown on the MNIST
classification task. (LeCun et al.) reports the best accu-
racy obtained by a multitude of different networks. The
entry that set the best tracked result is an ensemble of 35
Convolutional Neural Networks. To the best of our knowl-
edge, ours is the first work to propose and evaluate methods
aimed specifically at optimizing the training of ensembles
for general DNNs while preserving output quality.

5.2 Fast Ensembling

A standard baseline for ensembling DNNs is to aggregate
a set of independently trained deep neural networks. To
reduce ensemble training time, existing fast ensembling
techniques rely on two main ideas: transfer learning and
network architecture sharing.

Transfer learning based approaches include Knowledge
Distillation (Hinton et al., 2015) and Snapshot Ensembles
(Huang et al., 2017). Knowledge Distillation (Hinton et al.,
2015) method trains a large generalist network combined

CODE: Compiler-based Neuron-aware Ensemble training

Table 2. Reported below is the ensemble output quality when the same training time budget is given to baseline and CODE. We also show
the output quality obtained by the baseline and CODE when no training time budget constraint is given.

Benchmark Network Dataset Metric ‘ Training Time Budget ‘ Ensemble ‘ Approach
o |t b
VGG_I VGG-16 ImageNet | Top-1 Accuracy et -
Unbounded 63.99% Baseline
64.68% CODE
SAThadm e ConE
AlexNet_I AlexNet ImageNet | Top-1 Accuracy il .
Unbounded 53.16% Baseline
" 53.87% | CODE
99.34% Baseline
1h22m
AlexNet_M AlexNet MNIST | Top-1 Accuracy 99.54% COD].E
Unbounded 99.37% Baseline
99.836% | CODE
78.21% Baseline
7h30m
AlexNet_C AlexNet CIFARI10 | Top-1 Accuracy 86.21% CODE
Unbounded 79.21% Baseline
ounde 9321% | CODE
98.03% Baseline
15m 98.23% | CODE
Classifier M Classifier MNIST Top-1 Accuracy i .
Unbounded 98.12% Baseline
fibounde 98.83% | CODE
54.11% Baseline
36m 62.41% | CODE
Classifier_C Classifier CIFARI10 | Top-1 Accuracy i -
Unbounded 55.11% Baseline
nbounde 66.41% | CODE
6.41 Baseline
Hm 621 | CODE
Autoenc_M | Autoencoder MNIST MSE - .
Unbounded 6.17 Baseline
ounde 601 | CODE
43 m 60.17 Baseline
Autoenc_C | Autoencoder | CIFARI10 MSE 28.07 COD].E
Unbounded 59.73 Baseline
" 5487 | CODE

with multiple specialist networks trained on specific classes
or categories of a dataset. The Snapshot Ensembles (Huang
et al., 2017) method averages multiple local minima ob-
tained during the training of a single network.

Network architecture sharing based techniques include
TreeNets (Lee et al., 2015) and MotherNets (Wasay et al.,
2020). The idea behind TreeNets (Lee et al., 2015) is to train
a single network that branches into multiple sub-networks.
This allows all the learners to partially share few initial
layers of the networks. Along this line of thinking, Moth-
erNets(Wasay et al., 2020) targets structural similarity to
achieve faster training times. At its core, MotherNets first
trains a “maximal common sub-network" among all the

learners and then transforms it back into the original models’
structures through functional preserving transformations.
All these models are then further trained until convergence
is reached.

All the works mentioned above do not preserve the output
quality of the baseline ensembles of independently trained
networks when training faster than baseline, while CODE
manages to do so.

CODE, relies on both transfer learning and network archi-
tecture sharing by focusing on functional (rather than struc-
tural) similarity. This enabled CODE to preserve the base-
line accuracy while delivering training time savings, a sub-
stantial improvement over previous approaches. The core

CODE: Compiler-based Neuron-aware Ensemble training

idea of CODE is to avoid unnecessary redundant training of
neurons that exist in ensembles of neural networks. CODE
achieves this goal by identifying and extracting semantically-
equivalent neurons from networks that have the same archi-
tecture.

5.3 Optimizing Training Time

Training time optimization has mainly been achieved thanks
to hardware accelerators (Intel, b; NVIDIA, c¢; Chen et al.,
2014; Jouppi et al., 2017) hardware-specific libraries (Intel,
a; NVIDIA, a), training strategies (Chilimbi et al., 2014;
Krizhevsky, 2014; Li et al., 2014), neuron activation func-
tions (Glorot et al., 2011; Nair & Hinton, 2010), and com-
pilers (Google, c; Bergstra et al., 2010; Cyphers et al., 2018;
Truong et al., 2016). Latte (Truong et al., 2016) showed
preliminary results on how a compiler can achieve training
time improvements through kernel fusion and loop tiling.
Intel nGraph (Intel, c; Cyphers et al., 2018) leverages fusion,
memory management and data reuse to accelerate training.
Unlike our work, neither Latte nor nGraph explicitly target
ensembles of DNNSs: these optimization techniques are or-
thogonal to ours and could be combined with our approach
in future works. Another interesting work is Wootz (Guan
et al., 2019). Wootz is a system designed to reduce the
time needed to prune convolutional neural networks. The
speedups obtained by Wootz come from reducing the num-
ber of configurations to explore in the pruning design space
as shown in Table 3 of (Guan et al., 2019). This, rather than
reducing the training time of a single configuration, leads
Wootz to find a good configuration faster. Even when ignor-
ing their technical differences, CODE and Wootz are funda-
mentally orthogonal with respect to their goals: CODE aims
at reducing the training time of an ensemble of networks
while Wootz aims at reducing the number of configurations
to explore for pruning (i.e., speeding up the pruning pro-
cess). Interestingly, CODE and Wootz could be combined
to exploit their orthogonality when an ensemble of convo-
lutional neural networks needs to be pruned: Wootz could
drive the pruning space exploration and CODE could reduce
the time to train a single ensemble of such configuration.

5.4 Optimizing Inference Time

Inference time dictates the user experience and the use cases
for which neural networks can be deployed. Because of this,
inference optimization has been and still is the focus of a
multitude of works. Backends (Apple; Intel, d; NVIDIA,
b; Rotem et al., 2018), middle-ends (Chen et al., 2018;
Cyphers et al., 2018), quantization (Gong et al., 2014; Han
et al., 2015), and custom accelerators (Intel, b; NVIDIA,
c; Jouppi et al., 2017; Reagen et al., 2016) are some of
the proposed solutions to accelerate inference workloads.
NNVM/TVM (Amazon; Apache; Chen et al., 2018) and
nGraph (Cyphers et al., 2018) are two promising directions

to address the inference problem. Our current approach
does not target inference time optimization. Although we
see great potential in combining current approaches with
neuron level optimizations, we leave this as future work.

5.5 Software Stacks

Software stacks and frameworks are the de-facto standards
to tackle deep learning workloads. TensorFlow (Abadi et al.,
2016), Theano (Bastien et al., 2012; Bergstra et al., 2010),
Caffe (Jia et al., 2014), MXNext (Chen et al., 2015), Mi-
crosoft Cognitive Toolkit (Microsoft; Yu et al., 2014), Pad-
dlePaddle (Baidu), and PyTorch (Facebook, b) are some of
these tools. The variety of frameworks and their program-
ming models poses a threat to the usability and interoperabil-
ity of such tools. ONNX (Facebook, a), nGraph (Cyphers
et al., 2018), and NNVM/TVM (Amazon; Apache; Chen
et al., 2018) try to address this problem by using connec-
tors and bridges across different frameworks. We chose
TensorFlow for our initial implementation due to its broad
adoption. Nevertheless, our findings are orthogonal to the
framework we used.

6 CONCLUSION

In this work we presented CODE, a compiler-based ap-
proach to train ensembles of DNNs. CODE managed to
achieve the same output quality obtained by homogeneous
ensembles of independently trained networks in a fraction
of their training time and memory footprints. Our findings
strongly suggest that the existence of redundancy within
ensembles of DNNs deserves more attention. Redundancy
not only negatively influences the final ensemble output
quality but also hurts its training time. Our work targeted
ensembles of neural networks and we believe there is more
to be added to neuron level analyses. In its current iteration,
CODE is capable of finding semantically-equivalence in
neurons within fully connected layers across homogeneous
networks. CODE can anyway be extended to support het-
erogeneous ensembles by means of functional-preserving
architectural transformations. As an immediate future step,
we aim to extend CODE to handle more sophisticated net-
work architectures such as Inception (Szegedy et al., 2015)
and ResNet (He et al., 2016) by adding support for neu-
rons within convolutional layers to be part of common sub-
networks.

ACKNOWLEDGMENTS

We would like to thank the reviewers for the insightful
feedback and comments they provided us.

Special thanks to Celestia Fang for proofreading multiple
iterations of this manuscript.

This work was supported in part by NSF grant I1S-2006851.

CODE: Compiler-based Neuron-aware Ensemble training

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kud-
lur, M., Levenberg, J., Monga, R., Moore, S., Murray,
D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden,
P., Wicke, M., Yu, Y., and Zheng, X. Tensorflow: A
system for large-scale machine learning. In Proceed-
ings of the 12th USENIX Conference on Operating Sys-
tems Design and Implementation, OSDI’ 16, pp. 265-283,
Berkeley, CA, USA, 2016. USENIX Association. ISBN
978-1-931971-33-1. URL http://dl.acm.org/
citation.cfm?id=3026877.3026899.

Aho, A. V., Sethi, R., and Ullman, J. D. Compilers, princi-
ples, techniques. Addison wesley, 7(8):9, 1986.

Amazon. Introducing NNVM Compiler: A New Open
End-to-End Compiler for AI Frameworks. URL https:
//amzn.to/2HIj3ws. Accessed: 2020-10-10.

Apache. TVM. URL https://tvm.apache.org/
#about. Accessed: 2020-10-10.

Apple. CoreML. URL https://developer.apple.

com/documentation/coreml. Accessed: 2020-

10-10.

Baidu. PaddlePaddle. URL https://github.com/
PaddlePaddle/Paddle. Accessed: 2020-10-10.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfel-
low, 1., Bergeron, A., Bouchard, N., Warde-Farley, D.,
and Bengio, Y. Theano: new features and speed improve-
ments. arXiv preprint arXiv:1211.5590, 2012.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu,
R., Desjardins, G., Turian, J., Warde-Farley, D., and Ben-
gio, Y. Theano: A cpu and gpu math compiler in python.
In Proc. 9th Python in Science Conf, volume 1, 2010.

Blalock, D., Ortiz, J. J. G., Frankle, J., and Guttag, J. What
is the state of neural network pruning? arXiv preprint
arXiv:2003.03033, 2020.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao,
T., Xu, B., Zhang, C., and Zhang, Z. Mxnet: A flexible
and efficient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:1512.01274,
2015.

Chen, T., Moreau, T., Jiang, Z., Shen, H., Yan, E., Wang,
L.,Hu, Y., Ceze, L., Guestrin, C., and Krishnamurthy, A.
Tvm: end-to-end compilation stack for deep learning. In
SysML Conference, 2018.

Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li,
L., Chen, T., Xu, Z., Sun, N., and Temam, O. Dadian-
nao: A machine-learning supercomputer. In Proceed-
ings of the 47th Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO-47, pp. 609-622,
Washington, DC, USA, 2014. IEEE Computer Society.
ISBN 978-1-4799-6998-2. doi: 10.1109/MICRO.2014.
58. URL http://dx.doi.org/10.1109/MICRO.
2014.58.

Chilimbi, T. M., Suzue, Y., Apacible, J., and Kalyanaraman,
K. Project adam: Building an efficient and scalable deep
learning training system. In OSDI, volume 14, pp. 571—
582, 2014.

Chiu, C., Sainath, T. N., Wu, Y., Prabhavalkar, R., Nguyen,
P, Chen, Z., Kannan, A., Weiss, R. J., Rao, K., Go-
nina, K., Jaitly, N., Li, B., Chorowski, J., and Bacchiani,
M. State-of-the-art speech recognition with sequence-to-
sequence models. CoRR, abs/1712.01769, 2017. URL
http://arxiv.org/abs/1712.01769.

Cyphers, S., Bansal, A. K., Bhiwandiwalla, A., Bobba, J.,
Brookhart, M., Chakraborty, A., Constable, W., Convey,
C., Cook, L., Kanawi, O., Kimball, R., Knight, J., Ko-
rovaiko, N., Vijay, V. K., Lao, Y., Lishka, C. R., Menon, J.,
Myers, J., Narayana, S. A., Procter, A., and Webb, T. J. In-
tel ngraph: An intermediate representation, compiler, and
executor for deep learning. CoRR, abs/1801.08058, 2018.
URL http://arxiv.org/abs/1801.08058.

Deng, L. and Platt, J. C. Ensemble deep learning for speech
recognition. In Fifteenth Annual Conference of the Inter-
national Speech Communication Association, 2014.

Facebook. ONNX, a. URL https://onnx.ai/. Ac-
cessed: 2020-10-10.

Facebook. PyTorch, b. URL https://pytorch.org/.
Accessed: 2020-10-10.

Glorot, X., Bordes, A., and Bengio, Y. Deep sparse rectifier
neural networks. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics,
pp. 315-323,2011.

Gong, Y., Liu, L., Yang, M., and Bourdev, L. Compressing
deep convolutional networks using vector quantization.
arXiv preprint arXiv:1412.6115, 2014.

Google. TensorFlow AlexNet Model , a. URL https:
//github.com/tensorflow/models/blob/
master/research/slim/nets/alexnet.py.
Accessed: 2020-10-10.

Google. TensorFlow VGG Model , b. URL
https://github.com/tensorflow/models/
blob/master/research/slim/nets/vgg.py.
Accessed: 2020-10-10.

http://dl.acm.org/citation.cfm?id=3026877.3026899
http://dl.acm.org/citation.cfm?id=3026877.3026899
https://amzn.to/2HIj3ws
https://amzn.to/2HIj3ws
https://tvm.apache.org/#about
https://tvm.apache.org/#about
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://github.com/PaddlePaddle/Paddle
https://github.com/PaddlePaddle/Paddle
http://dx.doi.org/10.1109/MICRO.2014.58
http://dx.doi.org/10.1109/MICRO.2014.58
http://arxiv.org/abs/1712.01769
http://arxiv.org/abs/1801.08058
https://onnx.ai/
https://pytorch.org/
https://github.com/tensorflow/models/blob/master/research/slim/nets/alexnet.py
https://github.com/tensorflow/models/blob/master/research/slim/nets/alexnet.py
https://github.com/tensorflow/models/blob/master/research/slim/nets/alexnet.py
https://github.com/tensorflow/models/blob/master/research/slim/nets/vgg.py
https://github.com/tensorflow/models/blob/master/research/slim/nets/vgg.py

CODE: Compiler-based Neuron-aware Ensemble training

Google. TensorFlow XLA, c. URL https://www.
tensorflow.org/xla/. Accessed: 2020-10-10.

Guan, H., Shen, X., and Lim, S.-H. Wootz: A compiler-
based framework for fast cnn pruning via composability.
In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
PLDI 2019, pp. 717-730, New York, NY, USA, 2019.
ACM. ISBN 978-1-4503-6712-7. doi: 10.1145/3314221.
3314652. URL http://doi.acm.org/10.1145/
3314221.3314652.

Han, S., Mao, H., and Dally, W. J. Deep compres-
sion: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

Hansen, L. K. and Salamon, P. Neural network ensem-
bles. IEEE Transactions on Pattern Analysis & Machine
Intelligence, (10):993-1001, 1990.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Hebb, D. O. The organization of behavior, volume 65.
Wiley New York, 1949.

Hecht-Nielsen, R. Theory of the backpropagation neural
network. In Neural networks for perception, pp. 65-93.
Elsevier, 1992.

Hinton, G., Vinyals, O., and Dean, J.
the knowledge in a neural network.
arXiv:1503.02531, 2015.

Distilling
arXiv preprint

Hu, J., Shen, L., and Sun, G. Squeeze-and-excitation
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 7132-7141,
2018.

Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J. E., and
Weinberger, K. Q. Snapshot ensembles: Train 1, get m
for free. arXiv preprint arXiv:1704.00109, 2017.

ILSVRC. 2012, a. URL http://image—-net.org/
challenges/LSVRC/2012. Accessed: 2020-10-10.

ILSVRC. 2013, b. URL http://image—-net.org/
challenges/LSVRC/2013/results. Accessed:
2020-10-10.

ILSVRC. 2014, c. URL http://image-net.org/
challenges/LSVRC/2014/results. Accessed:
2020-10-10.

ILSVRC. 2015, d. URL http://image-net.org/
challenges/LSVRC/2015/results. Accessed:
2020-10-10.

ILSVRC. 2016, e. URL http://image—-net.org/
challenges/LSVRC/2016/results. Accessed:
2020-10-10.

ILSVRC. 2017, f. URL http://image—-net.org/
challenges/LSVRC/2017/results. Accessed:
2020-10-10.

Intel. MKL-DNN, a. URL https://github.com/
intel/mkl-dnn. Accessed: 2020-10-10.

Intel. Neural Compute Stick, b. URL
https://software.intel.com/en-us/

neural-compute-stick. Accessed: 2020-10-10.

Intel. nGraph Library, c. URL https:
//www.intel.com/content/www/us/en/
artificial-intelligence/ngraph.html.
Accessed: 2020-10-10.

Intel. plaidML, d. URL https://github.com/
plaidml/plaidml. Accessed: 2020-10-10.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., Guadarrama, S., and Darrell, T. Caffe:
Convolutional architecture for fast feature embedding. In

Proceedings of the 22nd ACM international conference
on Multimedia, pp. 675-678. ACM, 2014.

Johnson, K. Facebook VP: Al has a compute dependency
problem, 2019. URL https://bit.1ly/31iQLtDS.
Accessed: 2020-10-10.

Jouppi, N. P., Young, C., Patil, N., Patterson, D. A., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., Boyle, R., Cantin, P., Chao, C., Clark, C., Coriell, J.,
Daley, M., Dau, M., Dean, J., Gelb, B., Ghaemmaghami,
T. V., Gottipati, R., Gulland, W., Hagmann, R., Ho, R. C.,
Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaf-
fey, A., Jaworski, A., Kaplan, A., Khaitan, H., Koch,
A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le, D,
Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean, G.,
Maggiore, A., Mahony, M., Miller, K., Nagarajan, R.,
Narayanaswami, R., Ni, R., Nix, K., Norrie, T., Omer-
nick, M., Penukonda, N., Phelps, A., Ross, J., Salek,
A., Samadiani, E., Severn, C., Sizikov, G., Snelham, M.,
Souter, J., Steinberg, D., Swing, A., Tan, M., Thorson,
G., Tian, B., Toma, H., Tuttle, E., Vasudevan, V., Walter,
R., Wang, W., Wilcox, E., and Yoon, D. H. In-datacenter
performance analysis of a tensor processing unit. In Com-
puter Architecture (ISCA), 2017 ACM/IEEE 44th Annual
International Symposium on, pp. 1-12. IEEE, 2017.

https://www.tensorflow.org/xla/
https://www.tensorflow.org/xla/
http://doi.acm.org/10.1145/3314221.3314652
http://doi.acm.org/10.1145/3314221.3314652
http://image-net.org/challenges/LSVRC/2012
http://image-net.org/challenges/LSVRC/2012
http://image-net.org/challenges/LSVRC/2013/results
http://image-net.org/challenges/LSVRC/2013/results
http://image-net.org/challenges/LSVRC/2014/results
http://image-net.org/challenges/LSVRC/2014/results
http://image-net.org/challenges/LSVRC/2015/results
http://image-net.org/challenges/LSVRC/2015/results
http://image-net.org/challenges/LSVRC/2016/results
http://image-net.org/challenges/LSVRC/2016/results
http://image-net.org/challenges/LSVRC/2017/results
http://image-net.org/challenges/LSVRC/2017/results
https://github.com/intel/mkl-dnn
https://github.com/intel/mkl-dnn
https://software.intel.com/en-us/neural-compute-stick
https://software.intel.com/en-us/neural-compute-stick
https://www.intel.com/content/www/us/en/artificial-intelligence/ngraph.html
https://www.intel.com/content/www/us/en/artificial-intelligence/ngraph.html
https://www.intel.com/content/www/us/en/artificial-intelligence/ngraph.html
https://github.com/plaidml/plaidml
https://github.com/plaidml/plaidml
https://bit.ly/3iQLtD8

CODE: Compiler-based Neuron-aware Ensemble training

Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., and
Wau, Y. Exploring the limits of language modeling. arXiv
preprint arXiv:1602.02410, 2016.

Kazemi, H. MNIST Network . URL https:
//github.com/Machinelearninguru/
Deep_Learning/blob/master/TensorFlow/
neural_networks/autoencoder/simple_
autoencoder.py. Accessed: 2020-10-10.

Krizhevsky, A. AlexNet for CIFARI10, a.
https://github.com/akrizhevsky/
cuda-convnet2/blob/master/layers/
layers—cifarl0-1lpct.cfg. Accessed: 2020-
10-10.

URL

Krizhevsky, A. AlexNet for ImageNet, b.
https://github.com/akrizhevsky/
cuda-convnet2/blob/master/layers/
layer—-params—-imagenet—-1gpu.cfq. Ac-

cessed: 2020-10-10.

URL

Krizhevsky, A. One weird trick for parallelizing convolu-
tional neural networks. arXiv preprint arXiv:1404.5997,
2014.

Krizhevsky, A., Nair, V., and Hinton, G. CIFAR Datasets
. URL https://www.cs.toronto.edu/~kriz/
cifar.html. Accessed: 2020-10-10.

Krizhevsky, A., Sutskever, ., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.

In Advances in neural information processing systems,
pp.- 1097-1105, 2012.

LeCun, Y., Cortez, C., and Burges, C. C. MNIST Dataset .
URL http://yann.lecun.com/exdb/mnist/.
Accessed: 2020-10-10.

Lee, S., Purushwalkam, S., Cogswell, M., Crandall, D., and
Batra, D. Why m heads are better than one: Training
a diverse ensemble of deep networks. arXiv preprint
arXiv:1511.06314, 2015.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed,
A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.-Y.
Scaling distributed machine learning with the parameter
server. In OSDI, volume 14, pp. 583-598, 2014.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

Microsoft. Cognitive Toolkit. URL
https://docs.microsoft.com/en-us/

cognitive-toolkit/. Accessed: 2020-10-10.

Nair, V. and Hinton, G. E. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th
international conference on machine learning (ICML-10),
pp. 807-814, 2010.

NVIDIA. cuDNN, a. URL https://developer.
nvidia.com/cudnn. Accessed: 2020-10-10.

NVIDIA. TensorRT, b. URL https://developer.
nvidia.com/tensorrt. Accessed: 2020-10-10.

NVIDIA. Tesla V100 GPU, c. URL https:
//www.nvidia.com/en—-us/data-center/
tesla-v100/. Accessed: 2020-10-10.

Reagen, B., Whatmough, P., Adolf, R., Rama, S., Lee,
H., Lee, S. K., Hernandez-Lobato, J. M., Wei, G.-Y.,
and Brooks, D. Minerva: Enabling low-power, highly-
accurate deep neural network accelerators. In ACM
SIGARCH Computer Architecture News, volume 44, pp.
267-278. IEEE Press, 2016.

Rice, J. A. Mathematical statistics and data analysis. Cen-
gage Learning, 2006.

Rotem, N., Fix, J., Abdulrasool, S., Deng, S., Dzhabarov,
R., Hegeman, J., Levenstein, R., Maher, B., Satish, N.,
Olesen, J., Park, J., Rakhov, A., and Smelyanskiy, M.
Glow: Graph lowering compiler techniques for neural
networks. CoRR, abs/1805.00907, 2018. URL http:
//arxiv.org/abs/1805.00907.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211-252, 2015. doi:
10.1007/s11263-015-0816-y.

Sergeev, A. and Del Balso, M. Horovod: fast and easy
distributed deep learning in tensorflow. arXiv preprint
arXiv:1802.05799, 2018.

Sharkey, A. J. Combining artificial neural nets: ensem-
ble and modular multi-net systems. Springer Science &
Business Media, 2012.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Plon.io MNIST Network
https://github.com/ksopyla/

Sopyla, K.
URL

https://github.com/Machinelearninguru/Deep_Learning/blob/master/TensorFlow/neural_networks/autoencoder/simple_autoencoder.py
https://github.com/Machinelearninguru/Deep_Learning/blob/master/TensorFlow/neural_networks/autoencoder/simple_autoencoder.py
https://github.com/Machinelearninguru/Deep_Learning/blob/master/TensorFlow/neural_networks/autoencoder/simple_autoencoder.py
https://github.com/Machinelearninguru/Deep_Learning/blob/master/TensorFlow/neural_networks/autoencoder/simple_autoencoder.py
https://github.com/Machinelearninguru/Deep_Learning/blob/master/TensorFlow/neural_networks/autoencoder/simple_autoencoder.py
https://github.com/akrizhevsky/cuda-convnet2/blob/master/layers/layers-cifar10-11pct.cfg
https://github.com/akrizhevsky/cuda-convnet2/blob/master/layers/layers-cifar10-11pct.cfg
https://github.com/akrizhevsky/cuda-convnet2/blob/master/layers/layers-cifar10-11pct.cfg
https://github.com/akrizhevsky/cuda-convnet2/blob/master/layers/layer-params-imagenet-1gpu.cfg
https://github.com/akrizhevsky/cuda-convnet2/blob/master/layers/layer-params-imagenet-1gpu.cfg
https://github.com/akrizhevsky/cuda-convnet2/blob/master/layers/layer-params-imagenet-1gpu.cfg
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://www.nvidia.com/en-us/data-center/tesla-v100/
http://arxiv.org/abs/1805.00907
http://arxiv.org/abs/1805.00907
https://github.com/ksopyla/tensorflow-mnist-convnets
https://github.com/ksopyla/tensorflow-mnist-convnets
https://github.com/ksopyla/tensorflow-mnist-convnets

CODE: Compiler-based Neuron-aware Ensemble training

tensorflow—-mnist—-convnets. Accessed:
2020-10-10.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929-1958, 2014.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P, Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. Going deeper with convolutions. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 1-9, 2015.

Szegedy, C., loffe, S., Vanhoucke, V., and Alemi, A. A.
Inception-v4, inception-resnet and the impact of residual
connections on learning. In AAAI, volume 4, pp. 12,
2017.

Truong, L., Barik, R., Totoni, E., Liu, H., Markley, C., Fox,
A., and Shpeisman, T. Latte: a language, compiler, and
runtime for elegant and efficient deep neural networks.
ACM SIGPLAN Notices, 51(6):209-223, 2016.

Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., and Fergus,
R. Regularization of neural networks using dropconnect.

In International Conference on Machine Learning, pp.
1058-1066, 2013.

Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H.,
Wang, X., and Tang, X. Residual attention network for
image classification. arXiv preprint arXiv:1704.06904,
2017.

Wasay, A., Hentschel, B., Liao, Y., Chen, S., and Idreos, S.
Mothernets: Rapid deep ensemble learning. In Proceed-

ings of the Conference on Machine Learning and Systems
(MLSys), 2020.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov,
R., and Le, Q. V. Xlnet: Generalized autoregressive
pretraining for language understanding. arXiv preprint
arXiv:1906.08237, 2019.

Yu, D., Eversole, A., Seltzer, M., Yao, K., Kuchaiev, O.,
Zhang, Y., Seide, F., Huang, Z., Guenter, B., Wang, H.,
Droppo, J., Zweig, G., Rossbach, C., Gao, J., Stolcke, A.,
Currey, J., Slaney, M., Chen, G., Agarwal, A., Basoglu,
C., Padmilac, M., Kamenev, A., Ivanov, V., Cypher, S.,
Parthasarathi, H., Mitra, B., Peng, B., and Huang, X. An
introduction to computational networks and the computa-
tional network toolkit. Technical Report MSR-TR-2014-
112, October 2014.

https://github.com/ksopyla/tensorflow-mnist-convnets
https://github.com/ksopyla/tensorflow-mnist-convnets

CODE: Compiler-based Neuron-aware Ensemble training

APPENDIX

A DEAD NEURONS AND CSN IMPACT

In our experiments, just removing dead neurons did not
result in ensembles with higher output quality nor noticeable
improvements in training time. The percentage of removed
dead neurons is in fact extremely low with respect to the
total number of neurons per network (in most cases we
observed that it is less than 0.5% than the total number of
neurons).

What follows are numbers our most relevant benchmarks
for the results shown in this work.

In VGG_1I, the number of dead neurons is 12 out of 13416
fully connected neurons (~ 0.09%). The number of neurons
in the CSN is 1231 out of 13404 remaining neurons (~
9.18%).

In AlexNet_ I, the number of dead neurons is 17 out of
10472 fully connected neurons (~ 0.16%). The number of
neurons in the CSN is 1584 out of 10455 remaining neurons
(~ 15.15%).

There is a two order of magnitude difference between the
number of dead neurons and the number of neurons included
in the CSN. These numbers make us confident that CSNE is
the step responsible for the results achieved by CODE.

B CSNE ROBUSTNESS

In our experiments we observed that CSNE is robust.

The two original networks, main and peer, have always
been randomly initialized. Changing these two starting
networks with two different randomly initialized ones al-
ways led CODE to obtain results in line with what has been
shown in this work. To confirm that our approach does
better than random neurons selection, during our prelim-
inary studies, we tried to pick random neurons from the
main network and added those to an initially empty CSN.
We also tried to use CSNs made of randomly initialized
neurons. In both of these cases the ensembles we obtained
had substantially lower output quality than ensembles of
independently trained networks. In short, CSNE does much
better than random selection and is robust with respect to the
two original networks used for the redundancy elimination
phase described in Section 3.1.

C HIGHER QUALITY ENSEMBLES FOR
UNBOUNDED TRAINING TIME

Our investigation suggests that common subnetworks
(CSN5) contribute to this phenomenon in two different ways.

(1) CSNs can be considered as a way to initialize networks
in a different and better way than random initialization.
Deep neural networks are in fact sensitive to their ini-

tialization point. Using a CSN allows networks to start
their training from a point in the whole solution space
that is better than a randomly selected one.

(i) The use of a CSN implies that the training of new
networks will only be focused on the parameters that
are outside of the CSN. This means that, during training
only a subspace of the whole solution space will be
explored.

Better initialization and focused training translate into en-
sembles with more useful diversity and heterogeneity than
ensembles made of independently trained networks. These
allow CODE to reach diminishing returns (in terms of en-
semble output quality) much later than ensembles made of
independently trained networks. We hope to quantify the
relative impact of these two contributing factors in future
works.

D DNN PRUNING

During our exploratory research we evaluated pruning with
respect to CODE. While there is a wide variety of available
pruning techniques (Blalock et al., 2020), pruning is gen-
erally used to reduce the numbers of parameters needed at
inference time. Our initial results suggested that pruning
would lead to sub-optimal output quality of the baselines, so
we dropped those experiments. In our experience, pruning
at training time also involves fine-tuning and/or additional
training iterations which result in additional training time
overhead. This overhead negatively impacts the usefulness
of pruning as a baseline for fast training. These charac-
teristics are in contrast with the main objective of CODE
which is to reduce training time while retaining the same or
better output quality of ensembles of independently trained
DNNS.

