
This paper is included in the Proceedings of the 
14th USENIX Symposium on Operating Systems 

Design and Implementation
November 4–6, 2020

978-1-939133-19-9

Open access to the Proceedings of the 

14th USENIX Symposium on Operating 

Systems Design and Implementation 

is sponsored by USENIX

PACEMAKER: Avoiding HeART attacks in storage 
clusters with disk-adaptive redundancy

Saurabh Kadekodi, Francisco Maturana, Suhas Jayaram Subramanya, 

Juncheng Yang, K. V. Rashmi, and Gregory R. Ganger, Carnegie Mellon University

https://www.usenix.org/conference/osdi20/presentation/kadekodi





disk-adaptive redundancy perform redundancy transitions as

a reaction to AFR changes. Since prior designs are reactive,

for an increase in AFR, the data is already under-protected

by the time the transition to increase redundancy is issued.

And it will continue to be under-protected until that transition

completes. For example, around 2019-09 in Fig. 1a, data was

under-protected for over a month, even though the entire clus-

ter’s IO bandwidth was used solely for redundancy transitions.

Simple rate-limiting to reduce urgent bursts of IO would only

exacerbate this problem causing data-reliability goals to be

violated for even longer.

To understand the causes of transition overload and inform

solutions, we analyse multi-year deployment and failure logs

for over 5.3 million disks from Google, NetApp and Back-

blaze. Two common transition overload patterns are observed.

First, sometimes disks are added in tens or hundreds over

time, which we call trickle deployments. A statistically confi-

dent AFR observation requires thousands of disks. Thus, by

the time it is known that AFR for a specific make/model and

age is too high for the redundancy used, the oldest thousands

of that make/model will be past that age. At that point, all of

those disks need immediate transition. Second, sometimes

disks are added in batches of many thousands, which we call

step deployments. Steps have sufficient disks for statistically

confident AFR estimation. However, when a step reaches an

age where the AFR is too high for the redundancy used, all

disks of the step need immediate transition.

This paper introduces PACEMAKER, a new disk-adaptive re-

dundancy orchestration system that exploits insights from the

aforementioned analyses to eliminate the transition overload

problem. PACEMAKER proactively organizes data layouts to

enable efficient transitions for each deployment pattern, reduc-

ing total transition IO by over 90%. Indeed, by virtue of its

reduced total transition IO, PACEMAKER can afford to use ex-

tra transitions to reap increased space-savings. PACEMAKER

also proactively initiates anticipated transitions sufficiently

in advance that the resulting transition IO can be rate-limited

without placing data at risk. Fig. 1b provides a peek into the

final result: PACEMAKER achieves disk-adaptive redundancy

with substantially less total transition IO and never exceeds a

specified transition IO cap (5% in the graph).

We evaluate PACEMAKER using logs containing all disk

deployment, failure, and decommissioning events from four

production storage clusters: three 160K–450K-disk Google

clusters and a ≈110K-disk cluster used for the Backblaze

Internet backup service [4]. On all four clusters, PACEMAKER

provides disk-adaptive redundancy while using less than 0.4%

of cluster IO bandwidth for transitions on average, and never

exceeding the specified rate limit (e.g., 5%) on IO bandwidth.

Yet, despite its proactive approach, PACEMAKER loses less

than 3% of the space-savings as compared to to an idealized

system with perfectly-timed and instant transitions. Specifi-

cally, PACEMAKER provides 14–20% average space-savings

compared to a one-size-fits-all-disks approach, without ever

failing to meet the target data reliability and with no tran-

sition overload. We note that this is substantial savings for

large-scale systems, where even a single-digit space-savings

is worth the engineering effort. For example, in aggregate,

the four clusters would need ≈200K fewer disks.

We also implement PACEMAKER in HDFS, demonstrat-

ing that PACEMAKER’s mechanisms fit into an existing

cluster storage system with minimal changes. Comple-

menting our longitudinal evaluation using traces from large

scale clusters, we report measurements of redundancy tran-

sitions in PACEMAKER-enhanced HDFS via small-scale

cluster experiments. Prototype of HDFS with Pacemaker

is open-sourced and is available at https://github.com/

thesys-lab/pacemaker-hdfs.git.

This paper makes five primary contributions. First, it

demonstrates that transition overload is a roadblock that pre-

cludes use of previous disk-adaptive redundancy proposals.

Second, it presents insights into the sources of transition

overload from longitudinal analyses of deployment and fail-

ure logs for 5.3 million disks from three large organizations.

Third, it describes PACEMAKER’s novel techniques, designed

based on insights drawn from these analyses, for safe disk-

adaptive redundancy without transition overload. Fourth, it

evaluates PACEMAKER’s policies for four large real-world

storage clusters, demonstrating their effectiveness for a range

of deployment and disk failure patterns. Fifth, it describes in-

tegration of and experiments with PACEMAKER’s techniques

in HDFS, demonstrating their feasibility, functionality, and

ease of integration into a cluster storage implementation.

2 Whither disk-adaptive redundancy

Cluster storage systems and data reliability. Modern

storage clusters scale to huge capacities by combining up

to hundreds of thousands of storage devices into a single stor-

age system [15,56,63]. In general, there is a metadata service

that tracks data locations (and other metadata) and a large

number of storage servers that each have up to tens of disks.

Data is partitioned into chunks that are spread among the

storage servers/devices. Although hot/warm data is now often

stored on Flash SSDs, cost considerations lead to the majority

of data continuing to be stored on mechanical disks (HDDs)

for the foreseeable future [6, 7, 54]. For the rest of the paper,

any reference to a “device” or “disk” implies HDDs.

Disk failures are common and storage clusters use data

redundancy to protect against irrecoverable data loss in the

face of disk failures [4,15,24,41,43,44,48]. For hot data, often

replication is used for performance benefits. But, for most

bulk and colder data, cost considerations have led to the use of

erasure coding schemes. Under a k-of-n coding scheme, each

set of k data chunks are coupled with n-k “parity chunks” to

form a “stripe”. A k-of-n scheme provides tolerance to (n−k)
failures with a space overhead of n

k
. Thus, erasure coding

achieves substantially lower space overhead for tolerating a

given number of failures. Schemes like 6-of-9 and 10-of-14

370    14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



are commonly used in real-world deployments [13, 43, 44,

48]. Under erasure coding, additional work is involved in

recovering from a device failure. To reconstruct a lost chunk,

k remaining chunks from the stripe must be read.

The redundancy scheme selection problem. The reliabil-

ity of data stored redundantly is often quantified as mean-time-

to-data-loss (MTTDL) [17], which essentially captures the

average time until more than the tolerated number of chunks

are lost. MTTDL is calculated using the disks’ AFR and its

mean-time-to-repair (MTTR).

Large clusters are built over time, and hence usually consist

of a mix of disks belonging to multiple makes/models depend-

ing on which options were most cost effective at each time.

AFR values vary significantly between makes/models and

disks of different ages [27, 32, 41, 50]. Since disks have dif-

ferent AFRs, computing MTTDL of a candidate redundancy

scheme for a large-scale storage cluster is often difficult.

The MTTDL equations can still be used to guide decisions,

as long as a sufficiently high AFR value is used. For ex-

ample, if the highest AFR value possible for any deployed

make/model at any age is used, the computed MTTDL will

be a lower bound. So long as the lower bound on MTTDL

meets the target MTTDL, the data is adequately reliable. Un-

fortunately, the range of possible AFR values in a large stor-

age cluster is generally quite large (over an order of magni-

tude) [27,32,41,52]. Since the overall average is closer to the

lower end of the AFR range, the highest AFR value is a conser-

vative over-estimate for most disks. The resulting MTTDLs

are thus loose lower bounds, prompting decision-makers to

use a one-size-fits-all scheme with excessive redundancy lead-

ing to wasted space.

Using wide schemes with large number of parities (e.g.,

30-of-36) can achieve the desired MTTDL while keeping

the storage overhead low enough to make disk-adaptive re-

dundancy appear not worth the effort. But, while this might

seem like a panacea, wide schemes in high-AFR regimes

cause significant increase in failure reconstruction IO traffic.

The failure reconstruction IO is derived by multiplying the

AFR with the number of data chunks in each stripe. Thus,

if either of these quantities are excessively high, or both are

moderately high, it can lead to overwhelmingly high failure

reconstruction IO. In addition, wide schemes also result in

higher tail latencies for individual disk reconstructions be-

cause of having to read from many more disks. Combined,

these reasons prevent use of wide schemes for all data all the

time from being a viable solution for most systems.

Disk-adaptive redundancy. Since the problem arises

from using a single AFR value, a promising alternative is

to adapt redundancy for subsets of disks with similar AFRs.

A recent proposal, heterogeneity-aware redundancy tuner

(HeART) [27], suggests treating subsets of deployed disks

with different AFR characteristics differently. Specifically,

HeART adapts redundancy of each disk by observing its fail-

ure rate on the fly2 depending on its make/model and its cur-

rent age. It is well known that AFR of disks follow a “bathtub”

shape with three distinct phases of life: AFR is high in “in-

fancy” (1-3 months), low and stable during its “useful life”

(3-5 years), and high during the “wearout” (a few months be-

fore decommissioning). HeART uses a default (one-size-fits-

all) redundancy scheme for each new disk’s infancy. It then

dynamically changes the redundancy to a scheme adapted to

the observed useful life AFR for that disk’s make/model, and

then dynamically changes back to the default scheme at the

end of useful life. The per-make/model useful life redundancy

schemes typically have much lower space overhead than the

default scheme. This suggests the ability to maintain target

MTTDL with many fewer disks (i.e., lower cost).

Although exciting, the design of HeART overlooks a cru-

cial element: the IO cost associated with changing the redun-

dancy schemes. Changing already encoded data under one

erasure code to another can be exorbitantly IO intensive. In-

deed, our evaluation of HeART on real-world storage cluster

logs reveal extended periods where data safety is at risk and

where 100% cluster IO bandwidth is consumed for scheme

changes. We call this problem transition overload.

An enticing solution that might appear to mitigate transition

overload is to adapt redundancy schemes only by removing

parities in low-AFR regimes and adding parities in high-AFR

regimes. While this solution eliminates transition IO when re-

ducing the level of redundancy, it does only marginally better

when redundancy needs to be increased, because new parity

creation cannot avoid reading all data chunks from each stripe.

What makes this worse is that transitions that increase redun-

dancy are time-critical, since delaying them would miss the

MTTDL target and leave the data under-protected. Moreover,

addition / removal of a parity chunk massively changes the

stripe’s MTTDL compared to addition / removal of a data

chunk. For example, a 6-of-9 MTTDL is 10000× higher

than 6-of-8 MTTDL, but is only 1.5× higher than 7-of-10

MTTDL. AFR changes would almost never be large enough

to safely remove a parity, given default schemes like 6-of-

9, eliminating almost all potential benefits of disk-adaptive

redundancy.

This paper analyzes disk deployment and failure data from

large-scale production clusters to discover sources of transi-

tion overload and informs the design of a solution. It then de-

scribes and evaluates PACEMAKER, which realizes the dream

of safe disk-adaptive redundancy without transition overload.

3 Longitudinal production trace analyses

This section presents an analysis of multi-year disk reli-

ability logs and deployment characteristics of 5.3 million

HDDs, covering over 60 makes/models from real-world en-

vironments. Key insights presented here shed light on the

2Although it may be tempting to use AFR values taken from manufac-

turer’s specifications, several studies have shown that failure rates observed

in practice often do not match those [41, 50, 52].

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation    371



10 1

101

A
F
R

 (
%

)

[0, 3) [3, 4) [4, 5) [5, 6)

Age of oldest disk (years)

(a) Spread of make/model AFRs

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Age (years)

0

2

4

A
F
R

 (
%

)

(b) AFR distribution over disk life

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 Age

Number of useful life phases

0

1000

2000

d
a
y
s

2 3 4
Tolerance: AFR ratio (max / min)

(c) Approximate useful-life length

Figure 2: (a) AFR spread for over 50 makes/models from NetApp binned by the age of the oldest disk. Each box corresponds to a unique

make/model, and at least 10000 disks of each make/model were observed (outlier AFR values omitted). (b) Distribution of AFR calculated

over consecutive non-overlapping six-month periods for NetApp disks, showing the gradual rise of AFR with age (outliers omitted). (c)

Approximation of useful life length for NetApp disks for 1-5 consecutive phases of useful life and three different tolerance levels.

sources of transition overload and challenges / opportunities

for a robust disk-adaptive redundancy solution.

The data. Our largest dataset comes from NetApp and con-

tains information about disks deployed in filers (file servers).

Each filer reports the health of each disk periodically (typi-

cally once a fortnight) using their AutoSupport [29] system.

We analyzed the data for a subset of their deployed disks,

which included over 50 makes/models and over 4.3 million

disks total. As observed in previous studies [27, 41, 50], we

observe well over an order of magnitude difference between

the highest and lowest useful-life AFRs (see Fig. 2a).

Our other datasets come from large storage clusters de-

ployed at Google and the Backblaze Internet backup service.

Although the basic disk characteristics (e.g., AFR heterogene-

ity and its behavior discussed below) are similar to the NetApp

dataset, these datasets also capture the evolution and behavior

in our target context (large-scale storage clusters), and thus

are also used in the evaluation detailed in (§7). The particular

Google clusters were selected based on their longitudinal data

availability, but were not otherwise screened for favorability.

For each cluster, the multi-year log records (daily) all disk

deployment, failure, and decommissioning events from birth

of the cluster until the date of the log snapshot. Google

Cluster1’s disk population over three years included ≈350K

disks of 7 makes/models. Google Cluster2’s population over

2.5 years included ≈450K disks of 4 makes/models. Google

Cluster3’s population over 3 years included ≈160K disks of

3 makes/models. The Backblaze cluster’s population since

2013 included ≈110K disks of 7 makes/models.

3.1 Causes of transition overload
Disk deployment patterns. We observe disk deployments

occurring in two distinct patterns, which we label trickle

and step. Trickle-deployed disks are added to a cluster fre-

quently (weekly or even daily) over time by the tens and

hundreds. For example, the slow rise in disk count seen

between 2018-01 and 2018-07 in Fig. 1 represents a series

of trickle-deployments. In contrast, a step-deployment intro-

duces many thousands of disks into the cluster “at once” (over

a span of a few days), followed by potentially months of no

new step-deployments. The sharp rises in disk count around

2017-12 and 2019-11 in Fig. 1 represent step-deployments.

A given cluster may be entirely trickle-deployed (like the

Backblaze cluster), entirely step-deployed (like Google Clus-

ter2), or a mix of the two (like Google Cluster1 and Cluster3).

Disks of a step are typically of the same make/model.

Learning AFR curves online. Disk-adaptive redundancy

involves learning the AFR curve for each make/model by

observing failures among deployed disks of that make/model.

Because AFR is a statistical measure, the larger the population

of disks observed at a given age, the lower is the uncertainty

in the calculated AFR at that age. We have found that a

few thousand disks need to be observed to obtain sufficiently

accurate AFR measurements.

Transition overload for trickle-deployed disks. Since

trickle-deployed disks are deployed in tiny batches over time,

several months can pass before the required number of disks

of a new make/model are past any given age. Thus, by the

time the required number of disks can be observed at the age

that is eventually identified as having too-high an AFR and

requiring increased redundancy, data on the older disks will

have been left under-protected for months. And, the thousands

of already-older disks need to be immediately transitioned to

a stronger redundancy scheme, together with the newest disks

to reach that age. This results in transition overload.

Transition overload for step-deployed disks. Assum-

ing that they are of the same make/model, a batch of step-

deployed disks will have the same age and AFR, and indeed

represent a large enough population for confident learning of

the AFR curve as they age. But, this means that all of those

disks will reach AFR values together, as they age. So, when

their AFR rises to the point where the redundancy must be

increased to keep data safe, all of the disks must transition

together to the new safer redundancy scheme. Worse, if they

are the first disks of the given make/model deployed in the

cluster, which is often true in the clusters studied, then the sys-

tem adapting the redundancy will learn of the need only when

the age in question is reached. At that point, all data stored

on the entire batch of disks is unsafe and needs immediate

transitioning. This results in transition overload.

3.2 Informing a solution
Analyzing the disk logs has exposed a number of observa-

tions that provide hope and guide the design of PACEMAKER.

The AFR curves we observed deviate substantially from the

canonical representation where infancy and wearout periods

372    14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



are identically looking and have high AFR values, and AFR

in useful life is flat and low throughout.

AFRs rise gradually over time with no clear wearout.

AFR curves generally exhibit neither a flat useful life phase

nor a sudden transition to so-called wearout. Rather, in gen-

eral, it was observed that AFR curves rise gradually as a

function of disk age. Fig. 2b shows the gradual rise in AFR

over six month periods of disk lifetimes. Each box represents

the AFR of disks whose age corresponds to the six-month

period denoted along the X-axis. AFR curves for individ-

ual makes/models (e.g., Figs. 5b and 5d) are consistent with

this aggregate illustration. Importantly, none of the over

60 makes/models from Google, Backblaze and NetApp dis-

played sudden onset of wearout.

Gradual increases in AFR, rather than sudden onset of

wearout, suggests that one could anticipate a step-deployed

batch of disks approaching an AFR threshold. This is one

foundation on which PACEMAKER’s proactive transitioning

approach rests.

Useful life could have multiple phases. Given the grad-

ual rise of AFRs, useful life can be decomposed into multiple,

piece-wise constant phases. Fig. 2c shows an approximation

of the length of useful life when multiple phases are consid-

ered. Each box in the figure represents the distribution over

different make/models of the approximate length of useful life.

Useful life is approximated by considering the longest period

of time which can be decomposed into multiple consecutive

phases (number of phases indicated by the bottom X-axis)

such that the ratio between the maximum and minimum AFR

in each phase is under a given tolerance level (indicated by

the top X-axis). The last box indicates the distribution over

make/models of the age of the oldest disk, which is an up-

per bound to the length of useful life. As shown by Fig. 2c,

the length of useful life can be significantly extended (for all

tolerance levels) by considering more than one phase. Fur-

thermore, the data show that a small number of phases suffice

in practice, as the approximate length of useful life changes

by little when considering four or more phases.

Infancy often short-lived. Disks may go through (poten-

tially) multiple rounds of so-called “burn-in” testing. The first

tests may happen at the manufacturer’s site. There may be

additional burn-in tests done at the deployment site allowing

most of the infant mortality to be captured before the disk is

deployed in production. For the NetApp and Google disks,

we see the AFR drop sharply and plateau by 20 days for most

of the makes/models. In contrast, the Backblaze disks display

a slightly longer and higher AFR during infancy, which can

be directly attributed to their less aggressive on-site burn-in.

PACEMAKER’s design is heavily influenced from these

learnings, as will be explained in the next section.

4 Design goals

PACEMAKER is an IO efficient redundancy orchestrator

for storage clusters that support disk-adaptive redundancy.

Term Definition

Dgroup Group of disks of the same make/model.

Transition The act of changing the redundancy scheme.

RDn transition Transition to a lower level of redundancy.

RUp transition Transition to a higher level of redundancy.

peak-IO-cap IO bandwidth cap for transitions.

Rgroup Group of disks using the same redundancy

with placement restricted to the group of disks.

Rgroup0 Rgroup using the default one-scheme-fits-all

redundancy used in storage clusters today.

Unspecialized disks Disks that are a part of Rgroup0.

Specialized disks Disks that are not part of Rgroup0.

Canary disks First few thousand disks of a trickle-deployed

Dgroup used to learn AFR curve.

Tolerated-AFR Max AFR for which redundancy scheme meets

reliability constraint.

Threshold-AFR The AFR threshold crossing which triggers

an RUp transition for step-deployed disks.

Table 1: Definitions of PACEMAKER’s terms.

Before going into the design goals for PACEMAKER, we first

chronicle a disk’s lifecycle, introducing the terminology that

will be used in the rest of the paper (defined in Table 1).

Disk lifecycle under PACEMAKER. Throughout its life,

each disk under PACEMAKER simultaneously belongs to a

Dgroup and an Rgroup. There are as many Dgroups in a

cluster as there are unique disk makes/models. Rgroups on

the other hand are a function of redundancy schemes and

placement restrictions. Each Rgroup has an associated re-

dundancy scheme, and its data (encoded stripes) must reside

completely within that Rgroup’s disks. Multiple Rgroups can

use the same redundancy scheme, but no stripe may span

across Rgroups. The Dgroup of a disk never changes, but a

disk may transition through multiple Rgroups during its life-

time. At the time of deployment (or “birth”), the disk belongs

to Rgroup0, and is termed as an unspecialized disk. Disks

in Rgroup0 use the default redundancy scheme, i.e. the con-

servative one-scheme-fits-all scheme used in storage clusters

that do not have disk-adaptive redundancy. The redundancy

scheme employed for a disk (and hence its Rgroup) changes

via transitions. The first transition any disk undergoes is an

RDn transition. A RDn transition changes the disk’s Rgroup

to one with lower redundancy, i.e. more optimized for space.

Whenever the disk departs from Rgroup0, it is termed as a

specialized disk. Disks depart from Rgroup0 at the end of

their infancy. Since infancy is short-lived (§3.2), PACEMAKER

only considers one RDn transition for each disk.

The first RDn transition occurs at the start of the disk’s

useful life, and marks the start of its specialization period.

As explained in §3.2, a disk may experience multiple useful

life phases. PACEMAKER performs a transition at the start

of each useful life phase. After the first (and only) RDn

transition, each subsequent transition is an RUp transition.

An RUp transition changes the disk’s Rgroup to one with

higher redundancy, i.e. less optimized for space, but the disk

is still considered a specialized disk unless the Rgroup that

the disk is being RUp transitioned to is Rgroup0. The space-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation    373





storage cluster’s metadata service. It maintains various con-

figuration settings of a PACEMAKER installation along with

the disk deployment information that guides transition de-

cisions. The rate-limiter rate-limits the IO load generated

by any transition as per administrator specified limits. Other

cluster components external-to-PACEMAKER that inform it

are the AFR curve learner and the change point detector. As

is evident from their names, these components learn the AFR

curve3 of each Dgroup and identify change points for redun-

dancy transitions. The AFR curve learner receives failure

data from the disk health monitoring service, which monitors

the disk fleet and maintains their vitals.

5.1 Proactive-transition-initiator
Proactive-transition-initiator’s role is to determine when

to transition the disks. Below we explain PACEMAKER’s

methodology for making this decision for the two types of

transitions (RDn and RUp) and the two types of deployments

(step and trickle).

5.1.1 Deciding when to RDn a disk

Recall that a disk’s first transition is an RDn transition.

As soon as proactive-transition-initiator observes (in a sta-

tistically accurate manner) that the AFR has decreased suffi-

ciently, and is stable, it performs an RDn transition from the

default scheme (i.e., from Rgroup0) employed in infancy to a

more space-efficient scheme. This is the only RDn transition

in a disk’s lifetime.

5.1.2 Deciding when to RUp a disk

RUp transitions are performed either when there are too

few disks in any Rgroup such that data placement is heavily

restricted (which we term purging an Rgroup), or when there

is a rise in AFR such that the reliability constraint is (going to

be) violated. Purging an Rgroup involves RUp transitioning

all of its disks to an Rgroup with higher redundancy. This

transition isn’t an imminent threat to reliability, and there-

fore can be done in a relaxed manner without violating the

reliability constraint as explained in §5.3.

However, most RUp transitions in a storage cluster are

done in response to a rise in AFR. These are challenging with

respect to meeting IO constraints due to the associated risk of

violating the reliability constraints whenever the AFR rises

beyond the AFR tolerated by the redundancy scheme (termed

tolerated-AFR).

In order to be able to safely rate-limit the IO load due to

RUp transitions, PACEMAKER takes a proactive approach.

The key is in determining when to initiate a proactive RUp

transition such that the transition can be completed before

the AFR crosses the tolerated-AFR, while adhering to the IO

and the reliability constraints without compromising much

on space-savings. To do so, the proactive-transition-initiator

assumes that its transitions will proceed as per the peak-IO

constraint, which is ensured by the transition-executor. PACE-

MAKER’s methodology for determining when to initiate a

3The AFR estimation methodology employed is detailed in [26].

proactive RUp transition is tailored differently for trickle ver-

sus for step deployments, since they raise different challenges.

Trickle deployments. For trickle-deployed disks, PACE-

MAKER considers two category of disks: (1) first disks to be

deployed from any particular trickle-deployed Dgroup, and

(2) disks from that Dgroup that are deployed later.

PACEMAKER labels the first C deployed disks of a Dgroup

as canary disks, where C is a configurable, high enough num-

ber of disks to yield statistically significant AFR observations.

For example, based on our disk analyses, we observe that C in

low thousands (e.g., 3000) is sufficient. The canary disks of

any Dgroup are the first to undergo the various phases of life

for that Dgroup, and these observations are used to learn the

AFR curve for that Dgroup. The AFR value for the Dgroup at

any particular age is not known (with statistical confidence)

until all canary disks go past that age. Furthermore, due to

the trickle nature of the deployment, the canary disks would

themselves have been deployed over weeks if not months.

Thus, AFR for the canary disks can be ascertained only in

retrospect. PACEMAKER never changes the redundancy of the

canary disks to avoid them from ever violating the reliability

constraint. This does not significantly reduce space-savings,

since C is expected to be small relative to the total number of

disks of a Dgroup (usually in the tens of thousands).

The disks that are deployed later in any particular Dgroup

are easier to handle, since the Dgroup’s AFR curve would

have been learned by observing the canaries. Thus, the date

at which a disk among the later-deployed disks needs to RUp

to meet the reliability constraints is known in advance by the

proactive-transition-initiator, which it uses to issue proactive

RUp transitions.

Step deployments. Recall that in a step deployment, most

disks of a Dgroup may be deployed within a few days. So, ca-

naries are not a good solution, as they would provide little-to-

no advance warning about how the AFR curve’s rises would

affect most disks.

PACEMAKER’s approach to handling step-deployments is

based on two properties: (1) Step-deployments have a large

number of disks deployed together, leading to a statistically

accurate AFR estimation; (2) AFR curves based on a large set

of disks tend to exhibit gradual, rather than sudden, AFR in-

creases as the disk ages (§3.2). PACEMAKER leverages these

two properties to employ a simple early warning methodol-

ogy to predict a forthcoming need to RUp transition a step

well in advance. Specifically, PACEMAKER sets a thresh-

old, termed threshold-AFR, which is a (configurable) frac-

tion of the tolerated-AFR of the current redundancy scheme

employed. For step-deployments, when the observed AFR

crosses the threshold-AFR, the proactive-transition-initiator

initiates a proactive RUp transition.

5.2 Rgroup-planner

The Rgroup-planner’s role is to determine which Rgroup

should disks transition to. This involves making two inter-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation    375



dependent choices: (1) the redundancy scheme to transition

into, (2) whether or not to create a new Rgroup.

Choice of the redundancy scheme. At a high level, the

Rgroup-planner first uses a set of selection criteria to arrive at

a set of viable schemes. It further narrows down the choices

by filtering out the schemes that are not worth transitioning to

when the transition IO and IO constraints are accounted for.

Selection criteria for viable schemes. Each viable redun-

dancy scheme has to satisfy the following criteria in addition

to the reliability constraint: each scheme (1) must satisfy the

minimum number of simultaneous failures per stripe (i.e.,

n− k); (2) must not exceed the maximum allowed stripe di-

mension (k); (3) must have its expected failure reconstruction

IO (AFR × k × disk-capacity) be no higher than was assumed

possible for Rgroup0 (since disks in Rgroup0 are expected

to have the highest AFR); (4) must have a recovery time in

case of failure (MTTR) that does not exceed the maximum

MTTR (set by the administrator when selecting the default

redundancy scheme for Rgroup0).

Determining if a scheme is worth transitioning to. Whether

the IO cost of transitioning to a scheme is worth it or not

and what space-savings can be achieved by that transition is

a function of the number of days disks will remain in that

scheme (also known as disk-days). This, in turn, depends on

(1) when the disks enter the new scheme, and (2) how soon

disks will require another transition out of that scheme.

The time it takes for the disks to enter the new scheme is

determined by the transition IO and the rate-limit. When the

disks will transition out of the target Rgroup is dependent

on the future and can only be estimated. For this estimation,

the Rgroup-planner needs to estimate the number of days

the AFR curve will remain below the threshold that forces

a transition out. This needs different strategies for the two

deployment patterns (trickle and step).

Recall that PACEMAKER knows the AFR curve for trickle-

deployed disks (from the canaries) in advance. Recall that

step-deployed disks have the property that the AFR curve

learned from them is statistically robust and tends to exhibit

gradual, as opposed to sudden AFR increases. The Rgroup-

planner leverages these properties to estimate the future AFR

behavior based on the recent past. Specifically, it takes the

slope of the AFR curve in the recent past4 and uses that to

project the AFR curve rise in the future.

The number of disk-days in a scheme for it to be worth

transitioning to is dictated by the IO constraints. For example,

let us consider a disk running under PACEMAKER that requires

a transition, and PACEMAKER is configured with an average-

IO constraint of 1% and a peak-IO-cap of 5%. Suppose the

disk requires 1 day to complete its transition at 100% IO

bandwidth. With the current settings, PACEMAKER will only

consider an Rgroup worthy of transitioning to (assuming it is

4
PACEMAKER uses a 60 day (configurable) sliding window with an

Epanechnikov kernel, which gives more weight to AFR changes in the recent

past [21].

allowed to use all 5% of its IO bandwidth) if at least 80 disk-

days are spent after the disk entirely transitions to it (since

transitioning to it would take up to 20 days at the allowed 5%

IO bandwidth).

From among the viable schemes that are worth transitioning

to based on the IO constraints, the Rgroup-planner chooses

the one that provides the highest space-savings.

Decision on Rgroup creation. Rgroups cannot be created

arbitrarily. This is because every Rgroup adds placement

restrictions, since all chunks of a stripe have to be stored

on disks belonging to the same Rgroup. Therefore, Rgroup-

planner creates a new Rgroup only when (1) the resulting

placement pool created by the new Rgroup is large enough

to overcome traditional placement restrictions such as “no

two chunks on the same rack5”, and (2) the space-savings

achievable by the chosen redundancy scheme is sufficiently

greater than using an existing (less-space-efficient) Rgroup.

The disk deployment pattern also affects Rgroup forma-

tion. While the rules for whether to form an Rgroup remain

the same for trickle and step-deployed disks, mixing disks

deployed differently impacts the transitioning techniques

that can be used for eventually transitioning disks out of

that Rgroup. This in turn affects how the IO constraints

are enforced. Specifically, for trickle deployments, creating

an Rgroup for each set of transitioning disks would lead to

too many small-sized Rgroups. So, for trickle-deployments,

the Rgroup-planner creates a new Rgroup for a redundancy

scheme if and only if one does not exist already. Creating

Rgroups this way will also ensure that enough disks (thou-

sands) will go into it to satisfy placement restrictions. Mixing

disks from different trickle-deployments in the same Rgroup

does not impact the IO constraints, because PACEMAKER op-

timizes the transition mechanism for few disks transitioning

at a time, as is explained in §5.3. For step-deployments, due

to the large fraction of disks that undergo transition together,

having disks from multiple steps, or mixing trickle-deployed

disks within the same Rgroup, creates adverse interactions

(discussed in §5.3). Hence, the Rgroup-planner creates a new

Rgroup for each step-deployment, even if there already exists

one or more Rgroups that employ the chosen scheme. Each

such Rgroup will contain many thousands of disks to over-

come traditional placement restrictions. Per-step Rgroups

also extend to the Rgroup with default redundancy schemes,

implying a per-step Rgroup0. Despite having clusters with

disk populations as high as 450K disks, PACEMAKER’s re-

strained Rgroup creation led to no cluster ever having more

than 10 Rgroups.

Rules for purging an Rgroup. An Rgroup may be purged

for having too few disks. This can happen when too many

of its constituent disks transition to other Rgroups, or they

fail, or they are decommissioned leading to difficulty in ful-

filling placement restrictions. If the Rgroup to be purged is

5Inter-cluster fault tolerance remains orthogonal to and unaffected by

PACEMAKER.

376    14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



made up of trickle-deployed disks, the Rgroup-planner will

choose to RUp transition disks to an existing Rgroup with

higher redundancy while meeting the IO constraints. For

step-deployments, purging implies RUp transitioning disks

into the more-failure-tolerant RGroup (RGroup0) that may

include trickle-deployed disks.

5.3 Transition-executor

The transition-executor’s role is to determine how to transi-

tion the disks. This involves choosing (1) the most IO-efficient

technique to execute that transition, and (2) how to rate-limit

the transition at hand. Once the transition technique is cho-

sen, the transition-executor executes the transition via the

rate-limiter as shown in Fig. 3.

Selecting the transition technique. Suppose the data

needs to be conventionally re-encoded from a kcur-of-ncur

scheme to a knew-of-nnew scheme. The IO cost of conven-

tional re-encoding involves reading–re-encoding–writing all

the stripes whose chunks reside on each transitioning disk.

This amounts to a read IO of kcur×disk-capacity (assuming

almost-full disks), and a write IO of kcur×disk-capacity× nnew
knew

for a total IO > 2× kcur×disk-capacity for each disk.

In addition to conventional re-encoding, PACEMAKER sup-

ports two new approaches to changing the redundancy scheme

for disks and selects the most efficient option for any given

transition. The best option depends on the fraction of the

Rgroup being transitioned at once.

Type 1 (Transition by emptying disks). If a small percentage

of an Rgroup’s disks are being transitioned, it is more efficient

to retain the contents of the transitioning disks in that Rgroup

rather than re-encoding. Under this technique, the data stored

on transitioning disks are simply moved (copied) to other

disks within the current Rgroup. This involves reading and

writing (elsewhere) the contents of the transitioning disks.

Thus, the IO of transitioning via Type 1 is at most 2×disk-

capacity, independent of scheme parameters, and therefore at

least kcur× cheaper than conventional re-encoding.

Type 1 can be employed whenever there is sufficient free

space available to move the contents of the transitioning disks

into other disks in the current Rgroup. Once the transitioning

disks are empty, they can be removed from the current Rgroup

and added to the new Rgroup as “new” (empty) disks.

Type 2 (Bulk transition by recalculating parities). If a large

fraction of disks in an Rgroup need to transition together, it

is more efficient to transition the entire Rgroup rather than

only the disks that need a transition at that time. Most cluster

storage systems use systematic codes6 [8, 13, 14, 36], wherein

transitioning an entire Rgroup involves only calculating and

storing new parities and deleting the old parities. Specifi-

cally, the data chunks have to be only read for computing

the new parities, but they do not have to be re-written. In

contrast, if only a part of the disks are transitioned, some

6In systematic codes, the data chunks are stored in unencoded form. This

helps to avoid having to decode for normal (i.e., non-degraded-mode) reads.

fraction of the data chunks also need to be re-written. Thus,

the IO cost for transitioning via Type 2 involves a read IO of
kcur
ncur

×disk-capacity, and a write IO of only the new parities,

which amounts to a total IO of nnew−knew
knew

× kcur
ncur

×disk-capacity

for each disk in the Rgroup. This is at most 2× kcur
ncur

×disk-

capacity, which makes it at least ncur× cheaper than conven-

tional re-encoding.

Selecting the most efficient approach for a transition. For

any given transition, the transition-executor selects the most

IO-efficient of all the viable approaches. Almost always,

trickle-deployed disks use Type 1 because they transition a-

few-at-a-time, and step-deployed disks use Type 2 because

Rgroup-planner maintains each step in a separate Rgroup.

Choosing how to rate limit a transition. Irrespective of

the transitioning techniques, the transition-executor has to

resolve the competing concerns of maximizing space-savings

and minimizing risk of data loss via fast transitions, and mini-

mizing foreground work interference by slowing down transi-

tions so as to not overwhelm the foreground IO. Arbitrarily

slowing down a transition to minimize interference is only

possible when the transition is not in response to a rise in

AFR. This is because a rising AFR hints at the data being

under-protected if not transitioned to a higher redundancy

soon. In PACEMAKER, a transition without an AFR rise oc-

curs either when disks are being RDn transitioned at the end

of infancy, or when they are being RUp transitioned because

the Rgroup they belong to is being purged. For all the other

RUp transitions, PACEMAKER carefully chooses how to rate

limit the transition.

Determining how much bandwidth to allow for a given

transition could be difficult, given that other transitions may

be in-progress already or may be initiated at any time (we do

observe concurrent transitions in our evaluations). So, to en-

sure that the aggregate IO of all ongoing transitions conforms

to the peak-IO-cap cluster-wide, PACEMAKER limits each

transition to the peak-IO-cap within its Rgroup. For trickle-

deployed disks, which share Rgroups, the rate of transition

initiations is consistently a small percentage of the shared

Rgroup, allowing disk emptying to proceed at well below the

peak-IO-cap. For step-deployed disks, this is easy for PACE-

MAKER, since a step only makes one transition at a time and

its IO is fully contained in its separate Rgroup. The transition-

executor’s approach to managing peak-IO on a per-Rgroup

basis is also why the proactive-transition-initiator can safely

assume a rate-limit of the peak-IO-cap without consulting the

transition-executor. If there is a sudden AFR increase that

puts data at risk, PACEMAKER is designed to ignore its IO

constraints to continue meeting the reliability constraint—this

safety valve was never needed for any cluster evaluated.

After finalizing the transitioning technique, the transition-

executor performs the necessary IO for transitioning disks

(read, writes, parity recalculation, etc.). We find that the

components required for the transition-executor are already

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation    377













References

[1] George Amvrosiadis, Angela Demke Brown, and

Ashvin Goel. Opportunistic storage maintenance.

In ACM Symposium on Operating Systems Principles

(SOSP), 2015.

[2] Preethi Anantharaman, Mu Qiao, and Divyesh Jadav.

Large Scale Predictive Analytics for Hard Disk Remain-

ing Useful Life Estimation. In IEEE International

Congress on Big Data (BigData Congress), 2018.

[3] Eitan Bachmat and Jiri Schindler. Analysis of methods

for scheduling low priority disk drive tasks. In ACM

SIGMETRICS Performance Evaluation Review, 2002.

[4] Backblaze. Disk Reliability Dataset. https://www.

backblaze.com/b2/hard-drive-test-data.html,

2013-2019.

[5] Lakshmi N Bairavasundaram, Garth R Goodson,

Shankar Pasupathy, and Jiri Schindler. An analysis

of latent sector errors in disk drives. In ACM SIGMET-

RICS Performance Evaluation Review, 2007.

[6] Eric Brewer. Spinning Disks and Their Cloudy Future.

https://www.usenix.org/node/194391, 2018.

[7] Eric Brewer, Lawrence Ying, Lawrence Greenfield,

Robert Cypher, and Theodore T’so. Disks for data

centers. Technical report, Google, 2016.

[8] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakan-

tan, Arild Skjolsvold, Sam McKelvie, Yikang Xu,

Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, et al.

Windows azure storage: a highly available cloud storage

service with strong consistency. In ACM Symposium on

Operating Systems Principles (SOSP), 2011.

[9] Byung-Gon Chun, Frank Dabek, Andreas Haeberlen,

Emil Sit, Hakim Weatherspoon, M Frans Kaashoek,

John Kubiatowicz, and Robert Morris. Efficient Replica

Maintenance for Distributed Storage Systems. In

USENIX Symposium on Networked Systems Design and

Implementation (NSDI), 2006.

[10] Alexandros G. Dimakis, Brighten Godfrey, Yunnan

Wu, Martin J. Wainwright, and Kannan Ramchandran.

Network coding for distributed storage systems. IEEE

Transactions on Information Theory, 2010.

[11] Jon Elerath. Hard-disk drives: The good, the bad, and

the ugly. Communication of ACM, 2009.

[12] Erasure code Ceph Documentation. https:

//docs.ceph.com/docs/master/rados/

operations/erasure-code/, (accessed Oct 15,

2020).

[13] Daniel Ford, François Labelle, Florentina I Popovici,

Murray Stokely, Van-Anh Truong, Luiz Barroso, Carrie

Grimes, and Sean Quinlan. Availability in Globally

Distributed Storage Systems. In USENIX Symposium on

Operating Systems Design and Implementation (OSDI),

2010.

[14] Apache Software Foundation. HDFS Erasure

Coding. https://hadoop.apache.org/docs/

r3.0.0/hadoop-project-dist/hadoop-hdfs/

HDFSErasureCoding.html, (accessed Oct 15, 2020).

[15] S. Ghemawat, H. Gobioff, and S.T. Leung. The Google

file system. In ACM Symposium on Operating Systems

Principles (SOSP), 2003.

[16] Garth Gibson, Gary Grider, Andree Jacobson, and Wyatt

Lloyd. Probe: A thousand-node experimental cluster

for computer systems research. USENIX; login, 2013.

[17] Garth A Gibson. Redundant disk arrays: Reliable,

parallel secondary storage. The MIT Press, 1992.

[18] Parikshit Gopalan, Cheng Huang, Huseyin Simitci, and

Sergey Yekhanin. On the locality of codeword symbols.

IEEE Transactions on Information Theory, 2012.

[19] Rong Gu, Qianhao Dong, Haoyuan Li, Joseph Gonzalez,

Zhao Zhang, Shuai Wang, Yihua Huang, Scott Shenker,

Ion Stoica, and Patrick PC Lee. DFS-PERF: A scalable

and unified benchmarking framework for distributed file

systems. UC Berkeley, Tech. Rep. UCB/EECS-2016-

133, 2016.

[20] Greg Hamerly and Charles Elkan. Bayesian approaches

to failure prediction for disk drives. In International

Conference on Machine Learning (ICML), 2001.

[21] Trevor Hastie, Robert Tibshirani, and Jerome Friedman.

Kernel smoothing methods. In The elements of statisti-

cal learning. Springer, 2009.

[22] Eric Heien, Derrick Kondo, Ana Gainaru, Dan LaPine,

Bill Kramer, and Franck Cappello. Modeling and toler-

ating heterogeneous failures in large parallel systems. In

ACM / IEEE High Performance Computing Networking,

Storage and Analysis (SC), 2011.

[23] Yuchong Hu, Xiaoyang Zhang, Patrick P. C. Lee, and

Pan Zhou. Generalized optimal storage scaling via

network coding. In IEEE International Symposium on

Information Theory, ISIT, 2018.

[24] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron

Ogus, Brad Calder, Parikshit Gopalan, Jin Li, Sergey

Yekhanin, et al. Erasure Coding in Windows Azure Stor-

age. In USENIX Annual Technical Conference (ATC),

2012.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation    383



[25] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and

Arkady Kanevsky. Are disks the dominant contributor

for storage failures?: A comprehensive study of storage

subsystem failure characteristics. ACM Transactions on

Storage (TOS), 2008.

[26] Saurabh Kadekodi, Francisco Maturana, Suhas Ja-

yaram Subramanya, Jungcheng Yang, K. V. Rashmi,

and Gregory R. Ganger. PACEMAKER: Avoiding

HeART attacks in storage clusters with disk-adaptive

redundancy (expanded). In arXiv, 2020.

[27] Saurabh Kadekodi, K V Rashmi, and Gregory R Ganger.

Cluster storage systems gotta have HeART: improving

storage efficiency by exploiting disk-reliability hetero-

geneity. In USENIX File and Storage Technologies

(FAST), 2019.

[28] Kimberly Keeton, Cipriano A Santos, Dirk Beyer, Jef-

frey S Chase, John Wilkes, et al. Designing for disasters.

In USENIX File and Storage Technologies (FAST), 2004.

[29] Larry Lancaster and Alan Rowe. Measuring real-world

data availability. In USENIX LISA, 2001.

[30] Christopher R Lumb, Jiri Schindler, Gregory R Ganger,

et al. Freeblock scheduling outside of disk firmware. In

USENIX File and Storage Technologies (FAST), 2002.

[31] Christopher R Lumb, Jiri Schindler, Gregory R Ganger,

David F Nagle, and Erik Riedel. Towards higher disk

head utilization: extracting free bandwidth from busy

disk drives. In USENIX Symposium on Operating Sys-

tems Design and Implementation (OSDI), 2000.

[32] Ao Ma, Rachel Traylor, Fred Douglis, Mark Chamness,

Guanlin Lu, Darren Sawyer, Surendar Chandra, and

Windsor Hsu. RAIDShield: characterizing, monitoring,

and proactively protecting against disk failures. ACM

Transactions on Storage (TOS), 2015.

[33] Farzaneh Mahdisoltani, Ioan Stefanovici, and Bianca

Schroeder. Proactive error prediction to improve stor-

age system reliability. In USENIX Annual Technical

Conference (ATC), 2017.

[34] Francisco Maturana and K. V. Rashmi. Convertible

codes: new class of codes for efficient conversion of

coded data in distributed storage. In 11th Innovations in

Theoretical Computer Science Conference, ITCS, 2020.

[35] Sara Mousavi, Tianli Zhou, and Chao Tian. Delayed

parity generation in MDS storage codes. In IEEE Inter-

national Symposium on Info. Theory, ISIT, 2018.

[36] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy,

Cory Hill, Ernest Lin, Weiwen Liu, Satadru Pan, Shiva

Shankar, Viswanath Sivakumar, Linpeng Tang, et al. f4:

Facebook’s warm BLOB storage system. In USENIX

Symposium on Operating Systems Design and Imple-

mentation (OSDI), 2014.

[37] Joseph F Murray, Gordon F Hughes, and Kenneth

Kreutz-Delgado. Hard drive failure prediction using

non-parametric statistical methods. In Springer Artifi-

cial Neural Networks and Neural Information Process-

ing (ICANN/CONIP, 2003.

[38] Alina Oprea and Ari Juels. A Clean-Slate Look at Disk

Scrubbing. In USENIX File and Storage Technologies

(FAST), 2010.

[39] Dimitris S. Papailiopoulos and Alexandros G. Dimakis.

Locally repairable codes. IEEE Transactions on Infor-

mation Theory, 2014.

[40] David A Patterson, Garth Gibson, and Randy H Katz. A

case for redundant arrays of inexpensive disks (RAID).

In ACM International Conference on Management of

Data (SIGMOD), 1988.

[41] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz An-

dré Barroso. Failure Trends in a Large Disk Drive

Population. In USENIX File and Storage Technologies

(FAST), 2007.

[42] Brijesh Kumar Rai, Vommi Dhoorjati, Lokesh Saini,

and Amit K. Jha. On adaptive distributed storage sys-

tems. In IEEE International Symposium on Information

Theory, ISIT, 2015.

[43] K V Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang,

Dhruba Borthakur, and Kannan Ramchandran. A So-

lution to the Network Challenges of Data Recovery in

Erasure-coded Distributed Storage Systems: A Study on

the Facebook Warehouse Cluster. In USENIX Workshop

on Hot Topics in Storage and File Systems (HotStorage),

2013.

[44] K V Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang,

Dhruba Borthakur, and Kannan Ramchandran. A hitch-

hiker’s guide to fast and efficient data reconstruction

in erasure-coded data centers. ACM Special Interest

Group on Data Communication (SIGCOMM), 2014.

[45] K. V. Rashmi, Nihar B. Shah, and P. Vijay Kumar. En-

abling node repair in any erasure code for distributed

storage. In IEEE International Symposium on Informa-

tion Theory Proceedings, ISIT, 2011.

[46] K. V. Rashmi, Nihar B. Shah, and P. Vijay Kumar. Op-

timal exact-regenerating codes for distributed storage

at the MSR and MBR points via a product-matrix con-

struction. IEEE Trans. on Information Theory, 2011.

384    14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



[47] KV Rashmi, Nihar B Shah, and Kannan Ramchan-

dran. A piggybacking design framework for read-and

download-efficient distributed storage codes. IEEE

Transactions on Information Theory, 2017.

[48] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dim-

itris Papailiopoulos, Alexandros G Dimakis, Ramkumar

Vadali, Scott Chen, and Dhruba Borthakur. Xoring

elephants: Novel erasure codes for big data. In Interna-

tional Conference on Very Large Data Bases, 2013.

[49] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill.

Understanding latent sector errors and how to protect

against them. ACM Trans. on Storage (TOS), 2010.

[50] Bianca Schroeder and Garth A Gibson. Disk failures in

the real world: What does an MTTF of 1,000,000 hours

mean to you? In USENIX File and Storage Technologies

(FAST), 2007.

[51] Bianca Schroeder and Garth A Gibson. Understanding

failures in petascale computers. In Journal of Physics:

Conference Series. IOP Publishing, 2007.

[52] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant.

Flash Reliability in Production: The Expected and the

Unexpected. In USENIX File and Storage Technologies

(FAST), 2016.

[53] Thomas JE Schwarz, Qin Xin, Ethan L Miller, Dar-

rell DE Long, Andy Hospodor, and Spencer Ng. Disk

scrubbing in large archival storage systems. In IEEE

International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunications Sys-

tems (MASCOTS), 2004.

[54] Seagate. The Digitization of the World From

Edge to Core. https://www.seagate.com/

files/www-content/our-story/trends/files/

idc-seagate-dataage-whitepaper.pdf, 2018.

[55] Sandeep Shah and Jon G Elerath. Disk drive vintage

and its effect on reliability. In IEEE Reliability and

Maintenance Symposium (RAMS), 2004.

[56] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,

Robert Chansler, et al. The hadoop distributed file

system. In IEEE/NASA Goddard Conference on Mass

Storage Systems and Technologies (MSST), 2010.

[57] Emil Sit, Andreas Haeberlen, Frank Dabek, Byung-Gon

Chun, Hakim Weatherspoon, Robert Tappan Morris,

M Frans Kaashoek, and John Kubiatowicz. Proactive

Replication for Data Durability. In USENIX Int. Work-

shop on Peer-to-Peer Systems (IPTPS), 2006.

[58] Brian D Strom, SungChang Lee, George W Tyndall,

and Andrei Khurshudov. Hard disk drive reliability

modeling and failure prediction. IEEE Transactions on

Magnetics, 2007.

[59] Eno Thereska, Michael Abd-El-Malek, Jay J Wylie,

Dushyanth Narayanan, and Gregory R Ganger. In-

formed data distribution selection in a self-predicting

storage system. In IEEE International Conference on

Autonomic Computing (ICAC), 2006.

[60] Myna Vajha, Vinayak Ramkumar, Bhagyashree Puranik,

Ganesh Kini, Elita Lobo, Birenjith Sasidharan, P Vijay

Kumar, Alexandar Barg, Min Ye, Srinivasan Narayana-

murthy, et al. Clay codes: Moulding {MDS} codes to

yield an {MSR} code. In USENIX File and Storage

Technologies (FAST), 2018.

[61] Yu Wang, Eden WM Ma, Tommy WS Chow, and Kwok-

Leung Tsui. A two-step parametric method for failure

prediction in hard disk drives. IEEE Trans. on industrial

informatics, 2014.

[62] Hakim Weatherspoon and John D Kubiatowicz. Era-

sure coding vs. replication: A quantitative compari-

son. In International Workshop on Peer-to-Peer Systems.

Springer, 2002.

[63] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE

Long, and Carlos Maltzahn. Ceph: A scalable, high-

performance distributed file system. In USENIX Sympo-

sium on Operating Systems Design and Implementation

(OSDI), 2006.

[64] Si Wu, Yinlong Xu, Yongkun Li, and Zhijia Yang. I/O-

efficient scaling schemes for distributed storage systems

with CRS codes. IEEE Transactions on Parallel and

Distributed Systems, 2016.

[65] Mingyuan Xia, Mohit Saxena, Mario Blaum, and

David A. Pease. A tale of two erasure codes in HDFS.

In USENIX File and Storage Technologies (FAST), 2015.

[66] Xiaoyang Zhang, Yuchong Hu, Patrick P. C. Lee, and

Pan Zhou. Toward optimal storage scaling via network

coding: from theory to practice. In IEEE Conference

on Computer Communications, INFOCOM, 2018.

[67] Zhe Zhang, Amey Deshpande, Xiaosong Ma, Eno

Thereska, and Dushyanth Narayanan. Does erasure

coding have a role to play in my data center. Microsoft

research MSR-TR-2010, 52, 2010.

[68] Ying Zhao, Xiang Liu, Siqing Gan, and Weimin Zheng.

Predicting disk failures with HMM-and HSMM-based

approaches. In Springer Industrial Conference on Data

Mining (ICDM), 2010.

[69] Weimin Zheng and Guangyan Zhang. Fastscale: accel-

erate RAID scaling by minimizing data migration. In

USENIX File and Storage Technologies (FAST), 2011.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation    385


