
Oort: Efficient Federated Learning via Guided Participant Selection

Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, Mosharaf Chowdhury
University of Michigan

Abstract
Federated Learning (FL) is an emerging direction in dis-
tributed machine learning (ML) that enables in-situ model
training and testing on edge data. Despite having the same end
goals as traditional ML, FL executions differ significantly in
scale, spanning thousands to millions of participating devices.
As a result, data characteristics and device capabilities vary
widely across clients. Yet, existing efforts randomly select FL
participants, which leads to poor model and system efficiency.

In this paper, we propose Oort to improve the performance
of federated training and testing with guided participant selec-
tion. With an aim to improve time-to-accuracy performance
in model training, Oort prioritizes the use of those clients who
have both data that offers the greatest utility in improving
model accuracy and the capability to run training quickly.
To enable FL developers to interpret their results in model
testing, Oort enforces their requirements on the distribution
of participant data while improving the duration of federated
testing by cherry-picking clients. Our evaluation shows that,
compared to existing participant selection mechanisms, Oort
improves time-to-accuracy performance by 1.2×-14.1× and
final model accuracy by 1.3%-9.8%, while efficiently enforc-
ing developer-specified model testing criteria at the scale of
millions of clients.

1 Introduction
Machine learning (ML) today is experiencing a paradigm
shift from cloud datacenters toward the edge [18, 40]. Edge
devices, ranging from smartphones and laptops to enterprise
surveillance cameras and edge clusters, routinely store appli-
cation data and provide the foundation for machine learning
beyond datacenters. With the goal of not exposing raw data,
large companies such as Google and Apple deploy federated
learning (FL) for computer vision (CV) and natural language
processing (NLP) tasks across user devices [2, 24, 30, 77];
NVIDIA applies FL to create medical imaging AI [49]; smart
cities perform in-situ image training and testing on AI cam-
eras to avoid expensive data migration [32, 38, 51]; and video
streaming and networking communities use FL to interpret
and react to network conditions [10, 76].

Although the life cycle of an FL model is similar to that
in traditional ML, the underlying execution in FL is spread

across thousands to millions of devices in the wild. Similar to
traditional ML, the FL developer often first prototypes model
architectures and hyperparameters with a proxy dataset. After
selecting a suitable configuration, she can use federated train-
ing to improve model performance by training across a crowd
of participants [18, 40]. The wall clock time for training a
model to reach an accuracy target (i.e., time-to-accuracy) is
still a key performance objective even though it may take sig-
nificantly longer than centralized training [40]. To circumvent
biased or stale proxy data in hyperparameter tuning [57], to
inspect these models being trained, or to validate deployed
models after training [75,76], developers may want to perform
federated testing on the real-life client data, wherein enforcing
their requirements on the testing set (e.g., N samples for each
category or following the representative categorical distribu-
tion1) is crucial for them to reason about model performance
under different data characteristics [20, 57].

Unfortunately, clients may not all be simultaneously avail-
able for FL training or testing [40]; they may have heteroge-
neous data distributions and system capabilities [18, 34]; and
including too many may lead to wasted work and suboptimal
performance [18] (§2). Consequently, a fundamental problem
in practical FL is the selection of a “good” subset of clients
as participants, where each participant locally processes its
own data, and only their results are collected and aggregated
at a (logically) centralized coordinator.

Existing works optimize for statistical model efficiency
(i.e., better training accuracy with fewer training rounds)
[22, 47, 59, 72] or system efficiency (i.e., shorter rounds)
[54, 68], while randomly selecting participants. Although ran-
dom participant selection is easy to deploy, unfortunately, it
results in poor performance of federated training because of
large heterogeneity in device speed and/or data characteristics.
Worse, random participant selection can lead to biased testing
sets and loss of confidence in results. As a result, developers
often resort to more participants than perhaps needed [57,73].

We present Oort for FL developers to enable guided partic-
ipant selection throughout the life cycle of an FL model (§3).
Specifically, Oort cherry-picks participants to improve time-
to-accuracy performance for federated training, and it enables

1A categorical distribution is a discrete probability distribution showing
how a random variable can take the result from one of K possible categories.

developers to specify testing criteria for federated model test-
ing. It makes informed participant selection by relying on the
information already available in existing FL solutions [40]
with little modification.

Selecting participants for federated training is challenging
because of the trade-off between heterogeneous system and
statistical model utilities both across clients and of any spe-
cific client over time (as the trained model changes). First,
simply picking clients with high statistical utility can lead to
longer training rounds due to the coupled nature of client data
and system performance. The challenge is further exacerbated
by the large population, as capturing the latest utility of all
clients is impractical. As such, we identify clients with high
statistical utility, which is measured in terms of their most
recent aggregate training loss, adjusted for spatiotemporal
variations, and penalize the utility of a client if her system
speed is likely to elongate the duration necessary to complete
global aggregation. To navigate the sweet point of jointly max-
imizing statistical and system efficiency, we adaptively allow
for longer training rounds to admit clients with higher statisti-
cal utility. We then employ an online exploration-exploitation
strategy to probabilistically select participants among high-
utility clients for robustness to outliers. Our design can accom-
modate diverse selection criteria (e.g., fairness), and deliver
improvements while respecting privacy (§4).

Although FL developers often have well-defined require-
ments on their testing data, satisfying these requirements is
not straightforward. Similar to traditional ML, developers may
request a testing dataset that follows the global distribution
to avoid testing on all clients [35, 57]. However, clients’ data
characteristics in some private FL scenarios may not be avail-
able [27, 77]. To preserve the deviation target of participant
data from the global, Oort performs participant selection by
bounding the number of participants needed. Second, for cases
where clients’ data characteristics are provided [51], develop-
ers can specify specific distribution of the testing set to debug
model efficiency (e.g., using balanced distribution) [15, 78].
At scale, satisfying this requirement in FL suffers large over-
head. Therefore, we propose a scalable heuristic to efficiently
enforce developer requirements, while optimizing the dura-
tion of testing (§5).

We have integrated Oort with PySyft (§6) and evaluated
it across various FL tasks with real-world workloads (§7). 2

Compared to the state-of-the-art selection techniques used in
today’s FL deployments [21, 73, 77], Oort improves time-to-
accuracy performance by 1.2×-14.1× and final model accu-
racy by 1.3%-9.8% for federated model training, while achiev-
ing close to upper-bound statistical performance. For feder-
ated model testing, Oort can efficiently respond to developer-
specified data distribution across millions of clients, and im-
proves the end-to-end testing duration by 4.7× on average
over state-of-the-art solutions.

2Oort is available at https://github.com/SymbioticLab/Oort.

Overall, we make the following contributions in this paper:
1. We highlight the tension between statistical and systems

efficiency when selecting FL participants and present Oort
to effectively navigate the tradeoff.

2. We propose participant selection algorithms to improve
the time-to-accuracy performance of training and to scal-
ably enforce developers’ FL testing criteria.

3. We implement and evaluate these algorithms at scale in
Oort, showing both statistical and systems performance
improvements over the state-of-the-art.

2 Background and Motivation
We start with a quick primer on federated learning (§2.1),
followed by the challenges it faces based on our analysis of
real-world datasets (§2.2). Next, we highlight the key short-
comings of the state-of-the-art that motivate our work (§2.3).

2.1 Federated Learning

Training and testing play crucial roles in the life cycle of an
FL model, whereas they have different criteria.

Federated model training aims to learn an accurate model
across thousands to potentially millions of clients. Because
of the large population size and diversity of user data and
their devices in FL, training runs on a subset of clients (hun-
dreds of participants) in each round, and often takes hun-
dreds of rounds (each round lasts a few minutes) and several
days to complete. For example, in Gboard keyboard, Google
runs federated training of NLP models over weeks across
1.5 million end devices [4, 77]. For a given model, achiev-
ing a target model accuracy with less wall clock time (i.e.,
time-to-accuracy) is still the primary target [47, 63].

To inspect a model’s accuracy during training (e.g., to de-
tect cut-off accuracy), to validate the trained model before
deployment [21, 73, 77], or to circumvent biased proxy data
in hyperparameter tuning [15, 62], FL developers sometimes
test model’s performance on real-life datasets. Similar to tra-
ditional ML, developers often request the representativeness
of the testing set with requirements like “50k representative
samples" [15], or “x samples of class y" to investigate model
performance on specific categories [78]. When the data char-
acteristics of participants are not available, coarse-grained yet
non-trivial requests, such as “a subset with less than X% data
deviation from the global" are still informative [53, 57].

2.2 Challenges in Federated Learning

Apart from the challenges faced in traditional ML, FL intro-
duces new challenges in terms of data, systems, and privacy.

Heterogeneous statistical data. Data in each FL partici-
pant is typically generated in a distributed manner under dif-
ferent contexts and stored independently. For example, images
collected by cameras will reflect the demographics of each
camera’s location. This breaks down the widely-accepted as-
sumption in traditional ML that samples are independent and
identically distributed (i.i.d.) from a data distribution.

https://github.com/SymbioticLab/Oort

0.25 0.50 0.75 1.00
Normalized Data Size

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

C
lie

nt
s

OpenImage
StackOverflow
Reddit
Speech

(a) Unbalanced data size.

0.25 0.50 0.75 1.00
Pairwise Data Divergence

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

C
lie

nt
s

OpenImage
StackOverflow
Reddit
Speech

(b) Heterogeneous data distribution.

Figure 1: Client data differs in size and distribution greatly.

101 102 103

Inference Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

C
lie

nt
s

(a) Heterogeneous compute capacity.

102 103 104 105

Network Throughput (kbps)

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

C
lie

nt
s

(b) Heterogeneous network capacity.

Figure 2: Client system performance differs significantly.

We analyze four real-world datasets for CV (OpenIm-
age [3]) and NLP (StackOverflow [9], Reddit [8] and Google
Speech [74]) tasks. Each consists of thousands or up to mil-
lions of clients and millions of data points. In each individual
dataset, we see a high statistical deviation across clients not
only in the quantity of samples (Figure 1(a)) but also in the
data distribution (Figure 1(b)).3

Heterogeneous system performance. As individual data
samples are tightly coupled with the participant device, in-situ
computation on this data experiences significant heterogeneity
in system performance. We analyze the inference latency of
MobileNet [65] across hundreds of mobile phones used in a
real-world FL deployment [77], and their available bandwidth.
Unlike the homogeneous setting in datacenter ML, system
performance across clients exhibits an order-of-magnitude
difference in both computational capabilities (Figure 2(a))
and network bandwidth (Figure 2(b)).

Enormous population and pervasive uncertainty. While
traditional ML runs in a well-managed cluster with a number
of machines, federated learning often involves up to millions
of clients, making it challenging for the coordinator to ef-
ficiently identify and manage valuable participants. During
execution, devices often vary in system performance [18,40] –
they may slow down or drop out – and the model performance
varies in FL training as the model updates over rounds.

Privacy concerns. Inquiring about the privacy-sensitive in-
formation of clients (e.g., raw data or even data distribution)
can alienate participants in contributing to FL [24, 66, 67].

3We report the pairwise deviation of categorical distributions between
two clients, using the popular L1-divergence metric [55].

Breakdown-Round to accuracy (Prox)

MobileNet ShuffleNet mobilenet-std shufflenet-std Mobilenet ShuffleNet

Centralized 87.5 89.4 1.6 1.3

YoGi 75.7 77.6 1.7 1.6

Prox 74.9 76.1 1.4 1.4 52.9 53.3 53.0 54.4 53.6 54.5

Target: 77.8

Breakdown-Round to accuracy (Prox)-1

MobileNet ShuffleNet mobilenet-std shufflenet-std Mobilenet ShuffleNet

Centralized 64 53 7 6 70 62 73 70 57 61

YoGi 317 231 22 16 245 265 234 197 206 180

Prox 372 256 29 18 330 380 315 330 345 415

(b
)

Fi
na

l
A

cc
ur

ac
y

(%
)

0

45

90

MobileNet ShuffleNet

76.174.9 77.675.7

89.487.5

Centralized YoGi Prox

(a
)

 o

f
R

ou
nd

s

0

100

200

300

400

MobileNet ShuffleNet

256

372

231

317

5364

248
243

317

192

382

1

Figure 3: Existing works are suboptimal in: (a) round-to-
accuracy performance and (b) final model accuracy. (a) reports
number of rounds required to reach the highest accuracy of Prox
on MobileNet (i.e., 74.9%). Error bars show standard deviation.

Hence, realistic FL solutions have to seek efficiency improve-
ments but with limited information available in practical FL,
and their deployments must be non-intrusive to clients.

2.3 Limitations of Existing FL Solutions

While existing FL solutions have made considerable progress
in tackling some of the above challenges (§8), they mostly
rely on hindsight – given a pool of participants, they optimize
model performance [48,59] or system efficiency [54] to tackle
data and system heterogeneity. However, the potential for
curbing these disadvantages by cherry-picking participants
before execution has largely been overlooked. For example,
FL training and testing today still rely on randomly picking
participants [18], which leaves large room for improvements.

Suboptimality in maximizing efficiency. We first show
that today’s participant selection underperforms for FL solu-
tions. Here, we train two popular image classification models
tailored for mobile devices (i.e., MobileNet [65] and Shuf-
fleNet [80]) with 1.6 million images of the OpenImage dataset,
and randomly pick 100 participants out of more than 14k
clients in each training round. We consider a performance up-
per bound by creating a hypothetical centralized case where
images are evenly distributed across only 100 clients, and train
on all 100 clients in each round. As shown in Figure 3, even
with state-of-the-art optimizations, such as YoGi [63] and
Prox [47],4 the round-to-accuracy and final model accuracy
are both far from the upper-bound. Moreover, overlooking the
system heterogeneity can elongate each round, further exacer-
bating the suboptimality of time-to-accuracy performance.

Inability to enforce data selection criteria. While an FL
developer often fine-tunes her model by understanding the
input dataset, existing solutions do not provide any systems
support for her to express and reason about what data her FL
model was trained or tested on. Even worse, existing partici-
pant selection not only inflates the execution, but can lead to
bias and loss of confidence in results [20, 34].

To better understand how existing works fall short, we

4These two adapt traditional stochastic gradient descent algorithms to
tackle the heterogeneity of the client datasets.

101 102 103

of Sampled Clients

0.00

0.25

0.50

0.75

1.00

D
ev

ia
tio

n
fr

om
G

lo
ba

l

(a) Data deviation vs. participant size.

101 102 103

of Sampled Clients

40

60

80

Te
st

in
g

A
cc

ur
ac

y
(%

)
(b) Accuracy vs. participant size.

Figure 4: Participant selection today leads to (a) deviations
from developer requirements, and thus (b) affects testing result.
Shadow indicates the [min, max] range of y-axis values over 1000
runs given the same x-axis input; each line reports the median.

take the global categorical distribution as an example require-
ment, and experiment with the above pre-trained ShuffleNet
model. Figure 4(a) shows that: (i) even for the same num-
ber of participants, random selection can result in noticeable
data deviations from the target distribution; (ii) while this
deviation decreases as more participants are involved, it is
non-trivial to quantify how it varies with different number
of participants, even if we ignore the cost of enlarging the
participant set. Worse, when even selecting many participants,
developers can not enforce other distributions (e.g., balanced
distribution for debugging [15]) with random selection. One
natural effect of violating developer specification is bias in
results (Figure 4(b)), where we test the accuracy of the same
model on these participants. We observe that a biased testing
set results in high uncertainties in testing accuracy.

3 Oort Overview
Oort improves FL training and testing performance by judi-
ciously selecting participants while enabling FL developers
to specify data selection criteria. In this section, we provide
an overview of how Oort fits in the FL life cycle to help the
reader follow the subsequent sections.

3.1 Architecture

At its core, Oort is a participant selection framework that
identifies and cherry-picks valuable participants for FL train-
ing and testing. It is located inside the coordinator of an
FL framework and interacts with the driver of an FL exe-
cution (e.g., PySyft [7] or Tensorflow Federated [11]). Given
developer-specified criteria, it responds with a list of partici-
pants, whereas the driver is in charge of initiating and manag-
ing execution on the Oort-selected remote participants.

Figure 5 shows how Oort interacts with the developer and
FL execution frameworks. 1 Job submission: the developer
submits and specifies the participant selection criteria to the
FL coordinator in the cloud. 2 Participant selection: the
coordinator enquires the clients meeting eligibility proper-
ties (e.g., battery level), and forwards their characteristics
(e.g., liveness) to Oort. Given the developer requirements
(and execution feedbacks in case of training 2a), Oort se-

…

① Job
submission

③ Execution ④ Aggregation

Client Pool

Selection

Participants Participants

Coordinator
Execution

Driver

Info update2a

2b
Selector

Oort

Metastore

Figure 5: Oort architecture. The driver of the FL framework in-
teracts with Oort using a client library.

lects participants based on the given criteria and notifies the
coordinator of this participant selection (2b). 3 Execution:
the coordinator distributes relevant profiles (e.g., model) to
these participants, and then each participant independently
computes results (e.g., model weights in training) on her data;
4 Aggregation: when participants complete the computation,
the coordinator aggregates updates from participants.

During federated training, where the coordinator initiates
the next training round after aggregating updates from enough
number of participants [18], it iterates over 2 - 4 in each
round. Every few training rounds, federated testing is often
used to detect whether the cut-off accuracy has been reached.

3.2 Oort Interface

Oort employs two distinct selectors that developers can access
via a client library during FL training and testing.

Training selector. This selector aims to improve the time-
to-accuracy performance of federated training. To this end,
it captures the utility of clients in training, and efficiently
explores and selects high-utility clients at runtime.

1 import Oort
2
3 def federated_model_training():
4 selector = Oort.create_training_selector(config)
5
6 # Train to target testing accuracy
7 while federated_model_testing() < target:
8
9 # Train 50 rounds before testing

10 for _ in range(50):
11 # Collect feedbacks of last round
12 feedbacks = engine.get_participant_feedback()
13
14 # Update the utility of clients
15 for clientId in feedbacks:
16 selector.update_client_util(
17 clientId , feedbacks[clientId])
18
19 # Pick 100 high -utility participants
20 participants = selector.select_participant (100)
21 ... # Activate training on remote clients

Figure 6: Code snippet of Oort interaction during FL training.

Figure 6 presents an example of how FL developers and
frameworks interact with Oort during training. In each train-
ing round, Oort collects feedbacks from the engine driver, and
updates the utility of individual clients (Line 15-17). There-
after, it cherry-picks high-utility clients to feed the underlying
execution (Line 20). We elaborate more on client utility and

the selection mechanism in Section 4.

Testing selector. This selector currently supports two types
of selection criteria. When the individual client data char-
acteristics (e.g., categorical distribution) are not provided,
the testing selector determines the number of participants
needed to cap the data deviation of participants from the
global. Otherwise, it cherry-picks participants to serve the
exact developer-specified requirements on data while mini-
mizing the duration of testing. We elaborate more on selection
for federated testing in Section 5.

4 Federated Model Training
In this section, we first outline the trade-off in selecting par-
ticipants for FL training (§4.1), and then describe how Oort
quantifies the client utility while respecting privacy (§4.2
and §4.3), how it selects high-utility clients at scale despite
staleness in client utility as training evolves (§4.4).

4.1 Tradeoff Between Statistical and System Efficiency

Time-to-accuracy performance of FL training relies on two
aspects: (i) statistical efficiency: the number of rounds taken to
reach target accuracy; and (ii) system efficiency: the duration
of each training round. The data stored on the client and the
speed with which it can perform training determine its utility
with respect to statistical and system efficiency, which we
respectively refer to as statistical and system utility.

Due to the coupled nature of client data and system perfor-
mance, cherry-picking participants for better time-to-accuracy
performance requires us to jointly consider both forms of ef-
ficiency. We visualize the trade-off between these two with
our breakdown experiments on the MobileNet model with
OpenImage dataset (§7.2.1). As shown in Figure 7, while
optimizing the system efficiency (“Opt-Sys. Efficiency”) can
reduce the duration of each round (e.g., picking the fastest
clients), it can lead to more rounds than random selection as
that client data may have already been overrepresented by
other participants over past rounds. On the other hand, using a
client with high statistical utility (“Opt-Stat. Efficiency”) may
lead to longer rounds if that client turns out to be the system
bottleneck in global model aggregation.

Challenges. To improve time-to-accuracy performance,
Oort aims to find a sweet spot in the trade-off by associating
with every client its utility toward optimizing each form of
efficiency (Figure 7). This leads to three challenges:

• In each round, how to determine which clients’ data would
help improve the statistical efficiency of training the most
while respecting client privacy (§4.2)?

• How to take a client’s system performance into account
to optimize the global system efficiency (§4.3)?

• How to account for the fact that we don’t have up-to-date
utility values for all clients during training (§4.4)?

Next, we integrate system designs with ML principles to
tackle the heterogeneity, the massive scale, the runtime uncer-

① Exploit high statistical
 util. clients

1

A
vg

. D
ur

at
io

n
of

 R
ou

nd
s

(m
in

)

Oort

Opt-Stat.
Efficiency

of Rounds Taken for Target Accuracy

Opt-Sys.
Efficiency

Random

② Prioritize high system
util. clients

0 100 200 300 400

2

4

6

500

Better

Figure 7: Existing FL training randomly selects participants,
whereas Oort navigates the sweet point of statistical and system
efficiency to optimize their circled area (i.e., time to accuracy).
Numbers are from the MobileNet on OpenImage dataset (§7.2.1).

tainties and privacy concerns of clients for practical FL.

4.2 Client Statistical Utility

An ideal design of statistical utility should be able to effi-
ciently capture the client data utility toward improving model
performance for various training tasks, and respect privacy.

To this end, we leverage importance sampling used in the
ML literature [41, 81]. Say each client i has a bin Bi of train-
ing samples locally stored. Then, to improve the round-to-
accuracy performance via importance sampling, the optimal
solution would be to pick bin Bi with a probability propor-
tional to its importance |Bi|

√
1
|Bi| ∑k∈Bi ‖ ∇ f (k) ‖2, where

‖ ∇ f (k) ‖ is the L2-norm of the unique sample k’s gradi-
ent ∇ f (k) in bin Bi. Intuitively, this means selecting the bin
with larger aggregate gradient norm across all of its samples.

However, taking this importance as the statistical utility is
impractical, since it requires an extra time-consuming pass
over the client data to generate the gradient norm of every
sample,5 and this gradient norm varies as the model updates.

To avoid extra cost, we introduce a pragmatic approxima-
tion of statistical utility instead. At its core, the gradient is
derived by taking the derivative of training loss with respect
to current model weights, wherein training loss measures the
estimation error between model predictions and the ground
truth. Our insight is that a larger gradient norm often attributes
to a bigger loss [39]. Therefore, we define the statistical utility
U(i) of client i as U(i) = |Bi|

√
1
|Bi| ∑k∈Bi Loss(k)2, where the

training loss Loss(k) of sample k is automatically generated
during training with negligible collection overhead. As such,
we consider clients that currently accumulate a bigger loss to
be more important for future rounds.

Our statistical utility can capture the heterogeneous data
utility across and within categories and samples for various
tasks. We present the theoretical proof for its effectiveness
over random sampling in our technical report [45], and em-
pirically show its close-to-optimal performance (§7.2.2).

5ML models generate the training loss of each sample during training,
but calculate the gradient of the mini-batch instead of individual samples.

How Oort respects privacy? Training loss measures the
prediction confidence of a model without revealing the raw
data and is often collected in real FL deployments [30, 77].
We further provide three ways to respect privacy. First, we
rely on aggregate training loss, which is computed locally
by the client across all of her samples without revealing the
loss distribution of individual samples either. Second, when
even the aggregate loss raises a privacy concern, clients can
add noise to their loss value before uploading, similar to ex-
isting local differential privacy [27]. Third, we later show that
Oort can flexibly accommodate other definitions of statistical
utility used in our generic participant selection framework
(§4.4). We provide detailed theoretical analyses for each strat-
egy (e.g., using gradient norm of batches) of how Oort can
respect privacy (e.g., amenable under noisy utility value) in
our technical report [45], while empirically showing its su-
perior performance even under noisy utility value (§7.2.3).

4.3 Trading off Statistical and System Efficiency

Simply selecting clients with high statistical utility can ham-
per the system efficiency. To reconcile the demand for both
efficiencies, we should maximize the statistical utility we can
achieve per unit time (i.e., the division of statistical utility and
its round duration). As such, we formulate the utility of client
i by associating her statistical utility with a global system
utility in terms of the duration of each training round:

Util(i) = |Bi|
√

1
|Bi| ∑

k∈Bi

Loss(k)2

︸ ︷︷ ︸
Statistical utility U(i)

× (
T
ti
)1(T<ti)×α︸ ︷︷ ︸

Global sys utility

(1)

where T is the developer-preferred duration of each round, ti
is the amount of time that client i takes to process the training,
which has already been collected by today’s coordinator from
past rounds,6 and 1(x) is an indicator function that takes value
1 if x is true and 0 otherwise. This way, the utility of those
clients who may be the bottleneck of the desired speed of
current round will be penalized by a developer-specified factor
α, but we do not reward the non-straggler clients because their
completions do not impact the round duration.

This formulation assumes that all samples at a client are
processed in that training round. Even if the estimated ti for
a client is greater than the desired round duration T , Oort
might pick that client if the statistical utility outweighs its
slow speed. Alternatively, if the developer wishes to cap every
round at a certain duration [54], then either only clients with
ti < T can be considered (e.g., by setting α→ ∞) or a subset
of a participant’s samples can be processed [47, 63], and only
the aggregate training loss of those trained data in that round
is considered in measuring the statistical utility.

6We only care whether a client can complete by the expected duration T .
So, a client can even mask its precise speed by deferring its report.

Navigating the trade-off. Determining the preferred round
duration T in Equation (1), which strikes the trade-off be-
tween the statistical and system efficiency in aggregations,
is non-trivial. Indeed, the total statistical utility (i.e., ∑U(i))
achieved by picking high utility clients can decrease round
by round, because the training loss decreases as the model
improves over time. If we persist in suppressing clients with
high statistical utility but low system speed, the model may
converge to suboptimal accuracy (§7.2.2).

To navigate the optimal trade-off – maximizing the total sta-
tistical utility achieved without greatly sacrificing the system
efficiency – Oort employs a pacer to determine the preferred
duration T at runtime. The intuition is that, when the accumu-
lated statistical utility in the past rounds decreases, the pacer
allows a larger T ← T +∆ by ∆ to bargain with the statistical
efficiency again. We elaborate more in Algorithm 1.

4.4 Adaptive Participant Selection

Given the above definition of client utility, we need to address
the following practical concerns in order to select participants
with the highest utility in each training round.

• Scalability: a client’s utility can only be determined after
it has participated in training; how to choose from clients
at scale without having to try all clients once?

• Staleness: since not every client participates in every
round, how to account for the change in a client’s util-
ity since its last participation?

• Robustness: how to be robust to outliers in the presence
of corrupted clients (e.g., with noisy data)?

To tackle these challenges, we develop an exploration-
exploitation strategy for participant selection (Algorithm 1).

Online exploration-exploitation of high-utility clients.
Selecting participants out of numerous clients can be modeled
as a multi-armed bandit problem, where each client is an “arm”
of the bandit, and the utility obtained is the “reward” [14]. In
contrast to sophisticated designs (e.g., reinforcement learn-
ing), the bandit model is scalable and flexible even when the
solution space (e.g., number of clients) varies dramatically
over time. Next, we adaptively balance the exploration and ex-
ploitation of different arms to maximize the long-term reward.

Similar to the bandit design, Oort efficiently explores po-
tential participants under spatial variation, while intelligently
exploiting observed high-utility participants under temporal
variation. At the beginning of each selection round, Oort re-
ceives the feedback of the last training round, and updates
the statistical utility and system performance of clients (Line
6). For the explored clients, Oort calculates their client utility
and narrows down the selection by exploiting the high-utility
participants (Line 9-15). Meanwhile, Oort samples ε(∈ [0, 1])
fraction of participants to explore potential participants that
had not been selected before (Line 16), which turns to full
exploration as ε→ 1. Although we cannot learn the statistical

Input: Client set C, sample size K, exploitation factor
ε, pacer step ∆, step window W , penalty α

Output: Participant set P

/* Initialize global variables. */
1 E← /0; U← /0 . Explored clients and statistical utility.
2 L← /0; D← /0 . Last involved round and duration.
3 R← 0; T ← ∆ . Round counter and preferred round duration.

/* Participant selection for each round. */
4 Function SelectParticipant(C, K, ε, T , α)
5 Util← /0; R← R+1

/* Update and clip the feedback; blacklist outliers. */
6 UpdateWithFeedback(E, U, L, D)

/* Pacer: Relaxes global system preference T if the
statistical utility achieved decreases in last W rounds.
*/

7 if ∑U(R−2W : R−W) > ∑U(R−W : R) then
8 T ← T +∆

/* Exploitation #1: Calculate client utility. */
9 for client i ∈ E do

10 Util(i)← U(i) +
√

0.1logR
L(i) . Temporal uncertainty.

11 if T < D(i) then . Global system utility.

12 Util(i)←Util(i)× (T
D(i))

α

/* Exploitation #2: admit clients with greater than c% of
cut-off utility; then sample (1− ε)K clients by utility.
*/

13 Util← SortAsc(Util)
14 W← CutOffUtil(E, c×Util((1− ε)×K))
15 P← SampleByUtil(W, Util, (1− ε)×K)

/* Exploration: sample unexplored clients by speed. */
16 P← P ∪ SampleBySpeed(C−E, ε×K)

17 return P

Alg. 1: Participant selection w/ exploration-exploitation.

utility of not-yet-tried clients, one can decide to prioritize the
unexplored clients with faster system speed when possible
(e.g., by inferring from device models), instead of performing
random exploration (Line 16).

Exploitation under staleness in client utility. Oort em-
ploys two strategies to account for the dynamics in client
utility over time. First, motivated by the confidence interval
used to measure the uncertainty in bandit reward, we intro-
duce an incentive term, which shares the same shape of the
confidence in bandit solutions [37], to account for the stale-
ness (Line 10), whereby we gradually increase the utility of
a client if she has been overlooked for a long time. So those
clients accumulating high utility since their last trial can still
be repurposed again. Second, instead of picking clients with

top-k utility deterministically, we allow a confidence inter-
val c on the cut-off utility (95% by default in Line 13-14).
Namely, we admit clients whose utility is greater than the c%
of the top ((1−ε)×K)-th participant. Among this high-utility
pool, Oort samples participants with probability proportional
to their utility (Line 15). This adaptive exploitation mitigates
the uncertainties in client utility by prioritizing participants
opportunistically, thus relieving the need for accurate estima-
tions of utility as we do not require the exact ordering among
clients, while preserving a high quality as a whole.

Robust exploitation under outliers. Simply prioritizing
high utility clients can be vulnerable to outliers in unfavor-
able settings. For example, corrupted clients may have noisy
data, leading to high training loss, or even report arbitrarily
high training loss intentionally. For robustness, Oort (i) re-
moves the client in selection after she has been picked over a
given number of rounds. This helps to remove the perceived
outliers in terms of participation (Line 6); (ii) clips the utility
value of a client by capping it to no more than an upper bound
(e.g., 95% value in utility distributions). With probabilistic
participant selection among the high-utility client pool (Line
15), the chance of selecting outliers is significantly decreased
under the scale of clients in FL. We show that Oort outper-
forms existing mechanisms while being robust (§7.2.3).

Accommodation to diverse selection criteria. Our adap-
tive participant selection is generic for different utility defi-
nitions of diverse selection criteria. For example, developers
may hope to reconcile their demand for time-to-accuracy effi-
ciency and fairness, so that some clients are not underrepre-
sented (e.g., more fair resource usage across clients) [40, 48].
Although developers may have various fairness criterion
f airness(·), Oort can enforce their demands by replacing the
current utility definition of client i with (1− f)×Util(i)+
f × f airness(i), where f ∈ [0,1] and Algorithm 1 will nat-
urally prioritize clients with the largest fairness demand as
f → 1. For example, f airness(i) = max_resource_usage−
resource_usage(i) motivates fair resource usage for each
client i. Note that existing participant selection provides no
support for fairness, and we show that Oort can efficiently
enforce diverse developer-preferred fairness while improving
performance (§7.2.3).

5 Federated Model Testing

Enforcing developer-defined requirements on data distribu-
tion is a first-order goal in FL testing, whereas existing mech-
anisms lead to biased testing results (§2.3). In this section, we
elaborate on how Oort serves the two primary types of queries.
As shown in Figure 8, we start with how Oort preserves the
representativeness of testing set even without individual client
data characteristics (§5.1), and how it efficiently enforces de-
veloper’s testing criteria for specific data distribution when
the individual information is provided (§5.2).

1 def federated_model_testing():
2 selector = Oort.create_testing_selector()
3
4 # Type 1: subset w/ < X deviation from the global
5 participants = selector.select_by_deviation(
6 dev_target , range_of_capacity , total_num_clients)
7
8 # Provide individual client data characteristics
9 selector.update_client_info(client_id , client_info)

10 # Type 2: [5k, 5k] samples of category [i, j]
11 participants = selector.select_by_category(
12 request_list , testing_config)

Figure 8: Key Oort APIs for supporting federated testing.

5.1 Preserving Data Representativeness

Learning the individual data characteristics (e.g., categorical
distribution) can be too expensive or even prohibited [25, 64].
Without knowing data characteristics, the developer has to
be conservative and selects many participants to gain more
confidence for query “a testing set with less than X% data
deviation from the global", as selecting too few can lead to
a biased testing result (§2.3). However, admitting too many
may inflate the budget and/or take too long because of the
system heterogeneity. Next, we show how Oort can enable
guided participant selection by determining the number of
participants needed to guarantee this deviation target.

We consider the deviation of the data formed by all par-
ticipants from the global dataset (i.e., representative) using
L1-distance, a popular distance metric in FL [34, 35, 57]. For
category X , its L1-distance (|X̄−E[X̄]|) captures how the av-
erage number of samples of all participants (i.e., empirical
value X̄) deviates from that of all clients (i.e., expectation
E[X̄]). Note that the number of samples Xn that client n holds
is independent across clients. Namely, the number of samples
that one client holds will not be affected by the selection of
any other clients at that time, so it can be viewed as a random
instance sampled from the distribution of variable X .

Given the developer-specified tolerance ε on data deviation
and confidence interval δ (95% by default [56]), our goal is
to estimate the number of participants needed such that the
deviation from the representative categorical distribution is
bounded (i.e., Pr[|X̄−E[X̄]|< ε]> δ). To this end, we formu-
late it as a problem of sampling stochastic variables, and apply
the Hoeffding bound [16] to capture how this data deviation
varies with different number of participants. We attach our
theoretical results and proof in our technical report [45].

Estimating the number of participants to cap deviation.
Even when the individual data characteristics are not available,
the developer can specify her tolerance ε on the deviation from
the global categorical distribution, whereby Oort outputs the
number of participants needed to preserve this preference. To
use our model, the developer needs to input the global range
(i.e., global maximum - global minimum) of the number of
samples that one client can hold, and the total number of
clients. Learning this global information securely is well-
established [23,64], and the developer can assume a plausible
limit (e.g., according to the capacity of device models) too.

Our model does not require any collection of the distribu-
tion of global or participant data. As a straw-man participant
selection design, the developer can randomly distribute her
model to this Oort-determined number of participants. After
collecting results from this number of participants, she can
confirm the representativeness of computed data.

5.2 Enforcing Diverse Data Distribution

When the individual data characteristics are provided (e.g., FL
across enterprise AI cameras [35, 51]), Oort can enforce the
exact data preference on specific categorical distribution, and
improve the duration of testing by cherry-picking participants.

Satisfying queries like “[5k, 5k] samples of class [x, y]"
can be viewed as a multi-dimensional bin covering problem,
where a subset of data bins (i.e., participants) are selected to
cover the requested quantity of data. For each category i(∈ I)
of interest, the developer has preference pi (preference con-
straint), and an upper limit B (referred to as budget) on how
many participants she can have [15]. Each participant n(∈ N)
can contribute ni samples out of her capacity cn

i (capacity
constraint). Given her compute speed sn, the available band-
width bn and the size of data transfers dn, we aim to minimize
the duration of model testing:

min
{

max
n∈N

(
∑i∈I ni

sn
+ dn

bn

)}
. Minimize duration

s.t. ∀i ∈ I, ∑
n∈N

ni = pi . Preference Constraint

∀i ∈ I,∀n ∈ N,ni ≤ ci
n . Capacity Constraint

∀i ∈ I, ∑
n∈N

1(ni > 0)≤ B . Budget Constraint

The max-min formulation stems from the fact that testing
completes after aggregating results from the last participant.
While this mixed-integer linear programming (MILP) model
provides high-quality solutions, it has prohibitively high com-
putational complexity for large N.

Scalable participant selection. For better scalability, we
present a greedy heuristic to scale down the search space of
this strawman. We (1) first group a subset of feasible clients
to satisfy the preference constraint. To this end, we iteratively
add to our subset the client which has the most number of
samples across all not-yet-satisfied categories, and deduct the
preference constraint on each category by the corresponding
capacity of this client. We stop this greedy grouping until the
preference is met, or request a new budget if we exceed the
budget; and (2) then optimize job duration with a simplified
MILP among this subset of clients, wherein we have removed
the budget constraint and reduced the search space of clients.
We show that our heuristic can outperform the straw-man
MILP model in terms of the end-to-end duration of model
testing owing to its small overhead (§7.3.2).

6 Implementation
We have implemented Oort as a Python library, with 2617
lines of code, to friendly support FL developers. Oort pro-
vides simple APIs to abstract away the problem of participant
selection, and developers can import Oort in their application
codebase and interact with FL engines (e.g., PySyft [7] or
TensorFlow Federated [11]).

We have integrated Oort with PySyft. Oort operates on and
updates its client metadata (e.g., data distribution or system
performance) fed by the FL developer and PySyft at runtime.
The metadata of each client in Oort is an object with a small
memory footprint. Oort caches these objects in memory dur-
ing executions and periodically backs them up to persistent
storage. In case of failures, the execution driver will initiate
a new Oort selector, and load the latest checkpoint to catch
up. We employ Gurobi solver [5] to solve the MILP. The
developer can also initiate a Oort application beyond coordi-
nators to avoid resource contention. We use xmlrpc library
to connect to the coordinator, and these updates will activate
Oort to write these updates to its metastore. In the coordinator,
we use the PySyft API model.send(client_id) to direct which
client to run given the Oort decision, and model.get(client_id)
to collect the feedback.

7 Evaluation
We evaluate Oort’s effectiveness for four different ML models
on four CV and NLP datasets. We organize our evaluation by
the FL activities with the following key results.

FL training results summary:
• Oort outperforms existing random participant selection

by 1.2×-14.1× in time-to-accuracy performance, while
achieving 1.3%-9.8% better final model accuracy (§7.2.1).

• Oort achieves close-to-optimal model efficiency by adap-
tively striking the trade-off between statistical and system
efficiency with different components (§7.2.2).

• Oort outperforms its counterpart over a wide range of pa-
rameters and different scales of experiments, while being
robust to outliers (§7.2.3).

FL testing results summary:
• Oort can serve testing criteria on data deviation while

reducing costs by bounding the number of participants
needed without individual data characteristics (§7.3.1).

• With the individual information, Oort improves the testing
duration by 4.7× w.r.t. Mixed Integer Linear Program-
ming (MILP) solver, and is able to efficiently enforce
developer preferences across millions of clients (§7.3.2).

7.1 Methodology

Experimental setup. Oort is designed to operate in large
deployments with potentially millions of edge devices. How-
ever, such a deployment is not only prohibitively expensive,
but also impractical to ensure the reproducibility of experi-

Dataset # of Clients # of Samples

Google Speech [74] 2,618 105,829

OpenImage-Easy [3] 14,477 871,368

OpenImage [3] 14,477 1,672,231

StackOverflow [9] 315,902 135,818,730

Reddit [8] 1,660,820 351,523,459
Table 1: Statistics of the dataset in evaluations.

ments. As such, we resort to a cluster with 68 NVIDIA Tesla
P100 GPUs, and emulate up to 1300 participants in each
round. We simulate real-world heterogeneous client system
performance and data in both training and testing evaluations
using an open-source FL benchmark [43]: (1) Heterogeneous
device runtimes of different models, network throughput/con-
nectivity, device model and availability are emulated using
data from AI Benchmark [1] and Network Measurements
on mobiles [6]; (2) We distribute each real dataset to clients
following the corresponding raw placement (e.g., using <au-
thors_ID> to allocate OpenImage), where client data can vary
in quantities, distribution of outputs and input features; (3)
The coordinator communicates with clients using the parame-
ter server architecture. These follow the PySyft and real FL
deployments. To mitigate stragglers, we employ the widely-
used mechanism specified in real FL deployments [18], where
we collect updates from the first K completed participants out
of 1.3K participants in each round, and K is 100 by default.
We report the simulated clock time of clients in evaluations.

Datasets and models. We run three categories of applica-
tions with four real-world datasets of different scales, and
Table 1 reports the statistics of each dataset:

• Speech Recognition: the small-scale Google speech
dataset [74]. We train a convolutional neural network
model (ResNet-34 [31]) to recognize the command among
35 categories.

• Image Classification: the middle-scale OpenImage [3]
dataset, with 1.5 million images spanning 600 categories,
and a simpler dataset (OpenImage-Easy) with images
from the most popular 60 categories. We train MobileNet
[65] and ShuffleNet [80] models to classify the image.

• Language Modeling: the large-scale StackOverflow [9]
and Reddit [8] dataset. We train next word predictions
with Albert model [46] using the top-10k popular words.

These applications are widely used in real end-device appli-
cations [75], and these models are designed to be lightweight.

Parameters. The minibatch size of each participant is 16 in
speech recognition, and 32 in other tasks. The initial learning
rate for Albert model is 4e-5, and 0.04 for other models. These
configurations are consistent with those reported in the litera-
ture [29]. In configuring the training selector, Oort uses the
popular time-based exploration factor [14], where the initial
exploration factor is 0.9, and decreased by a factor 0.98 after

Task Dataset
Accuracy

Model
Speedup for Prox [47] Speedup for YoGi [63]

Target Stats. Sys. Overall Stats. Sys. Overall

OpenImage-Easy [3] 74.9%
MobileNet [65] 3.8× 3.2× 12.1× 2.4× 2.4× 5.7×

Image ShuffleNet [80] 2.5× 3.5× 8.8× 1.9× 2.7× 5.1×

Classification
OpenImage [3] 53.1%

MobileNet 4.2× 3.1× 13.0× 2.3× 1.5× 3.3×

ShuffleNet 4.8× 2.9× 14.1× 1.8× 3.2× 5.8×

Language Modeling
Reddit [8] 39 perplexity Albert [46] 1.3× 6.4× 8.4× 1.5× 4.9× 7.3×

StackOverflow [9] 39 perplexity Albert 2.1× 4.3× 9.1× 1.8× 4.4× 7.8×

Speech Recognition Google Speech [74] 62.2% ResNet-34 [31] 1.1× 1.1× 1.2× 1.2× 1.1× 1.3×
Table 2: Summary of improvements on time to accuracy.7We tease apart the overall improvement with statistical and system ones, and
take the highest accuracy that Prox can achieve as the target, which is moderate due to the high task complexity and lightweight models.

each round when it is larger than 0.2. The step window of
pacer W is 20 rounds. We set the pacer step ∆ in a way that it
can cover the duration of next W×K clients in the descending
order of explored clients’ duration, and the straggler penalty
α to 2. We remove a client from Oort’s exploitation list once
she has been selected over 10 times.

Metrics. We care about the time-to-accuracy performance
and final model accuracy of model training tasks on the testing
set. For model testing, we measure the end-to-end testing
duration, which consists of the computation overhead of the
solution and the duration of actual computation.

For each experiment, we report the mean value over 5 runs,
and error bars show the standard deviation.

7.2 FL Training Evaluation

In this section, we evaluate Oort’s performance on model
training, and employ Prox [47] and YoGi [63]. We refer Prox
as Prox running with existing random participant selection,
and Prox + Oort is Prox running atop Oort. We use a similar
denotation for YoGi. Note that Prox and YoGi optimize the
statistical model efficiency for the given participants, while
Oort cherry-picks participants to feed them.

7.2.1 End-to-End Performance

Table 2 summarizes the key time-to-accuracy performance
of all datasets. In the rest of the evaluations, we report the
ShuffleNet and MobileNet performance on OpenImage, and
Albert performance on Reddit dataset for brevity. Figure 9
reports the timeline of training to achieve different accuracy.

Oort improves time-to-accuracy performance. We no-
tice that Oort achieves large speedups to reach the target
accuracy (Table 2). Oort reaches the target 3.3×-14.1× faster
in terms of wall clock time on the middle-scale OpenImage

7We set the target accuracy to be the highest achievable accuracy by all
used strategies, which turns out to be Prox accuracy. Otherwise, some may
never reach that target.

0 10 20 30 40
Training Time (hours)

0

20

40

60

A
cc

ur
ac

y
(%

)
Prox
YoGi
Oort + Prox
Oort + YoGi

(a) MobileNet (Image).

0 10 20 30 40
Training Time (hours)

0

20

40

60

A
cc

ur
ac

y
(%

)

Prox
YoGi
Oort + Prox
Oort + YoGi

(b) ShuffleNet (Image).

0 10 20 30 40 50
Training Time (hours)

0

20

40

60

A
cc

ur
ac

y
(%

)

Prox
YoGi
Oort + Prox
Oort + YoGi

(c) ResNet (Speech).

0 20 40 60 80
Training Time (hours)

0

25

50

75

Pe
rp

le
xi

ty

Prox
YoGi

Oort + Prox
Oort + YoGi

(d) Albert (LM).

Figure 9: Time-to-Accuracy performance. A lower perplexity is
better in the language modeling (LM) task.

dataset; speedup on the large-scale Reddit and StackOverflow
dataset is 7.3×-9.1×. Understandably, these benefits decrease
when the total number of clients is small, as shown on the
small-scale Google Speech dataset (1.2×-1.3×).

These time-to-accuracy improvements stem from the com-
parable benefits in statistical model efficiency and system
efficiency (Table 2). Oort takes 1.8×-4.8× fewer training
rounds on OpenImage dataset to reach the target accuracy,
which is better than that of language modeling tasks (1.3×-
2.1×). This is because real-life images often exhibit greater
heterogeneity in data characteristics than the language dataset,
whereas the large population of language datasets leaves a
great potential to prioritize clients with faster system speed.

0 10 20 30
Training Time (hours)

0

20

40

60

A
cc

ur
ac

y
(%

)

Random
Oort w/o Sys
Oort w/o Pacer
Oort

(a) MobileNet (Image).

0 10 20 30
Training Time (hours)

0

20

40

60

A
cc

ur
ac

y
(%

)

Random
Oort w/o Sys
Oort w/o Pacer
Oort

(b) ShuffleNet (Image).

0 20 40 60 80
Training Time (hours)

0

25

50

75

Pe
rp

le
xi

ty

Random
Oort w/o Sys

Oort w/o Pacer
Oort

(c) Albert (LM).

Figure 10: Breakdown of Time-to-Accuracy performance with YoGi, when using different participant selection strategies.

Oort improves final model accuracy. When the model
converges, Oort achieves 6.6%-9.8% higher final accuracy
on OpenImage dataset, and 3.1%-4.4% better perplexity on
Reddit dataset (Figure 9). Again, this improvement on Google
Speech dataset is smaller (1.3% for Prox and 2.2% for YoGi)
due to the small scale of clients. These improvements attribute
to the exploitation of high statistical utility clients. Specif-
ically, the statistical model accuracy is determined by the
quality of global aggregation. Without cherry-picking partici-
pants in each round, clients with poor statistical model utility
can dilute the quality of aggregation. As such, the model may
converge to suboptimal performance. Instead, models running
with Oort concentrate more on clients with high statistical
utility, thus achieving better final accuracy.

7.2.2 Performance Breakdown

We next delve into the improvement on middle- and large-
scale datasets, as they are closer to real FL deployments. We
break down our knobs designed for striking the balance be-
tween statistical and system efficiency: (i) (Oort w/o Pacer):
We disable the pacer that guides the aggregation efficiency. As
such, it keeps suppressing low-speed clients, and the training
can be restrained among low-utility but high-speed clients; (ii)
(Oort w/o Sys): We further totally remove our benefits from
system efficiency by setting α to 0, so Oort blindly prioritizes
clients with high statistical utility. We take YoGi for analysis,
because it outperforms Prox most of the time.

Breakdown of time-to-accuracy efficiency. Figure 10 re-
ports the breakdown of time-to-accuracy performance, where
Oort achieves comparable improvement from statistical and
system optimizations. Taking Figure 10(b) as an example, (i)
At the beginning of training, both Oort and (Oort w/o Pacer)
improve the model accuracy quickly, because they penalize
the utility of stragglers and select clients with higher statisti-
cal utility and system efficiency. In contrast, (Oort w/o Sys)
only considers the statistical utility, resulting in longer rounds.
(ii) As training evolves, the pacer in Oort gradually relaxes
the constraints on system efficiency, and admits clients with
relatively low speed but higher statistical utility, which ends
up with the similar final accuracy of (Oort w/o Sys). How-
ever, (Oort w/o Pacer) relies on a fixed system constraint and

Breakdown-Round to accuracy (Prox)

MobileNet ShuffleNet mobilenet-std shufflenet-std Mobilenet ShuffleNet

Centralized 65.8 66.9 0.6 0.3

YoGi 55.6 57.3 0.7 0.6

Prox 53.1 54.1 0.4 0.4 52.9 53.3 53.0 54.4 53.6 54.5

Breakdown-Round to accuracy-1

MobileNet ShuffleNet mobilenet-std shufflenet-std Mobilenet ShuffleNet

Centralized 68 62 5 6

Kuiper 122 107 7 6 130 115 122 105 115 102

Kuiper - Pacer 130 110 9 10 125 136 131 98 113 121

Kuiper - Sys 113 97 8 9 124 105 112 90 95 108

Random 248 194 12 14

Target: 53.1

Breakdown-Round to accuracy (Prox)-1

MobileNet ShuffleNet mobilenet-std shufflenet-std Mobilenet ShuffleNet

Centralized 68 62 5 6 70 62 73 70 57 61

YoGi 248 194 12 14 245 265 234 197 206 180

Prox 341 363 27 37 330 380 315 330 345 415

(b
)

Fi
na

l
A

cc
ur

ac
y

(%
)

0

35

70

MobileNet ShuffleNet

54.153.1
57.355.6

66.965.8

Centralized YoGi Prox

(a
)

 o

f
R

ou
nd

s

0

150

300

450

MobileNet ShuffleNet

363

341

194

248

6268

248
194

341
363

 o

f
R

ou
nd

s

0

70

140

210

280

MobileNet ShuffleNet

62

68

Centralized Oort Oort w/o Pacer Oort w/o Sys Random

68

122

 o

f
R

ou
nd

s

0

350

700

Albert

374

Breakdown-Round to accuracy-1-1

Albert Std

Centralized 374 11 390 409 385

Kuiper 421 19 430 421 442

Kuiper - Pacer 485 23 478 497 481

Kuiper - Sys 403 13 395 403 411

Random 622 27 585 640

62

130
113

248

107 110
97

194

374
421

485
403

622

Malicious

0.00 5.00 10.00 15.00 20.00 25.00

Kuiper 62.04 62.18 59.25 57.51 55.96 52.62 0.50 0.36 0.48 0.38 0.50 0.42

Kuiper - 60.04 55.34 54.58 53.11 52.62 49.67 0.60 0.61 0.53 0.47 0.41 0.45

Random 56.70 55.63 53.98 52.37 50.34 48.91 0.30 0.35 0.30 0.61 0.41 0.50

1

Figure 11: Number of rounds to reach the target accuracy.

Malicious-shufflenet

Kuiper Random Kuiper-std Random-std

0% 64.1 57.2 0.2 0.3 10.0

5% 62.4 55.7 0.6 0.2 20.0

10% 60.4 54.0 0.2 0.2 30.0

15% 58.3 53.1 0.4 0.4 40.0

20% 56.5 50.9 0.4 0.2 50.0

25% 54.0 49.7 0.2 0.3 60.0

Fi
na

l A
cc

ur
ac

y
(%

)

0

25

50

75

Percentage of Corrupted Clients

0% 5% 10% 15% 20% 5%

49.750.953.15455.757.2 5456.558.360.462.464.1

Kuiper Random

Accuracy_breakdown

MobileNet ShuffleNet mobilenet-std shufflenet-std Mobilenet ShuffleNet

Centralized 65.8 66.9 0.6 0.3 64.8 66.1 66.4 65.9 66.9 67.0 66.8

Kuiper 62.5 64.2 0.4 0.4 62.6 62.6 62.3 63.7 64.2 63.9 64.8

Kuiper - Pacer 60.1 61.1 0.3 0.5 60.0 60.6 59.9 60.4 61.1 61.7

Kuiper - Sys 62.5 64.2 0.2 0.2 62.4 62.7 62.5 64.4 64.0 64.2

Random 55.6 57.3 0.7 0.6 56.5 55.2 54.5 56.1 57.6 57.1 57.2

Fi
na

l
A

cc
ur

ac
y

(%
)

0

35

70

MobileNet ShuffleNet

57.355.6
64.262.5 61.160.1

64.262.5
66.965.8

Centralized Oort Oort w/o Pacer Oort w/o Sys Random

Accuracy_breakdown-Albert

Albert Std

Centralized 34.7 0.4 34.8 34.4 35.1

Kuiper 36.4 0.4 36.7 36.4

Kuiper - Pacer 37.3 0.5 37.0 37.4

Kuiper - Sys 36.2 0.3 36.2 36.6 36.0

Random 38.0 0.6 37.8 38.0 38.3

Fi
na

l
Pe

rp
le

xi
ty

0

10

20

30

40

Albert

38.036.237.336.434.7

1

Figure 12: Breakdown of final model accuracy.

suppresses valuable clients with high statistical utility but low
speed, leading to suboptimal final accuracy.

Oort achieves close to upper-bound statistical perfor-
mance. We consider an upper-bound statistical efficiency
by creating a centralized case, where all data are evenly dis-
tributed to K participants. Using the target accuracy in Table
2, Oort can efficiently approach this upper bound by incor-
porating different components (Figure 11). Oort is within
2× of the upper-bound to achieve the target accuracy, and
(Oort w/o Sys) performs the best in statistical model effi-
ciency, because (Oort w/o Sys) always grasps clients with
higher statistical utility. However, it is suboptimal in our tar-
geted time-to-accuracy performance because of ignoring the
system efficiency. Moreover, by introducing the pacer, Oort
achieves 2.4%-3.1% better accuracy than (Oort w/o Pacer),
and is merely about 2.7%-3.3% worse than the upper-bound
final model accuracy (Figure 12).

7.2.3 Sensitivity Analysis

Impact of number of participants K. We evaluate Oort
across different scales of participants in each round, where

0 5 10 15
Training Time (hours)

0

20

40

60

A
cc

ur
ac

y
(%

)

Random (K=1000)
Oort (K=1000)
Random (K=10)
Oort (K=10)

(a) ShuffleNet (Image).

0 5 10 15 20 25
Training Time (hours)

0

25

50

75

Pe
rp

le
xi

ty

Random (K=1000)
Oort (K=1000)

Random (K=10)
Oort (K=10)

(b) Albert (LM).

Figure 13: Oort outperforms in different scales of participants.

0 10 20 30 40

Training Time (hours)

0

20

40

60

A
cc
u
ra
cy

(%
)

Random

Oort(α=0)

Oort(α=1)

Oort(α=2)

Oort(α=5)

(a) ShuffleNet (Image).

0 20 40 60 80

Training Time (hours)

0

25

50

75

P
er

p
le

x
it

y

Random

Oort(α=0)

Oort(α=1)

Oort(α=2)

Oort(α=5)

(b) Albert (LM).

Figure 14: Oort improves performance across penalty factors.

we cut off the training after 200 rounds given the diminishing
rewards. We observe that Oort improves time-to-accuracy
efficiency across different number of participants (Figure 13),
and having more participants in FL indeed receives diminish-
ing rewards. This is because taking more participants (i) is
similar to having a large batch size, which is confirmed to be
even negative to round-to-accuracy performance [50]; (ii) can
lead to longer rounds due to stragglers when the number of
clients is limited (e.g., K=1000 on OpenImage dataset).

Impact of penalty factor α on stragglers. Oort uses the
penalty factor α to penalize the utility of stragglers in partici-
pant selection, whereby it adaptively prioritizes high system
efficiency participants. Figure 14 shows that Oort outperforms
its counterparts across different α. Note that Oort orchestrates
its components to automatically navigate the best performance
across parameters: larger α (i.e., overemphasizing system effi-
ciency) drives the Pacer to relax the system constraint T more
frequently to admit clients with higher statistical efficiency,
and vice versa. As such, Oort achieves similar performance
across all non-zero α.

Impact of outliers. We investigate the robustness of Oort
by introducing outliers manually. Following the popular ad-
versarial ML setting [26], we randomly flip the ground-truth
data labels of the OpenImage dataset to any other categories,
resulting in artificially high utility. We consider two practical
scenarios with the ShuffleNet model: (i) Corrupted clients:
labels of all training samples on these clients are flipped (Fig-
ure 15(a)); (ii) Corrupted data: each client uniformly flips a
subset of her training samples (Figure 15(b)). We notice Oort
still outperforms across all degrees of corruption.

0 5 10 15 20 25
Percentage of Corrupted Clients

30

40

50

60

Fi
na

lA
cc

ur
ac

y
(%

)

Random
Oort

(a) Corrupted clients.

0 5 10 15 20 25
Percentage of Corrupted Data

30

40

50

60

Fi
na

lA
cc

ur
ac

y
(%

)

Random
Oort

(b) Corrupted data.

Figure 15: Oort still improves performance under outliers.

0 100 200 300 400

Training Rounds

0

20

40

60

A
cc

u
ra

cy
(%

)

Random

Oort (ε=0)

Oort (ε=1)

Oort (ε=2)

Oort (ε=5)

(a) Round to accuracy (MobileNet).

0 10 20 30

Training Time (hours)

0

20

40

60

A
cc

u
ra

cy
(%

)

Random

Oort (ε=0)

Oort (ε=1)

Oort (ε=2)

Oort (ε=5)

(b) Time to accuracy (MobileNet).

0 100 200 300 400

Training Rounds

0

20

40

60

A
cc

u
ra

cy
(%

)

Random

Oort (ε=0)

Oort (ε=1)

Oort (ε=2)

Oort (ε=5)

(c) Round to accuracy (ShuffleNet).

0 10 20 30

Training Time (hours)

0

20

40

60

A
cc

u
ra

cy
(%

)

Random

Oort (ε=0)

Oort (ε=1)

Oort (ε=2)

Oort (ε=5)

(d) Time to accuracy (ShuffleNet).

Figure 16: Oort improves performance even under noise.

Impact of noisy utility. We next show the superior per-
formance of Oort over its counterparts under noisy utility
value. In this experiment, we add noise from the Gaussian
distribution Gaussian(0,σ2), and investigate Oort’s perfor-
mance with different σ. Similar to differential FL [27], we
define σ = ε×Mean(real_value), where Mean(real_value)
is the average real value without noise. Note that we take
this real_value as reference for the ease of presentations, and
developers can refer to other values. As such, a large ε im-
plies larger variance in noise, thus providing better privacy by
disturbing the real value significantly. We report the statistical
efficiency after adding noise to the statistical utility (Fig 16(a)
and Fig 16(c)), as well as the time-to-accuracy performance
(Fig 16(b) and Fig 16(d)). We observe that Oort still improves
performance across different amount of noise, and is robust
even when the noise is large (e.g., ε = 5 is often considered
to be very large noise [12]).

Oort can respect developer-preferred fairness. In this
experiment, we expect all clients should have participated
training with the same number of rounds (Table 3), imply-
ing a fair resource usage [40]. We train ShuffleNet model

Strategy TTA (h) Final Accuracy (%) Var. (Rounds)

Random 36.3 57.3 0.39

f = 0 5.8 64.2 6.52
f = 0.25 6.1 62.4 5.1
f = 0.5 13.1 59.7 2.03

f = 0.75 25.4 58.6 0.65
f = 1 30.1 57.2 0.31

Table 3: Oort improves time to accuracy (TTA) across different
fairness knobs (f). Random reports the performance of random
participant selection. The variance of rounds reports how fairness
is enforced in terms of the number of participating rounds across
clients. A smaller variance implies better fairness.

0.00 0.25 0.50 0.75 1.00
Deviation Target

101

102

103

#
of

Sa
m

pl
ed

C
lie

nt
s Oort

Empirical Dev.

(a) Google Speech.

0.00 0.25 0.50 0.75 1.00
Deviation Target

101

102

103

#
of

Sa
m

pl
ed

C
lie

nt
s Oort

Empirical Dev.

(b) Reddit.

Figure 17: Oort can cap data deviation for all targets. Shadow
indicates the empirical [min, max] range of the x-axis values over
1000 runs given the y-axis input.

on OpenImage dataset with YoGi. To this end, we sweep
different knobs f to accommodate the developer demands
for the time-to-accuracy efficiency and fairness. Namely,
we replace the current utility definition of client i with
(1 − f) ×Util(i) + f × f airness(i), where f airness(i) =
max_resource_usage− resource_usage(i). Understandably,
time-to-accuracy efficiency significantly decreases as f → 1,
since we gradually end up with round-robin participant selec-
tion, totally ignoring the utility of clients. Note that Oort still
achieves better time-to-accuracy even when f → 1 as it prior-
itizes high system utility clients at the beginning of training,
thus achieving shorter rounds. Moreover, Oort can enforce dif-
ferent fairness preferences while improving efficiency across
fairness knobs.

7.3 FL Testing Evaluation

7.3.1 Preserving Data Representativeness

Oort can cap data deviation. Figure 17 reports Oort’s per-
formance on serving different deviation targets, with respect
to the global distribution. We sweep the number of selected
clients from 10 to 4k, and randomly select each given num-
ber of participants over 1k times to empirically search their
possible deviation. We notice that for a given deviation target,
(i) different workloads require distinct number of participants.
For example, to meet the target of 0.05 divergence, the Speech
dataset uses 6× less participants than the Reddit attributing
to its smaller heterogeneity (e.g., tighter range of the number
of samples); (ii) with the Oort-determined number of partic-

0 250 500 750 1000
End-to-End Time (s)

0.00

0.25

0.50

0.75

1.00

C
D
F
ac
ro
ss

Q
ue
ri
es

Kuiper
MILP
Oort

(a) OpenImage (Testing duration).

0 250 500 750 1000
Overhead (s)

0.00

0.25

0.50

0.75

1.00

C
D

F
ac

ro
ss

Q
ue

ri
es

Oort
MILP

(b) OpenImage (Overhead).

Figure 18: Oort outperforms MILP in clairvoyant FL testing.

101 102 103

of Queried Categories

100

101

102

O
ve

rh
ea

d
(s

)

Oort

(a) StackOverflow (0.3M clients).

101 102 103

of Queried Categories

101

102

103

O
ve

rh
ea

d
(s

)

Oort

(b) Reddit (1.6M clients).

Figure 19: Oort scales to millions of clients, while MILP did not
complete on any query.

ipants, no empirical deviation exceeds the target, showing
the effectiveness of Oort in satisfying the deviation target,
whereby Oort reduces the cost of expanding participant set
arbitrarily and improves the testing duration.

7.3.2 Enforcing Diverse Data Distribution

Oort outperforms MILP. We start with the middle-scale
OpenImage dataset and compare the end-to-end testing du-
ration of Oort and MILP. Here, we generate 200 queries us-
ing the form “Give me X representative samples”, where we
sweep X from 4k to 200k and budget B from 100 participants
to 5k participants. We report the validation time of MobileNet
on participants selected by these strategies.

Figure 18(a) shows the end-to-end testing duration. We
observe Oort outperforms MILP by 4.7× on average. This is
because Oort suffers little computation overhead by greedily
reducing the search space of MILP. As shown in Figure 18(b),
MILP takes 274 seconds on average to complete the partici-
pant selection, while Oort only takes 15 seconds.

Oort is scalable. We further investigate Oort’s performance
on the large-scale StackOverflow and Reddit dataset with mil-
lions of clients, where we take 1% of the global data as the
requirement, and sweep the number of interested categories
from 1 to 5k. Figure 19 shows even though we gradually
magnify the search space of participant selection by introduc-
ing more categories, Oort can serve our requirement in a few
minutes at the scale of millions of clients, while MILP fails
to generate the solution decision for any query.

8 Related Work
Federated Learning Federated learning [40] is a dis-
tributed machine learning paradigm in a network of end de-
vices, wherein Prox [47] and YoGi [63] are state-of-the-art
optimizations in tackling data heterogeneity. Recent efforts
in FL have been focusing on improving communication effi-
ciency [33,54] or compression schemes [13], ensuring privacy
by leveraging multi-party computation (MPC) [19] and differ-
ential privacy [27], or tackling heterogeneity by reinventing
ML algorithms [48, 72]. However, they underperform in FL
because of the suboptimal participant selection they rely on,
and lack systems supports for developers to specify their par-
ticipant selection criteria.

Datacenter Machine Learning Distributed ML in datacen-
ters has been well-studied [36, 58, 60], wherein they assume
relatively homogeneous data and workers [28, 52]. While de-
veloper requirements and models can still be the same, the het-
erogeneity of client system performance and data distribution
makes FL much more challenging. We aim at enabling them in
FL. To accelerate traditional model training, some techniques
bring up importance sampling to prioritize important training
samples in selecting mini-batches for training [39, 41, 81].
While bearing some resemblance in prioritizing data, Oort
adaptively considers both statistical and system efficiency in
formulating the client utility at scale.

Geo-distributed Data Analytics Federated data analytics
has been a topic of interest in geo-distributed storage [69]
and data processing systems [44, 79] that attempt to reduce
latency [70] and/or save bandwidth [42, 61, 71]. Gaia [33]
reduces network traffics for model training across datacenters,
while Sol [44] enables generic federated computation on data
with sub-second latency in the execution layer. These work
back up Oort with cross-layer system support, whereas Oort
cherry-picks participants before execution.

Privacy-preserving Data Analytics To gather sensitive
statistics from user devices, several differentially private sys-
tems add noise to user inputs locally to ensure privacy [25],
but this can reduce the accuracy. Some assume a trusted third
party, which only adds noise to the aggregated raw inputs [17],
or use MPC to enable global differential privacy without a
trusted party [64]. While our goal is not to address the security
and privacy issue in these solutions, Oort enables informed
participant selection by leveraging the information already
available in today’s FL, and can reconcile with them (e.g., to
deliver improvement under outliers while respecting privacy).

9 Conclusion
While today’s FL efforts have been optimizing the statisti-
cal model and system efficiency by reinventing traditional
ML designs, the participant selection mechanisms they rely
on underperform for federated training and testing, and fail
to enforce diverse data selection criteria. In this paper, we

present Oort to enable guided participant selection for FL
developers. Compared to existing mechanisms, Oort achieves
large speedups in time-to-accuracy performance for feder-
ated training by picking clients with high statistical and sys-
tem utility, and it allows developers to specify their selec-
tion criteria on data while efficiently serving their require-
ments on data distribution during testing even at the scale
of millions of clients. The artifacts of Oort are available at
https://github.com/SymbioticLab/Oort.

Acknowledgments
Special thanks go to the entire ConFlux team and Cloud-
Lab team for making Oort experiments possible. We would
also like to thank the anonymous reviewers, our shepherd,
Gennady Pekhimenko, and SymbioticLab members for their
insightful feedback. This work was supported in part by NSF
grants CNS-1900665 and CNS-1909067.

References
[1] AI Benchmark: All About Deep Learning on Smart-

phones. http://ai-benchmark.com/ranking_
deeplearning_detailed.html.

[2] Federated AI Technology Enabler. https://www.
fedai.org/.

[3] Google Open Images Dataset. https://storage.
googleapis.com/openimages/web/index.html.

[4] Google’s Sundar Pichai: Privacy Should Not Be a Lux-
ury Good. https://www.nytimes.com/2019/05/07/
opinion/google-sundar-pichai-privacy.html.

[5] Gurobi. https://www.gurobi.com/.

[6] MobiPerf. https://www.measurementlab.net/
tests/mobiperf/.

[7] PySyft. https://github.com/OpenMined/PySyft.

[8] Reddit Comment Data. https://files.pushshift.
io/reddit/comments/.

[9] Stack Overflow Data. https://cloud.google.com/
bigquery/public-data/stackoverflow.

[10] Stanford Puffer. https://puffer.stanford.edu/.

[11] TensorFlow Federated. https://www.tensorflow.
org/federated.

[12] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In CCS, 2016.

[13] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka,
and Milan Vojnovic. QSGD: Communication-efficient
sgd via gradient quantization and encoding. In NeurIPS,
2017.

https://github.com/SymbioticLab/Oort
http://ai-benchmark.com/ranking_deeplearning_detailed.html
http://ai-benchmark.com/ranking_deeplearning_detailed.html
https://www.fedai.org/
https://www.fedai.org/
https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
https://www.nytimes.com/2019/05/07/opinion/google-sundar-pichai-privacy.html
https://www.nytimes.com/2019/05/07/opinion/google-sundar-pichai-privacy.html
https://www.gurobi.com/
https://www.measurementlab.net/tests/mobiperf/
https://www.measurementlab.net/tests/mobiperf/
https://github.com/OpenMined/PySyft
https://files.pushshift.io/reddit/comments/
https://files.pushshift.io/reddit/comments/
https://cloud.google.com/bigquery/public-data/stackoverflow
https://cloud.google.com/bigquery/public-data/stackoverflow
https://puffer.stanford.edu/
https://www.tensorflow.org/federated
https://www.tensorflow.org/federated

[14] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer.
Finite-time analysis of the multiarmed bandit problem.
In Machine Learning, 2002.

[15] Sean Augenstein, H Brendan McMahan, Daniel Ramage,
Swaroop Ramaswamy, Peter Kairouz, Mingqing Chen,
Rajiv Mathews, et al. Generative models for effective
ML on private, decentralized datasets. In ICLR, 2020.

[16] Rémi Bardenet and Odalric-Ambrym Maillard. Concen-
tration inequalities for sampling without replacement.
Bernoulli Society for Mathematical Statistics and Prob-
ability, 2015.

[17] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis,
Ilya Mironov, Ananth Raghunathan, David Lie, Mitch
Rudominer, Ushasree Kode, Julien Tinnes, and Bern-
hard Seefeld. Prochlo: Strong privacy for analytics in
the crowd. In SOSP, 2017.

[18] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp,
Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloe
Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, H Brendan
McMahan, et al. Towards federated learning at scale:
System design. In MLSys, 2019.

[19] Keith Bonawitz, Vladimir Ivanov, and et al. Practical se-
cure aggregation for privacy-preserving machine learn-
ing. In CCS, 2017.

[20] Eric Breck, Neoklis Polyzotis, Sudip Roy, Steven Eui-
jong Whang, and Martin Zinkevich. Data validation for
machine learning. In MLSys, 2019.

[21] Mingqing Chen, Rajiv Mathews, Tom Ouyang, and
Françoise Beaufays. Federated learning of out-of-
vocabulary words. In arxiv.org/abs/1903.10635, 2019.

[22] Mingqing Chen, Ananda Theertha Suresh, Rajiv Math-
ews, Adeline Wong, Cyril Allauzen, Francoise Beaufays,
and Michael Riley. Federated learning of n-gram lan-
guage models. In ACL, 2019.

[23] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private,
robust, and scalable computation of aggregate statistics.
In NSDI, 2017.

[24] Apple Differential Privacy Team. Learning with privacy
at scale. In Apple Machine Learning Journal, 2017.

[25] Ulfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova.
RAPPOR: Randomized aggregatable privacy-preserving
ordinal response. In CCS, 2014.

[26] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and
Neil Zhenqiang Gong. Local model poisoning attacks
to byzantine-robust federated learning. In USENIX
Security Symposium, 2020.

[27] Robin C. Geyer, Tassilo Klein, and Moin Nabi. Differ-
entially private federated learning: A client level per-
spective. In NeuIPS, 2017.

[28] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo
Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang Liu, and
Chuanxiong Guo. Tiresias: A GPU cluster manager for
distributed deep learning. In NSDI, 2019.

[29] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop
Ramaswamy, Françoise Beaufays, Sean Augenstein, Hu-
bert Eichner, Chloé Kiddon, and Daniel Ramage. Fed-
erated learning for mobile keyboard prediction. In
arxiv.org/abs/1811.03604, 2018.

[30] Florian Hartmann, Sunah Suh, Arkadiusz Komarzewski,
Tim D. Smith, and Ilana Segall. Federated learn-
ing for ranking browser history suggestions. In
arxiv.org/abs/1911.11807, 2019.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, 2016.

[32] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik,
Shivaram Venkataraman, Paramvir Bahl, Matthai Phili-
pose, Phillip B Gibbons, and Onur Mutlu. Focus: Query-
ing large video datasets with low latency and low cost.
In OSDI, 2018.

[33] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dim-
itris Konomis, Gregory R. Ganger, Phillip B. Gibbons,
and Onur Mutlu. Gaia: Geo-distributed machine learn-
ing approaching LAN speeds. In NSDI, 2017.

[34] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and
Phillip B. Gibbons. The Non-IID data quagmire of
decentralized machine learning. In ICML, 2020.

[35] Harry Hsu, Hang Qi, and Matthew Brown. Federated
visual classification with real-world data distribution. In
ECCV, 2020.

[36] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. TASO: Optimiz-
ing deep learning computation with automatic genera-
tion of graph substitutions. In SOSP, 2019.

[37] Junchen Jiang, Rajdeep Das, Ganesh Ananthanarayanan,
Philip A Chou, Venkata Padmanabhan, Vyas Sekar, Esb-
jorn Dominique, Marcin Goliszewski, Dalibor Kukoleca,
Renat Vafin, et al. Via: Improving internet telephony call
quality using predictive relay selection. In SIGCOMM,
2016.

[38] Junchen Jiang, Yuhao Zhou, Ganesh Ananthanarayanan,
Yuanchao Shu, and Andrew A. Chien. Networked cam-
eras are the new big data clusters. In HotEdgeVideo,
2019.

[39] Tyler B. Johnson and Carlos Guestrin. Training deep
models faster with robust, approximate importance sam-
pling. In NeurIPS, 2018.

[40] Peter Kairouz, H Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Keith Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. Advances and open problems
in federated learning. In Foundations and Trends in
Machine Learning, 2021.

[41] Angelos Katharopoulos and Francois Fleuret. Not all
samples are created equal: Deep learning with impor-
tance sampling. In ICML, 2018.

[42] Fan Lai, Mosharaf Chowdhury, and Harsha Madhyastha.
To relay or not to relay for inter-cloud transfers? In
10th USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 18), Boston, MA, July 2018. USENIX
Association.

[43] Fan Lai, Yinwei Dai, Xiangfeng Zhu, and Mosharaf
Chowdhury. FedScale: Benchmarking model and
system performance of federated learning. In
arxiv.org/abs/2105.11367, 2021.

[44] Fan Lai, Jie You, Xiangfeng Zhu, Harsha V. Madhyastha,
and Mosharaf Chowdhury. Sol: A federated execution
engine for fast distributed computation over slow net-
works. In NSDI, 2020.

[45] Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha,
and Mosharaf Chowdhury. Oort: Efficient feder-
ated learning via guided participant selection. In
arxiv.org/abs/2010.06081, 2020.

[46] Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut. AL-
BERT: A lite BERT for self-supervised learning of lan-
guage representations. In ICLR, 2020.

[47] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar San-
jabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. In MLSys,
2020.

[48] Tian Li, Manzil Zaheer, Ahmad Beirami, and Virginia
Smith. Fair resource allocation in federated learning. In
ICLR, 2020.

[49] Wenqi Li, Fausto Milletari, and Daguang Xu. Privacy-
preserving federated brain tumour segmentation. In
Machine Learning in Medical Imaging, 2019.

[50] Tao Lin, Sebastian U. Stich, Kumar Kshitij Patel, and
Martin Jaggi. Don’t use large mini-batches, use local
SGD. In ICLR, 2020.

[51] Jiahuan Luo, Xueyang Wu, Yun Luo, Anbu Huang,
Yunfeng Huang, Yang Liu, and Qiang Yang. Real-
world image datasets for federated learning. In
arxiv.org/abs/1910.11089, 2019.

[52] Kshiteej Mahajan, Arjun Balasubramanian, Arjun
Singhvi, Shivaram Venkataraman, Aditya Akella, Amar
Phanishayee, and Shuchi Chawla. Themis: Fair and
efficient GPU cluster scheduling. In NSDI, 2020.

[53] Yishay Mansour, Mehryar Mohri, Jae Ro, and
Ananda Suresh. Three approaches for personal-
ization with applications to federated learning. In
arxiv.org/abs/2002.10619, 2020.

[54] H. Brendan McMahan, Eider Moore, Daniel Ram-
age, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks
from decentralized data. In AISTATS, 2017.

[55] William Mendenhall, Robert J Beaver, and Barbara M
Beaver. Introduction to probability and statistics. Cen-
gage Learning, 2012.

[56] William Mendenhall, Robert J Beaver, and Barbara M
Beaver. Introduction to probability and statistics. Cen-
gage Learning, 2012.

[57] Mehryar Mohri, Gary Sivek, and Ananda Theertha
Suresh. Agnostic federated learning. In ICML, 2019.

[58] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. Pipedream: Gen-
eralized pipeline parallelism for dnn training. In SOSP,
2019.

[59] Xingchao Peng, Zijun Huang, Yizhe Zhu, and Kate
Saenko. Federated adversarial domain adaptation. In
ICLR, 2020.

[60] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo.
A generic communication scheduler for distributed dnn
training acceleration. In SOSP, 2019.

[61] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik,
Srikanth Kandula, Aditya Akella, Victor Bahl, and Ion
Stoica. Low latency Geo-distributed data analytics. In
SIGCOMM, 2015.

[62] Swaroop Ramaswamy, Om Thakkar, Rajiv Mathews,
Galen Andrew, H. Brendan McMahan, and Françoise
Beaufays. Training production language models without
memorizing user data. In arxiv.org/abs/2009.10031,
2020.

[63] Sashank Reddi, Zachary Charles, Manzil Zaheer,
Zachary Garrett, Keith Rush, Jakub Konečnỳ, Sanjiv
Kumar, and H Brendan McMahan. Adaptive federated
optimization. In ICLR, 2021.

[64] Edo Roth, Daniel Noble, Brett Hemenway Falk, and An-
dreas Haeberlen. Honeycrisp: Large-scale differentially
private aggregation without a trusted core. In SOSP,
2019.

[65] Mark Sandler, Andrew G. Howard, Menglong Zhu, An-
drey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In CVPR,
2018.

[66] Supreeth Shastri, Vinay Banakar, Melissa Wasserman,
Arun Kumar, and Vijay Chidambaram. Understanding
and benchmarking the impact of GDPR on database
systems. In VLDB, 2020.

[67] Supreeth Shastri, Melissa Wasserman, and Vijay Chi-
dambaram. The seven sins of personal-data processing
systems under GDPR. In HotCloud, 2019.

[68] Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar,
and H. Brendan McMahan. Distributed mean estimation
with limited communication. In ICML, 2017.

[69] Muhammed Uluyol, Anthony Huang, Ayush Goel,
Mosharaf Chowdhury, and Harsha V. Madhyastha. Near-
optimal latency versus cost tradeoffs in geo-distributed
storage. In NSDI, 2020.

[70] Raajay Viswanathan, Ganesh Ananthanarayanan, and
Aditya Akella. Clarinet: WAN-aware optimization for
analytics queries. In OSDI, 2016.

[71] Ashish Vulimiri, Carlo Curino, B Godfrey, J Padhye, and
G Varghese. Global analytics in the face of bandwidth
and regulatory constraints. In NSDI, 2015.

[72] Jianyu Wang and Gauri Joshi. Adaptive communication
strategies to achieve the best error-runtime trade-off in
local-update SGD. In MLSys, 2019.

[73] Kangkang Wang, Rajiv Mathews, Chloe Kiddon, Hu-
bert Eichner, Francoise Beaufays, and Daniel Ramage.
Federated evaluation of on-device personalization. In
arxiv.org/abs/1910.10252, 2019.

[74] Pete Warden. Speech commands: A dataset
for limited-vocabulary speech recognition. In
arxiv.org/abs/1804.03209, 2018.

[75] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu
Lin, Yunxin Liu, and Xuanzhe Liu. A first look at deep
learning apps on smartphones. In WWW, 2019.

[76] Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad
Fouladi, James Hong, Keyi Zhang, Philip Levis, and
Keith Winstein. Learning in situ: a randomized experi-
ment in video streaming. In NSDI, 2020.

[77] Timothy Yang, Galen Andrew, Hubert Eichner,
Haicheng Sun, Wei Li, Nicholas Kong, Daniel Ramage,
and Françoise Beaufays. Applied federated learning:
Improving Google keyboard query suggestions. In
arxiv.org/abs/1812.02903, 2018.

[78] Felix X. Yu, Ankit Singh Rawat, Aditya Krishna Menon,
and Sanjiv Kumar. Federated learning with only positive
labels. In ICML, 2020.

[79] Ben Zhang, Xin Jin, Sylvia Ratnasamy, John
Wawrzynek, and Edward A. Lee. AWStream:
Adaptive wide-area streaming analytics. In SIGCOMM,
2018.

[80] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian
Sun. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In CVPR, 2018.

[81] Peilin Zhao and Tong Zhang. Stochastic optimization
with importance sampling for regularized loss minimiza-
tion. In ICML, 2015.

	Introduction
	Background and Motivation
	Federated Learning
	Challenges in Federated Learning
	Limitations of Existing FL Solutions

	Oort Overview
	Architecture
	Oort Interface

	Federated Model Training
	Tradeoff Between Statistical and System Efficiency
	Client Statistical Utility
	Trading off Statistical and System Efficiency
	Adaptive Participant Selection

	Federated Model Testing
	Preserving Data Representativeness
	Enforcing Diverse Data Distribution

	Implementation
	Evaluation
	Methodology
	FL Training Evaluation
	End-to-End Performance
	Performance Breakdown
	Sensitivity Analysis

	FL Testing Evaluation
	Preserving Data Representativeness
	Enforcing Diverse Data Distribution

	Related Work
	Conclusion

