
This paper is included in the Proceedings of the
29th USENIX Security Symposium.

August 12–14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium

is sponsored by USENIX.

DeepHammer: Depleting the Intelligence of Deep
Neural Networks through Targeted Chain of Bit Flips

Fan Yao, University of Central Florida; Adnan Siraj Rakin and Deliang Fan,
Arizona State University

https://www.usenix.org/conference/usenixsecurity20/presentation/yao

DeepHammer: Depleting the Intelligence of Deep Neural Networks
through Targeted Chain of Bit Flips

Fan Yao
University of Central Florida

fan.yao@ucf.edu

Adnan Siraj Rakin Deliang Fan
Arizona State University

asrakin@asu.edu dfan@asu.edu

Abstract
Security of machine learning is increasingly becoming a ma-
jor concern due to the ubiquitous deployment of deep learning
in many security-sensitive domains. Many prior studies have
shown external attacks such as adversarial examples that tam-
per the integrity of DNNs using maliciously crafted inputs.
However, the security implication of internal threats (i.e.,
hardware vulnerabilities) to DNN models has not yet been
well understood.

In this paper, we demonstrate the first hardware-based at-
tack on quantized deep neural networks–DeepHammer–that
deterministically induces bit flips in model weights to com-
promise DNN inference by exploiting the rowhammer vulner-
ability. DeepHammer performs an aggressive bit search in the
DNN model to identify the most vulnerable weight bits that
are flippable under system constraints. To trigger determinis-
tic bit flips across multiple pages within a reasonable amount
of time, we develop novel system-level techniques that enable
fast deployment of victim pages, memory-efficient rowham-
mering and precise flipping of targeted bits. DeepHammer
can deliberately degrade the inference accuracy of the vic-
tim DNN system to a level that is only as good as random
guess, thus completely depleting the intelligence of targeted
DNN systems. We systematically demonstrate our attacks on
real systems against 11 DNN architectures with 4 datasets
corresponding to different application domains. Our evalua-
tion shows that DeepHammer is able to successfully tamper
DNN inference behavior at run-time within a few minutes.
We further discuss several mitigation techniques from both
algorithm and system levels to protect DNNs against such
attacks. Our work highlights the need to incorporate security
mechanisms in future machine learning systems to enhance
the robustness of DNN against hardware-based deterministic
fault injections.

1 Introduction

Machine learning services are rapidly gaining popularity in
several computing domains due to the tremendous advance-
ments of deep learning in recent years. Because of the unpar-
alleled performance, deep neural networks (DNNs) are widely

used nowadays in many decision-making tasks including pat-
tern recognition [19, 21], malware detection [66], medical
diagnostics [49] and autonomous driving [8, 55]. With such
ever-increasing interactions between intelligent agents and
human activities that are security and safety critical, main-
taining security objectives (e.g., confidentiality and integrity)
is the first-order design consideration for DNN systems [51].

While considerable attention has been focused on protect-
ing DNN against input-based external adversaries (e.g., ad-
versarial examples and data poisoning attacks [3, 7, 42, 60]),
we note that internal adversaries that leverage vulnerabili-
ties of commercial-off-the-shelf hardware are becoming the
rapidly rising security concerns [6]. Recent development of
fault injection threats (e.g., rowhammer attack [29]) can suc-
cessfully compromise the integrity of data belonging to a
victim process, leading to severe system breaches such as
privilege escalation [48]. These hardware-based attacks are
extremely worrisome as they are capable of directly tampering
the internal state of a target system. In light of the power of
such hardware-based threats, we note that understanding their
security implication in deep learning systems is imperative.

Recently Hong et al. [23] have shown that single-bit cor-
ruptions in DNN model parameters can considerably degrade
the inference accuracy of several DNN models. Their attack
study is performed on full-precision (i.e., floating-point num-
bers) DNN models where a single bit flip in the exponent
field (i.e., the most-significant bit) of a parameter can result in
orders of magnitude change in the parameter value. Note that
quantized deep neural networks [25], on the other hand, are
more robust to single-bit corruption. This is because model
quantization replaces full-precision model parameters with
low bit-width integers or even binary representations, which
significantly limit the magnitude of possible parameter value
range [24, 67]. Our initial investigation aligns with this obser-
vation in [23] that single bit flip in quantized model weights
does not introduce any observable accuracy loss for 99% of
the time. Due to the impressive improvement in energy effi-
ciency, memory footprints and storage, model quantization
is now the widely applied optimization in deep neural net-
works [69]. Yet it remains uncertain whether a successful bit
flip attack on quantized neural networks is possible.

In this paper, we present a new class of model fault injection

USENIX Association 29th USENIX Security Symposium 1463

attack called DeepHammer that targets quantized deep neural
networks. DeepHammer flips a small set of targeted bits via
rowhammer to precisely degrade the prediction accuracy of
the target model to the level of random guess. We systemically
characterize how bit flips of model parameters can influence
the accuracy of a well-trained quantized deep neural networks.
Our study focuses on model weights as these are the major
components of DNN model with most substantial impact
on prediction performance. Note that while getting root ac-
cess using rowhammer can potentially compromise the entire
system and therefore hijack application behaviors, our work
concentrates on investigating the robustness of DNNs through
directly perturbing model parameters. Our findings indicate
that to carry out a successful fault injection attack, multiple
bit flips spanning many layers of the model are required. This
can be extremely challenging due to major algorithmic and
system-level challenges.

The first challenge involves designing an effective bit
search algorithm that understands system constraints and
minimizes the number of bit flips at the same time. This
is necessary because flipping a certain combination of bits
may not be possible if the DRAM profile of flippable loca-
tions does not allow. Furthermore, even if multiple bit flips
are attainable, the attack is unlikely to succeed if the targeted
bits in the model are simply numerous. In other words, the
targeted bits in model weights should be as few as possible.
The second challenge lies in developing an efficient rowham-
mer attack that could successfully flip multiple bits within
a reasonable exploitation window. We note that even with a
very small number of bits to flip, the exploitation can still be
unreasonably long. In fact, Gruss et al. have recently shown
that a single bit flip in the victim’s memory can take a few
days to accomplish [14]. As the disturbance errors in DRAM
are transient, shortening the exploitation window for multi-bit
flips is critical since the flipped bits generally do not persist
after a memory reset or system reboot.

To tackle the first challenge, we propose a bit search method
to perform bit-wise gradient ranking combined with progres-
sive search to find the least amount of vulnerable bits that are
most influential in the targeted model. Since the generated
bit locations may not be empirically flippable, we implement
a flip-aware search technique that takes into account several
system constraints relating to the victim’s memory layout and
target DRAM bit flip profile. The bit search process generates
a chain of targeted bits and ensures that these bits can be phys-
ically flipped in the target machine. If bits in the chain are all
flipped, the attacker could eventually compromise the target
model. Importantly, we find that the bit chain is not unique for
each model, and our search algorithm can potentially generate
many distinct bit chains to implement the attack.

DeepHammer addresses the second challenge by develop-
ing an efficient rowhammer attack framework with several
novel enhancement techniques. Our attack implementation
enables deterministic flipping of a sequence of target bits

across multiple pages. Importantly, we observe that to achieve
the desired accuracy loss, attackers need to precisely flip the
desired bits. That is, flipping extra bits besides the targeted
chain of bits may surprisingly alleviate accuracy loss. There-
fore, a native approach of probabilistic row hammering would
not succeed. DeepHammer incorporates three advanced at-
tack techniques to enable fast and precise row hammering: (i)
advanced memory massaging that takes advantage of per-cpu
free page list for swift vulnerable page relocation, (ii) precise
double-sided rowhammering which makes possible exact bit
flips (i.e., no more and no less) in the victim DNN model with
a compact memory layout; (iii) online memory re-templating
to quickly update obsolete bit flip profile. The combined
rowhammer attack techniques can successfully induce bit er-
rors in the target locations, leading to the attacker-desired
accuracy loss.

In summary, we make the following key contributions:

• We highlight that multiple deterministic bit flips are re-
quired to attack quantized DNNs. An efficient flip-aware
bit search technique is proposed to identify the most vul-
nerable model bits to flip. The search algorithm models
system constraints to ensure that the targeted bits can be
flipped empirically.
• We develop a new rowhammer attack framework tailored

for inducing bit flips in DNN models. To achieve the
desired accuracy loss and have a reasonable exploitation
window, our attack employs several novel enhancement
techniques to enable fast and precise bit flips.
• We implement an end-to-end DeepHammer attack by

putting the aforementioned techniques together. We eval-
uate our attacks on 11 DNN architectures with 4 datasets
spanning image classification and speed recognition do-
mains. The results show that the attacker only needs to
flip from 2 to 24 bits (out of millions of model weight
parameters) to completely compromise the target DNN
model. DeepHammer can successfully attack the tar-
geted chain of bits in minutes.
• We evaluate the effectiveness of DeepHammer with

single-sided rowhammer method and using DRAM con-
figurations with a wide spectrum of bit flip vulnerability
levels. Our results show that DeepHammer can still suc-
ceed under most of such restricted configurations.
• We investigate several mitigation techniques to protect

multi-bit fault injection attacks for quantized neural net-
works via DeepHammer. Our work calls for algorithmic
and system-level techniques to enhance the robustness
of deep learning systems against hardware-based threats.

2 Background

In this section, we present the background related to the pro-
posed work in this paper including basics of deep neural
networks and rowhammer attacks.

1464 29th USENIX Security Symposium USENIX Association

Deep neural networks. DNNs are very effective in many
modern machine learning tasks. A typical DNN model has a
multi-layered structure including input layers, many hidden
layers, and one output layer. Essentially, DNNs are configured
to approximate a function through a training process using a
labeled dataset. Training a DNN model involves forward- and
backward-propagation to tune DNN parameters (e.g., model
weights) with the objective of minimizing prediction errors.
Due to the existence of large number of parameters and the
enormous computation with respect to parameter tuning, the
DNN training procedure can be extremely time- and resource-
consuming. Moreover, well-trained DNN models generally
need large amount of training data that may not be always
accessible. Therefore, to expedite the process of deployment,
developers tend to utilize pre-trained models released by third
parties (e.g., ModelZoo [1]).

In recent years, there are many advancements towards gen-
erating efficient and compact deep neural networks through
various compression techniques such as network pruning
and quantization [27, 69]. Notably, quantization replaces full-
precision DNN models with low-width or even binarized pa-
rameters that can significantly improve the speed and power
efficiency of DNN inference without adversely sacrificing ac-
curacy [17,25]. Consequently, model quantization techniques
have been used widely in deep learning systems, especially
for resource-constrained applications [16].

Rowhammer attacks. Rowhammer is a class of fault injec-
tion attacks that exploit DRAM disturbance errors. Specifi-
cally, it has been shown that frequent accesses on one DRAM
row (i.e., activation) introduce toggling of voltage on DRAM
word-lines. This amplifies the inter-cell coupling effects, lead-
ing to quicker leakage of capacitor charge for DRAM cells
in the neighboring rows [29]. If sufficient charge is leaked
before the next scheduled refresh, the memory cell will even-
tually lose its state, and a bit flip is induced. By carefully
selecting neighboring rows (aggressor rows) and performing
frequent row activations, an adversary can manage to modify
some critical bits without access them (e.g., kernel memory
or data in other address spaces). To trigger bit flips, there are
mainly three hammering techniques: 1) single-sided rowham-
mer manifests by accessing one row that is adjacent to the
victim row [48]; 2) double-sided rowhammer alternatively
accesses two rows adjacent to the victim row [32, 45, 48]; 3)
one-location hammering accesses only one location in one
row repeatedly to attack the target row [14]. Double-sided
rowhammer attack typically generates the most bit flips as it
introduces the strongest cross-talk effect for memory cells in
the target row [29].

3 Threat Model and Assumptions

Our attack targets modern DNNs that are quantized where
model parameters are in the form of low bit-width integer

numbers (i.e., 8-bit). The adversary manages to trigger DNN
model bit flips in DRAM after the victim models are deployed
for inference. This is different from prior attacks that inject
stealthy payloads to the DNN model and re-distribute it to
victim users (e.g., DNN trojan attacks [38]). We assume that
the deep learning system is deployed on a resource-sharing
environment to offer ML inference service. Such applica-
tion paradigm is becoming popular due to the prevalence of
machine-learning-as-a-service (MLaaS) platforms [46].

The attacker’s objective is to compromise DNN inference
behavior through inducing deterministic errors in the model
weights by exploiting the rowhammer vulnerability in DRAM.
The attacker aims to drastically degrade the inference accu-
racy of the target DNN models. The attack is regarded as suc-
cessful if inference accuracy is close to random guess after the
exploitation. We note that while adversarial inputs [7, 42] can
also influence inference accuracy, our attack is fundamentally
different: adversarial inputs only target miss-classification
for specially crafted malicious inputs, however, our attack
degrades the overall inference accuracy for legitimate inputs.

We assume that the attacker is aware of the model parame-
ters in the target deep learning systems. Particularly the model
weight parameters are known to the attacker. Such assumption
is legitimate due to two main reasons: (i) As training process
is typically expensive, deploying machine learning service
using publicly available pre-trained models is the trending
practice; (ii) Even for private models, it is possible for adver-
saries to gain knowledge of model parameters through various
form of information leakage attacks (e.g., power, electromag-
netic and microarchitecture side channels [2, 12, 61–65]).

The attacker is co-located with the victim DNN service,
and can run user-space unprivileged processes. Additionally,
it can map pages in the weight file to its own address space in
read-only mode. To map virtual address to physical address,
the attacker can take advantage of huge page support. If such
support is not available in the system, the attacker can leverage
hardware-based side channels [14] or use advanced memory
massaging techniques [32]. In this work, we mainly harness
double-sided rowhammer technique as it has been shown to be
most effective in inducing bit flips. Double-sided rowhammer
relies on a settlement of two adjacent rows to the victim row,
and thus requires knowledge of DRAM addressing scheme,
which could be obtained through reverse engineering [43].
We assume that proper software-level confinement policies
(e.g., process isolation) are in place. We further assume that
the system administrative software is benign and up-to-date.

4 DeepHammer Overview

In this section, we present an overview of our DeepHammer
attack approach. The attack has two off-line steps and one on-
line step. The first off-line step is memory templating phase
that finds vulnerable bit offsets in a set of physical pages.
In the second off-line step, DeepHammer runs a flip-aware

USENIX Association 29th USENIX Security Symposium 1465

bit search algorithm to find the minimal set of bits to target.
During the online phase, DeepHammer locates the pages con-
taining exploitable bits and trigger multiple bit flips using
several advanced rowhammer techniques.

DRAM bit flip profiling. In order to deterministically trig-
ger bit flips in the target DNN model, the first step is to scan
the memory for bit locations that are susceptible to bit flips.
This process is called memory templating [45], which is typi-
cally considered an offline preparation step. For double-sided
rowhammering, the attacker has to understand the physical
address to row mapping scheme. We reverse-engineer the
DRAM addressing schemes for several different hardware
configurations using techniques proposed in [43]. Since the
profiling is performed in the attacker’s own memory space, it
does not affect the normal operation of the underlying system.
The memory templating phase generates a list of physical
pages (identified by page frame numbers) together with vul-
nerable bit offset in page, flip direction (1→0 or 0→1) and
the probability of observing bit flip.

Vulnerable bit search in DNN models. We develop a flip-
aware bit search technique that takes as input the bit flip profile
generated in the profiling stage. Our algorithm aims to locate
the least number of bits (i.e., the least number of physical
pages) to attack in order to yield the desired accuracy loss (i.e.
accuracy close to random guess in this work). The proposed
technique consists of two major components: Gradient-based
Bit Ranking (GBR) and Flip-aware Bit Search (FBS). It per-
forms aggressive search using bit-wise gradient ranking. The
search technique ranks the influence of model weight bits in
the target DNN model based on gradient. It then employs
the flip-aware search which identifies the most vulnerable
bits that are flippable. We note that missing one target bit or
flipping a bit at the wrong location may adversely deteriorate
the attack outcome. Therefore, it is extremely important to
consider system constraints to guarantee the identified bits
could be flipped empirically. For instance, multiple bits could
map to several weight parameters in the same virtual 4KB
boundary, which could make it impossible to find a satisfac-
tory physical page. To ensure that the vulnerable bits found
could be flipped through rowhammer, the algorithm searches
through flippable page offsets based on the DRAM bit flip
profile. To enhance the success rate of relocating the target
page (that has the target bit), we further optimize the search
algorithm by prioritizing model weight bits which have higher
number of candidate physical locations.

Fast and precise bit flipping using rowhammer. The on-
line exploitation phase launches rowhammer attack to flip the
chain of bits identified by the bit search algorithm. The major
challenge of this process is to position victim pages to the
vulnerable DRAM rows. Prior studies have shown that page
positioning or memory massaging is the most time-consuming
step [14]. To enable fast memory massaging, our attack ex-
ploits a specific kernel data structure: per-cpu pageset,

0%

20%

40%

60%

80%

100%

 0 10 20 30 40 50 60 70 80 90 100

In
fe

re
nc

e
A

cc
ur

ac
y

Number of model bit flip (accumulative)

Targeted bit flip
Random bit flip

Figure 1: Randomly model bit flipping vs. targeted bit flipping
for quantized ResNet-20 with CIFAR-10.

which is maintained by linux operating system as a fast cache
for recently freed pages. The per-cpu pageset adopts Last-
In-First-Out policy for page allocation. Our attack takes ad-
vantage of the per-cpu pageset for fast release and remap of
of vulnerable physical pages. To induce precise bit flips, we
apply an efficient column-page-stripe to the aggressor and
victim pages. Such technique allows the attacker to induce
1→0 and 0→1 flipping simultaneously in a single hammering
iteration for targeted bits while ensuring irrelevant bits are
kept unchanged. Moreover, we found that the bit flip profile
generated in the profiling stage can be obsolete after system
reboot due to memory scrambling [29]. Fortunately, we ob-
serve memory scrambling merely alternates the direction of
the flip (e.g., from 1→0 to 0→1) and does not change vul-
nerable bit locations. Based on this observation, we propose
a technique named online memory re-templating to swiftly
correct inconsistent bit flip profile.

5 Flip-aware Vulnerable Bit Search

In this section, we first motivate the need for carefully iden-
tifying vulnerable bits in order to compromise a quantized
network. We perform a robustness study of DNN models by
injecting faults to model weight parameters. Figure 1 shows
the changes of prediction accuracy under two bit flip strate-
gies for the 8-bit quantized ResNet-20 using the CIFAR10
dataset [30]. As we can see, randomly flipping even 100 bits
in model weights barely degrades the model accuracy to a
noticeable level (i.e., less than 1%). We also observe similar
results for other quantized models. This observation indicates
that quantized DNNs have good tolerance against model bit
flips. Note that most prior successful fault injection techniques
based on rowhammer manifest by exploiting only one or very
few bit flips [9, 14, 48]. Therefore, to practically carry out
bit flip attack in quantized DNNs, the attackers need to find
ways to identify and target the least amount of bits in models
that are most vulnerable. Figure 1 further demonstrates that
with our proposed targeted bit flip scheme (detailed later),
attackers can considerably disrupt the inference behavior with
a very small number of bit flips.

To attack quantized DNN models, we propose an efficient

1466 29th USENIX Security Symposium USENIX Association

Start nth
Bitflip

Find p vulnerable bits at
mth layer

Perform one bit flip at
a time to create test

accuracy profile

Is it the last
layer

NO

YES
Create bit
ranking of

p*l bits

Pick the next
most vulnerable

bit from the
ranking

Go back to the bit
profile

Is this bit
flippable based on the

flip profile?

Does this bit
belong to the same page of any

previous flip?

Flip the Bit

YES

NO

NO

YES

Figure 2: Overview of our proposed bit search framework.

flip-aware vulnerable bit search algorithm. Instead of search-
ing all the bits of a network to generate a set of vulnerable
bits, our algorithm utilizes a gradient-based ranking to select
top-ranked vulnerable bits1. The proposed method considers
the feasibility of a certain bit flip by considering the memory
layout of the model weight parameters.

In order to identify both vulnerable and flippable model
bits, we first need to understand model weight storage and
the corresponding memory layout. In this work, we qunatize
the weights to 8-bit representations following standard quan-
tization and representation techniques [69]. Consider a DNN
model with l number of layers, each layer has a weight tensor
containing the weights of that particular layer. Each of those
weights would require 8 bits memory space. Assume that the
memory footprint of model weights is M, and M=T ×8 bits,
where T is the total number of weight parameters for a partic-
ular DNN model. Since weight files are loaded into memory
using multiple physical pages (with a typical size of 4KB), the
total number of pages required for a particular DNN would
be M/4096. Inside every page, each weight parameter has a
byte offset (0-4095) and each bit has a bit offset (0-32767).
As each physical page has a deterministic DRAM mapping
and the locations of weak cells in DRAM modules are mostly
fixed, only certain bit offsets (if any) in any physical page are
vulnerable to bit flips. This profile changes across different
DRAM modules (even for devices from the same vendor).
Our flip-aware bit search algorithm manages to identify a cer-
tain highly vulnerable bit and attempt to find a placement of
its physical page such that the targeted vulnerable bit is flip-
pable. The algorithm optimizes the number of such flippable
bits to achieve the attack goal. At a high level, our algorithm
has two major steps: 1) Gradient based bit ranking which
ranks the top vulnerable bits of weight parameters in a victim
DNN model based on gradient; 2) Flip-aware bit search that
generates a chain of flippable bits to target by modeling sys-
tem constraints based on DRAM bit flip profile. The overall

1Note that Rakin et al. [44] recently demonstrate a preliminary algorith-
mic work in bit-flip attack to locate vulnerable bits of DNN model. It assumes
ideal scenarios where any arbitrary bit in DNN models is flippable, which is
not practical in realistic settings.

bit search framework encompasses several iterations. Each it-
eration interleaves the two aforementioned steps and involves
identifying one model bit to flip. Our algorithm currently con-
siders flipping only one bit for each physical page that stores
model weights.

Gradient-based bit ranking (GBR): In this step, we create
a ranking of most vulnerable bits in the network based on its
gradient values. Assume that the current iteration is n, we use
{B̂m}l

m=1 to represent the original weights of the target DNN
model in 2’s complement form. B̂n

m denotes the model weights
in the nth iteration (i.e., n−1 bits have already been identified
and flipped). The goal is to find the nth bit to flip on top of
the prior n−1 flips such that the accuracy drop is maximized
in the current iteration. We find the p most vulnerable bits
from B̂n

m in m-th layer through gradient ranking for all the
l layers. With the given input xxx and target label ttt, inference
and back-propagation operations are performed to compute
the gradients of bits w.r.t. the inference loss. Then, we select
p vulnerable bits that have top absolute gradient values (i.e.,
∂L/∂b). The top-p vulnerable bits can be defined as:

b̂bb
n−1
m = Top

p

∣∣∣∣∇B̂n−1
m

L
(

f (xxx;{B̂n−1
m }l

m=1), ttt
)∣∣∣∣ (1)

where {Topp} returns a set of bit offsets of those selected p
vulnerable bits, and f (.) is the inference function. By repeat-
ing the above process for all the l layers, we have a candidate
of p× l bits. We then evaluate the potential loss increment and
accuracy degradation caused by flipping each of those vulner-
able bits. The bit that causes maximum accuracy drop when
flipped is chosen in the current iteration. The corresponding
loss of flipping the ith bit (i=1,2 ,..., p×l) in the candidate bit
set–Ln

i –can be formulated as:

Ln
i = L

(
f (xxx;{B̂n}l×p

i=1 , ttt
)

(2)

where the only difference between {B̂n} and {B̂n−1} is the
flip of additional bit that is currently under test (among the
p× l bits), denoted as b̂bb

n
. Note that, after the loss and accu-

racy degradation has been evaluated, GBR will continue to
evaluate the next bit in the candidate. To do so, the bits flipped
represented by b̂bb

n
will have to be restored back to its original

state b̂bb
n−1 ∈ {B̂n−1}. GBR will finally generate a complete

ranking of the p× l bits for the network. The information of
these bits including flip direction, page number, page offset
within the page, test accuracy after flipping is collected and
stored.

Flip-aware bit search (FBS): In this step, we perform flip-
aware bit search to discover a chain of bit flips that can de-
grade the inference accuracy to the desired level on the target
hardware platform. FBS takes as input the top-ranking vul-
nerable bits identified by GBR. It also requires access to the
DRAM bit flip profile specifying physical page frames and

USENIX Association 29th USENIX Security Symposium 1467

the page bit offsets where bit flip with certain direction (i.e.,
1→0 or 0→1) could be induced. For the current iteration
n, after the GBR step is complete, FBS starts to iterate over
the vulnerable bits in a greedy fashion by examining the bit
with the highest impact on test accuracy first. Specifically, it
refers to the bit flip profile to check whether there is at least
one available physical page (i.e., DRAM location) where the
bit could be flipped2. That is, if both the bit offset and flip
direction match, this model weight bit is considered flippable
and would be inserted to the targeted bit chain. Otherwise,
this bit is skipped since flipping is not possible in the victim’s
hardware setting. The algorithm will then move on to analyze
the next vulnerable bit candidate. FBS accumulatively eval-
uates the inference accuracy degradation due to flipping all
bits in the bit chain. If the accuracy drop reaches the attack
objective, the search is complete and the targeted bit chain
will be collected. Otherwise, the selected bit to target in the
nth iteration is recorded, and the next iteration begins with
the GBR step that performs gradient ranking again. Figure 2
illustrates the overall mechanism of our bit search framework.

6 Fast and Precise Multi-bit Flips

By running the bit search algorithm as described in Section 5,
the attacker collects one or multiple chains of bits to target in
the victim DNN model. The attacker now needs to properly lo-
cate the corresponding victim pages to the vulnerable DRAM
rows, and precisely induce the desired bit flips. In this sec-
tion, we present three advanced techniques to enable fast and
precise multi-bit rowhammering. Specifically, in Section 6.1
we introduce a multi-page memory massaging technique that
exploits CPU local page cache to accurately position the tar-
get victim pages. Section 6.2 illustrates the design of our
precise hammering scheme which ensures only the desired
bits are flipped. We present an online memory re-templating
technique in Section 6.3 that offers fast correction of obsolete
bit flip profile.

6.1 Multi-page Memory Massaging
In order to induce bit flips in the target DNN model, memory
massaging is required to map each victim page to a physi-
cal page whose vulnerable bit offset matches the one of the
targeted bit. In double-sided rowhammer, this includes a pre-
step to set some of the attacker’s pages in three consecutive
rows in the same bank (sandwich layout), and the attacker
should be aware of such memory layout. When the attacker’s
memory is properly situated, the vulnerable page positioning
process begins.

Massaging pre-step. In order to get the sandwich layout, the

2If one physical location has been chosen to flip model bit i, then it would
not be utilized again for model bit j even if both the page bit offset and the
flip direction match.

attacker needs to be aware of both DRAM addressing and
the physical addresses of its own pages. Based on our threat
model, we assume that the adversary can not access privileged
system interfaces including /proc/pid/pagemap for direct
address translation. Our attack can leverage previously pro-
posed memory manipulating technique to force allocations
of 2MB consecutive memory blocks [32]. Alternatively, the
attacker can allocate a large chunk of memory in user-space,
which will contain multiple sets of physically consecutive
pages with a very high probability. We use the row buffer side
channels as presented in [43] to reverse engineer the DRAM
addressing function. The addressing function maps each page
to one or multiple DRAM location pairs, denoted as (row, set).
The set number uniquely determines the (channel, rank, bank)
combination for a specific physical address.

Once the attacker gains knowledge of its own physical
page layout, the attacker reads the targeted chain of bits to
flip. In our implementation, each targeted bit is represented
as a three-element tuple (vpi, bopi, mode) where vpi is the
targeted victim page, bopi is the targeted bit offset in that
page. Finally mode indicates the desired flip direction and
can be set to 0 (i.e., 1→0 flip) or 1 (i.e., 0→1 flip). In our
attack instance where model weight file is the target, the page
identifier is the serial number of the 4KB content that contains
the targeted weight parameters. The attacker then checks all its
own physical pages and looks for pages that have the targeted
bit locations (i,e., bop). Flipping the targeted chain of bits
is considered plausible with the attacker’s current memory
layout if each targeted page can be positioned and hammered
independently. In case that certain vulnerable pages are not
available, the attacker can verify the satisfiability for the next
candidate chain of bits.

6.1.1 Compact Aggressors using In-row Pages

Conventionally, rowhammer attacks use full occupation of the
two aggressor rows. However, preparing full aggressor rows
for each target page unnecessarily wastes page utilization
efficiency, and can also potentially increase the chance of
failure for target page mapping. For instance, let’s assume
that one target page pgid1 needs to be positioned at bank0
and row10 while another target page pgid2 has to be placed at
bank0 and row11. In this scenario, if we place pgid1 at row10,
row9 and and row11 should be both locked as aggressor rows,
making it impossible to map pgid2 to row11 at the same
time. Since memory-exhaustion can raise alarm for potential
rowhammer exploitation, it is critical for the attack to map
target pages and also limit its memory footprint.

To improve page utilization and maximize chance of suc-
cessful target page mapping, our rowhammer technique uti-
lizes compact aggressors. The key observation is that data
positioning can manifest at a finer-grained level: a portion
of a 4KB physical page that is mapped to a certain row in
one bank [13, 43]. We call each of such page portions the

1468 29th USENIX Security Symposium USENIX Association

P1 P2

P3 P4
P5 P6

Logical Bank

…

8KB DRAM Row

Single Channel

(a) One-channel memory

P1 P2 P3 P4

P5 P6 P7 P8
P9 P10 P11 P12

Logical Bank

…

8KB DRAM Row

Channel 1

P1 P2 P3 P4

P5 P6 P7 P8
P9 P10 P11 P12

Logical Bank

…

8KB DRAM Row

Channel 2

(b) Dual-channel memory

Figure 3: Physical page to row mapping on systems with
two different memory configurations (left: single channel
single DIMM/DDR3-Ivy Bridge; right: dual channel single
DIMM/DDR3-Ivy Bridge).

…

Logical Bank

aggressor-1

aggressor-2
aggressor-1

aggressor-2

aggressor-1

aggressor-2

aggressor-1

aggressor-2

Aggressor set 1
Aggressor set 2

Aggressor set 3 Aggressor set 4

Figure 4: An example of attack memory preparation using
compact aggressors. We illustrate four aggressor sets repre-
sented using different filled patterns.

in-row page. Figure 3 illustrates page-to-row mapping for
two different memory configurations. As we can see, for a
single channel single DIMM configuration, one physical page
is mapped to one row, and thus each DRAM row contains
two different physical pages. In a dual-channel memory set-
ting, each page is split evenly to two in-row pages, and each
DRAM row has four in-row pages (corresponding to four
distinct physical pages).

We note that an in-row page is the atomic hammering unit
for each vulnerable page since other portions of the same
page are mapped to different banks/channels. As long as the
in-row pages right above and below the one of the victim are
setup and controlled as aggressors, the attacker is still able
to induce the desired bit flip. Our proposed attack leverages
compact aggressors to prepare memory layout for efficient
rowhammering. Figure 4 illustrates a possible combination of
aggressor settings considering a 4KB in-row page size (i.e.,
configuration in Figure 3a). We can observe that the victim
page in aggressor set1 shares the same DRAM row with the
first aggressor in aggressor set2. Additionally, aggressor set3
and set4 occupy exactly the same consecutive rows, but they
are able to induce bit flips without interference. Obviously,
this approach improves efficiency for page usage for the target
page mapping phase.

6.1.2 Target Page Positioning

With the knowledge of compact aggressors, the attacker’s
next step is to find a mapping of each vulnerable page to the
physical page in its memory space. We utilize a simple but
effective heuristic algorithm that positions target pages with
the least number of satisfiable physical locations first. Once
the mapping strategy is finalized, the attacker releases the
corresponding physical pages and remaps the target page.

To accurately locate all the target pages, we take advantage
of per-cpu page frame cache in Linux-based systems. Linux
system uses the buddy system to manage page allocation.
Memories are globally organized as zones by the buddy al-
locator. When a physical page is freed by a process running
on certain CPU, the freed page is not immediately returned to
the global memory pool. Instead, freed pages are pushed to a
local fast page frame named per-cpu pageset. Later when
the OS needs to allocate a new page in the same hardware
context, it will first attempt to get the page from the head of
the list (i.e., stack-like access policy). Such design facilitates
usage of pages that are still hot in private caches. Since the
per-cpu page frame cache only manages pages locally, it has
extremely low noise as compared to global memory pools.
Note that when the number of pages frames in the list exceeds
certain recycling threshold, a batch of pages are returned to
the global pool maintained by the buddy system. We exploit
per-cpu page frame cache to position the target pages in the
following steps:
Step 1: The attacker determines the target page to exploitable
physical page mapping for the targeted bit chains. Sup-
pose we have K bits to flip, we can denote the mapping as
(pgidi, ppni), where pgidi represents the ith page in DNN’s
model weight memory and ppni is the designated physical
page frame for pgidi, where i is within [1, K].
Step 2: The attacker frees the target physical pages from
ppn1 to ppnK in order using the munmap system interface. To
avoid recycling of these pages to global pool, the number of
pages freed (K) should be significantly less than the recycling
threshold. In our testbed, we observe that the threshold is set
to 180 by default, which is sufficient for our exploitation.
Step 3: Right after Step 2, the attacker loads the target pages
of the DNN model using mmap. The pages are loaded from
pgidK to pgid1. To avoid OS page pre-fetching that interrupts
the page mapping, we use fadvise with the FADV_RANDOM
after each mmap call. In the end, each target page is located to
the attacker-controlled physical location.

6.2 Precise Rowhammering
Once the target pages are placed in the exploitable locations,
the attacker begins the initialization phase for the aggressor
sets. Prior works typically use the row-stripe patterns (i.e., 1-
0-1 and 0-1-0) as they trigger most bit flips. However, certain
physical pages may exhibit multiple vulnerable locations (i.e.,

USENIX Association 29th USENIX Security Symposium 1469

multiple bit flips). As mentioned in Section 5, the attacker
needs to control the bit flips precisely at the targeted locations
since extra bit flips undermine the effectiveness of our attack.
Therefore, the attacker should avoid simultaneous bit flips at
undesired page offsets. Fortunately, it has been observed in
recent works that the cross-talk effect to a certain vulnera-
ble memory cell merely comes from the DRAM cells in the
adjacent rows at the same column [9, 32], thus it is possible
to control flips at bit granularity. Combining this knowledge
with the compact aggressors as discussed in Section 6.1.1,
we design a precise rowhammering technique using a data
pattern called column-page-stripe. Under such scheme, given
that the victim row has bit sequence b0b1...b jb jb j...bkbkbk...bn and
assume that the goal is to flip bit b jb jb j and bkbkbk, the attacker will
set the content of the two aggressors to b0b1...b jb jb j...bkbkbk...bn.
Particularly, we only configure the stripe pattern for the col-
umn where a bit flip is supposed to happen. For other bits
that are expected to stay unchanged, the bits in its aggressors
are kept the same as those in the victim page. Again, this
strategy is built based on the fact that a bit flip is only con-
trolled by bits in its aggressors that have the same column, and
will not be influenced by the aggressor’s bit values in other
columns. With compact aggressors, the attacker configures
the column-page-stripe pattern with the granularity of in-row
page.

6.3 Online Memory Re-templating

Memory templating collects the profile of vulnerable bit loca-
tion in DRAM modules. The validity of bit profile is based on
the fact that a considerable amount of the bit flips are repeat-
able and stable. Our attack exploits those stable bit flips found
in the templating process. However, we observed that even for
bit locations with stable flips, there are times (especially after
system reboots) when our attack failed to toggle the value in
the expected direction (e.g., 1→0). Interestingly, we found
that such bit location almost always allows bit flip in the oppo-
site direction (e.g., 0→1). Such phenomenon may potentially
be attributed to the effect of memory scrambling [29], which
is a procedure performed by the memory controller to encode
data before they are sent to DRAM modules. Particularly, the
encoding scheme is based on a random seed set at boot time.
Therefore, when system reboots, the memory controller may
flip the logical representation of a bit to be stored in certain
vulnerable cells. Accordingly, its bit flip orientation would
change. Note that the obsolescence of template is devastating
for our proposed attack as it requires precise bit flips.

In order to address this problem, we augment the mem-
ory massaging process with an additional step. Specifically,
before the attacker performs vulnerable page mapping (Sec-
tion 6.1), it first quickly verifies whether its memory template
has invalid flips for several stably-vulnerable memory cells.
This can be done by hammering a few pages in the attacker’s
own memory space. If expected bit flips are seen, the attacker

…

Logical Bank

…

Logical Bank

pp1:bop1

targeted bits: (vp1, bop1, 0)➞(vp2, bop2, 1)➞(vp3, bop3, 0)➞(vp4, bop4, 0)

pp2:bop2

pp3:bop3 pp4:bop4

agg.
set1 agg.

set2

agg.
set3

agg.
set4

(a) target page mapping

…

Logical Bank

…

Logical Bank

Per-cpu pagetset

pp2:bop2

pp3:bop3 pp4:bop4

pp1

freed freed
freed

freed freed

Per-cpu pagetset
pp1pp2pp3pp4… …

(b) target page release

…

Logical Bank

Per-cpu pagetset
…

…

Logical Bank

vp1
vp2

vp3 vp4

mmap target pages: vp4➞vp3➞vp2➞vp1
0
1
0

x
x
x

… …
x
x
x

1
0
1

x
x
x

… …
x
x
x

0
1
0

x
x
x

… …
x
x
x

0
1
0

x
x
x

…
x
x
x

(c) vulnerable page positioning and precise hammering

Figure 5: A step-by-step demo of DeepHammer attack.

knows that memory controller most likely has not changed
its scrambling scheme yet, and thus the previous bit flip pro-
file is still valid. Otherwise, the attack performs fast online
memory re-templating to correct the bit flip profile. It is worth
noting that a complete templating of the attacker’s memory
space can take many hours or even days. We figure out that
complete profiling is not necessary. This is because no mat-
ter how data scrambling is performed, the locations of the
vulnerable memory cells would not change. Based on this
observation, the attacker first filters out pages whose physical
frames do not have vulnerable bits at the desired locations
(according to the targeted bit chain). This eliminates the need
for re-templating for a vast majority of pages allocated by
the attacker. For the rest of the pages, the attacker only needs
to re-test its bit flip direction. Specifically, for each targeted
page offset, the attacker exams the pages that have bit flips in
that specific page offset regardless of whether 0→1 or 1→0
direction was recorded. The new direction is then determined

1470 29th USENIX Security Symposium USENIX Association

and used to drive target page mapping3.

6.4 Putting It All Together
By combining all the aforementioned rowhammer techniques,
we build our DeepHammer framework. We illustrate a step-
by-step exploitation as shown in Figure 5. Figure 5a shows
the process where the attacker prepares compact aggressor
layout for all vulnerable pages. In this step, the attacker takes
as inputs the targeted bits that are generated from our bit
search algorithm as described in Section 5. The attacker is
aware of the pages in its memory space that come with vul-
nerable bits at certain page offsets based on the bit flip profile.
The attacker then prepares a mapping between the targeted
pages to its physical pages, which will determine what page
to release later. If the bit flip profile is obsolete due to memory
scrambling, the attacker additionally performs an online mem-
ory re-templating process (not shown in this figure). Once
vulnerable page to physical page mapping is identified and
the compact aggressors are set, the attacker starts releasing
the victim’s corresponding physical pages by exploiting the
per-cpu page frame cache. In this illustration, the attacker re-
leases the pages in the order: pp1, pp2, pp3, pp4 where ppi
is the desired location to flip bopi in the target DNN’s mem-
ory vpi (Figure 5b). After all target page frames are pushed
to the per-cpu page frame cache, the attacker immediately
loads the targeted victim pages in the reverse order as shown
in Figure 5c: vp4, vp3, vp2, vp1. This achieves the expected
mappings of (vp1, pp1), (vp2, pp2), (vp3, pp3), (vp4, pp4).
Finally, the attack prepares the content of the aggressors to fa-
cilitate precise hammering using targeted column-page-stripe
pattern. As shown in the right side of Figure 5c, to flip the bit
at offset bop1 from ‘0’ to ‘1’ in the target page vp1, DeepHam-
mer sets the stripe pattern 1−0−1 only at one column that
corresponds to bop1. All the other columns in the aggressor
set are set to x−x−x (a solid pattern that minimizes inter-cell
disturbances and avoids extra bit flips). When the aggressors
are configured correctly, DeepHammer starts inducing bit
flip at the four locations with doubled-sided rowhammering.
In case that multiple aggressor sets are located in the same
rows (maximum 2 for single channel and 4 for dual chan-
nel), DeepHammer can induce multiple targeted bit flips in
one hammering iteration (e.g., aggressor set3 and aggressor
set4). Once the online exploitation finishes, the target DNN
system is compromised with inference accuracy degraded to
the attacker’s desired level.

7 Experimental Setup

Software setup. Our deep learning platform is Pytorch 1.04
that supports CUDA 9.0. Our attack is evaluated with both

3Note that our discovery about the effect of scrambling on bit flip orien-
tation is based on tests of our existing hardware setup. Future investigation
may be necessary to confirm its validity on new hardware platforms.

computer vision and speech recognition applications. For
object classification tasks in computer vision, several visual
datasets, including Fashion-MNIST [59], CIFAR-10 [30] and
ImageNet [11] are utilized. Fashion-MNIST is the only gray-
scale dataset in our setup, which contains 10 classes of fashion
dress images split into 70k training images and 10k test im-
ages. CIFAR-10 has 60K RGB images in size of 32×32. We
follow the standard practice where 50K examples are used
for training and the remaining 10K for testing. ImageNet is
a large dataset with 1.2M training images covering 1000 dis-
tinct classes. Images of size 224 × 224 are evenly distributed
into the 1000 output classes. For Fashion-MNIST, a simple
LeNet architecture [33] is used. For CIFAR-10, we evaluate
on VGG-11, VGG-16 [50], ResNet-20 [19] and AlexNet [31].
To perform classification on ImageNet, we deploy ResNet-
18, ResNet-34, ResNet-50, and two mobile network archi-
tectures including SqueezeNet [27] and MobileNet-V2 [47].
For speech recognition applications, we leverage the Google
speech command dataset [58] that is used for limited vocab-
ulary speech recognition tasks. It has 12 output classes for
the voice commands. We test this dataset using VGG-11 and
VGG-13 [50] architectures.

Hardware setup. Our DNN models are trained and analyzed
on GeForce GTX 1080 Ti GPU platform. The GPU operates
at a clock speed of 1481MHz with 11GB dedicated memory.
The trained model is deployed on a testbed machine where
our proposed attack is evaluated. The inference service runs
on an Ivy Bridge-based Intel i7-3770 CPU that supports up
to two memory channels. We have set up two different mem-
ory configurations for the machine. The first one is a single
channel single DIMM setting with one 4GB DDR3 memory
as shown in Figure 3a, and the second configuration features
a dual-channel single DIMM setting with two 4GB DDR3
memory modules (Figure 3b).

Memory templating. We reverse-engineer the DRAM ad-
dressing scheme using the technique in [43]. With the ad-
dressing function, the attacker performs memory templating
by scanning the rows in the target DRAM modules. Each bank
in the DRAM has 32768 rows, and each DRAM DIMM has
16 banks. We observe that bit flips are uniformly distributed
across banks. Our attack randomly samples rows in each of
the bank. It is worth noting that while templating is an offline
process, it is important that it does not corrupt the system to
avoid raising security alarms. Therefore, the attacker skips
rows that are close to physical pages not belonging to itself.

8 Evaluation

In this section, we present the evaluation results to show the
effectiveness of our proposed DeepHammer attack.

Bit flip profile. To extract most of the bit flips from the tar-
get DRAM module, doubled-sided rowhammering with row-
stripe data pattern (1-0-1 and 0-1-0) are utilized. We first

USENIX Association 29th USENIX Security Symposium 1471

Dataset Architecture Network
Parameters

Acc. before
Attack (%)

Random Guess
Acc. (%)

Acc. after
Attack (%)

Min. # of
Bit-flips

Fashion MNIST LeNet 0.65M 90.20 10.00 10.00 3

Google
Speech Command

VGG-11 132M 96.36
8.33

3.43 5
VGG-13 133M 96.38 3.25 7

CIFAR-10

ResNet-20 0.27M 90.70

10.00

10.92 21
AlexNet 61M 84.40 10.46 5
VGG-11 132M 89.40 10.27 3
VGG-16 138M 93.24 10.82 13

ImageNet

SqueezeNet 1.2M 57.00

0.10

0.16 18
MobileNet-V2 2.1M 72.01 0.19 2

ResNet-18 11M 69.52 0.19 24
ResNet-34 21M 72.78 0.18 23
ResNet-50 23M 75.56 0.17 23

Table 1: Results of vulnerable bit search on different applications, datasets and DNN architectures.

perform an exhaustive test by hammering rows in all the
banks. We configure the hammering time for each row to be
190ms, which is sufficiently long to induce bit flips in vulner-
able cells. In the memory template phase, we observe 2.2 bit
flips every second. Overall, we found that each bank contains
35K to 47K bit flips. Templating of each bank takes about 5
hours. We further observe that more than 60% of the vulnera-
ble physical pages have at least two flippable memory cells.
This highlights the need to perform precise rowhammering
using our proposed targeted column-page-strip pattern.

Based on our experiments, it takes about 120 seconds for
our flip-aware bit searching algorithm to generate one can-
didate. Note that since bit search can be done offline, it is
not time-critical as compared to the online exploitation phase.
The attacker’s objective is to completely malfunction a well-
trained DNN model by degrading its inference accuracy to
that of random guess. Therefore, the ideal accuracy for a suc-
cessful attack will be close to (1/# of output classes)×100%.
Apparently, the target accuracy after attack would be different
for distinct datasets. For instance, CIFAR-10 and ImageNet
have 10 and 1000 output classes, thus the expected inference
accuracies after exploitation would be around 10% and 0.1%,
respectively.Table 1 demonstrates the identified bit flips and
attack results once all bits are flipped among 12 different
architecture-dataset configurations. As shown in the figure,
DeepHammer successful compromises all the networks using
maximum 24 bit flips. Moreover, the required number of bit
flips fluctuates significantly across configurations. We note
that the vulnerability to model bit flips can potentially be
affected by both network size and network topology. Specif-
ically, for the CIFAR-10 dataset, with a larger network size,
VGG-16 has demonstrated relatively higher robustness as
compared to VGG-11 (13 vs. 3 bit flips). Such observation
aligns with previous studies on adversarial input attack [40]
showing potential improvement of model robustness with in-
creasing network size. Additionally, from network topology

perspective, the ResNet architecture family has consistently
demonstrated better resilience to model bit flips with more
than 20 bit flips required for successful attacks. We hypoth-
esize that such characteristics may be due to the existence
of the residual connection in the networks (See Section 9.2).
In compact networks, MobileNet-V2 is extremely vulnera-
ble on the ImageNet dataset where only 2 targeted bit flips
would suffice for the success, which is considerably less than
SqueezeNet. Note that MobileNet-V2 has several distinguish-
ing aspects in terms of network topology and size: (i) The
MobileNet architecture family is different from the others
with the presence of the combined depth-wise separable con-
volution and point-wise convolution layer; (ii) It has a deep
network architecture with 54 layers while hosting a relatively
small amount of model parameters. We envision that network
size and topology have an interplay in terms of influencing
the vulnerability of DNN models. Finally, besides computer
vision application, DeepHammer is also capable of compro-
mising VGG-11 and VGG-13 on the Google speech command
dataset, which reveals that our proposed attack is effective for
a wide range of DNN models and application domains.

Note that our searching algorithm could generate multiple
bit chains to attack one network. We report the minimum num-
ber of bits required in Table 1. Table 2 illustrates 3 identified
bit chains from our searching algorithm to attack VGG-16
in CIFAR10 dataset. Due to space limit, more identified bit
chain samples for other network architectures are shown in
Table 4 of Appendix D. We observe that, to successfully at-
tack VGG-16, DeepHammer only needs to attack as few as
13 bits. Furthermore, in terms of bit flip direction (i.e., mode),
more than 70% of the vulnerable bits use 1→0 flip. Such high
disparity is because, in a typical DNN model, vast majority of
the weights are 0s while the non-zero weights play a key role
in determining the classification output. Therefore, to maxi-
mize accuracy drop, modifying non-zero weights at proper
locations can considerably change the prediction behavior.

1472 29th USENIX Security Symposium USENIX Association

of Identified chain of bit flips Hammer Accuracy
Bits (page#, bop, mode) time (s) (%)

13 c1: (1,4847,0)→(8,25719,0)→(4,23111,0)→(20,7887,0)→(128,3047,0)→(10,1623,0)→(13,2247,0) 66 10.82
→(2,16447,1)→(9,22079,1)→(356,16823,0)→(60,11655,0)→(3,2087,1)→(3720,29048,0)

c2: (1,11335,0)→(8,223,0)→(28,12567,0)→(7,743,1)→(2,17127,0)→(10,3135,1)→(91,9527,0)→
18 (24,28447,1)→(9,13535,1)→(6,30071,1)→(3720,28728,0)→(15,28431,1)→(460,24375,0)→(154,20671,0) 82 10.70

→(92,32103,0)→(48,12767,1)→(157,15023,0)→(16,27911,1)
c3: (9,12839,0)→(1,9367,0)→(17,9687,0)→(4,20031,0)→(70,17479,0), (25,975,0), (229,9199,0)→

20 (24,31287,0)→(14,11247,0)→(183,5167,0)→(55,12063,0)→(62,9111,0)→(29,25391,0)→(3720,16248,1) 96 10.88
→(2792,1192,0)→(395,30063,0)→(706,4200,1)→(292,19583,0)→(28,21263,0)→(431,20550,1)

Table 2: List of three candidate bit chains (i.e., c1, c2 and c3) to attack VGG16 generated by our flip-aware bit search algorithm.

Another critical observation is that the targeted weight bits
mostly cluster in the first and last a few layers. For instance,
for VGG-16, half of the 13 targeted bit flips (Table 2) are
located in the front-end of the network. Additionally, all the 3
bit flips in VGG-11 network are located in the last 3 layers.
This potentially indicates that the first and last layers of DNN
models are more vulnerable to model weight bit flips. Based
on prior studies and our findings, we believe this is because
perturbations in the early stages of DNN can get propagated
and thus amplified significantly towards the end, on the other
hand, changes of model parameters at the back-end of the
network can directly alter the classification outcome.

DeepHammer online exploitation. The online exploitation
phase is implemented as a standalone process. We run Deep-
Hammer to target each of the three bit chains as demonstrated
in Table 2. In order to find aggressor sets for all the targeted
bits, DeepHammer needs to pre-allocate a chunk of main
memory. Our experiments show that to satisfy target page
mapping for multiple victim pages, DeepHammer has to al-
locate around 12% of the system memory. Apparently, the
size of allocation depends on the number of desirable bits to
flip. Our profiling test shows that allocation of 20% system
memory almost always guarantee satisfaction of mapping. We
note that such memory allocation can succeed most of the
time in the system without triggering out-of-memory excep-
tions (unless the available system memory is extremely low).
Additionally, our attack only holds the memory for target page
mapping (the step shown in Figure 5c). After the mapping
is completed, the attacker can then release the vast majority
of memory pages that are not needed anymore, making it
unlikely for system underlying security policy to raise alarms.

Table 2 also presents the online exploitation performance
for VGG-16 under the three candidate bit chains. For all the
three runs, our proposed attack is able to achieve the goal of
degrading the inference accuracy of the target DNN to about
10%. Due to variations in test dataset, the actual achieved ac-
curacy is slightly higher (e.g., 10.82% for c2). We observe that
DeepHammer can perform target page mapping and precise
rowhammering very fast. All three attack instances require
less than 100 seconds to induce bit flips. The high attack ef-

0
100
200
300
400
500

FM
NI
.-L
eN
et

Go
og
le-
VG
G1
1

Go
og
le-
VG
G1
3

CI
FA
R-
RN
20

CI
FA
R-
Al
ex
Ne
t

CI
FA
R-
VG
G1
1

CI
FA
R-
VG
G1
6

Im
ag
eN
et-
Sq
u.

Im
ag
eN
et-
Mo
bi.

Im
ag
eN
et-
RN
18

Im
ag
eN
et-
RN
34

Im
ag
eN
et-
RN
50

Ti
m

e
(S

ec
)

Re-templating Precise-hammering

Figure 6: DeepHammer re-templating time and multi-bit ham-
mering time for all dataset/architecture combinations. The
templating process for entire memory takes about 28 hours.

ficiency is due to the use of per-cpu page frame buffer that
allows fast remapping of previously released pages in a deter-
ministic manner. This avoids the process of page relocation
that can take substantially longer. Figure 6 illustrates the Deep-
Hammer manifest times (on an average of 10 runs) for all
model and dataset combinations. Specifically, templating the
whole memory takes about 24 hours. Note that this step can
be done in isolation by the attacker without affecting system
behavior, thus it is not on the critical path. More importantly,
our online precise hammering requires less than two minutes
to flip upto 24 bits among all models. Furthermore, when the
bit flip profile is obsolete, the fast re-templating process only
takes less than 5 minutes (as opposed to tens of hours for a
complete templating). This is because we only need to check
the pages with vulnerable memory cells at the desirable loca-
tions in the obsolete profile, as memory scrambling merely
changes the flip direction, but not the vulnerable bit locations
(See Section 6.3). Overall, we observe that DeepHammer
can successfully compromise all the target quantized DNN
models within only a few minutes, which indicates that such
attack can pose practical threat to DNN model integrity.

Impact of DRAM vulnerability. Our memory templating
phase has identified about 600K bit flips in the DRAM mod-
ule. This shows the underlying DRAM modules are highly
vulnerable to rowhammer exploitation. We further perform a
sensitivity study to understand the impact of DRAM vulnera-

USENIX Association 29th USENIX Security Symposium 1473

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

moderate low rare

A
cc

ur
ac

y
af

te
r

at
ta

ck

DRAM vulnerability levels

ResNet-20 AlexNet VGG-11 VGG-16

Attack Goal

18 4 41 4 6 13 5 9 351010

Figure 7: Attack results for DRAMs with different vulner-
ability levels. The numbers on top of each bar denote the
minimum bit flips needed for a successful attack.

bility on the effectiveness of DeepHammer. Specifically, we
randomly sample the bit profile at three different rates (10%:
a moderate amount of flips, 1%: low amount of flips, 0.1%:
rare flips), which match a wide spectrum of realistic DRAM
vulnerability levels according to the prior study in [54]4. Note
that DeepHammer is designed to work effectively with par-
tial knowledge of bit flip patterns. This is because the precise
hammering technique ensures only bits at the locations the at-
tacker is aware of would be flipped (See Section 6.2). Figure 7
demonstrates the attack results on 4 different models using
CIFAR-10 dataset. We can see that the attacks on AlexNet,
VGG-11 and VGG-16 are successful under all the three vul-
nerability levels. For ResNet-20, the achieved accuracy is
slightly higher than attack goal under 1% sampling (11.16%
prediction accuracy), but can still be considered as effective.
However, attacking ResNet-20 is not successful (18.67%)
when DRAM is under the least vulnerable configuration. Note
that ResNet-20 has the smallest network size (See Table 2),
and thus involves a very small number of physical pages to ex-
ploit. Therefore, under less vulnerable DRAM configurations,
the number of bits that can be practically flipped is heavily
constrained by the bit profile in the target system, making
it hard for our search algorithm to target top-ranked model
bits. Differently, our investigation shows that if the system
constraint is not modeled, a theoretical attack can succeed
using 20 bit flips in ResNet-20. We note that this highlights
the importance of our proposed flip-aware bit search scheme
with respect to understanding the empirical danger of bit flip
attacks against DNNs in real system.

DeepHammer with single-sided hammering. We also stud-
ied the effectiveness of DeepHammer using single-sided
rowhammer that does not require locating two aggressor rows.
On the same machine, we observe out that with single-sided
rowhammering, much less vulnerable bits are found (1876
0→1 flips and 1468 1→0 flips). We tested the same 4 mod-

4We choose to sample our existing bit profile instead of directly using
existing bit flip database in [54] so that we can empirically demonstrate the
result of the attacks.

els used for the aforementioned DRAM vulnerability study.
We find that the results of DeepHammer using singled-sided
hammering are similar to doubled-sided rowhammering un-
der the lowest vulnerability level. Specifically, our attack on
AlexNet and VGG-11 succeeded with 7 and 6 bit flips, re-
spectively while the desired accuracy drop is not achieved for
VGG-16 and ResNet-20. Such results are expected since the
number of total exploitable bits are about 0.3% compared to
doubled-sided rowhammering.

9 Discussion

9.1 Untargeted and Targeted Attacks

DeepHammer mainly focuses on untargeted attacks that de-
grade the overall inference accuracy to the close-to-random-
guess level without explicitly controlling the specific output
class. However, we do have some useful observations that
could lead to a potential targeted attack. Observation-1: The
identified bit-flip chain forces almost all the inputs to be clas-
sified into one particular output group, instead of completely
random, even though the test batch chosen to calculate gradi-
ent is random and may contain inputs from different groups.
We call this particular output as winner-group. Observation-2:
We did not intentionally choose the winner-group in our orig-
inal method, thus DeepHammer does not control the winner-
group directly. However, we find that the winner-group is
heavily dependent on which group of input sample batch is
used to compute the bit gradients. This is likely because our
search algorithm mainly follows the gradient-descend direc-
tion to amplify particular weights that are strongly linked to
one particular output group. Thus, the test data in different
groups may help us find different weights strongly connected
to the corresponding output groups, which could enable con-
trolling of the winner-group by the adversary. These observa-
tions motivate us to find a way of extending our attack to a
variant of targeted attack: forcing DNN to classify any input
to one target group if the attacker can provide one batch of
test data belonging to the target group to our search algorithm.

To validate this targeted attack extension, we test ResNet-
20 on CIFAR 10 dataset. To target class-1, we intentionally
choose a test batch with all images from class-1 to perform
our flip-aware bit search. It shows that almost 99.63% of all
test inputs will be classified into class-1 with just 18 bit flips.
Similar results are observed in all other groups (e.g., class-
9 targeted attack requires 19 bit flips). We will investigate
further in our future work about other types of targeted attacks,
e.g., only misclassifying certain inputs to specific classes
without influencing the rest of inputs.

9.2 Potential Mitigation Techniques

DNN algorithm level mitigation. Prior works have shown
that wide DNNs are typically more robust to noise injection

1474 29th USENIX Security Symposium USENIX Association

Architecture:
Acc. Before
Attack (%)

Acc. after
Attack (%)

of
Bit-flips

ResNet-20 90.7 10.9 21
ResNet-20×2 92.0 14.2 30

Table 3: Ablation study of model redundancy.

for adversarial inputs [20, 40]. As DeepHammer can be con-
sidered as a class of attack that injects noises to network
weights, we expect wider networks could be more resilient
to such attack. To validate this hypothesis, we evaluate the
effectiveness of DeepHammer for both standard ResNet-20
and ReseNet-20 with doubled width (×2). From Table 3, we
can see that DeepHammer requires higher number of flips
as we increase its network width by 2×. In contrast to the
ResNet-20 baseline model which requires only 21 flips to
reach 10.92% accuracy, the ResNet-20 (×2) model accuracy
sustains at 14.19% even after 30 flips. Apparently, increas-
ing the network width (i.e. redundant model) alleviates the
effect of DeepHammer at the cost of an increased number
of network parameters. Furthermore, based on the results of
different network architectures shown in Table 1, we find that
the ResNet family is generally more robust. In contrast to
other deeper networks that come at the expense of gradient
vanishing [22], ResNet’s residual connections make the net-
work’s learning process relatively more resilient, although it
is still vulnerable to DeepHammer.

Protecting top-N vulnerable bits in models. One straight-
forward solution is to identify the n most vulnerable bits and
selectively protect these bits by system software. For example,
in Round-i (Ri), we can apply the proposed GBR algorithm
to identify vulnerable n bits that degrade the DNN accuracy
close to random guess (10% for CIFAR-10), then those vul-
nerable bits are assumed to be protected by OS and labeled as
bits that cannot be flipped in round-(i+1). We run the experi-
ments with ten rounds. As shown in Figure 8, it does not show
significant attack efficiency degradation when top vulnerable
bits are secured. This results indicate that the search space
of vulnerable bits is relatively large. Thus protecting only a
small amount of those vulnerable bits may not be a feasible
approach. As a result, defense mechanisms that provide both
software- and hardware-level guarantee of data integrity may
be one possible direction for future investigation.

Hardware-based protection against model tampering.
Another direction is to leverage hardware support to avoid
data tampering on vulnerable/untrusted memory modules.
Several recent works have studied the use of secure enclave
(e.g., Intel SGX [10]) to protect the privacy of critical data in
DNNs such as sensitive user inputs, training data and model
parameters [26, 56]. SGX-based solution also offers data in-
tegrity protection against off-chip data tampering. While such
approaches can work on small DNN models, Intel SGX-based
techniques are subject to high performance overhead for main-

2 4 6 8 10 12 14
Number of Bit-flips in each round

20

40

60

80

Te
st

 A
cc

ur
ac

y(
%

)

R1
R2

R3
R4

R5
R6

R7
R8

R9
R10

Figure 8: Test accuracy versus number of bit flips of VGG-16
on CIFAR-10. Curve in darker color indicates later round.

taining large models in enclaves [18]. This could cause serious
issues for applications that are latency-critical. On the other
hand, while many vulnerable bits exist in DNN model, our in-
vestigation has revealed that the identified bits are mostly con-
centrated in the first and last a few layers (See Appendix D).
Therefore, securing these vulnerable layers instead of the en-
tire model may efficiently improve the robustness of DNN
models with low overhead. Particularly, one promising so-
lution is to selectively preload these critical model layers
onto CPU caches. Therefore, even some bits are corrupted
in the DRAM, it will not adversely influence the inference
accuracy of the target model. We note that there are already
commercial-off-the-shelf supports that enable allocation of
dedicated cache regions to applications for Quality-of-Service
purposes (e.g., Intel CAT [28]). System administrators can
take advantage of this feature to lock vulnerable model layers
to prevent from tampering while not incurring considerable
runtime overhead.

9.3 Limitations and Future Work

Our threat model assumptions are similar to the conventional
white-box attack approaches in related domain [20, 40]. Un-
der such assumption, an adversary has access to the network
architecture, weight values and one batch of test data. While
such information can be potentially gained as discussed in
Section 3, such requirement may not be applicable in all sce-
narios. To address such limitation, in our future work, we
will explore ways to perform the attack in a semi-black box
setup without precisely knowing the weights of a victim DNN
model. Note that network architecture information is rela-
tively easy to obtain due to the fact that many applications
directly adapt popular network architectures. One potential ap-
proach for the adversary to perform the semi-black box attack
could be training a substitute model through label querying
of the target model and then transferring the attack from the
substitute model to the target model.

USENIX Association 29th USENIX Security Symposium 1475

10 Related Work

Machine learning has been increasingly adopted in a vari-
ety of application domains [8, 21, 34–36, 49]. Deep learning
is the most promising technique due to its superior perfor-
mance. Previous DNN security studies mainly focus on ex-
ternal threats such as adversarial examples where an attacker
maliciously perturbs inputs with the intention to mislead indi-
vidual classification outcome [40, 52]. Recently, some works
start to investigate attacks that tamper DNN model integrity
internally. These studies demonstrate that perturbations of
model parameters can have significant impact on DNN infer-
ence behavior from algorithmic perspective [44, 68].

Several fault attacks have revealed the DNN robustness is-
sues with respect to direct model tampering. Liu et al. present
a simulated fault attack targeting model bias parameters that
disrupts DNN prediction [37]. DeepLaser demonstrates a
laser-based fault injection method which hijacks DNN acti-
vation functions [5]. Note that such attacks require physical
proximity to induce faults in hardware. Recently, Hong et al.
perform studies on single bit flip attack against various model
parameters in full-precision DNN models [23]. However, our
study has shown that quantized models are robust to single bit
fault, and multiple carefully selected bit flips are required to
degrade the inference accuracy. Our proposed DeepHammer
work is the first end-to-end system level attack exploiting the
DRAM vulnerability on quantized DNN models.

Rowhammer attacks leverage the vulnerability widely ex-
isted in commodity DRAM modules [9, 14, 15, 29, 48, 54, 57].
There have been many proposed techniques to mitigate
rowhammer attacks. These defense mechanisms attempt to
capture/stop one or multiple necessary steps taken in the
rowhammer exploitation. Specifically, to avoid fast access
to DRAM, some systems can intentionally disable clflush in-
structions that allow memory requests to bypass caches [57].
To prevent memory row proximity to critical data structure
such as kernel-space memory, OS supports are proposed to
isolate user-space DRAM rows from kernel DRAM rows
through DRAM partitioning [4]. Additionally, many existing
rowhammer attacks use memory spraying in order to force
victim pages to vulnerable DRAM locations, this leads to
memory exhaustion that can be detected by system security
policies [39]. Hardware-based protection mechanisms such
as Targeted Row Refresh (TRR) monitors DRAM row ac-
cess and refreshes a DRAM row that is potentially under
attack [41]. ECC memories can potentially detect and correct
rowhammer-induced bit flips. However, recent works have
demonstrated that bit flips are still possible even with the
presence of these existing protection approaches [9, 57].

11 Conclusion

In this paper we present DeepHammer, a novel hardware-
based fault injection attack on quantized deep neural networks

that degrades DNN prediction accuracy to the level of random
guess. We find that to achieve the attack goal, multiple bit
flips in the weight parameters across several layers of the
target model are needed. We implement a novel flip-aware bit
search technique to identify the most vulnerable bits in weight
parameters that are flippable considering system constraints.
We further design a novel rowhammer attack framework with
several advanced system-level techniques to enable fast, de-
terministic and precise flipping of the targeted chain of bits.
We implement DeepHammer on real systems and systemati-
cally evaluate its effectiveness using 11 DNN architectures
with 4 datasets spanning different application domains. Our
evaluation shows that DeepHammer can successfully compro-
mise all the models with a maximum of 24 bits within a few
minutes. We also discuss several potential defense techniques
to mitigate DeepHammer attack. Our work highlight the need
to develop tamper-resistant deep neural networks to tackle
future hardware-based fault injection attacks.

Acknowledgement
This work is supported in part by U.S. National Science Foun-
dation under Grant No.1931871.

References

[1] Model zoo: Discover open source deep learning code
and pretrained models, 2019. https://modelzoo.co.

[2] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan
Picek. CSI neural network: Using side-channels to re-
cover your artificial neural network information. CoRR,
abs/1810.09076, 2018.

[3] Battista Biggio, Luca Didaci, Giorgio Fumera, and Fabio
Roli. Poisoning attacks to compromise face templates.
In International Conference on Biometrics, pages 1–7.
IEEE, 2013.

[4] Ferdinand Brasser, Lucas Davi, David Gens, Christo-
pher Liebchen, and Ahmad-Reza Sadeghi. Can’t touch
this: Software-only mitigation against rowhammer at-
tacks targeting kernel memory. In USENIX Security
Symposium, pages 117–130, 2017.

[5] J Breier, X Hou, D Jap, L Ma, S Bhasin, and Y Liu.
Deeplaser: Practical fault attack on deep neural net-
works. ArXiv e-prints, 2018.

[6] Wayne Burleson, Onur Mutlu, and Mohit Tiwari. Who
is the major threat to tomorrow’s security? you, the hard-
ware designer. In IEEE Design Automation Conference,
pages 1–5. IEEE, 2016.

[7] Nicholas Carlini and David Wagner. Towards evaluating
the robustness of neural networks. In IEEE Symposium
on Security and Privacy, pages 39–57. IEEE, 2017.

1476 29th USENIX Security Symposium USENIX Association

https://modelzoo.co

[8] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianx-
iong Xiao. Deepdriving: Learning affordance for direct
perception in autonomous driving. In IEEE Interna-
tional Conference on Computer Vision (ICCV), pages
2722–2730. IEEE, 2015.

[9] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and
Herbert Bos. Exploiting correcting codes: On the ef-
fectiveness of ecc memory against rowhammer attacks.
IEEE Symposium on Security and Privacy, 2019.

[10] Victor Costan and Srinivas Devadas. Intel sgx ex-
plained. IACR Cryptology ePrint Archive, 2016(086):1–
118, 2016.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255. IEEE,
2009.

[12] Hongyu Fang, Sai Santosh Dayapule, Fan Yao, Miloš
Doroslovački, and Guru Venkataramani. Prefetch-guard:
Leveraging hardware prefetches to defend against cache
timing channels. In IEEE International Symposium on
Hardware Oriented Security and Trust, pages 187–190.
IEEE, 2018.

[13] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. Grand pwning unit: Accelerating mi-
croarchitectural attacks with the gpu. In 2018 IEEE
Symposium on Security and Privacy, pages 195–210.
IEEE, 2018.

[14] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel
Genkin, Jonas Juffinger, Sioli O’Connell, Wolfgang
Schoechl, and Yuval Yarom. Another flip in the wall of
rowhammer defenses. In IEEE Symposium on Security
and Privacy, pages 245–261. IEEE, 2018.

[15] Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
Rowhammer.js: A remote software-induced fault attack
in javascript. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assess-
ment, pages 300–321. Springer, 2016.

[16] Seungyeop Han, Haichen Shen, Matthai Philipose,
Sharad Agarwal, Alec Wolman, and Arvind Krishna-
murthy. Mcdnn: An approximation-based execution
framework for deep stream processing under resource
constraints. In International Conference on Mobile Sys-
tems, Applications, and Services, pages 123–136. ACM,
2016.

[17] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with prun-
ing, trained quantization and huffman coding. arXiv
preprint arXiv:1510.00149, 2015.

[18] Lucjan Hanzlik, Yang Zhang, Kathrin Grosse, Ahmed
Salem, Max Augustin, Michael Backes, and Mario Fritz.
Mlcapsule: Guarded offline deployment of machine
learning as a service. arXiv preprint arXiv:1808.00590,
2018.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778. IEEE, 2016.

[20] Zhezhi He, Adnan Siraj Rakin, and Deliang Fan. Para-
metric noise injection: Trainable randomness to improve
deep neural network robustness against adversarial at-
tack. In IEEE Conference on Computer Vision and
Pattern Recognition. IEEE, 2019.

[21] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Se-
nior, Vincent Vanhoucke, Patrick Nguyen, and Tara N
Sainath. Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research
groups. IEEE Signal Processing Magazine, 29(6):82–97,
2012.

[22] Sepp Hochreiter. The vanishing gradient problem dur-
ing learning recurrent neural nets and problem solu-
tions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 6(02):107–116, 1998.

[23] Sanghyun Hong, Pietro Frigo, Yigitcan Kaya, Cristiano
Giuffrida, and Tudor Dumitras. Terminal brain dam-
age: Exposing the graceless degradation in deep neu-
ral networks under hardware fault attacks. CoRR,
abs/1906.01017, 2019.

[24] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. Binarized neural net-
works. In Advances in neural information processing
systems, pages 4107–4115, 2016.

[25] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. Quantized neural net-
works: Training neural networks with low precision
weights and activations. The Journal of Machine Learn-
ing Research, 18(1):6869–6898, 2017.

[26] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly
Shmatikov, and Emmett Witchel. Chiron: Privacy-
preserving machine learning as a service. arXiv preprint
arXiv:1803.05961, 2018.

[27] Forrest N Iandola, Song Han, Matthew W Moskewicz,
Khalid Ashraf, William J Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and< 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016.

USENIX Association 29th USENIX Security Symposium 1477

[28] Intel. Introduction to Cache Allocation Technology
in the Intel R© Xeon R© Processor E5 v4 Family, 2016.
https://software.intel.com/en-us/articles/
introduction-to-cache-allocation-technology.

[29] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin,
Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping bits in memory without
accessing them: An experimental study of dram distur-
bance errors. In International Symposium on Computer
Architecture, pages 361–372. IEEE Press, 2014.

[30] Alex Krizhevsky, Vinod Nair, and Geoffrey Hin-
ton. Cifar-10 (canadian institute for advanced re-
search). http://www.cs.toronto.edu/kriz/
cifar.html, 2010.

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information
Processing Systems, pages 1097–1105, 2012.

[32] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yu-
val Yarom. Rambleed: Reading bits in memory without
accessing them. In IEEE Symposium on Security and
Privacy. IEEE.

[33] Yann LeCun et al. Lenet-5, convolutional neural net-
works. URL: http://yann. lecun. com/exdb/lenet, 20:5,
2015.

[34] Li Li, Miloš Doroslovački, and Murray H. Loew. Dis-
criminant analysis deep neural networks. In 53rd Annual
Conference on Information Sciences and Systems, pages
1–6, March 2019.

[35] Li Li, Miloš Doroslovački, and Murray H. Loew. Loss
functions forcing cluster separations for multi-class clas-
sification using deep neural networks. In IEEE ASILO-
MAR Conference, pages 1–5. IEEE, Nov 2019.

[36] Chong Liu and Hermann J Helgert. An improved adap-
tive beamforming-based machine learning method for
positioning in massive mimo systems.

[37] Yannan Liu, Lingxiao Wei, Bo Luo, and Qiang Xu. Fault
injection attack on deep neural network. In IEEE/ACM
International Conference on Computer-Aided Design,
pages 131–138. IEEE, 2017.

[38] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee,
Juan Zhai, Weihang Wang, and Xiangyu Zhang. Trojan-
ing attack on neural networks. In 25nd Annual Network
and Distributed System Security Symposium, 2018.

[39] Xiaoxuan Lou, Fan Zhang, Zheng Leong Chua, Zhenkai
Liang, Yueqiang Cheng, and Yajin Zhou. Understand-
ing rowhammer attacks through the lens of a unified

reference framework. arXiv preprint arXiv:1901.03538,
2019.

[40] Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. In
International Conference on Learning Representations,
2018.

[41] Janani Mukundan, Hillery Hunter, Kyu-hyoun Kim, Jef-
frey Stuecheli, and José F Martínez. Understanding and
mitigating refresh overheads in high-density ddr4 dram
systems. In ACM SIGARCH Computer Architecture
News, volume 41, pages 48–59. ACM, 2013.

[42] Nina Narodytska and Shiva Prasad Kasiviswanathan.
Simple black-box adversarial perturbations for deep net-
works. arXiv preprint arXiv:1612.06299, 2016.

[43] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael
Schwarz, and Stefan Mangard. DRAMA: Exploiting
DRAM addressing for cross-cpu attacks. In USENIX
Security Symposium, pages 565–581, 2016.

[44] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-
flip attack: Crushing neural network with progressive
bit search. In The IEEE International Conference on
Computer Vision, October 2019.

[45] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel,
Cristiano Giuffrida, and Herbert Bos. Flip feng shui:
Hammering a needle in the software stack. In USENIX
Security Symposium, pages 1–18, 2016.

[46] Mauro Ribeiro, Katarina Grolinger, and Miriam AM
Capretz. Mlaas: Machine learning as a service. In
IEEE International Conference on Machine Learning
and Applications, pages 896–902. IEEE, 2015.

[47] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: In-
verted residuals and linear bottlenecks. In IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 4510–4520, 2018.

[48] Mark Seaborn and Thomas Dullien. Exploiting the dram
rowhammer bug to gain kernel privileges. Black Hat,
15, 2015.

[49] B. Shickel, P. J. Tighe, A. Bihorac, and P. Rashidi.
Deep ehr: A survey of recent advances in deep learning
techniques for electronic health record (ehr) analysis.
IEEE Journal of Biomedical and Health Informatics,
22(5):1589–1604, Sep. 2018.

[50] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

1478 29th USENIX Security Symposium USENIX Association

https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
http://www. cs. toronto. edu/kriz/cifar. html
http://www. cs. toronto. edu/kriz/cifar. html

[51] Ion Stoica, Dawn Song, Raluca Ada Popa, David Pat-
terson, Michael W Mahoney, Randy Katz, Anthony D
Joseph, Michael Jordan, Joseph M Hellerstein, Joseph E
Gonzalez, et al. A berkeley view of systems challenges
for AI. arXiv preprint arXiv:1712.05855, 2017.

[52] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[53] Tugce Tasci and Kyunghee Kim. Imagenet classification
with deep convolutional neural networks, 2015.

[54] Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. Defeating software mitigations against
rowhammer: a surgical precision hammer. In Interna-
tional Symposium on Research in Attacks, Intrusions,
and Defenses, pages 47–66. Springer, 2018.

[55] M. Teichmann, M. Weber, M. Zöllner, R. Cipolla, and
R. Urtasun. Multinet: Real-time joint semantic reason-
ing for autonomous driving. In IEEE Intelligent Vehicles
Symposium, pages 1013–1020, June 2018.

[56] Florian Tramer and Dan Boneh. Slalom: Fast, verifi-
able and private execution of neural networks in trusted
hardware. arXiv preprint arXiv:1806.03287, 2018.

[57] Victor Van Der Veen, Yanick Fratantonio, Martina Lin-
dorfer, Daniel Gruss, Clementine Maurice, Giovanni Vi-
gna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida.
Drammer: Deterministic rowhammer attacks on mobile
platforms. In ACM Conference on Computer and Com-
munications Security, pages 1675–1689. ACM, 2016.

[58] Pete Warden. Speech commands: A dataset for
limited-vocabulary speech recognition. arXiv preprint
arXiv:1804.03209, 2018.

[59] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747,
2017.

[60] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio
Fumera, Claudia Eckert, and Fabio Roli. Is feature
selection secure against training data poisoning? In
International Conference on Machine Learning, pages
1689–1698, 2015.

[61] Mengjia Yan, Christopher W. Fletcher, and Josep Torrel-
las. Cache telepathy: Leveraging shared resource attacks
to learn DNN architectures. CoRR, abs/1808.04761,
2018.

[62] Fan Yao, Milos Doroslovacki, and Guru Venkataramani.
Are coherence protocol states vulnerable to information

leakage? In IEEE International Symposium on High
Performance Computer Architecture, pages 168–179.
IEEE, 2018.

[63] Fan Yao, Miloš Doroslovački, and Guru Venkataramani.
Covert timing channels exploiting cache coherence hard-
ware: Characterization and defense. International Jour-
nal of Parallel Programming, 47(4):595–620, 2019.

[64] Fan Yao, Hongyu Fang, Miloš Doroslovački, and Guru
Venkataramani. Leveraging cache management hard-
ware for practical defense against cache timing channel
attacks. IEEE Micro, 39(4):8–16, 2019.

[65] Fan Yao, Guru Venkataramani, and Miloš Doroslovački.
Covert timing channels exploiting non-uniform memory
access based architectures. In Proceedings of GLSVLSI
2017, pages 155–160, 2017.

[66] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and
Yibo Xue. Droid-Sec: Deep learning in android malware
detection. In ACM Conference on SIGCOMM, pages
371–372. ACM, 2014.

[67] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and
Gang Hua. Lq-nets: Learned quantization for highly
accurate and compact deep neural networks. In Proceed-
ings of the European Conference on Computer Vision,
pages 365–382, 2018.

[68] Pu Zhao, Siyue Wang, Cheng Gongye, Yanzhi Wang,
Yunsi Fei, and Xue Lin. Fault sneaking attack: A stealthy
framework for misleading deep neural networks. In
2019 56th ACM/IEEE Design Automation Conference
(DAC), pages 1–6. IEEE, 2019.

[69] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou,
He Wen, and Yuheng Zou. Dorefa-net: Training
low bitwidth convolutional neural networks with low
bitwidth gradients. arXiv preprint arXiv:1606.06160,
2016.

A Model Quantization Configuration

Weight Quantization. Our deep learning models adopt a
layer-wise N-bits uniform quantizer. For the m-th layer, the
quantization process from the floating-point base Wf

m to its
fixed-point (signed integer) counterpart Wm can be denoted
as:

∆wm = max(Wf
m)/(2

N−1−1); Wf
m ∈ Rd (3)

Wm = round(Wf
m/∆wm) ·∆wm (4)

here d is the dimension of weight tensor, ∆wm is the step size
of weight quantizer. For training the quantized DNN with

USENIX Association 29th USENIX Security Symposium 1479

Dataset Architecture Chain of bits (page#, bop, mode)

F-MNIST LeNet (1,1519,0)→(4,12595,0)→(159,302,1)
Speech VGG-11 (6859,23008,1)→(1,1519,1)→(125,799,0)→(6866,23008,0)→(2533,20816,0)
Speech VGG-13 (1,2007,0)→(6904,25856,1)→(5465,2704,1)→(2155,6424,0)→

(1557,48,0)→(2778,15896,1)→(6914,25856,1)
(66,14055,0)→(4,25639,0)→(1,24399,0)→(9,16175,0)→(5,25047,0)→

CIFAR-10 ResNet-20 (2,29095,0)→(3,32759,0)→(10,9735,0)→(13,9031,0)→(14,25423,0)→
(55,22071,0)→(27,22071,0)→(50,15431,0)→(63,21071,0)→(21,25127,0)→

(12,23863,0)→(18,2215,0)→(39,21935,0)→(45,18655,0)→(48,21047,0)→(51,28719,0)
CIFAR-10 AlexNet (1,4319,0)→(21,4991,0)→(48,32135,0)→(355,1943,0)→(483,11487,0)
CIFAR-10 VGG-11 (591,7848,0)→(316,16407,0)→(111,26153,0)
ImageNet MobileNet-V2 (1,30855,0)→(2,3399,1)

(23,5167,1)→(7,11895,1)→(12,783,0)→(4,30071,0)→(21,26967,0)→
ImageNet SqueezeNet (6,1671,0)→(142,3062,0)→(10,12343,0)→(9,13847,0)→(8,1087,1)→

(304,23550,0)→(24,13423,1)→(5,631,0)→(141,10351,0)→
(60,19615,0)→(37,15231,0)→(94,4215,0)→(139,28959,0)

(1,29287,1)→(2,26855,0)→(95,2967,1)→(29,1855,1)→(93,15943,0)→
(9,1167,0)→(22,21791,0)→(31,14535,0)→(1571,16296,0)→(60,25367,0)→

ImageNet ResNet-18 (106,28031,0)→(13,18191,0)→(201,30055,0)→(384,30311,0)→
(134,24983,0)→(52,17543,0)→(2144,13568,0)→(1731,17648,1)→(565,1464,0)→

(268,26823,0)→(45,7295,1)→(931,31968,0)→(9321,7768,0)→(224,22887,0)
(112,5111,0)→(39,3103,0)→(90,23831,0)→(11,1567,0)→(21,4503,0)→(57,983,0)→

ImageNet ResNet-34 (278,7511,0)→(63,1967,0)→(203,4407,0)→(236,20471,0)→(164,23711,0)→(550,30648,0)→
(42,21911,1)→(46,29103,1)→(40,27575,1)→(47,14743,0)→(547,2998,1)→(433,23175,0)→

(26,11647,0)→(66,5015,0)→(798,31536,0)→(111,15863,1)→(28,24495,0)
(20,17911,0)→(62,31870,1)→(118,9342,1)→(16,17503,1)→(60,13438,1)→(379,14207,0)→

ImageNet ResNet-50 (115,23678,1)→(54,17719,0)→(100,25807,0)→(88,19599,0)→(37,17647,0)→(2179,24568,0)→
(2824,14432,0)→(5,31079,0)→(99,16231,0)→(82,13439,0)→(225,10111,0)→(40,7295,1)→

(4,8967,0)→(4757,8592,0)→(9,2455,0)→(2905,22624,0)→(2109,31432,0)

Table 4: Illustrations of identified shortest chains of targeted bits for other DNN models under study.

non-differential stair-case function (in equation 4), we use the
straight-through estimator as other works [44, 69].
Weight Encoding. The quantized weights are represented as
2’s complement in computing systems. If we consider one
weight element w ∈Wm, the conversion from its binary rep-
resentation (bbb = [bN−1, ...,b0] ∈ {0,1}N) to 2’s complement
can be expressed as:

w/∆w = g(bbb) =−2N−1 ·bN−1 +
N−2

∑
i=0

2i ·bi (5)

We perform weight quantization during the training for
all the models except the five ImageNet-based architectures
listed in Table 1. Additionally, for ImageNet architectures, we
use post-quantization on the pre-trained models.

B DNN Architecture Configuration

For MNIST classification we use the simple LeNet [33] archi-
tecture with two convolution layers and two fully-connected
layers. For VGG-13 and VGG-11 we use conventional archi-
tectures delineated as shown in [50], each of which encom-
passes three fully-connected layers and several convolution
layers. The AlexNet architecture contains five sets of convolu-
tion layers, ReLu and Maxpooling followed by three dropout

and fully-connected layers [53]. Finally, for ImageNet, we
leverage the PyTorch official trained models in Torch vision.

C DNN Training Configuration

For MNIST dataset, we use the following training configura-
tion: batch size 256, learning rate 0.1, momentum 0.9, weight
decay 3e−4 and SGD optimizer with gamma at 0.1. The con-
figuration for CIFAR-10 includes: batch size 128, learning
rate 0.1, momentum 0.9, training epoch 200, weight decay
3e−4 and SGD optimizer with gamma at 0.1. For the speech
command dataset, we train the network for 70 epochs with
learning rate 1e−4, batch size 128 and weight decay 1e−2 .

D Targeted Bit-flip Chain for DNN Models
Table 4 illustrates the chains of bit identified. For networks
without any residual connections (i.e., VGG and AlexNet), we
observe that most of the bit flips are located at the front layers,
indicating that bit flip perturbation in the weight accumulates
as it passes through later layers. For ResNet architectures,
vulnerable bits are found both at the front and the end of
the network. We conclude network topology may affect the
locations of the vulnerable model weight bits.

1480 29th USENIX Security Symposium USENIX Association

	Introduction
	Background
	Threat Model and Assumptions
	DeepHammer Overview
	Flip-aware Vulnerable Bit Search
	Fast and Precise Multi-bit Flips
	Multi-page Memory Massaging
	Compact Aggressors using In-row Pages
	Target Page Positioning

	Precise Rowhammering
	Online Memory Re-templating
	Putting It All Together

	Experimental Setup
	Evaluation
	Discussion
	Untargeted and Targeted Attacks
	Potential Mitigation Techniques
	Limitations and Future Work

	Related Work
	Conclusion
	Model Quantization Configuration
	DNN Architecture Configuration
	DNN Training Configuration
	Targeted Bit-flip Chain for DNN Models

