2106.14241v1 [cs.AR] 27 Jun 2021

.
.

arxiv

Revamping Storage Class Memory With Hardware
Automated Memory-Over-Storage Solution

Jie Zhang!, Miryeong Kwon!, Donghyun Gouk!, Sungjoon Koh1 Nam Sung Kim?

Mahmut Taylan Kandemir?,

Myoungsoo Jung!

Computer Architecture and Memory Systems Laboratory,
Korea Advanced Institute of Science and Technology (KAIST)!, University of Illinois Urbana-Champaign®
Pennsylvania State University>

http://camelab.org

Abstract—Large persistent memories such as NVDIMM have
been perceived as a disruptive memory technology, because they
can maintain the state of a system even after a power failure
and allow the system to recover quickly. However, overheads
incurred by a heavy software-stack intervention seriously negate
the benefits of such memories. First, to significantly reduce the
software stack overheads, we propose HAMS, a hardware auto-
mated Memory-over-Storage (MoS) solution. Specifically, HAMS
aggregates the capacity of NVDIMM and ultra-low latency flash
archives (ULL-Flash) into a single large memory space, which can
be used as a working memory expansion or persistent memory
expansion, in an OS-transparent manner. HAMS resides in the
memory controller hub and manages its MoS address pool over
conventional DDR and NVMe interfaces; it employs a simple
hardware cache to serve all the memory requests from the
host MMU after mapping the storage space of ULL-Flash to
the memory space of NVDIMM. Second, to make HAMS more
energy-efficient and reliable, we propose an “advanced HAMS”
which removes unnecessary data transfers between NVDIMM
and ULL-Flash after optimizing the datapath and hardware
modules of HAMS. This approach unleashes the ULL-Flash and
its NVMe controller from the storage box and directly connects
the HAMS datapath to NVDIMM over the conventional DDR4
interface. Our evaluations show that HAMS and advanced HAMS
can offer 97% and 119% higher system performance than a
software-based NVDIMM design, while costing 41% and 45%
lower energy, respectively.

I. INTRODUCTION

Recently, persistent memories such as PRAM [41] and 3D
XPoint [48] have received a considerable attention as their
non-volatile intrinsic, high density and low power consumption
can benefit modern datacenters and high-performance comput-
ers. For such systems, back-end storage is required for recov-
ering from system failures and crashes. Since the persistent
memories can spontaneously and instantaneously recover all
memory states, they can eliminate a large number of accesses
to the back-end storage and associated runtime overheads
[38], [49], [61]. Besides, enterprise workstations and servers
employ the persistent memory with DirectAccess (DAX) [18],
[67], which brings the advantages of unprecedented levels of
performance and data resiliency [57].

There are three standard persistent memory types (i.e.,
NVDIMM-N/F/P). NVDIMM-F directly integrates flash into
a dual-inline memory module (DIMM) to provide a high
capacity similar to storage. However, NVDIMM-F cannot

Memory space ! Memory-over-Storage space
2~64GB CPU | Terabyte-scale |

| | Automatiqn,
NVDIMM N DDR4 DDRA: NVDIMM-N ardwa ULL Flash '

PerSIStthemory ' -------------------------------
Fig. 1: NVDIMM-N vs. HAMS.

simply replace DRAM, as it only exposes a block interface.
NVDIMM-P such as Optane DC PMM is byte-addressable,
but its performance using the app direct mode to support data
persistence is yet 6 x worse than DRAM [26], [29]. In contrast,
NVDIMM-N aims to offer “byte-addressable” persistency with
DRAM-like performance [54]. NVDIMM-N generally consists
of a small flash device and multiple DRAM modules with a
battery. NVDIMM-N can be useful for a wide range of data-
intensive applications such as database management system
(DBMS) [2], transaction processing [45], [63], data analytics
[8], and checkpointing [12]. However, the memory space of
NVDIMM-Ns (e.g., 4GB ~ 64GB) is considerably smaller
than that of NVDIMM-P and persistent storage devices such as
solid state drives (SSDs). Furthermore, the capacity of DRAM
in NVDIMM-Nss is constrained by poor scaling of battery that
needs to supply the power for DRAM backup operations when
a power failure occurs [5], [71]. For example, for the past two
decades, the storage density of DRAM has increased by many
orders of magnitude, whereas the energy density of lithium-ion
battery has only tripled [34].

A possible solution to build a large and scalable, yet persis-
tent memory space is to use NVDIMM-N together with SSD
and memory-mapped files (MMFs), which can be implemented
in an OS memory manager or a file system. This allows data-
intensive applications to access a large storage space using
conventional load/store instructions. However, we observe
that such MMF-assisted persistent memory can degrade the
application performance at the user-level by 48%, on average,
compared to an NVDIMM-N-only solution (cf. Section III-B).
Such severe performance degradation is caused by not only
the long stall latency in accessing SSD but also the software
overhead and frequent data copies between the user and system
memory spaces in a conventional storage stack.

Tackling the aforementioned limitations, we propose
HAMS, a Hardware Automated Memory-over-Storage (MoS)

http://arxiv.org/abs/2106.14241v1

solution that aggregates the memory capacity of NVDIMM-
N and the storage capacity of new ultra-low latency flash
archives, referred to as ULL-Flash [37], [68], into a single
large memory space (cf. Figure 1). The large monolithic
memory space of HAMS can be used as a working memory
or a persistent memory expansion. Our HAMS resides in the
memory controller hub, and manages its MoS address pool by
leveraging the conventional DDR4 and NVMe interfaces. To
this end, HAMS employs a simple hardware cache to handle
all the memory requests from the host memory management
unit (MMU) by mapping the storage space of ULL-Flash to
the memory space of NVDIMM-N. In case of an NVDIMM-N
cache miss, HAMS internally manages the NVMe commands
and I/O request queues while hiding all the NVMe protocol
and interface management overheads from the OS, such that
data requested by MMU are always served by NVDIMM-N.

While the “baseline” design of HAMS can offer a 20GB/s
peak bandwidth, it can still yield sub-optimal system perfor-
mance, especially when running large-scale data-intensive ap-
plications due to some inefficiencies, described subsequently.
First, handling NVDIMM-N cache misses requires data trans-
fers between NVDIMM-N and ULL-Flash. That is, HAMS
needs to go through both DDR4 and PCle interfaces, including
physical layers, controllers and protocol managers, to handle
NVDIMM-N cache misses. However, the PCle bandwidth
is insufficient to expose the full potential of ULL-Flash to
HAMS. Consequently, the data transfers to handle frequent
NVDIMM-N cache misses for large data-intensive applica-
tions can contribute to as high as 47% of the total memory
access latency of HAMS. Second, some data may redundantly
exist in the internal DRAM of both NVDIMM-N and ULL-
Flash, used as cache and/or buffer. For example, most modern
SSDs, including ULL-Flash, employ large internal DRAMs,
to buffer/cache all incoming I/O requests to hide the long
latency of the underlying flash. This would help SSDs improve
performance when employed in a block-storage file system,
but it wastes power and increases the internal complexity of
SSDs when employed for a MoS-based solution.

To address these limitations, we also propose to aggressively
integrate HAMS into existing computer systems by modifying
its datapath and hardware modules. This makes the baseline
solution more energy-efficient and reliable, as far as data
persistency is concerned. This “advanced HAMS” unleashes
ULL-Flash and its NVMe controller from the storage box and
directly connects their datapath to NVDIMM-N. To this end,
we propose to slightly modify the NVMe controller within
ULL-Flash, by incorporating a new register-based interface
and tightly integrating the interface with the DDR4 interface
of HAMS. This aggressive integration allows ULL-Flash to
access the DRAM devices in NVDIMM-N without any in-
tervention from HAMS, and removes the DRAM buffer from
ULL-Flash while enabling full NVMe functionality.

Our evaluation results show that HAMS and advanced
HAMS provide 97% and 119% higher system performance,
than the MMF-based NVDIMM-N+SSD hybrid design, while
consuming 41% and 45% less system energy, respectively.

L NVDIMM
Controller a

Mux logic

{"PCie oot §
i.complex i

le 3.0|| 4GB/s

P
;
ctrir| NAND

[NSSEQEEEEEEE)

ULL-Flash
Fig. 2: Persistent memory and storage.
Types Capacity | OS intervention | Performance | Byte-addressable
NVDIMM-N [31] Low No DRAM-like Yes
NVDIMM-F [54] High Yes Slow No
NVDIMM-P [16] | Medium Yes Medium Yes
HAMS High No DRAM-like Yes

TABLE I: Feature comparison across different persistent
memories and HAMS.

II. BACKGROUND

In this section, we first describe the key hardware compo-
nents of persistent memory and the storage stack for hetero-
geneous memory expansion. Next, we give the hardware and
firmware details of ULL-Flash.

A. Persistent Memory and Storage

Figure 2 depicts a high-level view of a system architecture
that includes NVDIMM-N/P and ULL-Flash. NVDIMM-N/P
is attached to the memory controller hub (MCH) through a
DDR memory bus, and operates as a standard Registered
DIMM (RDIMM) for the CPU, whereas ULL-Flash is con-
nected to MCH via a PClIe root complex as block storage.
Persistent memory. There are three standard incarnations of
persistent memory, NVDIMM-N [31], -F [54] and -P [16].
Table I summarizes the key differences between these three
types of persistent memory and our design. NVDIMM-N is
a JEDEC standard for a persistent memory module, which
includes DRAM devices, a supercapacitor, multiplexers, and
a small flash device. The supercapacitor is used as an energy
source for the DRAM backup operations when a power failure
occurs. The multiplexers are located between the DRAM and
the standard DIMM connector to a memory bus, and they
isolate the DRAM from the memory bus when backup and
restore operations take place. The flash, as a backup storage
medium, has the same capacity as the DRAM, and it is
invisible to users. While the host directly accesses the DRAM
of NVDIMM-N, its controller internally migrates DRAM data
to flash upon a power failure and this migration typically
takes tens of seconds [31]. The controller restores the data
from flash to the DRAM on the next boot, thereby providing
non-volatility. In contrast, NVDIMM-F consists of multiple
flashes without DRAM. Since it is normally used as block
storage, NVDIMM-F requires both file system and OS support,
similar to conventional SSDs. NVDIMM-P combines the de-
sign strategies of NVDIMM-N and NVDIMM-F, and employs
a byte-addressable interface. However, NVDIMM-P such as
Optane DC PMM exhibits 6 x lower performance than DRAM,
and does not allow direct access to its internal DRAM as
well as requires OS-level support to enable persistent memory

mmadp access Storage stack access
Fig. 3: Software support.

accesses. This by far makes NVDIMM-N the only persistent
memory that supports DRAM performance with the byte-
addressability. Considering this aspect, in this paper, we use
the terms “NVDIMM” and “NVDIMM-N" interchangeably.
Storage. All the high-performance SSDs, including ULL-
Flash, are connected to another part of the MCH, PCle root
complex. A PCle lane is also treated as a memory bus in
modern computer systems, but it transfers 4KB or larger data
packets between the CPU and the SSD for I/O transactions.
Since the granularity of I/O accesses is a page or a block, user
applications can only access the underlying SSD by going
through the entire storage stack of the OS, which includes
an I/O runtime library, file system, and block layer, atop an
NVMe driver. The NVMe driver manages the transfers of
data packets over PCle, and communicates with the NVMe
controller in the SSD through the PCle baseline address
registers (BARs), including doorbell registers, queue attributes,
target addresses for each queue, and the NVMe controller
information [10]. The internal hardware details of ULL-Flash
will be explained in Section II-C.

mmap create

B. Support for Persistent Memory Expansion

Figure 3 illustrates the software support and storage stack
that user applications require for expanding NVDIMM with
SSD. The memory-mapped file (MMF) module in Linux, also
referred to as mmap, can be used to expand the persistent
memory space of NVDIMM with SSD. If a process calls mmap
with a file descriptor (£d) for SSD (o), the MMF creates a
new mapping in its process address space, represented by a
memory management structure (mm_struct), by allocating
a virtual memory area (VMA) to the structure (9). In other
words, the MMF links fd to the VMA, by establishing a
mapping between the process memory and the target file.
When the process accesses the memory designated by the
VMA (%9), this triggers a page fault (if the data is not
available in NVDIMM).

When a page fault occurs, the page fault handler is invoked
and allocates a new page to the VMA. Since the VMA is
linked to the target file, the page fault handler retrieves the
file metadata (inode) associated with £d and acquires a lock
for its access (@). The MMU interacts with a fault handler
of the file system to read a page from the SSD. The file
system initializes a block I/O request structure, called bio,
and submits it to the multi-queue block I/O queueing (blk-
mq) layer, which schedules I/O requests over multiple software

queues (@). Depending on the design of the target system, one
or more software queues can be mapped to a hardware dispatch
queue (€)), managed by the NVM controller that exists within
the SSD (0). Once the service of the I/O request (i.e., bio)
is completed, and the actual data is loaded into a new region
of the allocated page memory, the page fault handler creates
a page table entry (PTE), records the new page address in the
PTE, and resumes the process.

The MMF can be used to expand the persistent memory
space of NVDIMM with SSDs. However, this approach can
potentially negate most of the benefits that would be brought
by ULL-Flash, due to the high overheads caused by page
faults, file systems, context switching, and data copies.

C. ULL-Flash

Hardware details. All state-of-the-art SSDs typically employ
a large number of flash packages and connect them to multiple
system buses, referred to as channels. Each flash package
contains multiple dies and planes for fast response time and
low latency, as illustrated in Figure 4a. To deliver massive
parallelism and hence high I/O performance, an SSD spreads
a given set of I/O requests from the host across multiple
channels, packages, dies, and even planes.

ULL-Flash also adopts this multi-channel and multi-way
architecture, but it optimizes the datapath and channel strip-
ping [9]. More specifically, ULL-Flash splits a 4KB 1/O
request from the host into two operations and issues them to
two channels simultaneously; doing so can effectively reduce
the DMA latency by half. In addition, while most high-
performance SSDs employ multiple-level cell (MLC) or triple-
level cell (TLC), ULL-Flash employs a new type of flash
medium, called Z-NAND [9]. Z-NAND leverages a 3D-flash
structure to provide a single-level cell (SLC) technology and
optimizes the I/O circuitry and memory interface to enable
short latency. Specifically, Z-NAND uses 48 stacked word-
line layers, referred to as the vertical NAND (V-NAND)
architecture, to incarnate an SLC memory. Thanks to its unique
flash architecture and advanced fabrication technology, the
read and write latencies of Z-NAND (i.e., 3us and 100us)
are 15x and 7x lower than the V-NAND flash memory,
respectively [55].

ULL-Flash employs large DRAM in front of its multiple
channels and exposes its internal parallelism, low latency,
and high bandwidth (through the NVMe interface), which
are managed by multiple interface controllers and firmware
modules. Note that the DRAM management is tightly coupled
with handling the NVMe protocol. Based on the definition of
NVMe, the same data can be in both the host-side DRAM
and the SSD-internal DRAM after the underlying ULL-Flash
controller or firmware performs DMA for data transfer.

I/O connection to CPU. Figure 4b illustrates the per-core
NVMe queue and communication protocol. An NVMe queue
consists of a pair of submission queue (SQ) and completion
queue (CQ), each with 64K entries [22]. These are simple
FIFO queues, and each entry is referenced by a physical region
page (PRP) pointer [10]. If the request size is larger than a

e enle e [g rodt NV commiain neg: completon e age
Reql (Rea.d) ZQQN D g{ . - 1) - (, A © Produce [Cmdy © Comsume[cmdy, (3
nztDMm % g S [@| | 'g @ SQ tail pointer @ SQ head pointer E
Req0 (Write] L P T >§: :: a ’ Wheninterruptis ‘ ’ When doorbell S
D!\jA—>suspend coloies E J E Z.E .P_eL-cor_el..\ i triggered by device register rings by host §
Z-SSD controller u‘\ I = I > Y EC’Comsumeg@ ﬁz Produce (msgd |3
Package internal Die intemal] \ @ CQhead pointer @ CQtail pointer (o

(a) SSD internal parallelism.

(b) NVMe queue and protocol management.

(c) Flash firmware.

Fig. 4: Overview of ULL-Flash and NVMe datapath.

Seq Write = = Rand Read = = Rand Write

E DDR4 ‘ NVMe SSD - - Seq Read
P | Seq Write = Rand Read = Rand Write

ULLSSD| [ULLSSD =—Seq Read

-

2

4 8 16 3271
1/0 Depth

(b) Latency.

Average latency (us

4 8 16
I/0 Depth
(c) Bandwidth.
Fig. 5: ULL-Flash versus NVMe SSD.

read write

—_—

a) 4KB access.

4KB NVMe packet, the data can be referenced by a list of
PRP pointers instead of a single PRP pointer. When a request
arrives at the SQ, the host increments its tail (pointer) and
rings the corresponding doorbell of ULL-Flash, so that the
NVMe controller can synchronize the storage-side SQ, which
is logically paired with the host-side SQ. Since the data for
each entry exist in the host-side DRAM (pointed by a PRP
pointer), the ULL-Flash handles the DMA for the I/O request,
and then the underlying Z-NAND and firmware serve the
request. Once the service is completed, the NVMe controller
moves the tail of the CQ (paired with the SQ) and informs
the host of the event over a message signaled interrupt (MSI).
The host then jumps to an interrupt service routine (ISR)
and synchronizes the CQ tail. The ISR completes the request,
advances the head of the CQ (and releases the buffer data), and
rings the doorbell to notify the ULL-Flash of the completion
of the host-side I/O processing. Finally, the NVMe controller
releases the internal data and advances the head pointer of the
CQ. The NVMe interface has no knowledge of the data cached
in the host-side DRAM, while the data for each I/O request can
reside in the host-side DRAM. Therefore, even if I/O requests
can be served by the host-side DRAM, the NVMe interface
obliviously enqueues the requests and processes them.

Firmware. Figure 4c shows a general firmware architecture
implemented in ULL-Flash. At the top of the firmware layers
within the ULL-Flash, the host interface layer (HIL) is re-
sponsible for parsing the NVMe commands and managing the
queues by collaborating with the internal NVMe controller
[32]. This layer also splits an I/O request, which can be
of any length, into sub-requests. The size of a sub-request
matches the unit I/O size that the underlying firmware module
manages. The parsed separate requests are forwarded to the
flash translation layer (FTL) [35]. The FTL translates a
given logical block address (LBA) to a physical page number
(PPN). After translating the address of each sub-request into

a PPN, the flash interface layer (FIL) submits the request
and manages its transactions, which constitutes multiple flash
commands such as row/column addresses, I/O commands,
administrative commands, and DMA transfers. During this I/O
processing, FTL/FIL can stripe the requests across multiple
internal resources (e.g., channels, packages, dies, planes, etc.),
achieving both low latency and high bandwidth.

ITI. MOTIVATION AND CHALLENGES

In this section, we explain why ULL-Flash can be used for
a large working memory solution, and discuss what challenges
the conventional software-assisted solutions face to expand the
persistent memory by integrating NVDIMM with ULL-Flash.

A. ULL-Flash Performance Characterization

We evaluated a real 800 GB Z-SSD prototype ([56] as
ULL-Flash) and analyzed its performance characteristics. We
then compared the performance characteristics of ULL-Flash
with those of a high performance NVMe SSD (Intel NVMe
750 [25]) using a Flexible I/O Tester [3]. Both the devices
use four PCle3.0 lanes (1GB/lane) and are evaluated by a
system that has a single 4GHz CPU [23]. The collected
performance characteristics are plotted in Figure 5, under the
sequential and random read/write accesses. We also evaluated
the performance with varying I/O queue depths (1~32). The
request sizes equal to that of the NVMe packet payload (4KB).

As shown in Figure 5a, we observe that ULL-Flash exhibits
8 us and 10 us for 4KB read and write latencies with 1~4
queue depth at the user-level. That is, such read and write
latencies of ULL-Flash are only 3.3x and 79% longer than
the real read/write latencies (4KB-sized) of single DDR4-
2133 DIMM [64] on the same testbed. This significant latency
advantage makes ULL-Flash a promising replacement for
conventional SSD to expand the persistent memory space
of NVDIMM with storage. As shown in Figure 5b, ULL-
Flash maintains such latency characteristics under different
I/O depths in a predictable and sustainable manner, while
NVMe SSD experiences significantly increased latencies as
the I/O depth increases (up to 155 us). Figure 5¢ compares
the bandwidth trends of ULL-Flash with those of NVMe SSD.
For read and write accesses, ULL-Flash offers 115% and 137%
higher average bandwidth than NVMe SSD. These plots also
indicate that ULL-Flash reaches its peak bandwidth with only
a few NVMe commands, whereas an NVMe SSD does not
achieve such peak bandwidth for random read accesses, even

—3000 — Il SATASSD [|NVMeSSD
%2 40 ESATASSD | 5 B ULL-Flash

g [_INVMeSSD|| 210,90 ‘ : ‘ ‘
=150 ML Fiash | 51020 101 s
S120 g 2 '

% 60! - 12

c Q 6

© Qo

o <

(oo™

sed™ seaSendSelealingnding pdate
(a) mmap-bench. (b) SQLite.

Fig. 6: MMF-based system performance.

if we increase the queue depth to 32 entries. We also observe
that the number of requests in ULL-Flash waiting queue is 4
for most accesses (cf. Figure 5c). ULL-Flash can support only
16 outstanding requests for random read accesses. We believe
that this characteristic can make the NVMe queue management
simple and amenable to be implemented in hardware.

B. Software-Based Memory Expansion

To evaluate the performance of an existing software-based
memory expansion, we configure an MMF-based host system
with the real devices. Our evaluation system integrates three
SSDs (including a SATA SSD [24], in addition to ULL-Flash
and NVMe SSD) and employs two 8GB DRAM ranks, each
with eight banks operating at 1.6GHz. The ULL-Flash is used
to expand memory space over mmap.

Benchmarks. We use mmap-benchmark, which is designed
to evaluate the performance of mmap with a set of mi-
crobenchmarks [33]. Each of seqRd and segWr creates a
single thread, and then performs sequential read and write
operations. In contrast, each of rndRd and rndWr creates
four threads, each simultaneously performing random read
and write operations. We also tested SQLite-benchmark,
which is a benchmark for a widely-used DBMS (SQLite)
[14]. The workload details will be explained in Section VI-A.
Performance. Figures 6a and 6b show the performances of
mmap-benchmark (bandwidth) and SQLite (transaction
latency), respectively. As shown in Figure 6a, ULL-Flash
exhibits 399% and 118% higher bandwidth than SATA and
NVMe SSDs, respectively, in the MMF-system. segRd and
segWr exhibit the performance near the peak bandwidth
of the SSDs [24], [25], [56], but they significantly degrade
performance while executing rndRd and rndWr. This is
because segRd and seqgWr pull the data in a sequential
manner to the file system’s buffer cache, and this helps us
hide the performance degradation of SSDs for byte-based
I/O accesses. In addition, the average I/O queue depths of
mmap-benchmark and SQLite are one and four, respec-
tively, which can better leverage the benefits of read ahead.
Similarly, Figure 6b shows that the average latency of ULL-
Flash for SQLite (per transaction) is lower than those of
SATA and NVMe SSDs by 95% and 72%, respectively.

Analysis on ULL-Flash overhead. Figure 7a further de-
composes the total execution time of user applications into
a mmap processing time (i.e., context switch and page fault
handling), an I/O stack time (i.e., filesystem, blk-mq layer, and
NVMe driver), a ULL-Flash access time, and an application
computation time. For better understanding, the figure also
analyzes how much the ULL-Flash-based MMF system de-

[CImmapO stack_]SSDIICPU X [NvDIMM [JULL [l ULL-Buff]
s ONE QIR 952 002 I I
gos < 01, o _ _ | []
320.6 cqn 0.004
>

e £ i
e @ > DRI D D 2O O
X 0.0 ; & w c NN A2
SO TNy 58 SOSSSEE

«0\(‘%@%@«(‘9@%Q6®:,®0‘ O & R R R

(a) Software overheads.

(b) IPC of bypassing.

Fig. 7: Challenges of using ULL-Flash.

grades the overall performance, compared to the NVDIMM-
based system. Since rndSel and segSel spend most of
their execution on the DBMS-side computation, their CPU
cycles account for 83% of the total execution time, on average.
However, the remaining workloads in mmap-benchmark
and SQLite take 13% and 53% of the execution, respectively,
while ULL-Flash only accounts for 13% of the total latency,
on average. Note that the system overhead imposed by MMF
(mmap and I/O stack) accounts for 69% of the total execution
time. This is because MMF is involved in many software
operations including multiple page fault handling, context
switches, address translations (i.e., page table, filesystem and
FTL), boundary checks, and permission checks [20]. The
context switches are one of the main contributors to increase
I/0 latency [40]. On the other hand, the queuing mechanism
and NVMe communication protocol in I/O stack are optimized
for throughput rather than I/O latency [68]. The software
operations of MMF consume 15~20 us [20], which is around
6x longer than ZNAND access latency (3 us).

C. Software Overhead

To remove the software overheads brought by MMF, we
can bypass the entire storage stack and simulate the un-
derlying ULL as a memory module to directly serve the
load/store instructions. Figure 7b shows the CPU-side perfor-
mance for three different bypass strategies: (1) NVDIMM only
(NVDIMM), (2) ULL-Flash (ULL), and (3) ULL-Flash with a
page buffer, which is essentially a small DRAM (ULL-buff).
For this evaluation, we use the same workloads used in
Section III-B. The results collected with mmap-benchmark
indicate that the average instructions per cycle (IPC) values for
the ULL- and ULL-buf f-based systems are only 0.001 and
0.003, respectively, while the NVDIMM-based system offers an
average IPC of 0.06 (i.e., 98% and 95% degradation).

When evaluating SQLite, we observed that ULL and
ULL-buff degrade IPC compared to DRAM by 140x and
101 x, respectively. The load and store instructions take 51%
of the total number of executed instructions, and all these
load/store instructions for the workloads we tested are due
to the relatively long ULL-Flash operations. Note that the Z-
NAND latency (3uts) is much shorter than that of conventional
flash, but it is 3.3 x longer than the latency of NVDIMM for
4KB access. While a page cache can potentially hide the page
access delay, we observe that a large fraction of the load/store
instructions suffer from the page cache misses, due to the poor
data locality exhibited by mmap-benchmark and SQLite.

!I-I! (cru I —D)
- [HAmMS 1 <
MCH L, ~ Address manager =
s hit miss S
= HAMS Memory N&@ﬂg 2
g controller controller Juese §
2 W\'{'I_lpue RCZPRY]_S |
bMA | Q
PCle nclu lve M’%r =
T uLL-Flash o lML
:I [NVDIMM] ULL-Flash __]

Fig. 8: Overview of baseline HAMS.

The goal of HAMS is to (1) remove the mmap and storage
stack overheads from the MMF-system and (2) reduce the
number of stalled instructions by caching the memory ref-
erences in NVDIMM directly and by automating the mapping
between ULL-Flash and NVDIMM.

IV. MEMORY OVER STORAGE

HAMS is aimed to automate all necessary hardware for the
expansion of the persistent memory by integrating NVDIMM
and ULL-Flash, while reducing the energy consumption and
maintaining the consistency on the resulting heterogeneous
memory space. In this section, we give an overview of the
baseline design and aggressive integration of HAMS.

A. HAMS Overview

Figure 8 shows the baseline architecture of HAMS. HAMS
resides in MCH, which implements an address manager, an
NVDIMM memory controller and PCle root complex. The
address manager offers a 64-bit byte-addressable address space
by exposing the storage capacity of ULL-Flash to MMU. It
also utilizes a memory space of NVDIMM as an inclusive
cache for ULL-Flash with an integrated tag-array. To imple-
ment MoS, the address manager employs a simple hardware
cache logic that coordinates NVDIMM and ULL-Flash to
serve incoming memory requests. Note that a memory request
can be generated by either MMU or ULL-Flash, and thus, they
should be processed differently. When the NVMe controller (in
ULL-Flash) generates a memory request, the NVMe controller
extracts the NVDIMM address of the target data by referring
to PRP(s) that the address manager handles and records it in
the request. HAMS then directly forwards the request to access
NVDIMM based on the recorded NVDIMM address. On the
other hand, HAMS checks the memory address of MMU’s
request by examining its MoS tag-array. If the requested
memory address hits in the MoS tag-array, the request is
directly served by the data from NVDIMM. Otherwise, HAMS
secures an NVDIMM space to accommodate the incoming
request by evicting data to ULL-Flash. HAMS also fetches
target data from ULL-Flash to NVDIMM for read requests.
Once the data transfer from ULL-Flash to NVIDMM (or vice
versa) is completed, HAMS informs MMU of the completion
so that MMU can retry the stalled instruction.

B. ULL-Flash Archive Management

The power failure management for persistency control is
central to a key design of HAMS. While NVDIMM’s data is

HAMS H *invisible 4 g @ SQ Range
memor) ’ (32KB
rangey,/ ' to MMU

' e

kK Plnned’ @ «a Range
Data memory
]
Uirios 1 | (Page) space, 117 stfzﬁ/?é’)
pacity| 1 Cache \
! memory\ E IV%SI table
Pinned Ii space” \ >1KB)
memory|, \ Pinned
capacity \ memo
ULL-Flash NVDIMIM \ Tenace”

Fig. 9: Address management.

stored and restored by its on-board NVM controller, NVMe
storage employs a different mechanism to handle power fail-
ures. Specifically, the data persistency and I/O atomicity of
an SSD are guaranteed by a file system. The file system and
other kernel related components in typical support persistency
using journaling [65]. Since HAMS removes the MMF and
file system support, the data in the SSD-internal DRAM can
be lost upon a power failure. While HAMS can enforce
data persistency by tagging force unit access (FUA) per
request [60], doing so can significantly degrade the ULL-
Flash performance. This is because FUA enforces serializing
all outstanding requests to be written to the underlying flash
media. Another issue in the design of HAMS is related
to hardware implementations of the NVMe protocol. Since
NVMe data structures, including SQs, CQs, and BARs, are
mapped to a memory region of NVDIMM, all data and queue
information can be unintentionally overwritten by any of user
applications or the OS. This can make the hardware-based
NVMe management in HAMS vulnerable. In addition, the data
in NVDIMM can be inconsistent if HAMS and ULL-Flash
simultaneously access the same page frame.

We propose a set of designs to address the aforementioned
challenges. Specifically, to protect data against power failure,
we integrate super-capacitors in ULL-Flash to flush data in the
volatile DRAM buffer to the persistent flash media. We also
utilize the NVMe data structure to recover the I/O requests,
which are corrupted by power loss. On the other hand, to
resolve the vulnerability issue of the NVMe data structure,
we pin a specific memory region of NVDIMM to store the
NVMe data structure and make it invisible to the MMU. As
shown in Figure 9, this pinned memory region includes the
ring buffers for the SQs and CQs, PRP pool and MSI table, and
it is mapped to the upper memory part of NVDIMM (around
512MB in our design). On the other hand, the remaining
NVDIMM memory area is mapped to the MoS address space
by HAMS. During the initialization process, HAMS reviews
the pinned memory region, in particular the SQ and CQ buffers
including the head and tail pointers. If there is no power
failure, the SQ and CQ tail pointers should refer to the same
offset of their queue entries to avoid a violation of NVMe
queue management and consistency [21]. However, if a power
failure occurs, HAMS is able to detect all pending requests
by checking the offset differences between the SQ/CQ tail
pointers in the MMU-invisible space of NVDIMM (cf. Figure
9). During the power restoration, HAMS needs to reissue
all pending requests to the underlying ULL-Flash for data
persistency and consistency. To protect the memory to which

(cru MMU)

Address manager
miss
| Memory | | SSD cmd
controller generator

o O O O O
DG v

DMA overhead
o

Short path

CETS 22000 Inclugive ain
%%%‘o‘é%—gb fon cac il memor
SooT DA |_| —
EEQQEQSED NVDIMM | [Unboxed ULL-Flash]

(a) DMA overhead. (b) Aggressive integration.
Fig. 10: Challenges and aggressive integration.

the data is being transferred, HAMS keeps track of the DMA
status by configuring a bit per each entry of the MoS tag-array,
which is referred to as busy bit. This bit is set to 1 whenever
the NVMe engine issues a command, and it can be cleared
when HAMS updates the CQ’s head pointer. Thus, if the busy
bit is set, HAMS will exclude the corresponding page from
being evicted. This guarantees that the data is consistent when
ULL-Flash accesses the page frame via PRP.

C. Aggressive Integration of HAMS

The baseline design of HAMS explained so far includes a
hardware automation of cache logic in the MCH by leveraging
the conventional DDR and PCle controllers, thus offering a
large working memory space. While this design strategy does
not require any modification to the existing storage and mem-
ory devices, it brings two inefficiencies from an architectural
perspective: (1) the overheads imposed by data transfer and (2)
the energy inefficiency brought by the SSD-internal DRAM.
First, in case of a cache miss, the target data needs to go
through the DDR4 module (e.g., the memory controller and
DDR4 PHY) and the PCIe module (root complex, transaction
layer, data link layer and physical layer). While the peak
bandwidth of DDR4 [59] is 20 GB/s per channel, ULL-Flash
(including most NVMe SSD products) uses PCle 3.0 with
4 lanes, which makes the maximum bandwidth of NVMe
4 GB/s. Thus, in case of a cache miss, the performance
of HAMS can be capped by the peak PCle bandwidth. In
addition, the raw data of NVDIMM should be encoded and
encapsulated into a PCle packet, which also makes the HAMS
latency longer in case of a cache miss.

Figure 10a shows the fraction of data movement latency in
the average memory access time (AMAT) under the execution
of the workloads selected from Section IIIL. It can be observed
that the interface latency taken by moving data between the
NVMe controller and the DDR4 controller constitutes 39% of
the total AMAT, which can degrade the HAMS performance.
Another drawback of the baseline design of HAMS is that,
even if HAMS already holds the data in NVDIMM, the data
will still be copied to the SSD-internal DRAM. While this
would improve performance under the block storage use-case
(with a file system), it would also introduce extra energy
consumption and increase the internal complexity of the SSD.
Note that the SSD-internal DRAM requires 17% more power
than a flash complex consisting of 32 flash chips.

To address these challenges, we propose to remove the SSD-
internal DRAM that is used for data buffering, introduce a

""" "b4-bitaddressline | VI 11 |Data array
Tag :
]

]
]
]
]
H Hit
iMMU & :
1 NVMe|Miss Address !
i-__CMD4_____ manager;

Fig. 11: MoS tag-array design in NVDIMM cache.

new register-based interface (instead of doorbell registers and
PCle BARs), and connect ULL-Flash to DRAM PHY (instead
of PCle). Note that writes to ULL-Flash are already reduced
without employing the SSD-internal DRAM as the incoming
data are buffered/cached by NVDIMM. Similarly, the address
mapping table is also buffered in the NVDIMM. Accessing the
mapping information only consumes a tCL and a few tBURST
periods (less than 20ns), which is ignorable compared to the
long ULL-Flash access latency. As shown in Figure 10b, this
aggressive integration of NVDIMM and ULL-Flash, which
we call advanced HAMS, allows the NVMe controller to
directly access the DRAM modules over the DRAM interface.
Specifically, to be compatible with the synchronous DDR4
interface, the NVMe controller avoids unpredictable delay
of the underlying Z-NAND accesses by employing a set of
registers to buffer the command, address, and data. For com-
munications, the address manager employs an SSD command
generation logic that writes a set of registers capturing the
source and destination addresses and I/O command, based
on the I/O request that HAMS needs to initiate. The NVMe
controller fetches (or pulls) the target data from the source
address of NVDIMM (written to the address register via the
DRAM interface) and then forwards it to flash firmware so
that it can be programmed into flash media.

While allocating multiple DDR4 channels to connect each
pair from HAMS controller, NVDIMM and ULL-Flash can
parallelize the MMU operations and ULL-Flash read/write
accesses, this design also makes DDR4 channels under-
utilized. To avoid wasting the channel resources, we propose
to connect ULL-Flash and one/multiple NVDIMMs to HAMS
controller via the same DDR4 bus. However, one of the key
design issues is that NVDIMM can be accessed by both the
HAMS controller and NVMe controller in our design. To
avoid simultaneous accesses from these two, this aggressive
integration also introduces a lock register, which indicates that
the NVMe controller is in the process of accessing DDR4 and
NVDIMM for data transfers.

NVDI ‘M
cacI'-YtIa *

V. IMPLEMENTATION DETAILS
A. NVDIMM Cache and Bus Integration

HAMS address management. An SRAM-based MoS tag-
array can expose a significant circuit area cost to the HAMS
controller and raise the concern of metadata persistency when
a power failure occurs. Instead, we configure MoS’ NVDIMM
cache as direct mapped and integrate its tag information along
with ECC bits in each NVDIMM cache line, which is similar
to the MCDRAM configuration of Intel Knights Landing
processor [58]. Figure 11 shows details of our MoS tag-array
in the NVDIMM cache. Each entry of the MoS tag-array

HAMS NVDIMM Memory istand) |
controller ga—; I Truth Tabli
o 3 g S g
S8 E C . I 8 _‘éé 23
© - wv
ag N | hu —8 E
[}
as = j 10 X XN
£ o a MD [A 01 X XU
 regigier | | vagiome | | ANA U _UN
. X:HAMS
i i NVMe controller | NNVDIMM
5 1 U:ULL-Flash

Fig. 12: The details of the register-based interface.

contains all metadata of the cache, such as the tag, busy bit
(B), valid bit (V) and dirty bit (D). When there is an incoming
memory request, its address is decomposed into the tag, index,
and offset fields. HAMS address manager then retrieves the
tag-array entry and the data block from the NVDIMM cache
by using the decomposed index. A comparator pulls the stored
tag from the retrieved tag-array entry and compares it with
the tag of the corresponding memory request. If the two tags
match, the fetched data can be directly served from HAMS
controller. On the other hand, if the two tags mismatch, HAMS
composes two NVMe commands, one for a read that fills data
from ULL-Flash to the NVDIMM cache entry, and another
for a write that evicts the data from NVDIMM to ULL-Flash.
Once the target data are available in the NVDIMM cache,
HAMS places it on the system bus, and notifies the completion
to CPU by setting the MMU’s command and address buses.

Register-based interface. Figure 12 illustrates how our ad-
vanced HAMS controller communicates with the underlying
NVMe controller through DDR4. In our design, to send
an I/O request to NVMe controller, the HAMS controller
firstly deselects the NVDIMM by toggling its CS# strobe to
high voltage. In the next clock cycle, the HAMS controller
configures the write command in the DDR channel by toggling
the WE#, CAS# and RAS# strobe to low, low and high voltage,
respectively. Following the write command, the I/O request,
which is packeted as a 64B NVMe command, is transferred
to the data buffer registers of ULL-Flash via the D[63:0]
strobes in 8-cycle data burst. The NVMe controller then
extracts and parses the request information (i.e., request type,
source/destination addresses and data length) from the data
buffer registers, similar to most NVMe SSDs. Note that, unlike
their original purpose, the address strobes A[I15:0] deliver
no information during the communication between HAMS
controller and NVDIMM controller.

After a given number of cycles for processing the NVMe
write command or fetching data from the flash media based
on NVMe read command, HAMS sets the lock register to
1, which indicates that the NVMe controller can take over
the control as a bus master. If the lock register is configured,
the NVMe controller initializes the DMA procedure between
ULL-Flash and NVDIMM based on the timing sequence of the
DDRA4 interface. After transferring data, the NVMe controller
releases the lock register by resetting it to 0. HAMS cache
logic uses the lock register for NVDIMM accesses, which
helps us avoid a case where both NVMe controller and
memory controller use the bus at the same time.

B. NVMe and Hazard Management

The /O requests for each NVMe queue entry can be simply
composed by filling the information fields of the NVMe
command structure. HAMS writes the opcode field for a given
request (read/write), and fills the NVDIMM address, SSD
address, and page size (4KB) into the corresponding PRP,
LBA, and length fields, respectively. The generated NVMe
command is enqueued in the SQ by the HAMS NVMe engine.
This engine writes the doorbell to inform the ULL-Flash of
a request. Whenever the interrupt is delivered from the ULL-
Flash controller of HAMS, the NVMe engine synchronizes the
corresponding CQ and clears the target entries of CQ and SQ.

There are two issues associated with this NVMe manage-
ment, as NVDIMM is used both as a cache and as a PRP
target: (1) eviction hazard and (2) redundant eviction. The
eviction hazard occurs when the NVMe controller and HAMS
cache logic access the same NVDIMM location, whereas the
redundant eviction arises when the cache logic generates an
eviction command, which is already being issued. Consider the
example illustrated in Figure 13. The MMU requests a read at
0xFO0 of the MoS address space, the index and tag of which
are 0x0 and OxF, respectively. Since a cache miss occurs, the
HAMS cache logic evicts the exiting page (0xEO) to ULL-
Flash, and requests a data read at 0xFO0. In the meantime, the
MMU accesses 0xF 0 to update the data. This makes the cache
logic evict the same data again, because the evicted request
is still serviced by ULL-Flash (i.e., redundant eviction). Now,
the HAMS NVMe engine contains three NVMe commands
(CMD1/2/3). These commands are processed by the NVMe
controller in a FIFO order based on the NVMe specification.
However, I/0 completions within ULL-Flash can be out-of-
order, due to SSD-internal tasks. More importantly, the NVMe
controller transfers the data to NVDIMM based on the order
of completion, which can cause an eviction hazard.

To prevent these hazards and redundant evictions, HAMS
employs two techniques. When the NVMe engine issues
commands, HAMS isolates the target contents from the corre-
sponding NVDIMM cache entry by cloning the corresponding
page into the PRP pool allocated in the pinned memory (Figure
9). It then updates the PRP value with the location of the
cloned page so that the underlying NVMe controller does
not make the data inconsistent during DMA. Further, we
add a wait queue to the pinned memory, and make HAMS
always refer to a busy bit (cf. Section IV-B) of the MoS tag-
array, whenever a cache miss occurs. The HAMS cache logic
sets the bit to 1 and then resets it to 0, when the NVMe
engine completes the request. Figure 14 shows an example
that illustrates how the eviction hazard and redundant eviction
issues are handled. When a cache miss occurs (read at 0x0E),
the cache logic toggles the busy bit of the target tag-array’s
entry and copies the target page to a PRP pool entry. During
this process, HAMS replaces the reference to PRP with the
PRP pool entry and submits it to the NVMe engine. Upon the
next cache miss (write to 0xF0), the cache logic realizes that
the entry is in an eviction process, and puts the request into

MMU NVDIMM NVMe ctrler Z-NAND
R@0XF0 @ _,J @ycict@oxto —> cmd
miss Fll@oxro 1 L ¥ data
w@oxF0@ .
miss” | Evict @OxEO % Redundant
_8_d3£a_@10_><50__ N
@data@oxro L AR@NE0 L __________ >
i B -] ©data@0xF0__

Fig. 13: Challenges with the baseline HAMS.

IIY'EQR NVDIMM | PRl NVMe ctrler Z-NAND
Evict@OxEQ
Fill @0xFO
W@0xFO S|data@0xt
B push 1O block|3 4.____E: Q___@ dt@oro_
W@oxFo @hit— L____J @ |data@0xE0_
deeene @__ 0 | [T % omd

Fig. 14: Hazard avoidance methods.

the wait queue. After the I/O services of the NVMe commands
are completed, the busy bit is cleared, and the request that sits
in the wait queue is issued again. In this way, the eviction
hazard and redundant eviction issue with the wait queue and
busy bit can be avoided.

C. Persistency Control Upon Power Failure

A target system can benefit from a large memory space,
if it utilizes HAMS as a working memory expansion, which
expands the address space by combining NVDIMM and ULL-
Flash. However, it needs a guarantee for data persistency,
as MoS address space is considered as a persistent memory
expansion. Thus, HAMS requires to flush the NVMe request
whenever its cache logic needs to update data in ULL-Flash.
To address this shortcoming, we add a journal tag to each SQ’s
NVMe command entry by utilizing the reserved area in the
NVMe command format. This journal tag keeps information
that indicates whether the corresponding request is completed
by ULL-Flash. Whenever the NVMe engine sends a request
to ULL-Flash, it sets the tag to 1. Once the interrupt arrives,
HAMS clears the tag associated with the I/O completion.

Figure 15 gives an example that illustrates how HAMS
utilizes the journal tag information. In the first phase of this
example, HAMS issues all the commands in the SQ to ULL-
Flash, and CMD1, CMD3 and CMD4 are processed as the tail
and head pointers refer to the same location in the SQ/CQ,
which clears the corresponding journal tags to 0. Upon a
power failure at the end of the first phase, ULL-Flash and
HAMS cannot finish CMD2. Since the pinned memory space
of NVDIMM holds the data of the SQ region in our design,
HAMS first checks the SQ region on power-up to determine if
there is any command whose journal tag is 1. If there is one,
HAMS pulls the command and creates a pair of SQ and CQ
for the I/O service in second phase. HAMS then restores it to
the SQ, increases the SQ’s tail pointer, and rings the doorbell
register, so that the outstanding request issued at the moment
of a power failure can be served appropriately.

tail

NVMe ! Phase 1: NVMe operation
controller ! gL mpyeyyyn
: ." ." 1§ CMD1 |05 |
. ‘® vE[cmp2 [T]E P!
c 1
! ‘qs. tail ~ tail -qg)g oL CMD3 | 0o
@Pcrg/cheis: head head”~=<-__! __NVDIMM __|
I\Power 1 Phase 2: Revive CMD and initialize NVMe
) fail
aliure ! @ Allocate new SQ/CQ.-7========z== il B
: Q< <=~ iglcempi]ols g
VSR SR TE[evbR [T1ERIGS
' ‘@. @ 1&[cmp3 [0l ¢
! \75/ ! NVDIMM 3
| -------------------
| Phase 3: Insert incompleted CMD
: head
[}
]
]

SQ tail
®
1
Fig. 15: Power failure recovery procedure.

VI. EVALUATION
A. Experiment Setup

Simulation model. To explore the full design space of the
HAMS enabled systems from both the software and hardware
perspectives, we first replace the existing main memory im-
plementation in a full system simulator (gem5 [6]) with the
latency model of an 8GB DRAM-based NVDIMM [11]. We
then model an ULL-Flash archive and integrate it into gem5
by revising the memory controller and I/O bridge model!.
The storage-side components of the proposed simulator are
configured as ULL-Flash instances by leveraging an existing
SSD simulator, Amber [15], which is highly reconfigurable
(being aware of the details of flash internals, SSD inter-
nals and parallelism-related design parameters) and detailed
(implementing a full firmware stack and an actual NVMe
interface). Our simulator has been verified with an actual
800GB ULL-Flash prototype [55]. Note that this proposed
simulation framework enables the execution of data-intensive
applications on a real Linux, while allowing us to investigate
the full design space on the datapath from top to bottom. The
details of our simulation environment are given in Table II.
Experiment precondition and energy profiling method.
To guarantee the consistency of our experimental results, we
completely wrote all data-blocks into the flash-media, and
flushed/cleaned up the internal-DRAM in a warm-up phase
before performing our evaluations. The energy estimation of
each component in the full-system platform is performed based
on its power model; more specifically, the power models
of ULL flash and NVDIMM are derived based on NAND
flash datasheets and MICRON SDRAM power calculator
[47], which will be available for download (along with our
simulator), while the energy consumptions of core and cache
are measured by leveraging McPAT [43].

Benchmarks. We evaluate 12 data-intensive workloads from
MMF microbenchmark [33], Rodinia [7], and SQLite [13]
benchmarks. While MMF microbenchmark is memory-
intensive, Rodinia benchmark requires high computation. In
addition, MMF microbenchmark accesses the persistent mem-

'All source codes of our full-system simulation that integrates high-fidelity
SSD storage models will be made available for download in public domain.

oS Linux 4.9, Ubuntu 14.10 Benchmark Microbenchmark SQLite benchmark Rodinia

CPU quad-core, ARM v8, 2GHz ‘Workloads seqRd | rndRd | seqWr | rndWr | seqSel | rndSel | seqlns | rndIns | Update | BES | KMN | NN
Cache 64KB L1I/64KB L1D/2MB L2 # of inst. 67G 69G 67G 69G 213G | 213G | 40G 44G 244G | 192G | 38G | 145G
memory | NVDIMM, DDR4, 8GB, 128KB page || load inst. ratio 0.28 0.27 0.28 0.27 0.26 0.26 0.25 0.25 0.26 021 | 027 | 0.16
storage ULL-Flash, 512MB buffer, 800GB store inst. ratio | 0.43 0.37 043 0.37 0.20 0.20 0.21 0.21 0.20 0.04 | 0.03 | 0.05
flash 3us read, 100us write Data sets 16GB | 16GB | 16GB | 16GB | 11GB | 11GB | 11GB | 11GB | 11GB | 9GB | 5GB | 7GB

TABLE II: Gem5 specification.

ory system in a coarse-granular fashion (i.e., by pages). In
contrast, the other workloads generate fine-granular memory
accesses ranging from 8B to 100B. In our experiments, the
datasets to be tested initially reside in either ULL-Flash or
HAMS. To access data, these workloads are structured to sup-
port memory-mapped file I/O via the POSIX-compliant system
call mmap. Table III tabulates the important characteristics
of our benchmarks such as the total number of instructions,
fraction of load/store instructions, and dataset sizes.

Simulation platforms. We configured a traditional computer
system, called mmap, as our baseline for evaluation. mmap
employs an ULL-Flash and a DDR4 DRAM as its storage
and memory media, respectively. Table II shows important
parameters of our system configurations. By default, the
baseline accesses data directly from the persistent storage by
using the MMF module. We also built five computing plat-
forms employing the existing memory expansion techniques
[1], [42], [66] and four different systems that implement
our HAMS model. Specifically, (1) optane-P [29] employs
512GB Optane DC PMM as main memory. To guarantee
data persistency, Optane DC PMM operates in App Direct
mode that serves all memory requests without DRAM cache.
(2) optane-M [29] employs 8GB DRAM as the cache of
Optane DC PMM, which can improve the performance but
sacrifice the data persistency. (3) flatflash-P [1] allows
the applications to directly access a cache line from ULL-Flash
via MMIO [4] thereby guaranteeing the data persistency. (4)
Compared to flatflash-P, flatflash-M [I] selectively
buffers hot pages in 8GB host-side memory for fast accesses.
(5) nvdimm—-C [42] connects ULL-Flash to DRAM PHY
thereby sharing the memory channel with DRAM. nvdimm—-C
uses DRAM as a cache of ULL-Flash. However, data migra-
tion between DRAM and ULL-Flash is only allowed during
DRAM refresh periods. (6) A loosely-coupled HAMS system,
which connects to §GB NVDIMM and 800GB ULL-Flash via
a memory channel and PCle links, respectively, is referred to
as hams—L. hams—LP is the loosely-coupled HAMS system,
which works in a “persist mode” to persistently store data.
hams-LP tags FUA per I/O request and enforces at most
a single I/O request on-the-fly. (7) hams-LE is also the
loosely-coupled HAMS system, but it operates in an “extend
mode”. In particular, hams—LE leverages the NVMe protocol
to enable parallel accesses to ULL-Flash. To guarantee the data
persistency, it also employs our proposed persistency control to
manage power failure. (8) An advanced HAMS system with
aggressive integration is referred to as hams-T. hams—-TP
employs such HAMS system, which works on persist mode.
Lastly, (9) hams—TE employs hams—-T, but the extend mode.
Lastly, we configure an oracle platform that employs a
512GB NVDIMM to serve the evaluated workloads.

TABLE III: Workload characteristics.

" Fl mmap [P flatflash-P [flatflash-M
[hams-LP Y hams-LE [nvdimm-C|

»
o
§ 12 optane-P [l] optane-M [] hams-TP]
v 8 E Eﬂml hams-TE [[] oracle]

(a) MMF and Rodinia benchmarks.

I
o

& mmap Wl flatflash-P &£ flatflash-M [I] hams-LP Y hamsLE
B nvdimm-C) optane-P [l optane-M [] hams-TP] hams-TE
[oracle

N W
o O

App. perf. (ops/s)
=

i s “69\6
(b) SQLite benchmark.
Fig. 16: Application performance.

B. System Performance Analysis

Application-level performance. Figures 16 plots the perfor-
mance for microbenchmark, Rodinia, and SQLite benchmark.
mmap achieves 43K pages/s for the microbenchmark and graph
workloads, and 6905 SQL ops/s for the SQLite workloads,
on average, which are, respectively, 2.54x and 1.37x worse
than hams-TE. This is because, the I/O requests in mmap
go through a complex system software stack before finally
reaching the storage, which introduces a substantial overhead.
Although flatflash-P allows CPU to directly access data
from the storage, it consumes 4.8us for 64B data access,
which is over 40 times longer than DRAM access latency
[1]. Thus, flatflash-P degrades performance by 75% in
the workloads of MMF microbenchmark, compared to mmap.
Since flat flash-Mcan hide the long storage access latency
by buffering hot pages in host-side memory, flatflash-M
outperforms flatflash-P by 136%, on average, in all
evaluated workloads. However, flat flash—M accesses the
storage via MMIO rather than the NVMe protocol, which
loses the opportunity of utilizing the plenty of queue and
flash parallelisms. In contrast, hams—LE implements NVMe
protocol in our HAMS controller to enable parallel accesses
to the underlying ULL-Flash. In addition, hams-LE mitigates
the storage access overhead from OS by offloading the task
of page access to hardware. Therefore, hams—-LE improves
the performance by 26% in all the workloads, on average,
compared to flatflash-M. nvdimm-C further improves
the efficiency of the storage access by directly connecting
ULL-Flash to the host-side DRAM via the same memory
channel. However, to prevent the memory controller and
SSD controller from competing for the memory channel,
nvdimm-C constrains the data migration between DRAM

I os[_|ssD il

Norm. execution
time breakdown

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

(O RES N W 005835 G a5 p3e\®
Fig. 17: System-level execution time breakdown.

and ULL-Flash in the period of DRAM refresh operations.
Although fetching a single page from ULL-Flash costs 3us,
moving data from ULL-Flash to DRAM consumes upto 48us
[42]. Considering such long latency, it is difficult to execute
latency-critical applications in nvdimm-C. In contrast, HAMS
can fit to a wider range of applications, especially the ones
with large memory footprint. optane—P outperforms mmap
by 121% in microbenchmark, as all data initially reside in the
persistent memory, which eliminates the overhead of moving
data between memory and storage. However, the performance
of optane is unfortunately not promising in the workloads
with fine-granular memory accesses (i.e., Rodinia and SQLite
benchmark). This is because the memory request size is
much smaller than the internal block size (256B) of Optane
DC PMM, which wastes the memory bandwidth. optane-P
resolves the mismatch between the memory request size and
the Optane internal block size by employing DRAM as the
cache of Optane DC PMM. Such design improves the perfor-
mance by 142%, compared to opt ane—P. On the other hand,
hams—T serves the memory requests from NVDIMM, whose
bandwidth is not constrained by the internal block size. In
addition, hams—T enables direct access between NVDIMM
and ULL-Flash, which eliminates the redundant data copies.
Thus, hams—-TE improves the application’s performance by
as high as 12%, compared to optane-M. Lastly, as the data
migration latency cannot be fully overlapped with computation
time in data-intensive workloads (e.g., seqRd and seqWr),
hams—TE performs worse than Oracle by 14%.

Execution time breakdown. We now break down the exe-
cution time of our workloads from the view point of system
software, to analyze the critical factors that can impact the
overall performance. Figure 17 shows the execution time
breakdown. As shown in the figure, in mmap, a large fraction
of the execution time is consumed by the “OS” and “SSD”
accesses. The overheads brought by the “OS” and “SSD”
accesses cannot be hidden by application execution, as the
application is always stalled until the OS fetches data from
storage and prepares it in the main memory. Since we are using
an ultra-low latency SSD (ULL-Flash), the overheads brought
by the storage accesses are not the main factor that degrades
the overall performance. Instead, as current Linux kernel is not
optimized for ULL-Flash, it becomes a performance bottleneck
in the baseline platform. On the other hand, the overheads
brought by “OS” and “SSD” can be ignored in HAMS, as
HAMS hybrids NVDIMM and ULL-Flash in the main memory,
and directly accesses ULL-Flash as memory without any OS
intervention. Note that the storage-access times are excluded
from “app” and separately presented with the labels of “OS”

[INVDIMM [[DMA [SSD)

LP: hams-LP LE: hams-LE TP: hams-TP TE: hams-TE
LP LE;l,'PT

cooo L=
o

Norm. memory
delay breakdown

AndP NN BFS N N a5 % dSUealBrdingpdat®

Fig. 18: Memory access delay breakdown.
[cPUC_INVDIMM[_Jinternal DRAMIII Z-NAND

8
T

5: M: mmap LP: Ihams-P LE: Ihams-E TP: thams-P TE: thams-E
Y e]
[Cke]
X
g 5 mam,
S < ©) S WS, A2NS
z MBS W eSS AR oa

Fig. 19: Energy breakdown normalized to mmap.

and “SSD”, whereas the storage-access times of HAMS are
included in “app” (as they are classified as the latencies of
LD/ST instructions). The “app” time of hams—TE is as short
as that of mmap, indicating that hams—TE can fully hide the
OS and SSD access overhead.

C. Detailed Analysis

Memory latency analysis. We collect the statistics from the
memory-side and present the hardware performance in terms
of memory stalls in Figure 18. As our HAMS employs a large
NVDIMM as cache (i.e., 8GB in Table II) to accommodate
most memory requests, the cache hit rate of NVDIMM reaches
94%, on average, in all the tested workloads. Thus, NVDIMM
accesses account for 79% of the total memory delay in
hams-LP. hams-T (including hams-TP and hams-TE)
reduces the total memory stalls by 16%, compared to hams—L.
This is because hams-T leverages the DDR4 interface to
directly transfer data between NVDIMM and SSD while
hams—L uses different interfaces (DDR and NVMe/PCle) for
NVDIMM and ULL-Flash, and always requires extra time to
transform data format. On the other hand, the persist mode
generates 34% more memory delay than the extend mode,
on average. This is because, the persist mode only allows
one memory access at a time, which means serializing the
executions of instructions that experience cache misses. For
hams-L, NVMe-DMA contributes to 18% of the memory
delay in data-intensive workloads such as rndRd, rndWr,
seqRd, seqWr and update. This is because, the PCle link
used by NVMe SSD is mainly designed for peripheral devices
and provides much lower bandwidth compared to the DDR4
interface. Thus, transferring data via PCle costs much longer
time than the DDR4 interface. On the other hand, for other
workloads that do not intensively access the storage, hams—L
and hams-T have similar memory delays.

Energy analysis. Figure 19 plots the energy consumption of
the whole system including CPU, system memory (DRAM),
ULL-Flash internal DRAM, and Z-NAND chips. As shown in
the figure, hams-LP, hams—LE, hams-TP, and hams—-TE
reduce the system-level energy by 31%, 41%, 34%, and 45%,
respectively, compared to mmap. Specifically, the combined
energy of CPU and system memory in mmap is 89% higher
than that of hams, as mmap spends more time for 1/O
responses, which also costs more CPU and memory idle

—~40k{E 4KB [I] 16KB £ 64KB
% .. |l 128kB [] 256KB [l 1MB

NS S An\e N A0S A0S ASNe
© mdse 560\“\ ﬁ\d\“ \)Qda\ sertef\dsgeQ“}(\d\QNda‘

(a) Various page sizes. (b) Larger footprints.
Fig. 20: Performance impact of different page sizes and
large memory footprints.

energy. On the other hand, the persist mode and extend
mode do not impact the energy consumption of NVDIMM.
This is because, the persist mode only constrains the number
of memory requests on the fly, but it does not impact the
total number of NVDIMM accesses. In contrast, hams—-L
consumes 8% more NVDIMM energy than hams-L. This is
because, hams~T directly transfers data between NAND flash
and NV-DIMM without any redundant data copies, whereas
hams-L employs NVDIMM and SSD internal DRAM to
buffer data and this introduces redundant data copies. HAMS
also reduces the energy of accessing SSD by 11%, compared to
mmap, on average. This is because, mmap needs to periodically
flush data from the main memory to SSD for persistency.
Overhead analysis. Compared to the existing memory con-
troller, HAMS requires NVMe queue engine, SSD command
generator and lock register. In our design, the core logic of
the NVMe queue engine and SSD command generator employ
thousands of gates, which are negligible compared to the
billion transistors in modern CPUs. While HAMS enables
ULL-Flash to share the DDR4 channels with the NVDIMMs
to avoid extra usage of channel resources, ULL-Flash can
occupy one DIMM slot. However, considering the fact that
LRDIMM supports up to 24 DIMM slots, HAMS only reduces
the maximal memory capacity by 4%.

D. Sensitive Testing

Various page sizes. We evaluate the performance of SQLite
benchmark with various page sizes, and the results are shown
in Figure 20a. While 4KB and 1MB are the default page
sizes in Linux Kernel 4.9, we also select intermediate page
sizes such as 16KB, 64KB, 128KB and 256KB. As a small
page size incurs frequent TLB misses and cannot utilize ULL-
Flash internal parallelism, 4KB achieves poor performance in
workloads segSel and seglns. On the other hand, employing
a large page size increases data migration overhead when
cache misses in NVDIMM. Therefore, 1MB achieves poor
performance in workloads of random accesses (e.g., rndSel
and rndIns). In our evaluation, configuring the page size as
128KB can achieve the best performance in most workloads.
Large memory footprints. We perform a stress testing on
NVDIMM by increasing the data set size to 44 GB, and
the results are shown in Figure 20b. hams—-TE degrades the
performance by 24% compared to Oracle, owing to the
frequent data migration between NVDIMM and ULL-Flash.
Nevertheless, hams—TE still outperforms mmap by 181%.

VII. RELATED WORK AND DISCUSSION

Recently, Intel has released a byte-addressable PRAM-based
NVDIMM (i.e., Optane DC PMM) as a replacement for the
main memory [27]. However, unlike DRAM, user applications
cannot directly access persistent data from the proposed hard-
ware using load/store instructions without customized software
stack. Specifically, OS needs a series of Intel-custom software
support, including a block driver, persistent-memory-aware
filesystem and Direct Access (i.e., DAX) [46] to directly map
the Optane DC PMM (as memory) to a userspace. The existing
applications also require modifications to be compatible with
Intel runtime libraries [28] built on DAX. Further, Optane DC
PMM also has several drawbacks from a hardware design
angle. Specifically, it exhibits much lower storage capacity
than ULL-Flash based HAMS (i.e., 512 GB/DIMM vs. 2.3
TB/DIMM) [19]. With the same number of memory packages
per standard unit size, the aggregated throughput of Optane
DC PMM is 4.5x lower than that of ULL-Flash [29], [70]. It
also faces the challenges of addressing the long PRAM write
latency issues. [66] reports that Optane DC PMM integrates a
16KB XPBuffer to accommodate the write requests. However,
as the XPBuffer size is fixed and relatively small, [29] observes
that NVDIMM-N outperforms Optane DC PMM (as persistent
memory) by 5.72x in write-intensive workloads.

Several prior studies [17], [30], [42], [51], [62] propose
to integrate DRAM and flash into a single system memory.
Similar to Optane DC PMM, memory requests need to go
through multiple software layers, including NVML libraries
and a specific HybriDIMM driver [52], before accessing data
from HybriDIMM. In addition, when configuring HybriDIMM
as persistent memory, its internal DRAM buffer is disabled,
which directly exposes the long flash latency to system [50].

Abulila et al. proposes FlatFlash [1], which utilizes NAND
flash to expand the memory space. Specifically, FlatFlash
directly exposes ULL-Flash to the host as a byte-addressable
device by leveraging the SSD internal DRAM as cache.
However, a large portion of the SSD internal DRAM is used
to store the address translation table [69]. The remaining
DRAM space is much smaller than the host-side DRAM,
which can be insufficient to accommodate the whole working
set. In addition, as FlatFlash employs MMIO rather NVMe
protocol to access the underlying ULL-Flash, it cannot benefit
from the SSD internal parallelism thereby exhibiting lower
device-level throughput. While migrating hot pages to the host-
side memory can improve the overall performance, FlatFlash
cannot guarantee the data persistency in such case.

In contrast, our HAMS expands the capacity of main
memory without modifying the traditional filesystem or user
applications. Specifically, just like DRAM, it directly exposes
the address space of ULL-Flash to MMU, while leveraging
our HAMS controller to manage data movements between
NVDIMM and ULL-Flash, making it transparent to OS. To
the best of our knowledge, such architectural design has not
been discussed in the literature before. While HAMS can also
be implemented as a kernel module, it requires OS to respond

to every cache miss in NVDIMM (i.e., page fault), which
incurs the overhead of context switch and page fault handling.
Such software overhead is undesirable when large working
sets incur frequent page swapping between NVDIMM and
ULL-Flash (cf. Figure 7a). Furthermore, HAMS outperforms
other DRAM+NVM approaches by maximizing the through-
put of both NVDIMM and ULL-Flash (cf. Section VI-B). Our
persistency control design can also guarantee data persistency
without sacrificing ULL-Flash’s performance.

A set of prior work propose disaggregated memory solutions
to expand the memory capacity [36], [39], [44], [53]. For
example, [53] explores the feasibility of constructing a large
memory pool across 1,000 servers via Ethernet. However, this
design suffers from a low network bandwidth and high total
cost of ownership (TCO). [44] partially addresses the afore-
mentioned challenges. [44] improves the network throughput
by employing PCle interface and reduces the cost of hardware
infrastructures by deploying more DRAM DIMMs in cus-
tomized blade servers. Unfortunately, it is still challenging to
adopt this design, owing to the high cost (i.e., price and power
consumption) of DRAM DIMMs. [36] further reduces TCO by
replacing DRAM with NAND flash. However, accessing flash
from remote servers increases the I/O latency by 10~15 us,
which is 5x longer than ZNAND access latency (i.e., 3us).
On the other hand, [36] requires source-level modifications
to the running applications, which exposes huge overheads
to the users. In contrast to the above solutions, HAMS is
a scale-up solution, which aggregates the capacities of local
NVDIMM and ULL-Flash as a single memory space. HAMS,
therefore, saves the huge cost of constructing many blade
servers and purchasing expensive DRAM DIMMs. In addition,
as HAMS builds TB-scale persistent memory in an OS-
transparent manner, executing applications in HAMS requires
no changes to the existing programming models.

VIII. CONCLUSION

We proposed HAMS to aggregate the storage capacities of
NVDIMM and ULL-Flash into a single large memory space,
which can be used either as a working memory expansion
or as a persistent memory expansion. We also optimized
HAMS by modifying its datapath and hardware modules,
which guarantees data persistency and makes HAMS more
energy efficient and reliable. Our HAMS and advanced HAMS
architectures improve MIPS by 97% and 119%, respectively,
compared to the software-based hybrid NVDIMM design,
while saving 41% and 45% energy, respectively.

IX. ACKNOWLEDGEMENT

This research is mainly supported by NRF
2021R1AC4001773 and ITP 2021-0-00524. The work
is also supported in part by KAIST start-up package
(G01190015), NRF 2016R1C182015312, and MemRay grant
(G01190170). Dr. Kandemir is supported in part by NSF
grants 1908793, 1629129, 2028929, and 1931531. Other
product names used in this publication are for identification

purposes only and may be trademarks of their respective
companies. Myoungsoo Jung is the corresponding author.

REFERENCES

[1]1 A. Abulila, V. S. Mailthody, Z. Qureshi, J. Huang, N. S. Kim, J. Xiong,
and W.-m. Hwu, “Flatflash: Exploiting the byte-accessibility of ssds
within a unified memory-storage hierarchy,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019, pp. 971-985.

[2] J. Arulraj and A. Pavlo, “How to build a non-volatile memory database
management system,” in Proceedings of the 2017 ACM International
Conference on Management of Data. ACM, 2017, pp. 1753-1758.

[3] J. Axboe, “Flexible io tester,” https://github.com/axboe/fio, 2017.

[4] D.-H. Bae, L. Jo, Y. A. Choi, J.-Y. Hwang, S. Cho, D.-G. Lee, and
J. Jeong, “2b-ssd: the case for dual, byte-and block-addressable solid-
state drives,” in 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA). 1EEE, 2018, pp. 425-438.

[5] I. Bhati, Z. Chishti, and B. Jacob, “Coordinated refresh: Energy efficient
techniques for dram refresh scheduling,” in ISLPED, 2013.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
ACM SIGARCH, 2011.

[71 S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on. Ieee, 2009, pp. 44-54.

[8] R. Chen, Z. Shao, and T. Li, “Bridging the i/o performance gap for big
data workloads: A new nvdimm-based approach,” in The 49th Annual
IEEE/ACM International Symposium on Microarchitecture. 1EEE Press,
2016, p. 9.

[91 W. Cheong, C. Yoon, S. Woo, K. Han, D. Kim, C. Lee, Y. Choi, S. Kim,
D. Kang, G. Yu et al., “A flash memory controller for 15us ultra-low-
latency ssd using high-speed 3d nand flash with 3us read time,” in Solid-
State Circuits Conference-(ISSCC), 2018 IEEE International. 1EEE,
2018, pp. 338-340.

[10] J. Ellefson, “Nvm express: Unlock your solid state drives potential,”
Flash Memory Summit, 2013.

[11] H. P. Enterprise, “Hpe 8gb nvdimm single rank x4 ddr4-2133 module,”

https://www.hpe.com/us/en/product- catalog/servers/ server-memory/pip.hpe-8gb-nvdin

2018.

S. Gao, B. He, and J. Xu, “Real-time in-memory checkpointing for
future hybrid memory systems,” in Proceedings of the 29th ACM on
International Conference on Supercomputing. ACM, 2015, pp. 263—

[12]

272.

[13] Google, “Leveldb sqlite benchmark,”
https:// github.com/google/leveldb/tree/master/doc/bench, 2014.

[14] ——, “Leveldb,” http://leveldb.org/, 2017.

[15] D. Gouk, M. Kwon, J. Zhang, S. Koh, W. Choi, N. S. Kim, M. Kandemir,
and M. Jung, “Amber: Enabling precise full-system simulation with de-
tailed modeling of all ssd resources,” arXiv preprint arXiv:1811.01544,
2018.

V. Guddekoppa, “Method and system providing file system for an
electronic device comprising a composite memory device,” 2016, uS
Patent App. 15/390,021.

S. D. Hammond, A. F. Rodrigues, and G. R. Voskuilen, “Multi-level
memory policies: what you add is more important than what you take
out,” in Proceedings of the Second International Symposium on Memory
Systems, 2016, pp. 88-93.

HPE, “Using nvdimm persistent memory server technology with linux,”
https://h20195. www2.hpe.com/v2/ getpdf.aspx/a00036172enw.pdf,

2017.

[19] J. Hruska, “Optane dc persistent memory offers up to 512gb per dimm,”

[16]

[17]

(18]

https://www.extremetech.com/computing/ 288854- optane- dc- persistent-memory- offers-1

2019.
[20] J. Huang, A. Badam, M. K. Qureshi, and K. Schwan, “Unified address
translation for memory-mapped ssds with flashmap,” in Proceedings of
the 42Nd Annual International Symposium on Computer Architecture,
2015, pp. 580-591.
A. Huffman, “Nvm express, revision 1.0 ¢,” Intel Corporation, 2012.
A. Huffman and S. P. Engineer, “Nvm express overview & ecosystem
update,” Proceedings of Flash Memory Summit, 2013.

[21]
[22]

https://github.com/axboe/fio
https://www.hpe.com/us/en/product-catalog/servers/server-memory/pip.hpe-8gb-nvdimm-single-rank-x4-ddr4-2133-module.1008830324.html
https://github.com/google/leveldb/tree/master/doc/bench
http://leveldb.org/
https://h20195.www2.hpe.com/v2/getpdf.aspx/a00036172enw.pdf
https://www.extremetech.com/computing/288854-optane-dc-persistent-memory-offers-up-to-512gb-per-dimm

[23]
[24]
[25]
[26]

(271

(28]
[29]

[30]

(31]
[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

Intel, “Intel core i7-4790k processor,” [48] I Micron Technology, “3d Xpoint technology,”
https://ark.intel.com/products/80807, 2014. https://www.micron.com/products/advanced- solutions/3d-xpoint-technology,
——, “Intel ssd 535 series,” https://ark.intel.com/products/series/ 86825/ Intel-SSIROBY-Series,
2015. [49] D. Narayanan and O. Hodson, “Whole-system persistence,” ACM
——, “Intel ssd 750 series,” https://www.intel.com/content/www/ us/ en/ products/ nsdGARExD 1Ggatpalid- tatbithones! gNovs g -~eolthdfiasio ssts/PP.04-ds Otml,
2015. 2012.
——, “Intel optane memory,” https.://www.intel.com/content/ www/us/ en/ arc[S@ctNBTBIS Rchnology/ opHybridimeary. html, product brief,”
2017. http://s2.q4cdn.com/000096926/files/doc_
e “Intel optane dc persistent memory,” downloads/hybridimm/Netlist- FMS2017- HybriDIMM-modes- of-operation-v2.81-0807.
https://www.intel.com/content/www/ us/ en/ architecture-and- technology/ optane- d@{p¥tsistent-memory.html,
2018. [51] — “Hybridimm: Storage at mem-
——, “Persistent memory programming,” https://pmem.io/, 2019. ory speeds, memory at storage capacities,”
J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J. http://www.netlist.com/products/ Storage- Class-Memory/ HybriDIMM/ default.aspx,
Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson, “Basic 2017.
performance measurements of the intel optane dc persistent memory — [52] ——, “Netlist demonstrates the first storage class
module,”. httpx.’//arxi\./.org/abs/ 1903.05714, 2019. . memory running real-world applications with hy-
J. Jayaraj, A. F. Rodrigues, S. D. Hammond, and G. R. Voskuilen, “The bridimm,” hitp://s2.q4cdn.com/000096926/ files/doc_
potential and perils of multi-level memory,” in Proceedings of the 2015 downloads/hybridimm/Netlist- FMS2017- Demonstration- Brief-v3.1- FINAL.PDF,
International Symposium on Memory Systems, 2015, pp. 191-196. 2017.
JEDEC, “Ddr4 nvdimm-n design standard,” 2016. [53] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,
M. Jung, J. Zhang, A. Abulila, M. Kwon, N. Shahidi, J. Shalf, N. S. Kim, D. Mazieres, S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum et al.,
and M. Kandemir, “Simplessd: modeling solid state drives for holistic “The case for ramclouds: scalable high-performance storage entirely in
system simulation,” IEEE Computer Architecture Letters, vol. 17, no. 1, dram,” ACM SIGOPS Operating Systems Review, vol. 43, no. 4, pp.
pp. 37-41, 2018. 92-105, 2010.
%.I.Lurik, “mmap-benchmark,” https://github.com/exabytesl8/mmap—benchm[yzk} A. Sainio, “Nvdimm: Changes are here so what’s next)” In-Memory
-) o Computing Summit, 2016.
R. Kateja, A. Badam, S. Govindan, B. Sharma, and G. Ganger, VIYSJ{U [55] Samsung, “Advancements in ssds and 3d nand reshaping storage mar-
Decoupling battery and dram ce.lpacmes for battery-backed dram,” in ket,” in Flash Memory Summit, 2017.
ACM SIGARCH Computer Architecture News, vol. 45, no. 2. ACM, [56]) “Ultra-low latency with samsung z-nand ssd?
2017_’ Pp- 613_§26' . “ . https://www.samsung.com/us/labs/pdfs/ collateral/Samsung_Z-NAND_
J. Kim, J. M.. Kim, S. H Noh, S. L. Min, and Y.”Cho, ‘A space—efﬁcwnt Technology_Brief_v3.pdf, 2017.
flash translat;on lay.er for compactflash systergs, IEEE Transactions on [57] SNIA, “Persistent memory in windows.”
Conxu.mer E ectmm.cs, vol. 48, no. 2, Pp- 3“6 7375_’ 2002. https://www.snia.org/sites/default/files/ PM-Summit/2017/ presentations/ Tom_
g' [Il(’l’HXOCVIC:S‘%ALIg’ egld C. Kozyra}f{}s, Reflex: RBH;OTS flash llocal Talpey_Persistent_Memory_in_Windows_Server_2016.pdf, 2017.
A g SO SIGARCH Computer Architecture News, vol. 43, 10 1, PP+ (g} A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod S. Chinthamani,
N Igoh EI Lee. M. Kwon, and M. Jung, “Exploring system challenges S. Hutsell, R. Agarwal, and Y-C. Liu, "Knights landing: Second-
: > > i : ’ tion intel hi product,” 1 1. 36, no. 2, pp. 3446
of ultra-low latency solid state drives,” in 10th {USENIX} Workshop on %8??& on intel xeon phi product,” fece micro, vol. 36, no. 2. pp. 3 ’
Hot Top.zcs in Storage and.FItle Systems (HotStorage 18), 2.018. . [59] D.S. STANDARD, “Jesd79-4.” JEDEC, 2012.
A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “High- o . .
. . . [60] C. E. Stevens, “Information technology-at attachment 8-ata/atapi com-
performance transactions for persistent memories,” ACM SIGOPS Op- . ..
. . mand set (ata8-acs),” ANSI, revision, vol. 18, 2005.
erating Systems Review, vol. 50, no. 2, pp. 399-411, 2016. S . .
. [61] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
V. R. Kommareddy, S. D. Hammond, C. Hughes, A. Samih, and . .)
“ P NN . persistent memory,” in ACM SIGARCH Computer Architecture News,
A. Awad, “Page migration support for disaggregated non-volatile mem-
L : . . vol. 39, no. 1. ACM, 2011, pp. 91-104.
ories,” in Proceedings of the International Symposium on Memory . . w .
Systems, 2019, pp. 417-427. [62] G. .Voskullen., A. F. Rod.rlgues, and S. D.. Hammonq, ‘Analyzing allo-
D. Le Moal, “I/o latency optimization with polling,” in Vault Linux cation bghavwr for m_ultl—level memory,” in Proceedings of the Second
Storage and Filesystems Conference, 2017. International Symposium on“Memory Systems, 2016, pp. 204—.207.
B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change [63] T. Wang and R;, Johnson,_ Scalable logging through emerging non-
memory as a scalable dram alternative.” in SCA, 2009. volatile memory,” Proceedings of the VLDB Endowment, vol. 7, no. 10,
C. Lee, W. Shin, D. J. Kim, Y. Yu, S.-J. Kim, T. Ko, D. Seo, J. Park, pp. 865-876, 2014. . - N
K. Lee, S. Choi et al., “Nvdimm-c: A byte-addressable non-volatile [64] Wikipedia, Ddr4 sdram, https://en.wikipedia.org/wiki/ DDR4_
memory module for compatibility with standard ddr memory interfaces,” SDRAM, 2014. .)) .)
in 2020 IEEE International Symposium on High Performance Computer [65] D. Woo@house, Jifs: The journalling flash file system,” in Ottawa linux
Architecture (HPCA). 1EEE, 2020, pp. 502-514. symposium, 2001.
S.Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P, [66] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An
Jouppi, “Mcpat: an integrated power, area, and timing modeling frame- empir.ical guide to the behavior and use .of scalable persistent mem-
work for multicore and manycore architectures,” in Microarchitecture, ory,” in 18th {USENIX} Conference on File and Storage Technologies
2009. MICRO-42. 42nd Annual IEEE/ACM International Symposium on. ({FAST} 20), 2020, pp. 169-182.
IEEE, 2009, pp. 469-480. [67] ZDNet, “Windows leaps into the nvm revolution,”
K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F. https://www.zdnet.com/article/windows- leaps-into-the-nvm- revolution/
Wenisch, “Disaggregated memory for expansion and sharing in blade 2017.
servers,” ACM SIGARCH computer architecture news, vol. 37, no. 3, [68] J. Zhang, M. Kwon, D. Gouk, S. Koh, C. Lee, M. Alian, M. Chun,
pp- 267-278, 2009. M. T. Kandemir, N. S. Kim, J. Kim et al, “Flashshare: Punching
M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, and J. Ren, through server storage stack from kernel to firmware for ultra-low
“Dudetm: Building durable transactions with decoupling for persistent latency ssds,” in 13th {USENIX} Symposium on Operating Systems
memory,” ACM SIGOPS Operating Systems Review, vol. 51, no. 2, pp. Design and Implementation ({OSDI} 18), 2018, pp. 477-492.
329-343, 2017. [69] J. Zhang, M. Kwon, H. Kim, H. Kim, and M. Jung, “Flashgpu:
C. Mellor, “Do optane’s prospects look dimm? chip chap has Placing new flash next to gpu cores,” in 2019 56th ACM/IEEE Design
questions for intel,” https://www.theregister.co.uk/2018/07/26/david_ Automation Conference (DAC). 1EEE, 2019, pp. 1-6.
kanter_optane_dimms/, 2018. [70] J. Zhang and J. Myoungsoo, “Zng: Architecting gpu multi-processors
MICRON, “Tn-40-07: Calculating memory power for ddr4 sdram,” with new flash for scalable data analysis,” in 2020 ACM/IEEE 47th

https://www.micron.com/resource-details/868646c¢5-7ee2-4f6c-aaf4-7599bd595 2dfiinual International Symposium on Computer Architecture (ISCA).
2017. IEEE, 2020.

https://ark.intel.com/products/80807
https://ark.intel.com/products/series/86825/Intel-SSD-535-Series
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/gaming-enthusiast-ssds/750-series.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://pmem.io/
https://arxiv.org/abs/1903.05714
https://github.com/exabytes18/mmap-benchmark
https://www.theregister.co.uk/2018/07/26/david_kanter_optane_dimms/
https://www.micron.com/resource-details/868646c5-7ee2-4f6c-aaf4-7599bd5952df
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
http://s2.q4cdn.com/000096926/files/doc_downloads/hybridimm/Netlist-FMS2017-HybriDIMM-modes-of-operation-v2.81-080717.pdf
http://www.netlist.com/products/Storage-Class-Memory/HybriDIMM/default.aspx
http://s2.q4cdn.com/000096926/files/doc_downloads/hybridimm/Netlist-FMS2017-Demonstration-Brief-v3.1-FINAL.PDF
https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
https://www.snia.org/sites/default/files/PM-Summit/2017/presentations/Tom_Talpey_Persistent_Memory_in_Windows_Server_2016.pdf
https://en.wikipedia.org/wiki/DDR4_SDRAM
https://www.zdnet.com/article/windows-leaps-into-the-nvm-revolution/

[71] J. Zhao and Y. Xie, “Optimizing bandwidth and power of graphics in ICCAD, 2012.
memory with hybrid memory technologies and adaptive data migration,”

	I Introduction
	II Background
	II-A Persistent Memory and Storage
	II-B Support for Persistent Memory Expansion
	II-C ULL-Flash

	III Motivation and Challenges
	III-A ULL-Flash Performance Characterization
	III-B Software-Based Memory Expansion
	III-C Software Overhead

	IV Memory Over Storage
	IV-A HAMS Overview
	IV-B ULL-Flash Archive Management
	IV-C Aggressive Integration of HAMS

	V Implementation Details
	V-A NVDIMM Cache and Bus Integration
	V-B NVMe and Hazard Management
	V-C Persistency Control Upon Power Failure

	VI Evaluation
	VI-A Experiment Setup
	VI-B System Performance Analysis
	VI-C Detailed Analysis
	VI-D Sensitive Testing

	VII Related Work and Discussion
	VIII Conclusion
	IX Acknowledgement
	References

