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Abstract—Large persistent memories such as NVDIMM have
been perceived as a disruptive memory technology, because they
can maintain the state of a system even after a power failure
and allow the system to recover quickly. However, overheads
incurred by a heavy software-stack intervention seriously negate
the benefits of such memories. First, to significantly reduce the
software stack overheads, we propose HAMS, a hardware auto-
mated Memory-over-Storage (MoS) solution. Specifically, HAMS
aggregates the capacity of NVDIMM and ultra-low latency flash
archives (ULL-Flash) into a single large memory space, which can
be used as a working memory expansion or persistent memory
expansion, in an OS-transparent manner. HAMS resides in the
memory controller hub and manages its MoS address pool over
conventional DDR and NVMe interfaces; it employs a simple
hardware cache to serve all the memory requests from the
host MMU after mapping the storage space of ULL-Flash to
the memory space of NVDIMM. Second, to make HAMS more
energy-efficient and reliable, we propose an “advanced HAMS”
which removes unnecessary data transfers between NVDIMM
and ULL-Flash after optimizing the datapath and hardware
modules of HAMS. This approach unleashes the ULL-Flash and
its NVMe controller from the storage box and directly connects
the HAMS datapath to NVDIMM over the conventional DDR4
interface. Our evaluations show that HAMS and advanced HAMS
can offer 97% and 119% higher system performance than a
software-based NVDIMM design, while costing 41% and 45%
lower energy, respectively.

I. INTRODUCTION

Recently, persistent memories such as PRAM [41] and 3D

XPoint [48] have received a considerable attention as their

non-volatile intrinsic, high density and low power consumption

can benefit modern datacenters and high-performance comput-

ers. For such systems, back-end storage is required for recov-

ering from system failures and crashes. Since the persistent

memories can spontaneously and instantaneously recover all

memory states, they can eliminate a large number of accesses

to the back-end storage and associated runtime overheads

[38], [49], [61]. Besides, enterprise workstations and servers

employ the persistent memory with DirectAccess (DAX) [18],

[67], which brings the advantages of unprecedented levels of

performance and data resiliency [57].

There are three standard persistent memory types (i.e.,

NVDIMM-N/F/P). NVDIMM-F directly integrates flash into

a dual-inline memory module (DIMM) to provide a high

capacity similar to storage. However, NVDIMM-F cannot
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Fig. 1: NVDIMM-N vs. HAMS.

simply replace DRAM, as it only exposes a block interface.

NVDIMM-P such as Optane DC PMM is byte-addressable,

but its performance using the app direct mode to support data

persistence is yet 6× worse than DRAM [26], [29]. In contrast,

NVDIMM-N aims to offer “byte-addressable” persistency with

DRAM-like performance [54]. NVDIMM-N generally consists

of a small flash device and multiple DRAM modules with a

battery. NVDIMM-N can be useful for a wide range of data-

intensive applications such as database management system

(DBMS) [2], transaction processing [45], [63], data analytics

[8], and checkpointing [12]. However, the memory space of

NVDIMM-Ns (e.g., 4GB ∼ 64GB) is considerably smaller

than that of NVDIMM-P and persistent storage devices such as

solid state drives (SSDs). Furthermore, the capacity of DRAM

in NVDIMM-Ns is constrained by poor scaling of battery that

needs to supply the power for DRAM backup operations when

a power failure occurs [5], [71]. For example, for the past two

decades, the storage density of DRAM has increased by many

orders of magnitude, whereas the energy density of lithium-ion

battery has only tripled [34].

A possible solution to build a large and scalable, yet persis-

tent memory space is to use NVDIMM-N together with SSD

and memory-mapped files (MMFs), which can be implemented

in an OS memory manager or a file system. This allows data-

intensive applications to access a large storage space using

conventional load/store instructions. However, we observe

that such MMF-assisted persistent memory can degrade the

application performance at the user-level by 48%, on average,

compared to an NVDIMM-N-only solution (cf. Section III-B).

Such severe performance degradation is caused by not only

the long stall latency in accessing SSD but also the software

overhead and frequent data copies between the user and system

memory spaces in a conventional storage stack.

Tackling the aforementioned limitations, we propose

HAMS, a Hardware Automated Memory-over-Storage (MoS)

http://arxiv.org/abs/2106.14241v1


solution that aggregates the memory capacity of NVDIMM-

N and the storage capacity of new ultra-low latency flash

archives, referred to as ULL-Flash [37], [68], into a single

large memory space (cf. Figure 1). The large monolithic

memory space of HAMS can be used as a working memory

or a persistent memory expansion. Our HAMS resides in the

memory controller hub, and manages its MoS address pool by

leveraging the conventional DDR4 and NVMe interfaces. To

this end, HAMS employs a simple hardware cache to handle

all the memory requests from the host memory management

unit (MMU) by mapping the storage space of ULL-Flash to

the memory space of NVDIMM-N. In case of an NVDIMM-N

cache miss, HAMS internally manages the NVMe commands

and I/O request queues while hiding all the NVMe protocol

and interface management overheads from the OS, such that

data requested by MMU are always served by NVDIMM-N.

While the “baseline” design of HAMS can offer a 20GB/s

peak bandwidth, it can still yield sub-optimal system perfor-

mance, especially when running large-scale data-intensive ap-

plications due to some inefficiencies, described subsequently.

First, handling NVDIMM-N cache misses requires data trans-

fers between NVDIMM-N and ULL-Flash. That is, HAMS

needs to go through both DDR4 and PCIe interfaces, including

physical layers, controllers and protocol managers, to handle

NVDIMM-N cache misses. However, the PCIe bandwidth

is insufficient to expose the full potential of ULL-Flash to

HAMS. Consequently, the data transfers to handle frequent

NVDIMM-N cache misses for large data-intensive applica-

tions can contribute to as high as 47% of the total memory

access latency of HAMS. Second, some data may redundantly

exist in the internal DRAM of both NVDIMM-N and ULL-

Flash, used as cache and/or buffer. For example, most modern

SSDs, including ULL-Flash, employ large internal DRAMs,

to buffer/cache all incoming I/O requests to hide the long

latency of the underlying flash. This would help SSDs improve

performance when employed in a block-storage file system,

but it wastes power and increases the internal complexity of

SSDs when employed for a MoS-based solution.

To address these limitations, we also propose to aggressively

integrate HAMS into existing computer systems by modifying

its datapath and hardware modules. This makes the baseline

solution more energy-efficient and reliable, as far as data

persistency is concerned. This “advanced HAMS” unleashes

ULL-Flash and its NVMe controller from the storage box and

directly connects their datapath to NVDIMM-N. To this end,

we propose to slightly modify the NVMe controller within

ULL-Flash, by incorporating a new register-based interface

and tightly integrating the interface with the DDR4 interface

of HAMS. This aggressive integration allows ULL-Flash to

access the DRAM devices in NVDIMM-N without any in-

tervention from HAMS, and removes the DRAM buffer from

ULL-Flash while enabling full NVMe functionality.

Our evaluation results show that HAMS and advanced

HAMS provide 97% and 119% higher system performance,

than the MMF-based NVDIMM-N+SSD hybrid design, while

consuming 41% and 45% less system energy, respectively.
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Fig. 2: Persistent memory and storage.
Types Capacity OS intervention Performance Byte-addressable

NVDIMM-N [31] Low No DRAM-like Yes

NVDIMM-F [54] High Yes Slow No

NVDIMM-P [16] Medium Yes Medium Yes

HAMS High No DRAM-like Yes

TABLE I: Feature comparison across different persistent

memories and HAMS.

II. BACKGROUND

In this section, we first describe the key hardware compo-

nents of persistent memory and the storage stack for hetero-

geneous memory expansion. Next, we give the hardware and

firmware details of ULL-Flash.

A. Persistent Memory and Storage

Figure 2 depicts a high-level view of a system architecture

that includes NVDIMM-N/P and ULL-Flash. NVDIMM-N/P

is attached to the memory controller hub (MCH) through a

DDR memory bus, and operates as a standard Registered

DIMM (RDIMM) for the CPU, whereas ULL-Flash is con-

nected to MCH via a PCIe root complex as block storage.

Persistent memory. There are three standard incarnations of

persistent memory, NVDIMM-N [31], -F [54] and -P [16].

Table I summarizes the key differences between these three

types of persistent memory and our design. NVDIMM-N is

a JEDEC standard for a persistent memory module, which

includes DRAM devices, a supercapacitor, multiplexers, and

a small flash device. The supercapacitor is used as an energy

source for the DRAM backup operations when a power failure

occurs. The multiplexers are located between the DRAM and

the standard DIMM connector to a memory bus, and they

isolate the DRAM from the memory bus when backup and

restore operations take place. The flash, as a backup storage

medium, has the same capacity as the DRAM, and it is

invisible to users. While the host directly accesses the DRAM

of NVDIMM-N, its controller internally migrates DRAM data

to flash upon a power failure and this migration typically

takes tens of seconds [31]. The controller restores the data

from flash to the DRAM on the next boot, thereby providing

non-volatility. In contrast, NVDIMM-F consists of multiple

flashes without DRAM. Since it is normally used as block

storage, NVDIMM-F requires both file system and OS support,

similar to conventional SSDs. NVDIMM-P combines the de-

sign strategies of NVDIMM-N and NVDIMM-F, and employs

a byte-addressable interface. However, NVDIMM-P such as

Optane DC PMM exhibits 6× lower performance than DRAM,

and does not allow direct access to its internal DRAM as

well as requires OS-level support to enable persistent memory
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Fig. 3: Software support.

accesses. This by far makes NVDIMM-N the only persistent

memory that supports DRAM performance with the byte-

addressability. Considering this aspect, in this paper, we use

the terms “NVDIMM” and “NVDIMM-N” interchangeably.

Storage. All the high-performance SSDs, including ULL-

Flash, are connected to another part of the MCH, PCIe root

complex. A PCIe lane is also treated as a memory bus in

modern computer systems, but it transfers 4KB or larger data

packets between the CPU and the SSD for I/O transactions.

Since the granularity of I/O accesses is a page or a block, user

applications can only access the underlying SSD by going

through the entire storage stack of the OS, which includes

an I/O runtime library, file system, and block layer, atop an

NVMe driver. The NVMe driver manages the transfers of

data packets over PCIe, and communicates with the NVMe

controller in the SSD through the PCIe baseline address

registers (BARs), including doorbell registers, queue attributes,

target addresses for each queue, and the NVMe controller

information [10]. The internal hardware details of ULL-Flash

will be explained in Section II-C.

B. Support for Persistent Memory Expansion

Figure 3 illustrates the software support and storage stack

that user applications require for expanding NVDIMM with

SSD. The memory-mapped file (MMF) module in Linux, also

referred to as mmap, can be used to expand the persistent

memory space of NVDIMM with SSD. If a process calls mmap

with a file descriptor (fd) for SSD ( 1 ), the MMF creates a

new mapping in its process address space, represented by a

memory management structure (mm_struct), by allocating

a virtual memory area (VMA) to the structure ( 2 ). In other

words, the MMF links fd to the VMA, by establishing a

mapping between the process memory and the target file.

When the process accesses the memory designated by the

VMA ( 3 4 5 ), this triggers a page fault (if the data is not

available in NVDIMM).

When a page fault occurs, the page fault handler is invoked

and allocates a new page to the VMA. Since the VMA is

linked to the target file, the page fault handler retrieves the

file metadata (inode) associated with fd and acquires a lock

for its access ( 6 ). The MMU interacts with a fault handler

of the file system to read a page from the SSD. The file

system initializes a block I/O request structure, called bio,

and submits it to the multi-queue block I/O queueing (blk-

mq) layer, which schedules I/O requests over multiple software

queues ( 7 ). Depending on the design of the target system, one

or more software queues can be mapped to a hardware dispatch

queue ( 8 ), managed by the NVM controller that exists within

the SSD ( 9 ). Once the service of the I/O request (i.e., bio)

is completed, and the actual data is loaded into a new region

of the allocated page memory, the page fault handler creates

a page table entry (PTE), records the new page address in the

PTE, and resumes the process.

The MMF can be used to expand the persistent memory

space of NVDIMM with SSDs. However, this approach can

potentially negate most of the benefits that would be brought

by ULL-Flash, due to the high overheads caused by page

faults, file systems, context switching, and data copies.

C. ULL-Flash

Hardware details. All state-of-the-art SSDs typically employ

a large number of flash packages and connect them to multiple

system buses, referred to as channels. Each flash package

contains multiple dies and planes for fast response time and

low latency, as illustrated in Figure 4a. To deliver massive

parallelism and hence high I/O performance, an SSD spreads

a given set of I/O requests from the host across multiple

channels, packages, dies, and even planes.

ULL-Flash also adopts this multi-channel and multi-way

architecture, but it optimizes the datapath and channel strip-

ping [9]. More specifically, ULL-Flash splits a 4KB I/O

request from the host into two operations and issues them to

two channels simultaneously; doing so can effectively reduce

the DMA latency by half. In addition, while most high-

performance SSDs employ multiple-level cell (MLC) or triple-

level cell (TLC), ULL-Flash employs a new type of flash

medium, called Z-NAND [9]. Z-NAND leverages a 3D-flash

structure to provide a single-level cell (SLC) technology and

optimizes the I/O circuitry and memory interface to enable

short latency. Specifically, Z-NAND uses 48 stacked word-

line layers, referred to as the vertical NAND (V-NAND)

architecture, to incarnate an SLC memory. Thanks to its unique

flash architecture and advanced fabrication technology, the

read and write latencies of Z-NAND (i.e., 3µs and 100µs)

are 15× and 7× lower than the V-NAND flash memory,

respectively [55].

ULL-Flash employs large DRAM in front of its multiple

channels and exposes its internal parallelism, low latency,

and high bandwidth (through the NVMe interface), which

are managed by multiple interface controllers and firmware

modules. Note that the DRAM management is tightly coupled

with handling the NVMe protocol. Based on the definition of

NVMe, the same data can be in both the host-side DRAM

and the SSD-internal DRAM after the underlying ULL-Flash

controller or firmware performs DMA for data transfer.

I/O connection to CPU. Figure 4b illustrates the per-core

NVMe queue and communication protocol. An NVMe queue

consists of a pair of submission queue (SQ) and completion

queue (CQ), each with 64K entries [22]. These are simple

FIFO queues, and each entry is referenced by a physical region

page (PRP) pointer [10]. If the request size is larger than a
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(a) SSD internal parallelism.
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(b) NVMe queue and protocol management.
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(c) Flash firmware.

Fig. 4: Overview of ULL-Flash and NVMe datapath.
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Fig. 5: ULL-Flash versus NVMe SSD.

4KB NVMe packet, the data can be referenced by a list of

PRP pointers instead of a single PRP pointer. When a request

arrives at the SQ, the host increments its tail (pointer) and

rings the corresponding doorbell of ULL-Flash, so that the

NVMe controller can synchronize the storage-side SQ, which

is logically paired with the host-side SQ. Since the data for

each entry exist in the host-side DRAM (pointed by a PRP

pointer), the ULL-Flash handles the DMA for the I/O request,

and then the underlying Z-NAND and firmware serve the

request. Once the service is completed, the NVMe controller

moves the tail of the CQ (paired with the SQ) and informs

the host of the event over a message signaled interrupt (MSI).

The host then jumps to an interrupt service routine (ISR)

and synchronizes the CQ tail. The ISR completes the request,

advances the head of the CQ (and releases the buffer data), and

rings the doorbell to notify the ULL-Flash of the completion

of the host-side I/O processing. Finally, the NVMe controller

releases the internal data and advances the head pointer of the

CQ. The NVMe interface has no knowledge of the data cached

in the host-side DRAM, while the data for each I/O request can

reside in the host-side DRAM. Therefore, even if I/O requests

can be served by the host-side DRAM, the NVMe interface

obliviously enqueues the requests and processes them.

Firmware. Figure 4c shows a general firmware architecture

implemented in ULL-Flash. At the top of the firmware layers

within the ULL-Flash, the host interface layer (HIL) is re-

sponsible for parsing the NVMe commands and managing the

queues by collaborating with the internal NVMe controller

[32]. This layer also splits an I/O request, which can be

of any length, into sub-requests. The size of a sub-request

matches the unit I/O size that the underlying firmware module

manages. The parsed separate requests are forwarded to the

flash translation layer (FTL) [35]. The FTL translates a

given logical block address (LBA) to a physical page number

(PPN). After translating the address of each sub-request into

a PPN, the flash interface layer (FIL) submits the request

and manages its transactions, which constitutes multiple flash

commands such as row/column addresses, I/O commands,

administrative commands, and DMA transfers. During this I/O

processing, FTL/FIL can stripe the requests across multiple

internal resources (e.g., channels, packages, dies, planes, etc.),

achieving both low latency and high bandwidth.

III. MOTIVATION AND CHALLENGES

In this section, we explain why ULL-Flash can be used for

a large working memory solution, and discuss what challenges

the conventional software-assisted solutions face to expand the

persistent memory by integrating NVDIMM with ULL-Flash.

A. ULL-Flash Performance Characterization

We evaluated a real 800 GB Z-SSD prototype ( [56] as

ULL-Flash) and analyzed its performance characteristics. We

then compared the performance characteristics of ULL-Flash

with those of a high performance NVMe SSD (Intel NVMe

750 [25]) using a Flexible I/O Tester [3]. Both the devices

use four PCIe3.0 lanes (1GB/lane) and are evaluated by a

system that has a single 4GHz CPU [23]. The collected

performance characteristics are plotted in Figure 5, under the

sequential and random read/write accesses. We also evaluated

the performance with varying I/O queue depths (1∼32). The

request sizes equal to that of the NVMe packet payload (4KB).

As shown in Figure 5a, we observe that ULL-Flash exhibits

8 µs and 10 µs for 4KB read and write latencies with 1∼4

queue depth at the user-level. That is, such read and write

latencies of ULL-Flash are only 3.3× and 79% longer than

the real read/write latencies (4KB-sized) of single DDR4-

2133 DIMM [64] on the same testbed. This significant latency

advantage makes ULL-Flash a promising replacement for

conventional SSD to expand the persistent memory space

of NVDIMM with storage. As shown in Figure 5b, ULL-

Flash maintains such latency characteristics under different

I/O depths in a predictable and sustainable manner, while

NVMe SSD experiences significantly increased latencies as

the I/O depth increases (up to 155 µs). Figure 5c compares

the bandwidth trends of ULL-Flash with those of NVMe SSD.

For read and write accesses, ULL-Flash offers 115% and 137%

higher average bandwidth than NVMe SSD. These plots also

indicate that ULL-Flash reaches its peak bandwidth with only

a few NVMe commands, whereas an NVMe SSD does not

achieve such peak bandwidth for random read accesses, even
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Fig. 6: MMF-based system performance.

if we increase the queue depth to 32 entries. We also observe

that the number of requests in ULL-Flash waiting queue is 4

for most accesses (cf. Figure 5c). ULL-Flash can support only

16 outstanding requests for random read accesses. We believe

that this characteristic can make the NVMe queue management

simple and amenable to be implemented in hardware.

B. Software-Based Memory Expansion

To evaluate the performance of an existing software-based

memory expansion, we configure an MMF-based host system

with the real devices. Our evaluation system integrates three

SSDs (including a SATA SSD [24], in addition to ULL-Flash

and NVMe SSD) and employs two 8GB DRAM ranks, each

with eight banks operating at 1.6GHz. The ULL-Flash is used

to expand memory space over mmap.

Benchmarks. We use mmap-benchmark, which is designed

to evaluate the performance of mmap with a set of mi-

crobenchmarks [33]. Each of seqRd and seqWr creates a

single thread, and then performs sequential read and write

operations. In contrast, each of rndRd and rndWr creates

four threads, each simultaneously performing random read

and write operations. We also tested SQLite-benchmark,

which is a benchmark for a widely-used DBMS (SQLite)

[14]. The workload details will be explained in Section VI-A.

Performance. Figures 6a and 6b show the performances of

mmap-benchmark (bandwidth) and SQLite (transaction

latency), respectively. As shown in Figure 6a, ULL-Flash

exhibits 399% and 118% higher bandwidth than SATA and

NVMe SSDs, respectively, in the MMF-system. seqRd and

seqWr exhibit the performance near the peak bandwidth

of the SSDs [24], [25], [56], but they significantly degrade

performance while executing rndRd and rndWr. This is

because seqRd and seqWr pull the data in a sequential

manner to the file system’s buffer cache, and this helps us

hide the performance degradation of SSDs for byte-based

I/O accesses. In addition, the average I/O queue depths of

mmap-benchmark and SQLite are one and four, respec-

tively, which can better leverage the benefits of read ahead.

Similarly, Figure 6b shows that the average latency of ULL-

Flash for SQLite (per transaction) is lower than those of

SATA and NVMe SSDs by 95% and 72%, respectively.

Analysis on ULL-Flash overhead. Figure 7a further de-

composes the total execution time of user applications into

a mmap processing time (i.e., context switch and page fault

handling), an I/O stack time (i.e., filesystem, blk-mq layer, and

NVMe driver), a ULL-Flash access time, and an application

computation time. For better understanding, the figure also

analyzes how much the ULL-Flash-based MMF system de-
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Fig. 7: Challenges of using ULL-Flash.

grades the overall performance, compared to the NVDIMM-

based system. Since rndSel and seqSel spend most of

their execution on the DBMS-side computation, their CPU

cycles account for 83% of the total execution time, on average.

However, the remaining workloads in mmap-benchmark

and SQLite take 13% and 53% of the execution, respectively,

while ULL-Flash only accounts for 13% of the total latency,

on average. Note that the system overhead imposed by MMF

(mmap and I/O stack) accounts for 69% of the total execution

time. This is because MMF is involved in many software

operations including multiple page fault handling, context

switches, address translations (i.e., page table, filesystem and

FTL), boundary checks, and permission checks [20]. The

context switches are one of the main contributors to increase

I/O latency [40]. On the other hand, the queuing mechanism

and NVMe communication protocol in I/O stack are optimized

for throughput rather than I/O latency [68]. The software

operations of MMF consume 15∼20 us [20], which is around

6× longer than ZNAND access latency (3 us).

C. Software Overhead

To remove the software overheads brought by MMF, we

can bypass the entire storage stack and simulate the un-

derlying ULL as a memory module to directly serve the

load/store instructions. Figure 7b shows the CPU-side perfor-

mance for three different bypass strategies: (1) NVDIMM only

(NVDIMM), (2) ULL-Flash (ULL), and (3) ULL-Flash with a

page buffer, which is essentially a small DRAM (ULL-buff).

For this evaluation, we use the same workloads used in

Section III-B. The results collected with mmap-benchmark

indicate that the average instructions per cycle (IPC) values for

the ULL- and ULL-buff-based systems are only 0.001 and

0.003, respectively, while the NVDIMM-based system offers an

average IPC of 0.06 (i.e., 98% and 95% degradation).

When evaluating SQLite, we observed that ULL and

ULL-buff degrade IPC compared to DRAM by 140× and

101×, respectively. The load and store instructions take 51%

of the total number of executed instructions, and all these

load/store instructions for the workloads we tested are due

to the relatively long ULL-Flash operations. Note that the Z-

NAND latency (3µs) is much shorter than that of conventional

flash, but it is 3.3× longer than the latency of NVDIMM for

4KB access. While a page cache can potentially hide the page

access delay, we observe that a large fraction of the load/store

instructions suffer from the page cache misses, due to the poor

data locality exhibited by mmap-benchmark and SQLite.
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Fig. 8: Overview of baseline HAMS.

The goal of HAMS is to (1) remove the mmap and storage

stack overheads from the MMF-system and (2) reduce the

number of stalled instructions by caching the memory ref-

erences in NVDIMM directly and by automating the mapping

between ULL-Flash and NVDIMM.

IV. MEMORY OVER STORAGE

HAMS is aimed to automate all necessary hardware for the

expansion of the persistent memory by integrating NVDIMM

and ULL-Flash, while reducing the energy consumption and

maintaining the consistency on the resulting heterogeneous

memory space. In this section, we give an overview of the

baseline design and aggressive integration of HAMS.

A. HAMS Overview

Figure 8 shows the baseline architecture of HAMS. HAMS

resides in MCH, which implements an address manager, an

NVDIMM memory controller and PCIe root complex. The

address manager offers a 64-bit byte-addressable address space

by exposing the storage capacity of ULL-Flash to MMU. It

also utilizes a memory space of NVDIMM as an inclusive

cache for ULL-Flash with an integrated tag-array. To imple-

ment MoS, the address manager employs a simple hardware

cache logic that coordinates NVDIMM and ULL-Flash to

serve incoming memory requests. Note that a memory request

can be generated by either MMU or ULL-Flash, and thus, they

should be processed differently. When the NVMe controller (in

ULL-Flash) generates a memory request, the NVMe controller

extracts the NVDIMM address of the target data by referring

to PRP(s) that the address manager handles and records it in

the request. HAMS then directly forwards the request to access

NVDIMM based on the recorded NVDIMM address. On the

other hand, HAMS checks the memory address of MMU’s

request by examining its MoS tag-array. If the requested

memory address hits in the MoS tag-array, the request is

directly served by the data from NVDIMM. Otherwise, HAMS

secures an NVDIMM space to accommodate the incoming

request by evicting data to ULL-Flash. HAMS also fetches

target data from ULL-Flash to NVDIMM for read requests.

Once the data transfer from ULL-Flash to NVIDMM (or vice

versa) is completed, HAMS informs MMU of the completion

so that MMU can retry the stalled instruction.

B. ULL-Flash Archive Management

The power failure management for persistency control is

central to a key design of HAMS. While NVDIMM’s data is
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Fig. 9: Address management.

stored and restored by its on-board NVM controller, NVMe

storage employs a different mechanism to handle power fail-

ures. Specifically, the data persistency and I/O atomicity of

an SSD are guaranteed by a file system. The file system and

other kernel related components in typical support persistency

using journaling [65]. Since HAMS removes the MMF and

file system support, the data in the SSD-internal DRAM can

be lost upon a power failure. While HAMS can enforce

data persistency by tagging force unit access (FUA) per

request [60], doing so can significantly degrade the ULL-

Flash performance. This is because FUA enforces serializing

all outstanding requests to be written to the underlying flash

media. Another issue in the design of HAMS is related

to hardware implementations of the NVMe protocol. Since

NVMe data structures, including SQs, CQs, and BARs, are

mapped to a memory region of NVDIMM, all data and queue

information can be unintentionally overwritten by any of user

applications or the OS. This can make the hardware-based

NVMe management in HAMS vulnerable. In addition, the data

in NVDIMM can be inconsistent if HAMS and ULL-Flash

simultaneously access the same page frame.

We propose a set of designs to address the aforementioned

challenges. Specifically, to protect data against power failure,

we integrate super-capacitors in ULL-Flash to flush data in the

volatile DRAM buffer to the persistent flash media. We also

utilize the NVMe data structure to recover the I/O requests,

which are corrupted by power loss. On the other hand, to

resolve the vulnerability issue of the NVMe data structure,

we pin a specific memory region of NVDIMM to store the

NVMe data structure and make it invisible to the MMU. As

shown in Figure 9, this pinned memory region includes the

ring buffers for the SQs and CQs, PRP pool and MSI table, and

it is mapped to the upper memory part of NVDIMM (around

512MB in our design). On the other hand, the remaining

NVDIMM memory area is mapped to the MoS address space

by HAMS. During the initialization process, HAMS reviews

the pinned memory region, in particular the SQ and CQ buffers

including the head and tail pointers. If there is no power

failure, the SQ and CQ tail pointers should refer to the same

offset of their queue entries to avoid a violation of NVMe

queue management and consistency [21]. However, if a power

failure occurs, HAMS is able to detect all pending requests

by checking the offset differences between the SQ/CQ tail

pointers in the MMU-invisible space of NVDIMM (cf. Figure

9). During the power restoration, HAMS needs to reissue

all pending requests to the underlying ULL-Flash for data

persistency and consistency. To protect the memory to which
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(b) Aggressive integration.

Fig. 10: Challenges and aggressive integration.

the data is being transferred, HAMS keeps track of the DMA

status by configuring a bit per each entry of the MoS tag-array,

which is referred to as busy bit. This bit is set to 1 whenever

the NVMe engine issues a command, and it can be cleared

when HAMS updates the CQ’s head pointer. Thus, if the busy

bit is set, HAMS will exclude the corresponding page from

being evicted. This guarantees that the data is consistent when

ULL-Flash accesses the page frame via PRP.

C. Aggressive Integration of HAMS

The baseline design of HAMS explained so far includes a

hardware automation of cache logic in the MCH by leveraging

the conventional DDR and PCIe controllers, thus offering a

large working memory space. While this design strategy does

not require any modification to the existing storage and mem-

ory devices, it brings two inefficiencies from an architectural

perspective: (1) the overheads imposed by data transfer and (2)

the energy inefficiency brought by the SSD-internal DRAM.

First, in case of a cache miss, the target data needs to go

through the DDR4 module (e.g., the memory controller and

DDR4 PHY) and the PCIe module (root complex, transaction

layer, data link layer and physical layer). While the peak

bandwidth of DDR4 [59] is 20 GB/s per channel, ULL-Flash

(including most NVMe SSD products) uses PCIe 3.0 with

4 lanes, which makes the maximum bandwidth of NVMe

4 GB/s. Thus, in case of a cache miss, the performance

of HAMS can be capped by the peak PCIe bandwidth. In

addition, the raw data of NVDIMM should be encoded and

encapsulated into a PCIe packet, which also makes the HAMS

latency longer in case of a cache miss.

Figure 10a shows the fraction of data movement latency in

the average memory access time (AMAT) under the execution

of the workloads selected from Section III. It can be observed

that the interface latency taken by moving data between the

NVMe controller and the DDR4 controller constitutes 39% of

the total AMAT, which can degrade the HAMS performance.

Another drawback of the baseline design of HAMS is that,

even if HAMS already holds the data in NVDIMM, the data

will still be copied to the SSD-internal DRAM. While this

would improve performance under the block storage use-case

(with a file system), it would also introduce extra energy

consumption and increase the internal complexity of the SSD.

Note that the SSD-internal DRAM requires 17% more power

than a flash complex consisting of 32 flash chips.

To address these challenges, we propose to remove the SSD-

internal DRAM that is used for data buffering, introduce a
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Fig. 11: MoS tag-array design in NVDIMM cache.

new register-based interface (instead of doorbell registers and

PCIe BARs), and connect ULL-Flash to DRAM PHY (instead

of PCIe). Note that writes to ULL-Flash are already reduced

without employing the SSD-internal DRAM as the incoming

data are buffered/cached by NVDIMM. Similarly, the address

mapping table is also buffered in the NVDIMM. Accessing the

mapping information only consumes a tCL and a few tBURST

periods (less than 20ns), which is ignorable compared to the

long ULL-Flash access latency. As shown in Figure 10b, this

aggressive integration of NVDIMM and ULL-Flash, which

we call advanced HAMS, allows the NVMe controller to

directly access the DRAM modules over the DRAM interface.

Specifically, to be compatible with the synchronous DDR4

interface, the NVMe controller avoids unpredictable delay

of the underlying Z-NAND accesses by employing a set of

registers to buffer the command, address, and data. For com-

munications, the address manager employs an SSD command

generation logic that writes a set of registers capturing the

source and destination addresses and I/O command, based

on the I/O request that HAMS needs to initiate. The NVMe

controller fetches (or pulls) the target data from the source

address of NVDIMM (written to the address register via the

DRAM interface) and then forwards it to flash firmware so

that it can be programmed into flash media.

While allocating multiple DDR4 channels to connect each

pair from HAMS controller, NVDIMM and ULL-Flash can

parallelize the MMU operations and ULL-Flash read/write

accesses, this design also makes DDR4 channels under-

utilized. To avoid wasting the channel resources, we propose

to connect ULL-Flash and one/multiple NVDIMMs to HAMS

controller via the same DDR4 bus. However, one of the key

design issues is that NVDIMM can be accessed by both the

HAMS controller and NVMe controller in our design. To

avoid simultaneous accesses from these two, this aggressive

integration also introduces a lock register, which indicates that

the NVMe controller is in the process of accessing DDR4 and

NVDIMM for data transfers.

V. IMPLEMENTATION DETAILS

A. NVDIMM Cache and Bus Integration

HAMS address management. An SRAM-based MoS tag-

array can expose a significant circuit area cost to the HAMS

controller and raise the concern of metadata persistency when

a power failure occurs. Instead, we configure MoS’ NVDIMM

cache as direct mapped and integrate its tag information along

with ECC bits in each NVDIMM cache line, which is similar

to the MCDRAM configuration of Intel Knights Landing

processor [58]. Figure 11 shows details of our MoS tag-array

in the NVDIMM cache. Each entry of the MoS tag-array
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Fig. 12: The details of the register-based interface.

contains all metadata of the cache, such as the tag, busy bit

(B), valid bit (V) and dirty bit (D). When there is an incoming

memory request, its address is decomposed into the tag, index,

and offset fields. HAMS address manager then retrieves the

tag-array entry and the data block from the NVDIMM cache

by using the decomposed index. A comparator pulls the stored

tag from the retrieved tag-array entry and compares it with

the tag of the corresponding memory request. If the two tags

match, the fetched data can be directly served from HAMS

controller. On the other hand, if the two tags mismatch, HAMS

composes two NVMe commands, one for a read that fills data

from ULL-Flash to the NVDIMM cache entry, and another

for a write that evicts the data from NVDIMM to ULL-Flash.

Once the target data are available in the NVDIMM cache,

HAMS places it on the system bus, and notifies the completion

to CPU by setting the MMU’s command and address buses.

Register-based interface. Figure 12 illustrates how our ad-

vanced HAMS controller communicates with the underlying

NVMe controller through DDR4. In our design, to send

an I/O request to NVMe controller, the HAMS controller

firstly deselects the NVDIMM by toggling its CS# strobe to

high voltage. In the next clock cycle, the HAMS controller

configures the write command in the DDR channel by toggling

the WE#, CAS# and RAS# strobe to low, low and high voltage,

respectively. Following the write command, the I/O request,

which is packeted as a 64B NVMe command, is transferred

to the data buffer registers of ULL-Flash via the D[63:0]

strobes in 8-cycle data burst. The NVMe controller then

extracts and parses the request information (i.e., request type,

source/destination addresses and data length) from the data

buffer registers, similar to most NVMe SSDs. Note that, unlike

their original purpose, the address strobes A[15:0] deliver

no information during the communication between HAMS

controller and NVDIMM controller.

After a given number of cycles for processing the NVMe

write command or fetching data from the flash media based

on NVMe read command, HAMS sets the lock register to

1, which indicates that the NVMe controller can take over

the control as a bus master. If the lock register is configured,

the NVMe controller initializes the DMA procedure between

ULL-Flash and NVDIMM based on the timing sequence of the

DDR4 interface. After transferring data, the NVMe controller

releases the lock register by resetting it to 0. HAMS cache

logic uses the lock register for NVDIMM accesses, which

helps us avoid a case where both NVMe controller and

memory controller use the bus at the same time.

B. NVMe and Hazard Management

The I/O requests for each NVMe queue entry can be simply

composed by filling the information fields of the NVMe

command structure. HAMS writes the opcode field for a given

request (read/write), and fills the NVDIMM address, SSD

address, and page size (4KB) into the corresponding PRP,

LBA, and length fields, respectively. The generated NVMe

command is enqueued in the SQ by the HAMS NVMe engine.

This engine writes the doorbell to inform the ULL-Flash of

a request. Whenever the interrupt is delivered from the ULL-

Flash controller of HAMS, the NVMe engine synchronizes the

corresponding CQ and clears the target entries of CQ and SQ.

There are two issues associated with this NVMe manage-

ment, as NVDIMM is used both as a cache and as a PRP

target: (1) eviction hazard and (2) redundant eviction. The

eviction hazard occurs when the NVMe controller and HAMS

cache logic access the same NVDIMM location, whereas the

redundant eviction arises when the cache logic generates an

eviction command, which is already being issued. Consider the

example illustrated in Figure 13. The MMU requests a read at

0xF0 of the MoS address space, the index and tag of which

are 0x0 and 0xF, respectively. Since a cache miss occurs, the

HAMS cache logic evicts the exiting page (0xE0) to ULL-

Flash, and requests a data read at 0xF0. In the meantime, the

MMU accesses 0xF0 to update the data. This makes the cache

logic evict the same data again, because the evicted request

is still serviced by ULL-Flash (i.e., redundant eviction). Now,

the HAMS NVMe engine contains three NVMe commands

(CMD1/2/3). These commands are processed by the NVMe

controller in a FIFO order based on the NVMe specification.

However, I/O completions within ULL-Flash can be out-of-

order, due to SSD-internal tasks. More importantly, the NVMe

controller transfers the data to NVDIMM based on the order

of completion, which can cause an eviction hazard.

To prevent these hazards and redundant evictions, HAMS

employs two techniques. When the NVMe engine issues

commands, HAMS isolates the target contents from the corre-

sponding NVDIMM cache entry by cloning the corresponding

page into the PRP pool allocated in the pinned memory (Figure

9). It then updates the PRP value with the location of the

cloned page so that the underlying NVMe controller does

not make the data inconsistent during DMA. Further, we

add a wait queue to the pinned memory, and make HAMS

always refer to a busy bit (cf. Section IV-B) of the MoS tag-

array, whenever a cache miss occurs. The HAMS cache logic

sets the bit to 1 and then resets it to 0, when the NVMe

engine completes the request. Figure 14 shows an example

that illustrates how the eviction hazard and redundant eviction

issues are handled. When a cache miss occurs (read at 0x0E),

the cache logic toggles the busy bit of the target tag-array’s

entry and copies the target page to a PRP pool entry. During

this process, HAMS replaces the reference to PRP with the

PRP pool entry and submits it to the NVMe engine. Upon the

next cache miss (write to 0xF0), the cache logic realizes that

the entry is in an eviction process, and puts the request into
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Fig. 13: Challenges with the baseline HAMS.
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Fig. 14: Hazard avoidance methods.

the wait queue. After the I/O services of the NVMe commands

are completed, the busy bit is cleared, and the request that sits

in the wait queue is issued again. In this way, the eviction

hazard and redundant eviction issue with the wait queue and

busy bit can be avoided.

C. Persistency Control Upon Power Failure

A target system can benefit from a large memory space,

if it utilizes HAMS as a working memory expansion, which

expands the address space by combining NVDIMM and ULL-

Flash. However, it needs a guarantee for data persistency,

as MoS address space is considered as a persistent memory

expansion. Thus, HAMS requires to flush the NVMe request

whenever its cache logic needs to update data in ULL-Flash.

To address this shortcoming, we add a journal tag to each SQ’s

NVMe command entry by utilizing the reserved area in the

NVMe command format. This journal tag keeps information

that indicates whether the corresponding request is completed

by ULL-Flash. Whenever the NVMe engine sends a request

to ULL-Flash, it sets the tag to 1. Once the interrupt arrives,

HAMS clears the tag associated with the I/O completion.

Figure 15 gives an example that illustrates how HAMS

utilizes the journal tag information. In the first phase of this

example, HAMS issues all the commands in the SQ to ULL-

Flash, and CMD1, CMD3 and CMD4 are processed as the tail

and head pointers refer to the same location in the SQ/CQ,

which clears the corresponding journal tags to 0. Upon a

power failure at the end of the first phase, ULL-Flash and

HAMS cannot finish CMD2. Since the pinned memory space

of NVDIMM holds the data of the SQ region in our design,

HAMS first checks the SQ region on power-up to determine if

there is any command whose journal tag is 1. If there is one,

HAMS pulls the command and creates a pair of SQ and CQ

for the I/O service in second phase. HAMS then restores it to

the SQ, increases the SQ’s tail pointer, and rings the doorbell

register, so that the outstanding request issued at the moment

of a power failure can be served appropriately.
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Fig. 15: Power failure recovery procedure.

VI. EVALUATION

A. Experiment Setup

Simulation model. To explore the full design space of the

HAMS enabled systems from both the software and hardware

perspectives, we first replace the existing main memory im-

plementation in a full system simulator (gem5 [6]) with the

latency model of an 8GB DRAM-based NVDIMM [11]. We

then model an ULL-Flash archive and integrate it into gem5

by revising the memory controller and I/O bridge model1.

The storage-side components of the proposed simulator are

configured as ULL-Flash instances by leveraging an existing

SSD simulator, Amber [15], which is highly reconfigurable

(being aware of the details of flash internals, SSD inter-

nals and parallelism-related design parameters) and detailed

(implementing a full firmware stack and an actual NVMe

interface). Our simulator has been verified with an actual

800GB ULL-Flash prototype [55]. Note that this proposed

simulation framework enables the execution of data-intensive

applications on a real Linux, while allowing us to investigate

the full design space on the datapath from top to bottom. The

details of our simulation environment are given in Table II.

Experiment precondition and energy profiling method.

To guarantee the consistency of our experimental results, we

completely wrote all data-blocks into the flash-media, and

flushed/cleaned up the internal-DRAM in a warm-up phase

before performing our evaluations. The energy estimation of

each component in the full-system platform is performed based

on its power model; more specifically, the power models

of ULL flash and NVDIMM are derived based on NAND

flash datasheets and MICRON SDRAM power calculator

[47], which will be available for download (along with our

simulator), while the energy consumptions of core and cache

are measured by leveraging McPAT [43].

Benchmarks. We evaluate 12 data-intensive workloads from

MMF microbenchmark [33], Rodinia [7], and SQLite [13]

benchmarks. While MMF microbenchmark is memory-

intensive, Rodinia benchmark requires high computation. In

addition, MMF microbenchmark accesses the persistent mem-

1All source codes of our full-system simulation that integrates high-fidelity
SSD storage models will be made available for download in public domain.



OS Linux 4.9, Ubuntu 14.10

CPU quad-core, ARM v8, 2GHz

Cache 64KB L1I/64KB L1D/2MB L2

memory NVDIMM, DDR4, 8GB, 128KB page

storage ULL-Flash, 512MB buffer, 800GB

flash 3us read, 100us write

TABLE II: Gem5 specification.

Benchmark Microbenchmark SQLite benchmark Rodinia

Workloads seqRd rndRd seqWr rndWr seqSel rndSel seqIns rndIns Update BFS KMN NN

# of inst. 67G 69G 67G 69G 213G 213G 40G 44G 244G 192G 38G 145G

load inst. ratio 0.28 0.27 0.28 0.27 0.26 0.26 0.25 0.25 0.26 0.21 0.27 0.16

store inst. ratio 0.43 0.37 0.43 0.37 0.20 0.20 0.21 0.21 0.20 0.04 0.03 0.05

Data sets 16GB 16GB 16GB 16GB 11GB 11GB 11GB 11GB 11GB 9GB 5GB 7GB

TABLE III: Workload characteristics.

ory system in a coarse-granular fashion (i.e., by pages). In

contrast, the other workloads generate fine-granular memory

accesses ranging from 8B to 100B. In our experiments, the

datasets to be tested initially reside in either ULL-Flash or

HAMS. To access data, these workloads are structured to sup-

port memory-mapped file I/O via the POSIX-compliant system

call mmap. Table III tabulates the important characteristics

of our benchmarks such as the total number of instructions,

fraction of load/store instructions, and dataset sizes.

Simulation platforms. We configured a traditional computer

system, called mmap, as our baseline for evaluation. mmap

employs an ULL-Flash and a DDR4 DRAM as its storage

and memory media, respectively. Table II shows important

parameters of our system configurations. By default, the

baseline accesses data directly from the persistent storage by

using the MMF module. We also built five computing plat-

forms employing the existing memory expansion techniques

[1], [42], [66] and four different systems that implement

our HAMS model. Specifically, (1) optane-P [29] employs

512GB Optane DC PMM as main memory. To guarantee

data persistency, Optane DC PMM operates in App Direct

mode that serves all memory requests without DRAM cache.

(2) optane-M [29] employs 8GB DRAM as the cache of

Optane DC PMM, which can improve the performance but

sacrifice the data persistency. (3) flatflash-P [1] allows

the applications to directly access a cache line from ULL-Flash

via MMIO [4] thereby guaranteeing the data persistency. (4)

Compared to flatflash-P, flatflash-M [1] selectively

buffers hot pages in 8GB host-side memory for fast accesses.

(5) nvdimm-C [42] connects ULL-Flash to DRAM PHY

thereby sharing the memory channel with DRAM. nvdimm-C

uses DRAM as a cache of ULL-Flash. However, data migra-

tion between DRAM and ULL-Flash is only allowed during

DRAM refresh periods. (6) A loosely-coupled HAMS system,

which connects to 8GB NVDIMM and 800GB ULL-Flash via

a memory channel and PCIe links, respectively, is referred to

as hams-L. hams-LP is the loosely-coupled HAMS system,

which works in a “persist mode” to persistently store data.

hams-LP tags FUA per I/O request and enforces at most

a single I/O request on-the-fly. (7) hams-LE is also the

loosely-coupled HAMS system, but it operates in an “extend

mode”. In particular, hams-LE leverages the NVMe protocol

to enable parallel accesses to ULL-Flash. To guarantee the data

persistency, it also employs our proposed persistency control to

manage power failure. (8) An advanced HAMS system with

aggressive integration is referred to as hams-T. hams-TP

employs such HAMS system, which works on persist mode.

Lastly, (9) hams-TE employs hams-T, but the extend mode.

Lastly, we configure an oracle platform that employs a

512GB NVDIMM to serve the evaluated workloads.
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Fig. 16: Application performance.

B. System Performance Analysis

Application-level performance. Figures 16 plots the perfor-

mance for microbenchmark, Rodinia, and SQLite benchmark.

mmap achieves 43K pages/s for the microbenchmark and graph

workloads, and 6905 SQL ops/s for the SQLite workloads,

on average, which are, respectively, 2.54x and 1.37x worse

than hams-TE. This is because, the I/O requests in mmap

go through a complex system software stack before finally

reaching the storage, which introduces a substantial overhead.

Although flatflash-P allows CPU to directly access data

from the storage, it consumes 4.8us for 64B data access,

which is over 40 times longer than DRAM access latency

[1]. Thus, flatflash-P degrades performance by 75% in

the workloads of MMF microbenchmark, compared to mmap.

Since flatflash-M can hide the long storage access latency

by buffering hot pages in host-side memory, flatflash-M

outperforms flatflash-P by 136%, on average, in all

evaluated workloads. However, flatflash-M accesses the

storage via MMIO rather than the NVMe protocol, which

loses the opportunity of utilizing the plenty of queue and

flash parallelisms. In contrast, hams-LE implements NVMe

protocol in our HAMS controller to enable parallel accesses

to the underlying ULL-Flash. In addition, hams-LE mitigates

the storage access overhead from OS by offloading the task

of page access to hardware. Therefore, hams-LE improves

the performance by 26% in all the workloads, on average,

compared to flatflash-M. nvdimm-C further improves

the efficiency of the storage access by directly connecting

ULL-Flash to the host-side DRAM via the same memory

channel. However, to prevent the memory controller and

SSD controller from competing for the memory channel,

nvdimm-C constrains the data migration between DRAM
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Fig. 17: System-level execution time breakdown.
and ULL-Flash in the period of DRAM refresh operations.

Although fetching a single page from ULL-Flash costs 3us,

moving data from ULL-Flash to DRAM consumes upto 48us

[42]. Considering such long latency, it is difficult to execute

latency-critical applications in nvdimm-C. In contrast, HAMS

can fit to a wider range of applications, especially the ones

with large memory footprint. optane-P outperforms mmap

by 121% in microbenchmark, as all data initially reside in the

persistent memory, which eliminates the overhead of moving

data between memory and storage. However, the performance

of optane is unfortunately not promising in the workloads

with fine-granular memory accesses (i.e., Rodinia and SQLite

benchmark). This is because the memory request size is

much smaller than the internal block size (256B) of Optane

DC PMM, which wastes the memory bandwidth. optane-P

resolves the mismatch between the memory request size and

the Optane internal block size by employing DRAM as the

cache of Optane DC PMM. Such design improves the perfor-

mance by 142%, compared to optane-P. On the other hand,

hams-T serves the memory requests from NVDIMM, whose

bandwidth is not constrained by the internal block size. In

addition, hams-T enables direct access between NVDIMM

and ULL-Flash, which eliminates the redundant data copies.

Thus, hams-TE improves the application’s performance by

as high as 12%, compared to optane-M. Lastly, as the data

migration latency cannot be fully overlapped with computation

time in data-intensive workloads (e.g., seqRd and seqWr),

hams-TE performs worse than Oracle by 14%.

Execution time breakdown. We now break down the exe-

cution time of our workloads from the view point of system

software, to analyze the critical factors that can impact the

overall performance. Figure 17 shows the execution time

breakdown. As shown in the figure, in mmap, a large fraction

of the execution time is consumed by the “OS” and “SSD”

accesses. The overheads brought by the “OS” and “SSD”

accesses cannot be hidden by application execution, as the

application is always stalled until the OS fetches data from

storage and prepares it in the main memory. Since we are using

an ultra-low latency SSD (ULL-Flash), the overheads brought

by the storage accesses are not the main factor that degrades

the overall performance. Instead, as current Linux kernel is not

optimized for ULL-Flash, it becomes a performance bottleneck

in the baseline platform. On the other hand, the overheads

brought by “OS” and “SSD” can be ignored in HAMS, as

HAMS hybrids NVDIMM and ULL-Flash in the main memory,

and directly accesses ULL-Flash as memory without any OS

intervention. Note that the storage-access times are excluded

from “app” and separately presented with the labels of “OS”
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and “SSD”, whereas the storage-access times of HAMS are

included in “app” (as they are classified as the latencies of

LD/ST instructions). The “app” time of hams-TE is as short

as that of mmap, indicating that hams-TE can fully hide the

OS and SSD access overhead.

C. Detailed Analysis

Memory latency analysis. We collect the statistics from the

memory-side and present the hardware performance in terms

of memory stalls in Figure 18. As our HAMS employs a large

NVDIMM as cache (i.e., 8GB in Table II) to accommodate

most memory requests, the cache hit rate of NVDIMM reaches

94%, on average, in all the tested workloads. Thus, NVDIMM

accesses account for 79% of the total memory delay in

hams-LP. hams-T (including hams-TP and hams-TE)

reduces the total memory stalls by 16%, compared to hams-L.

This is because hams-T leverages the DDR4 interface to

directly transfer data between NVDIMM and SSD while

hams-L uses different interfaces (DDR and NVMe/PCIe) for

NVDIMM and ULL-Flash, and always requires extra time to

transform data format. On the other hand, the persist mode

generates 34% more memory delay than the extend mode,

on average. This is because, the persist mode only allows

one memory access at a time, which means serializing the

executions of instructions that experience cache misses. For

hams-L, NVMe-DMA contributes to 18% of the memory

delay in data-intensive workloads such as rndRd, rndWr,

seqRd, seqWr and update. This is because, the PCIe link

used by NVMe SSD is mainly designed for peripheral devices

and provides much lower bandwidth compared to the DDR4

interface. Thus, transferring data via PCIe costs much longer

time than the DDR4 interface. On the other hand, for other

workloads that do not intensively access the storage, hams-L

and hams-T have similar memory delays.

Energy analysis. Figure 19 plots the energy consumption of

the whole system including CPU, system memory (DRAM),

ULL-Flash internal DRAM, and Z-NAND chips. As shown in

the figure, hams-LP, hams-LE, hams-TP, and hams-TE

reduce the system-level energy by 31%, 41%, 34%, and 45%,

respectively, compared to mmap. Specifically, the combined

energy of CPU and system memory in mmap is 89% higher

than that of hams, as mmap spends more time for I/O

responses, which also costs more CPU and memory idle
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energy. On the other hand, the persist mode and extend

mode do not impact the energy consumption of NVDIMM.

This is because, the persist mode only constrains the number

of memory requests on the fly, but it does not impact the

total number of NVDIMM accesses. In contrast, hams-L

consumes 8% more NVDIMM energy than hams-L. This is

because, hams-T directly transfers data between NAND flash

and NV-DIMM without any redundant data copies, whereas

hams-L employs NVDIMM and SSD internal DRAM to

buffer data and this introduces redundant data copies. HAMS

also reduces the energy of accessing SSD by 11%, compared to

mmap, on average. This is because, mmap needs to periodically

flush data from the main memory to SSD for persistency.

Overhead analysis. Compared to the existing memory con-

troller, HAMS requires NVMe queue engine, SSD command

generator and lock register. In our design, the core logic of

the NVMe queue engine and SSD command generator employ

thousands of gates, which are negligible compared to the

billion transistors in modern CPUs. While HAMS enables

ULL-Flash to share the DDR4 channels with the NVDIMMs

to avoid extra usage of channel resources, ULL-Flash can

occupy one DIMM slot. However, considering the fact that

LRDIMM supports up to 24 DIMM slots, HAMS only reduces

the maximal memory capacity by 4%.

D. Sensitive Testing

Various page sizes. We evaluate the performance of SQLite

benchmark with various page sizes, and the results are shown

in Figure 20a. While 4KB and 1MB are the default page

sizes in Linux Kernel 4.9, we also select intermediate page

sizes such as 16KB, 64KB, 128KB and 256KB. As a small

page size incurs frequent TLB misses and cannot utilize ULL-

Flash internal parallelism, 4KB achieves poor performance in

workloads seqSel and seqIns. On the other hand, employing

a large page size increases data migration overhead when

cache misses in NVDIMM. Therefore, 1MB achieves poor

performance in workloads of random accesses (e.g., rndSel

and rndIns). In our evaluation, configuring the page size as

128KB can achieve the best performance in most workloads.

Large memory footprints. We perform a stress testing on

NVDIMM by increasing the data set size to 44 GB, and

the results are shown in Figure 20b. hams-TE degrades the

performance by 24% compared to Oracle, owing to the

frequent data migration between NVDIMM and ULL-Flash.

Nevertheless, hams-TE still outperforms mmap by 181%.

VII. RELATED WORK AND DISCUSSION

Recently, Intel has released a byte-addressable PRAM-based

NVDIMM (i.e., Optane DC PMM) as a replacement for the

main memory [27]. However, unlike DRAM, user applications

cannot directly access persistent data from the proposed hard-

ware using load/store instructions without customized software

stack. Specifically, OS needs a series of Intel-custom software

support, including a block driver, persistent-memory-aware

filesystem and Direct Access (i.e., DAX) [46] to directly map

the Optane DC PMM (as memory) to a userspace. The existing

applications also require modifications to be compatible with

Intel runtime libraries [28] built on DAX. Further, Optane DC

PMM also has several drawbacks from a hardware design

angle. Specifically, it exhibits much lower storage capacity

than ULL-Flash based HAMS (i.e., 512 GB/DIMM vs. 2.3

TB/DIMM) [19]. With the same number of memory packages

per standard unit size, the aggregated throughput of Optane

DC PMM is 4.5× lower than that of ULL-Flash [29], [70]. It

also faces the challenges of addressing the long PRAM write

latency issues. [66] reports that Optane DC PMM integrates a

16KB XPBuffer to accommodate the write requests. However,

as the XPBuffer size is fixed and relatively small, [29] observes

that NVDIMM-N outperforms Optane DC PMM (as persistent

memory) by 5.72x in write-intensive workloads.

Several prior studies [17], [30], [42], [51], [62] propose

to integrate DRAM and flash into a single system memory.

Similar to Optane DC PMM, memory requests need to go

through multiple software layers, including NVML libraries

and a specific HybriDIMM driver [52], before accessing data

from HybriDIMM. In addition, when configuring HybriDIMM

as persistent memory, its internal DRAM buffer is disabled,

which directly exposes the long flash latency to system [50].

Abulila et al. proposes FlatFlash [1], which utilizes NAND

flash to expand the memory space. Specifically, FlatFlash

directly exposes ULL-Flash to the host as a byte-addressable

device by leveraging the SSD internal DRAM as cache.

However, a large portion of the SSD internal DRAM is used

to store the address translation table [69]. The remaining

DRAM space is much smaller than the host-side DRAM,

which can be insufficient to accommodate the whole working

set. In addition, as FlatFlash employs MMIO rather NVMe

protocol to access the underlying ULL-Flash, it cannot benefit

from the SSD internal parallelism thereby exhibiting lower

device-level throughput. While migrating hot pages to the host-

side memory can improve the overall performance, FlatFlash

cannot guarantee the data persistency in such case.

In contrast, our HAMS expands the capacity of main

memory without modifying the traditional filesystem or user

applications. Specifically, just like DRAM, it directly exposes

the address space of ULL-Flash to MMU, while leveraging

our HAMS controller to manage data movements between

NVDIMM and ULL-Flash, making it transparent to OS. To

the best of our knowledge, such architectural design has not

been discussed in the literature before. While HAMS can also

be implemented as a kernel module, it requires OS to respond



to every cache miss in NVDIMM (i.e., page fault), which

incurs the overhead of context switch and page fault handling.

Such software overhead is undesirable when large working

sets incur frequent page swapping between NVDIMM and

ULL-Flash (cf. Figure 7a). Furthermore, HAMS outperforms

other DRAM+NVM approaches by maximizing the through-

put of both NVDIMM and ULL-Flash (cf. Section VI-B). Our

persistency control design can also guarantee data persistency

without sacrificing ULL-Flash’s performance.

A set of prior work propose disaggregated memory solutions

to expand the memory capacity [36], [39], [44], [53]. For

example, [53] explores the feasibility of constructing a large

memory pool across 1,000 servers via Ethernet. However, this

design suffers from a low network bandwidth and high total

cost of ownership (TCO). [44] partially addresses the afore-

mentioned challenges. [44] improves the network throughput

by employing PCIe interface and reduces the cost of hardware

infrastructures by deploying more DRAM DIMMs in cus-

tomized blade servers. Unfortunately, it is still challenging to

adopt this design, owing to the high cost (i.e., price and power

consumption) of DRAM DIMMs. [36] further reduces TCO by

replacing DRAM with NAND flash. However, accessing flash

from remote servers increases the I/O latency by 10∼15 us,

which is 5× longer than ZNAND access latency (i.e., 3us).

On the other hand, [36] requires source-level modifications

to the running applications, which exposes huge overheads

to the users. In contrast to the above solutions, HAMS is

a scale-up solution, which aggregates the capacities of local

NVDIMM and ULL-Flash as a single memory space. HAMS,

therefore, saves the huge cost of constructing many blade

servers and purchasing expensive DRAM DIMMs. In addition,

as HAMS builds TB-scale persistent memory in an OS-

transparent manner, executing applications in HAMS requires

no changes to the existing programming models.

VIII. CONCLUSION

We proposed HAMS to aggregate the storage capacities of

NVDIMM and ULL-Flash into a single large memory space,

which can be used either as a working memory expansion

or as a persistent memory expansion. We also optimized

HAMS by modifying its datapath and hardware modules,

which guarantees data persistency and makes HAMS more

energy efficient and reliable. Our HAMS and advanced HAMS

architectures improve MIPS by 97% and 119%, respectively,

compared to the software-based hybrid NVDIMM design,

while saving 41% and 45% energy, respectively.
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