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ABSTRACT

Recently, both industry and academia have proposed many dif-
ferent neuromorphic architectures to execute applications that
are designed with Spiking Neural Network (SNN). Consequently,
there is a growing need for an extensible simulation framework
that can perform architectural explorations with SNN, including
both platform-based design of today’s hardware, and hardware-
software co-design and design-technology co-optimization of the
future. We present NeuroXplorer, a fast and extensible framework
that is based on a generalized template for modeling a neuromor-
phic architecture that can be infused with the specific details of a
given hardware and/or technology. NeuroXplorer can perform both
low-level cycle-accurate architectural simulations and high-level
analysis with data-flow abstractions. NeuroXplorer’s optimization
engine can incorporate hardware-oriented metrics such as energy,
throughput, and latency, as well as SNN-oriented metrics such as
inter-spike interval distortion and spike disorder, which directly
impact SNN performance. We demonstrate the architectural explo-
ration capabilities of NeuroXplorer through case studies with many
state-of-the-art machine learning models.
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1 INTRODUCTION

The term neuromorphic computing was coined in the 90s to describe
integrated circuits that mimic the neuro-biological architecture of
the central nervous system [42]. These circuits employ variants
of integrate-and-fire (I&F) neurons [28] as computational units
and analog weights as synaptic storage. I&F neurons use spikes
to encode information, where each spike is a voltage or current
pulse in the physical world, typically of ms duration [40]. Recently,
both industry and academia have proposed many different neuro-
morphic platforms to execute applications that are designed with
Spiking Neural Network (SNN). Examples of such platforms include
SpiNNaker [27], Neurogrid [12], TrueNorth [23], DYNAPs [44],
Tianji [54], Loihi [20], and ODIN [26], among others [52].

To cope with the growing complexity of neuromorphic systems?,
challenges in integrating emerging non-volatile memory technolo-
gies, and faster time-to-market pressure, efficient design methodolo-
gies are needed [10]. We highlight the following three key concepts
that are likely to address the design issues postulated above.

e Platform-based Design: In this design methodology, a hard-
ware platform is abstracted from its system software us-
ing the Application Programming Interface (API), making

! The complexity of a neuromorphic system can be expressed in terms of the number
of neurons and synapses, and their interconnection.
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Figure 1: High-level overview of NeuroXplorer. The framework supports the following functionalities: 1) application quality
exploration, 2) platform-based design, 3) hardware-software co-design, and 4) design-technology co-optimization.

the hardware and software development orthogonal to al-
low more effective exploration of alternative solutions [35].
Platform-based design methodology facilitates the reuse of
the system software for many different hardware platforms.
Hardware-Software Co-design: In this design methodol-
ogy, a hardware platform and its system software are concur-
rently designed to exploit their synergism in order to achieve
system-level design objectives [22]. The system software in
this case is tailored for the hardware platform.
Design-Technology Co-optimization: In this design meth-
odology, system-level design metrics are applied to explore
the choices in hardware design and process technology to
enable scaling at advanced technology nodes [75].

Consequently, there is a growing need for an extensible hardware
simulator and an application mapper that can perform architec-
tural explorations with SNNs, including platform-based design,
hardware-software co-design, and design-technology co-optimi-
zation. We present NeuroXplorer, a fast and extensible framework
that is based on a generalized template for modeling a neuromorphic
architecture that can be infused with the specific details of a given
hardware and/or technology.

NeuroXplorer is released under the permissive MIT open license
and it provides a user with the following high-level functionalities,
which we will elaborate in the following sections.

o A design optimization engine that can incorporate hardware
design metrics such as energy, latency, throughput, and reli-
ability, as well as SNN-oriented metrics such as inter-spike
interval distortion and spike disorder.

o A generalized and optimized system software framework,
facilitating mapping of SNN-based applications to different
neuromorphic hardware platforms.

e A cycle-accurate model of neuromorphic hardware utiliz-
ing a generalized template, which can be configured with
hardware- and technology-specific details from industrial
and academic manufacturers of neuromorphic systems.

A design space exploration framework using data flow ab-
stractions to represent machine learning models for execu-
tion on neuromorphic hardware, allowing estimation of key
system-level performance metrics early in the system design
stage.

A framework to analyze different technological alternatives
for neuron and synapse circuits, and the impact of scaling
in neuromorphic hardware, facilitating optimization of key
system-level design metrics.

In addition to these architecture-centric functionalities, NeuroX-
plorer also facilitates functional simulations via SNN simulators
such as CARLsim [15], Brian [29], NEST [25], and Neuron [32], sup-
porting different degrees of neuro-biological details and learning
modalities. Thus, NeuroXplorer allows to explore the design-space
of application performance alongside architecture development.

NeuroXplorer is developed over a period of five years and is
supported by three National Science Foundation research grants
and one Department of Energy grant from the United States, and
one Horizon 2020 research grant from Europe.

2 NEUROXPLORER: HIGH-LEVEL DESIGN

Figure 1 illustrates the key components of NeuroXplorer. At a high-
level, NeuroXplorer supports three layers of abstraction — the ap-
plication layer, the system software layer, and the hardware
layer, similar to the abstractions in a classical von-Neumann com-
puting system. Internally, the system software layer is divided into
a design-time or compile-time methodology, where a machine
learning model is converted into an intermediate form for mapping
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to a specific neuromorphic hardware, and a run-time methodol-
ogy, which allocates hardware resources to admit and execute the
model on the hardware. NeuroXplorer can work with both Artificial
Neural Networks (ANNs) and biology-inspired Spiking Neural Net-
works (SNNs). NeuroXplorer interfaces with ANN workloads that
are specified in high-level frameworks such as Keras with Tensor-
Flow backend [1, 30] and PyTorch [48]. To map an ANN workload
to an event-driven neuromorphic hardware, the workload is first
converted to an SNN using the SNN Conversion unit and then, the
SNN is simulated using the SNN Simulation unit of NeuroXplorer.

SNN workloads can be specified in PyNN [21], which is a Python
interface to many SNN simulators such as CARLsim [15], Brian [29],
NEST [25], and Neuron [32]. These simulators model neural func-
tions at various levels of detail and therefore have different re-
quirements for computational resources. User can also specify an
SNN model directly using these simulators. NeuroXplorer allows
exploration of application quality using these simulators.

NeuroXplorer incorporates the spike timing information ob-
tained from simulating an SNN model with representative training
data. Such information is used to map the model to the neuromor-
phic hardware using the system-software framework, which con-
sists of Workload Decomposition, Model Clustering, Cluster
Mapping, and Runtime Management units.

Without loss of generality, we describe NeuroXplorer where
ANN workloads are specified using Keras and SNN workloads us-
ing a combination of PyNN and PyCARL [2], a Python wrapper
for SNN simulations using CARLsim. Additionally, we use our pre-
viously proposed SNN converter [3] for SNN conversion of ANN
workloads in order to map them to hardware. NeuroXplorer can be
trivially extended to work with other SNN simulation tools such
as GeNN [74] and Spyketorch [46], and with other SNN conversion
approaches such as [43, 50, 51].

Figure 1 illustrates the three design methodologies supported
by NeuroXplorer - 1) platform-based design, 2) hardware-software
co-design, and 3) design-technology co-optimization. We have used
NeuroXplorer to optimize for system-level design metrics, including
energy [6, 19, 70], latency [4, 17], throughput [57, 58], resource
utilization [5, 9, 56], circuit aging [8, 37, 59, 62], inferen lifetime [67],
and endurance [68, 69, 71].

3 DETAILED DESIGN OF SYSTEM SOFTWARE

We now detail the system software of NeuroXplorer.

3.1 Platform Description

We consider a tile-based neuromorphic hardware as shown in Fig-
ure 2a. Each tile consists of a neuromorphic core, which can ac-
commodate a certain number of neurons and synapses. A common
approach to implementing a neuromorphic core is one where the
synaptic cells are organized in a two-dimensional grid, known as
crossbar. We illustrate a crossbar in Figure 2b.?

Typically, system designers limit the size of a crossbar to reduce
energy consumption 3 and mitigate the high parasitic voltage drops

2 Although NeuroXplorer provides a generalized template for crossbar-based neuro-
morphic tiles, NeuroXplorer can be easily extended to support many different types of
processing elements such as [39, 49].

3Energy consumption in a crossbar scales proportional to M?, where M is the in-
put/output dimension of a crossbar.
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Figure 2: A running example of a tile-based neuromorphic
hardware. Each tile contains a neuromorphic core, which in
its simplest form can be a crossbar.

within a crossbar (see Figure 12). Therefore, a large machine learn-
ing model must be partitioned into local synapses, those that map
within the crossbar of a tile, and global synapses, those that map
on the shared interconnect [19]. To effectively address this parti-
tioning, NeuroXplorer’s system software performs the following
four key functionalities to map a machine learning workload to
the hardware: workload decomposition, model clustering, cluster
mapping, and runtime. We now describe these functions.

3.2 Workload Decomposition

We note that each N X N crossbar in a tile can accommodate up to
N pre-synaptic connections per post-synaptic neuron, with typical
value of N set between 128 (in DYNAPs) and 256 (in TrueNorth).
Figure 3 illustrates an example of mapping a) one 4-input, b) one
3-input, and c) two 2-input neurons on a 4 X 4 crossbar. Unfor-
tunately, neurons with more than 4 pre-synaptic connections per
post-synaptic neuron cannot be mapped to this crossbar.

o i 0 0] 0
@ s ® © 7
Figure 3: Example mapping of a) one 4-input, b) one 3-input,
and c) two 2-input neurons to a 4 X 4 crossbar.

We take the example architecture of DYNAPs, where each cross-
bar can accommodate a maximum of 128 pre-synaptic connections.
In many complex machine learning models such as LeNet, AlexNet,
VGG, ResNet, and DenseNet, the number of pre-synaptic connec-
tions per post-synaptic neuron is much higher than what a crossbar
in DYNAPs can accommodate.

To address this resource limitation, we have previously proposed
workload decomposition, which exploits the firing principle of LIF



# inter-cluster spikes = 28

ICONS 2021, July 27-29, 2021, Knoxville, TN, USA

neurons, decomposing each neuron with many pre-synaptic con-
nections into a sequence of homogeneous fanin-of-two (FIT) neural
units [9]. Figure 4 illustrates the spatial decomposition using a small
example of a 3-input neuron shown in Figure 4(a). We consider the
mapping of this neuron to 2x2 crossbars. Since each crossbar can
accommodate a maximum of two pre-synaptic connections per
neuron, the example 3-input neuron cannot be mapped to the cross-
bar directly. The most common solution is to eliminate a synaptic
connection, which may lead to accuracy loss. Figure 4(b) illustrates
the decomposition mechanism, where the 3-input neuron is im-
plemented using two FIT neural units connected in sequence as
shown in Figure 4(b). Each FIT unit is similar to a 2-input neuron
and it exploits the leaky integrate behavior in hardware to maintain

synapse

TCitster 87

(a) SNN clusters with local
and global synapse

# inter-cluster spikes = 22

2 synapses

synapses

Figure 5: An SNN partitioned into three clusters.

The SNN partitioning problem is essentially a graph partitioning
problem, which is NP-complete. Therefore, heuristics are typically

(b) abstract representation
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used to find solutions. NeuroXplorer currently supports two heuris-
tics — Particle Swarm Optimization (PSO) [33] and Kernighan-Lin
Graph Partitioning algorithm [34]. NeuroXplorer uses these heuris-
tics to minimize 1) the number of clusters (as in [9]), which reduces
the hardware requirement, and 2) the number of inter-cluster spikes
(as in [6, 19]), which reduces both energy and latency when the
machine learning model is mapped to hardware. NeuroXplorer can
be easily extended to use other heuristics such as Hill Climbing [53]
and Simulated Annealing [72], as well as other optimization objec-
tives such as application quality and hardware reliability.

ﬂ Al =T=200 0
e % T ! | '
b maxpool | maxpool maxpool | maxpool

| maxpool depth=256 depth=512  depth=512 e-a00c
depth=64 depth=128 3x3conv  3x3conv 3x3 conv e
3x3 conv 3x3 conv conv3_1 convd 1 conv5_1 EC2
convl_1 conv2_1 conv3_2 convd_2 conv5_2 size=1000
convl_2 conv2_2  conv3_3 convé_3 convs_3 softmax
conv3_4 convd_4 conv5_4

(a) VGG Convolution Neural Network (CNN).

Figure 6: Trained ¥/Gfemedel and its clusters generated us-
ing model partitioning tool such as SpiNeMap [6].

Figure 6a shows the architecture of VGG for CIFAR-10 clas-
sification. Figure 6b shows the first 10 clusters generated using
SpiNeMap [6]. The figure illustrates the connections between
these clusters, with the number on edge representing the average
number of spikes communicated between the source and desti-
nation clusters when processing an image during inference. The
inter-cluster links are the global synapses for mapping purposes.

3.4 Cluster Mapping

The cluster mapping step of NeuroXplorer is used to reserve com-
puting resources of the hardware for a given machine learning

4SpiNeMap [6] generates 95,452 clusters from the VGG model trained on CIFAR-10
dataset. For simplicity, we illustrate only the first 10 clusters and their interconnection.
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model and execute the model by placing its clusters onto the physi-
cal cores. Figure 7b illustrates the placement of a clustered SNN of
Figure 7a to a neuromorphic hardware with 9 cores organized in
a mesh architecture. The position of each core in the hardware is
specified by a pair of Cartesian coordinates. In this example, cluster
A is placed at coordinate (1,1), cluster B at (0,0), and cluster C at
(2,2). All spikes between A and B, and between A and C are com-
municated via two interconnect segments and one hop, while all
spikes between B and C are communicated via four interconnect
segments and three hops. Clearly, the latency and energy on the
shared interconnect depends on the placement of the clusters on
the physical cores located in the Cartesian coordinate system.

e ‘ ] -~
LS i (5]
2
3 @ C “
1 1 '
(s} (s} (]

(a) An example clustered
SNN with three clusters - A,
B, and C.

(b) An example placement of the
three clusters to a mesh architec-
ture. The three different colors (or-
ange, blue, and green) indicate the
the distance (in hops) spikes travel
in the mesh architecture between
source and destination clusters.

Figure 7: Example of mapping a clustered SNN on a mesh
architecture.

NeuroXplorer uses an instance of PSO to optimize the placement
of clusters of a machine learning model to the physical cores of
the hardware, improving both latency and energy consumption.
The placement solution of NeuroXplorer aims to place the clusters
that communicate the most to nearby cores. NeuroXplorer can be
extended to use other placement heuristics.

3.5 Runtime Manager

To illustrate the significance of a run-time manager, Figure 8 plots
the spike firing rate of 100 randomly-selected neurons in AlexNet [36],
a state-of-the-art CNN used for Imagenet classification. We report
results for two randomly-selected training and test images.

|

—— train-image-1
—— train-image-2

test-image-1
test-image-2

100

il

0 20 40 60

Figure 8: Spike rate of 100 randomly-selected neurons in
AlexNet for 2 training images and 2 test images.

We observe that spike firing rates of neurons depend on the
image presented to the AlexNet CNN. Therefore, energy and relia-
bility improvement strategies based on design-time analysis with
training examples may not be optimal when they are applied at
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run-time to process in-field data. Therefore, in addition to cluster
placement when admitting a machine learning model to hardware,
NeuroXplorer also supports monitoring key performance statistics
collected from the hardware during model execution. Such statistics
can uncover bottlenecks, allowing improving system-level metrics
such as energy [7] and circuit aging [8, 66] through remapping of
the neurons and synapses to the hardware.

4 DETAILED DESIGN OF NEUROMORPHIC
HARDWARE SIMULATOR

Figure 9 shows the high-level overview of the proposed neuromor-
phic hardware simulator, which facilitates cycle-accurate simula-
tion of the interconnect and the processing tiles. Each tile mod-
els 1) a processing element, which is a neuromorphic core, 2) a
router for routing spike AER packets on the shared interconnect,
3) a local memory to store cluster parameters, 4) buffer space for
spike packets, and 5) AER encoder and decoder. NeuroXplorer’s
hardware simulator can perform exploration with transistor tech-
nologies such as CMOS and FinFET that are used for the neurons
and the peripheral circuitry in each tile, and Non-Volatile Memory
(NVM) technologies such as Phase-Change Memory (PCM) [13],
Oxide-Based Resistive Random Access Memory (OxRRAM) [41],
Ferroelectric RAM (FeERAM) [47], and Spin-Transfer Torque Mag-
netic or Spin-Orbit-Torque RAM (STT/ SoT-MRAM) [73] used for
synaptic weight storage.” We now describe the simulator.

Shared Interconnect
(Global Synapse Simulator)

P —— — — »Global Statistic

U
Computational Tile |

|
} (Local Synapse Simulator) !

Neuromorphic Core Local Memory & Buffer

Router AER Encoder/Decoder

Neuron Technology Synapse Technology

Local Statistic

Figure 9: Architecture simulator of NeuroXplorer.

SBeside neuromorphic computing, NVMs are also used as main memory in conven-
tional computers to improve performance and energy efficiency [60, 61, 63-65].
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4.1 Cycle-Accurate Interconnect Simulator

Figure 10 illustrates the internal architecture of the interconnect
(global synapse) simulator of NeuroXplorer in UML conventic
Key components of this simulator are the following

e Spike Routing Strategy: This is the generalization class
the following routing strategies: Dyad, Negative First, Nor
Last, Odd Even, Table-based, West-First, and XY.

o Spike Traffic Model: This is the generalization class of t]
following traffic models: Random, Transpose Matrix, B
Reversal, Butterfly, Shuffle, and Table-based.

e Configuration Manager: This is the generalization class {
loading simulator parameters such as network topology, n
work size, traffic type, routing strategy, and simulation tin

e
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Figure 10: Class’&iagram‘ of NeuroXplorer’s hardware simu-
lator using UML convention.
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Figure 11 shows tl
NeuroXplorer. For ex when changing the network topology,
the user can select betweern: the-threeiinterconnect types: Mesh,
Segmented bus, and Two-stage NoC. The user can also input spike
traffic generated from the application-level simulator at the fron-
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NeurpXplerekdiate simulation results

After implementing mesh network in the simulator, we perform some experiments to verify
that the simulator is working as expected. For example, to test the scalability of the simulator,

we trm simll 1&; e network., We 'v.'(l\dcd ¢ performipe simulations for mesh network
4'2Llp to Mf{ = é&ma}tﬁdmll AN LL, at simulate 30ms of spike

traffic, with 2.2 million spiking events in total.
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egradation of the neural network application.

ead to d
Witf’l all ot ifs parasitic components. Such parasitic components
cause.variableedetaysionnthe current paths inside the crossbar. For

The first experiment is performed using spike traffic generated from a synthetic example. In
this experiment, the neural network consists of 27 neurons, divided into 3 layers (i.e. input,
output, and a hidden layer), of 9 neurons each. Three neurons in the same layers are grouped
into a cluster based on their ID, with a total of 9 clusters for the whole network. The traffic
load is light, with a total of 892 spike events during 30ms of simulated time, this is equal to
a spike rate of 3300 spikes/second per cluster. We then test the effect on dynamic energy
consumption and latency when placing these neuron clusters at different locations on a 3x3
mesh network. As there are ¢! combinations for mapping ¢ clusters into ¢ network locations,
we only simulate 10 random mappings. All simulations are carried out using XY routing.
The result:

are normalized and shown in figure 4.4.
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Balaji, et al.

simplicity, we have only shown the current on the shortest and
the longest paths in the crossbar, where the length of a current

shortest path longest path

Figure 12: Detailed model of a crossbar in NeuroXplorer.

Table 1 shows the template for specifying the parasitic compo-
ents in NeuroXplorer for a specific technology node.

U()é}’ TANIS M

Table 1: Generalized template for specifying the parasitic
components of a crossbar in NeuroXplorer.

Ry unit wordline resistance

Ry unit bitline resistance

Cil unit wordline capacitance

Cpy unit bitline capacitance

Ciyl—w!  unit wordline to wordline capacitance
Ci-bl unit wordline to bitline capacitance
Cpl-bl unit bitline to bitline capacitance

On the technology front, we briefly discuss the OxRRAM technol-
ogy, as an instance of a technology that can be used for the synaptic
cell. An RRAM cell is composed of an insulating film sandwiched be-
tween conducting electrodes forming a metal-insulator-metal (MIM)
structure (see Figure 13). Recently, filament-based metal-oxide
RRAM implemented with transition-metal-oxides such as HfOg,
ZrO4, and TiO; has received considerable attention due to their
low-power and CMOS-compatible scaling. Synaptic weights are rep-
resented as conductance of the insulating layer within each RRAM
cell. To program an RRAM cell, elevated voltages are applied at
the top and bottom electrodes, which re-arranges the atomic struc-
ture of the insulating layer. Figure 13 shows the High-Resistance
State (HRS) and the Low-Resistance State (LRS) of an RRAM cell.
In NeuroXplorer, the RRAM cell can also be programmed into in-
termediate low-resistance states, allowing its multilevel operations.
For instance, to implement two bits per synapse we can program
the RRAM cell for one HRS and three LRS states.

NeuroXplorer also supports implementing many variants of In-
tegrate & Fire (I&F) neuron. Table 2 provides the template for spec-
ifying the parameters for a neuron and synaptic cell in a crossbar.

The generalized template of Tables 1 and 2 can be infused with
the specific details of a present-day neuromorphic chip and evaluate
the impact of technology scaling on system-level metrics such as
energy, latency, and reliability. We now present the evaluation of
NeuroXplorer by configuring it with the parameters of the DYNAPs
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Conductive
Filament (CF)
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state = 01/10011 state = (M)

Figure 13: Operation of an RRAM cell with the HfO; layer
sandwiched between the metals Ti (top electrode) and TiN
{bottom electrode). The left subfigure shows the formation
of LBS states with the formation of conducting filament (CF).
This represents logic states 01, 10, and 11. The right subfig-
ure shows the depletion of CF on application of a negative
voltage on the TE. This represents the HRS state or logic 00.

Table 2: Generalized template for specifying the parameters
of a neuron and synaptic cell in NeuroXplorer.

Meuron technology (M O5 or FinFET
Technology node &5nm, 45am, 32om, and 16am
Supply voltage LW

Energy per spike 50p] ot 30Hz spike frequency
Synapss techmology  OxBRAAM or PCM

Access device Diiode or FET or NMOS
Eesistance states 1-hit'synapse or 2-bit'synapse

neuromorphic hardware [44] at 45nm node with 2-bit synapses
implemented using OxRRAM-based 1T1R cells.

5 EVALUATION OF NEUROXPLORER

Recently, SNMs are used to improve the quality of machine leamning
applications [18, 31, 45, 55]. We select 10 machine learning programs
which are representative of three most commonly-used neural net-
work classes: convolutional neural network (CNN), multi-layer
perceptron (MLP), and recurrent neural network (RNN). Table 3
summarizes the topology, the number of neurons and synapses,
the number of spikes per image, and the baseline accuracy of these
applications on the DYNAPs neuromorphic hardware.

Table 3: Applications used to evaluate NeuroXplorer.

Class Applications Dataset | Neurons Synapses Awg. Spikes/Frame | Accuracy
LeMet MNIST 3,687 75,100 TH,565 5%
Dens=Met CIFAR-10| 17,450 198.4T0 1,750,976 AZET
AlexNet ImageNet | Z35,604 3873232 7065109 ES.8%
CHN BesMet CIFAR-10| 267,488 33391616 7339322 TA%
VGG ImageNet | 23,635 12215209 12826573 TR
HeartClass [16] Physionet| 170,292 1049249 2771634 E1TE
MLPDigit MNIST 894 TI400 26563 FLE%
MLP  EdgeDet [15] CAHRLsim| 7268 114,057 2455603 100%
ImgSmooth [15] CARLsim| 35120 9,025 174,872 100%
ENM  ENNDigit [24] MNIST | 10m 11,442 30508 6%

We evaluate the following three configurations of NeuroXplorer.
# PyCARL [2]: This is our default configuration, where a
machine learning model is clustered arbitrarily. Clusters are
also mapped arbitrarily to the crossbars of a hardware.
« SpiNeMap [6]: In this configuration, NeuraX plorer clusters
a machine learning model to minimize the inter-cluster spike
communication. Clusters are mapped to the crossbars to
reduce energy consumption on the shared interconnect.
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# DecomposedSNN [9]: In this confipuration, NeuraX plorer
decomposes a machine learning model to pack its neurons
and synapses densely into each crossbar. The clusters are
mapped to the crossbars to reduce spike latency and energy
consumption on the shared interconnect.

5.1 Software Exploration: Cluster Count

Figure 14 plots the cluster count for each evaluated application
for three different configurations of NeuroXplorer, normalized to
PyCARL. For reference, the number of clusters obtained using
PyCARL is indicated for each application. We observe that differ-
ent configurations of NeurcXplorer lead to different cluster counts.
DecomposedSNN, which maximizes the neuron and synapse utiliza-
tion within each cluster, generates the lowest cluster count (44.5%
lower than PyCARL and 50.1% lower than SpiMeMap).

"diu Weurn¥piorer configurazion| = 1 PyCARL SpiNodzp B DocompossdSHN
331.5“ = R =

2. B HE £ Ty Boaon
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tdr [ tl- [ j}'ﬂ : ) ¥
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Figure 14: Cluster count using NeuroXplorer.

5.2 Software Exploration: Spike Count

Figure 15 plots the total number of spikes on the shared intercon-
nect (called global spikes) for each evaluated application for three
different configurations of NeuroX plorer, normalized to PyCARL.
We observe that SpiNeMap has the lowest number of global spikes
(6% lower than PyCARL and 34% lower than DecomposedSNN),
which reduces both spike latency and communication energy due
to reduction of the congestion on the interconnect.
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Figure 15: Global spikes using NeuroXplorer.

5.3 Hardware Exploration: Energy and ISI

Figure 16 and 17 plot respectively, the communication energy and
inter-spike interval (ISI) of each evaluated application using four
MNoC routing techniques of NeuroXplorer normalized to XY routing.
For reference, the communication energy and I5I at 45nm technol-
ogy node with XY routing is also indicated.

5.4 Technology Exploration: Inference
Lifetime

Non-Volatile Memories (NVMs) suffer from read endurance prob-
lem, where an NVM cell can switch its state upon repeated access.
Therefore, the programmed synaptic weights of the NWM cells in a
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Figure 16: Communication energy using NeuroXplorer.
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Figure 17: Inter-spike interval (ISI) using NeuroXplorer.

neuromorphic hardware needs to reprogrammed periodically. To
this end, inference lifetime refers to how many images can be suc-
cessfully inferred using the hardware before reprogramming of the
synaptic weights becomes necessary. Figure 18 plots the impact
of technology scaling on the inference lifetime of a neuromorphic
hardware. At scaled nodes, the read endurance of NVMs reduces,
which lowers the inference lifetime.
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Figure 18: Technology exploration using NeuroXplorer.

6 CONCLUSIONS

We propose NeuroXplorer, an extensible framework for architec-
tural exploration with Spiking Neural Networks (SNN). NeuroX-
plorer is based on a generalized template and can be infused with
specific details of a neuromorphic hardware and technology. Neu-
roXplorer can perform platform-based design, hardware-software
co-design, and design-technology co-optimization, enabling sys-
tem designers to explore a variety of both application as well as
platform design configurations to meet the needs of emerging work-
loads as well as newer design technologies. In addition to these
architecture-centric functionalities, NeuroXplorer also facilitates
functional simulations via SNN simulators supporting different de-
grees of neuro-biological details and learning modalities, allowing
exploration of application quality.
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