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Abstract

Material and biological sciences frequently generate
large amounts of microscope data that require 3D object-
level segmentation. Often, the objects of interest have a
common geometry, for example spherical, ellipsoidal, or
cylindrical shapes. Neural networks have became a pop-
ular approach for object detection but they are often lim-
ited by their training dataset and have difficulties adapt-
ing to new data. In this paper, we propose a volumet-
ric object detection approach for microscopy volumes com-
prised of fibrous structures by using deep centroid re-
gression and geometric regularization. To this end, we
train encoder-decoder networks for segmentation and cen-
troid regression. We use the regression information com-
bined with prior system knowledge to propose cylindri-
cal objects and enforce geometric regularization in the
segmentation. We train our networks on synthetic data
and then test the trained networks in several experimental
datasets. Our approach shows competitive results against
other 3D segmentation methods when tested on the syn-
thetic data and outperforms those other methods across dif-
ferent datasets. The reference codes and pytorch dictionar-
ies are available at https://github.com/camilo-aguilar/3D-
Fiber-Segmentation.

1. Introduction

Experiments in material and biological sciences often
use non-invasive image modalities that generate gray-scale
point clouds representing the system’s microstructure. One
example of these experiments is the development of fiber
reinforced composites shown in Fig. 1(a). Performance im-
provement of these materials relies on an accurate struc-
tural characterization in order to predict the material’s re-
sponse to external forces and to prevent material failures.
This structural characterization requires of instance-level
segmentation in order to extract information such as object
location, dimensions, interactions, and orientation[3].

During recent years, the area of instance segmentation
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(a) Cross section

(c) 3D Pre-segmentation

(d) 3D inference
Figure 1. Sample results of our method displayed with Fiji[ 18]

software. Each color represents a different instance of an object.
Image courtesy of the ACME Lab at Purdue University.

experienced a rapid growth manifested in popular object
proposal techniques such as Mask-RCNN[7], PANet [14],
Box2Pix[19]. While these approaches have proven success-
ful in popular benchmark datasets, the instance segmenta-
tion paradigm becomes challenging when transitioning to
microscopy volumetric datasets: microscopy images tend to
have large numbers of clustered objects, the jump in dimen-
sions represents a significant increase in memory require-
ments, and thin 3D geometries oriented in arbitrary orienta-
tions pose challenges for bounding box characterizations.
Another popular technique for approaching instance seg-
mentation is based on proposal-free methods that rely on
instance grouping learning. These methods learn to group



instance pixels into clusters living in an embedded space.
Same-instance pixels are grouped near each other and
different-instance pixels are discriminated from each other.
Subsequently, a clustering algorithm assigns a label to each
cluster to finally map each label to an instance in the initial
image space. The drawbacks of this method are that it needs
prior background/foreground pixel classification, the choice
of the clustering algorithm including parameter settings, is
of paramount importance in obtaining a correct segmenta-
tion, and the clustering algorithm is normally independent
of the object’s geometry.

Numerous 3D instance segmentation techniques bor-
rowed the embedding learning concept to segment 3D point
clouds of natural images and microscopy images. Never-
theless, their clustering algorithm is applied in an abstract
embedded space and is generally independent of geometric
constraints of the original image space. This issue results
in time consuming parameter tuning, faulty segmentations,
and difficulties adapting to unseen datasets. Microscopy im-
ages tend to have repeated geometries that can provide use-
ful information when clustering pixels. For example, Fig.
1(c) shows a sample microscopy system that is comprised
mainly of cylindrical geometries.

In this paper, we propose an instance segmentation ap-
proach based on centroid regression and regularized clus-
tering. Our method detects foreground pixels and learns to
regress the foreground pixels to their instance centroid. In
addition, we propose a clustering algorithm that considers
both the network output as well as the system’s geometric
constraints in order to ensure the recovered instances pre-
serve a consistent shape.

This paper is organized as follows: in Section 2 we
present popular neural network approaches used for 3D
object detection. We discuss the details of our proposed
method in Section 3. We show experiments on 3 different
datasets and compare our approach to other methods in Sec-
tion 4 and we provide insights and a conclusion in Section
5.

2. Related Work

Our literature review focuses on approaches that have
been successful or that can be adapted without significant
changes to perform instance segmentation on 3D systems
comprised of nearby thin structures such as 3D fibers.

2.1. Instance Embedded Learning

These methods consist of segmenting and grouping fore-
ground pixels into clusters in abstract high dimensional
embedded spaces. These networks learn to group same-
instance pixels into clusters, while separating the cluster
centers from each other. Sequentally, an unsupervised
clustering algorithm such as DBSCAN[5] assigns labels
to pixels in each cluster. This work was proposed by [4]

but has been borrowed to extract fibers in 3D microscopy
volumes[ 1 1].

The embedded learning concept has been shown to be
memory efficient and promising; however, this method re-
lies on finding an arbitrary embedded space that does not
have a direct interpretation in the image space and the
choice of both the clustering algorithm and its parameters
influence greatly the segmentation results. For example, a
large eps parameter in the DBSCAN clustering algorithm
merges nearby clusters and a small eps parameter splits
clusters or does not detect them.

2.2. Joint-Task Learning

Several papers (for both 2D and 3D) have proposed joint-
task approaches. These methods rely on single encoder-
multiple decoder networks. For example, Neven et al.[15]
trained an encoder-double decoder network to jointly learn
instance centers and the cluster bandwidth. However, this
method uses a loss function that relies on a weighted sum of
the center regression and bandwidth loss. This issue could
result in time-consuming parameter tuning when training
the networks for several days. Kendall et al. proposed an
efficient ensemble training for both tasks[9]. This approach
estimates the weight uncertainties for each task to find the
optimal weight parameter. These approaches are promis-
ing; however, the combination of two decoders and one en-
coder can worsen the results of each decoder. In fact, in our
experiments, the implementation of two separate networks
obtained better results across all the tests.

3. Method

We propose a two-network approach, one for segmen-
tation, one for centroid regression. In addition, we pro-
pose to use the regression vectors to obtain information
about the original properties of each instance, such as the
instance’s orientation and length. We use a modification
of the architecture presented in [17] due to its effective-
ness in microscopy volumes and robustness to scarce train-
ing data. The two networks are the semantic segmentation
network, which has two outputs denoting the probability of
each class, and the regression network, which has three out-
puts denoting a 3D vector pointing to the instance center.
Fig. 2 denotes the detailed architecture of our networks.
The regression network uses the output of the semantic seg-
mentation to regress to regress only the foreground pixels.

3.0.1 Pixel Classification

For semantic segmentation, we use the dice loss with two
classes, foreground to represent fibers and background to
represent the non-fiber pixels. The dice loss function is ex-
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Figure 2. Architecture: we used a variation of the architecture pro-
posed in [17] where each encoder and each decoder consist of 4
components.
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where X and Y are the input and training vectors respec-
tively. The output of this network is depicted in Fig. 3(c).

(a) Input volume

(c) Semantic segmentation

(d) Centroid regression

Figure 3. Network Outputs: The networks detect the fiber pixels
and the fiber centers. Each color represents an instance, and pix-
els are clustered around their centers. Gray fibers are for display
purposes. Figures generated with Fiji Software.

3.0.2 Centroid Regression

The second network receives the semantic segmentation re-
sults and learns to cluster foreground pixels around their
instance centroid .. The network outputs a vector v; € R3
for each foreground pixel’s coordinate s; € Sy such that
v; = 8; — [e. The loss function for centroid regression is
defined as:

C
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where Sy is the set of foreground pixels coordinates, S. C
St is the subset of pixel coordinates belonging to fiber c and
C is the total number of fibers (obtained from the ground
truth). The term (a)4 = max(a,0) is inspired by the Hinge
Loss function, with d,, as a hyper-parameter represents the
maximum distance between neighboring points. In all our
experiments, we set this hyperparameter §,, = 1. We use the
result from this clustering network to guide our geometric
clustering. The results of applying the offset output by this
network are depicted in Fig. 3(d). Note that both networks
are trained separately using the ground truth labels.

3.1. Geometric Constrained Clustering

Common instance segmentation approaches perform
clustering on the output of the regression network[!, 1,
15]. However, these approaches do not impose shape con-
strains on the resulting segmentation and can merge nearby
fibers. Therefore, we impose a geometric regularization
on the clustering approach by finding a set of clusters
w = {w1,wy,...,we} that represent a set of cylinders in
the volumetric space, where C is the final estimate of the
number of cylinders. We follow the convention used in
the connected tube marked point process[!3] to describe
objects with marks describing their properties. We use
cylindrical clusters with the marks m. = (e, 7¢, le, 0c, Oc)
where (. denotes the center coordinate of the cylinder, r. €
[Fmin, Tmaz) denotes the cylinder radius and 7, Tmax
denote the minimum and maximum possible radii respec-
tively. The parameter l. € [lyin, lmas] denotes the fiber
length, and [,,,;,,, linaz denote the minimum and maximum
possible fiber lengths. The parameters 6. € [0in, Omaz]
and ¢. € [Pmin, Pmas] denote the cylinder orientation with
respect to the positive zy axis and with respect to the pos-
itive z axis, with their respective possible minimum and
maximum values.

3.1.1 Birthmap Computation

We use the centroid regression vectors v; to shift all the
foreground pixels s; € S to their estimated instance cen-
ter o; i.e., o; = s; — v;, hence generating a set of offset
pixels Oy. The offset pixels tend to be concentrated around



a fiber’s estimated center, fi., thus, generating a heat-map
near the true instance center .. This map is shown in
Fig 4(b), where brighter pixels represent a higher count of
regressed pixels to that location. This map is used as a
“birthmap” to propose clusters in section 3.1.2.

(a) Original volume

(b) Birthmap
Figure 4. Cropped original image and its birthmap.

3.1.2 Cluster Proposal

We propose an estimated cluster center ji. at the location
with the highest count of unlabeled offset pixels o; in the
birthmap (brightest spots in Fig. 4(b)). We then gather those
offset pixels that are within a distance of 7,,,;, from the es-
timated center, W, = {0; € Oy : ||o; — fic|]| < Tmin}-
These pixels contain their original coordinate information
and hence, generate a cloud of points that can be fitted with
a cylinder. We use a GPU adaptation of [16] to estimate the
marks m,: radius 7., length l;, and orientation éc, ngSC of the
cloud of points to propose a cylindrical cluster. Finally we
add to the proposed cluster set w,. all the offset pixels that
lie inside the proposed cylinder. Fig. 5(b) shows a sample
cluster proposal result.

(a) Regressed ground truth pixels (b) Cluster proposals

Figure 5. Sample cluster proposal and ground truth labels.

3.1.3 Cluster Evaluation

Finally, we evaluate the proposed cylinder in the original
volume space by calculating the volume percent of seg-
mented pixels covered by the cylinder V; and the volume
percent of overlap with other cylinders V,,. We set two
threshold parameters for volume percent of segmented pix-
els T, and for volume percent of overlap, T),. If Vg > Ty
and V,, < T, we accept the cylinder, otherwise we leave
the set of pixels as unlabeled. We choose T = 0.5 to keep
consistent with the IoU metrics explained in Section 4 and
T}, = 0.2 to allow the proposed cluster 20% of overlap with
other clusters. The volume percent V}, ensures the proposed
object fits the semantic segmentation and the overlap per-
cent V), prevents from proposing multiple clusters for the
same fiber. These evaluations were inspired by the success
of the overlap prior from the marked point process model
[13]. The detailed procedure of the clustering algorithm is
listed in Algorithm 1.

(a) Ground truth (b) Sample inference

Figure 6. Sample ground truth labels and sample inference.

3.2. Volume Tiling and Merging

We tile the initial volumetric data into overlapping sub-
volumes of size 64 x 64 in order to circumvent large mem-
ory demands from some datasets. We detect fibers locally
and we implement a merging procedure to detect fibers
in the full volume. We extend the approach presented by
Konopczynski[ | 1], which consists of merging nearby fibers
in overlapping tiles. However, this procedure does not con-
sider the fiber properties and can merge nearby local fibers
even if they are perpendicular to each other. We implement
an additional constraint based on the orientation informa-
tion provided by the cluster properties. If two fibers in over-
lapping tiles are nearby, we merge them if the angle between
between them is less than a threshold Tag A¢. The value of
this threshold is set based on prior knowledge of the system,
such as the fiber expected curvature. The detailed merging
procedure is included in Algorithm 2.



Algorithm 1: Geometric Constrained Clustering

.,wé}

Result: Set of clusters w = {wq, wo, ..
initialization;
w={}
St < original foreground pixels coordinates;
Oy < center regressed foreground pixels
coordinates;
k<« 1;
Birthmap Computation;
counts <— histogram of Oy;
birthmap < sorted elements of O by decreasing
order of counts;
for each pixel s in birthmap do
if s € w; : w; € w then
‘ continue (pixel has a label);
end
Cluster Proposal;
s <= 83
Wy < {sk C Oy : sy = fin]| < rmin} s
My, < marks(wy, S¢, Oy) 5
Evaluate Cluster;
V4 < percent of segmented pixels inside
cylinder with marks miy, ;
Vp ¢ percent of overlapping pixels between
the cylinder with marks ni; and other cylinders

if Vy > T4 and V), < T}, then
w<— wUwg;
k+ k+1;

end

end

4. Experiments

We use two metrics to evaluate the instance segmentation
results. First, we follow the guideline provided in [12] and
use the Adjusted Rand Index[8] (R,) metric for evaluation.
This metric evaluates the agreement between two sets of
clusters C' = {c1, ¢, ..., ¢k}, and C' = {c}, ch, ... ¢} and
ranges from O to 1 depending on the degree of similarity
between C' and C’. The R, criteria is given by:
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Where m;; = |Ciﬁ0j|,t1 = Eizlf (ll;i‘),tg = E;zll (\4:23|)’
and t3 = n%:f—tﬁ)

In addition, we use the intersection over union evalua-
tion (IoU) where we say a fiber is detected correctly if its
IoU with a ground truth fiber is greater than 0.50. We la-
bel fibers whose IoU is less than 0.5 as false positives (bro-

ken fiber segments) and we label as false negatives all the

Algorithm 2: Merging Algorithm with orientation
constrains

Result: wy, clusters for volume V
Initialization;
Sor < set of partitions for volume V' with
overlapping ratio or;
wy ={}
Volume Merging;
for partition s in S,, do
W, <— clusters at partition s (using Algorithm 1);
for cluster w; inw, do
if Overlap(w;,w;) > 0, w; € wy and
AngleDiff(w;, (.Uj) < T¢79 then
‘ w; < Merge Clusters(w;, w;);
else
| Wy wy Uw;;
end
end

end

ground truth fibers that were not captured by fibers that had
an IoU more than 0.5.

We average the results obtained from multiple tiles of
size 64 x 64 x 64 voxels and compare our method with our
implementation of the method proposed by Kendall et. al[9]
, with the method proposed by Aguilar et al [1], and with
using center regression and DBSCAN for clustering. We do
not use the angle criteria for fiber merging when we use the
DBSCAN algorithm since we do not have fiber orientation
information.

We implemented all the networks and trained with the
same training parameters as described in Section 4. We
followed the parameters denoted in each work and chose
0, = 0.2 and eps = 0.4 for the embedding learning param-
eters shown in [1].

4.1. Training Information: Synthetic Fibers

This dataset was generated from a computational model
by Konopczynski et al.[12] and it is a simulation of a short
glass fibers embedded in a reinforced polymer. The fibers
have a radius of 6.5 pm and a mean length of 500 um with a
deviation of 100 um and are oriented in arbitrary directions.
We used the dataset named “2016-S-HR-5.35p” depicted
in Fig. 7 for training the network and the dataset named
“2016-S-HR-5.38p” for testing.

We trained all the networks with the Adam [10] opti-
mizer with a learning rate of 1r=0.001 over 2000 epochs. We
normalized the data to unit variance and zero mean and we
trained cropping subvolumes of sizes 64 x 64 x 64 cropped
at uniformly random locations of the full volume, and we
performed volume rotations for data augmentation. All the
models were trained on an NVIDIA-Titan RTX GPU with



Method R, f1
Embedding Learning[!] || 0.756 | 0.983
Multitask Learning[9] 0.622 | 0.977
Centroid Regression 0.767 | 0.993
Proposed 0.719 | 0.973

Table 1. f1 and R, results for synthetic dataset

25GB of memory with a training time of approximately two
days.

Fig. 8 shows the average results over all tiles when vary-
ing the eps parameters for different methods and Table 1
shows the best scores obtained for each method over the
tested values of eps. The implementation that performs only
centroid regression with DBSCAN achieved the best scores
with 0.993 f1 score and 0.767 R, score. Our approach ob-
tained 0.973 for the object-wise f1 score and 0.719 for the
R, score.

(a) Synthetic data

(b) Ground truth

Figure 7. Training dataset:
Konopczynski[ 12]

synthetic fibers generated by

4.2. Low Resolution SFRP Dataset

This dataset was provided by Konopczynski et al.[12]
and it represents two samples of a commercial polybutly-
lene terephthalate PBT reinforced with short glass fibers.
The fibers diameters between 10-14pm and 1.Imm of
length. The samples were imaged with X-ray CT with an
isotropic resolution of 3.9um and the volumetric dimen-
sions of 200 x 260 x 260 voxels. We used the trained
dictionaries from section 4.1 and tested all the methods
on the low resolution SFRP dataset named “Real MR2”.
It is worth noting that the ground truth fibers were pre-
segmented, hand labeled, and refined with the watershed
algorithm. Therefore, the ground truth labels can be biased
to the pre-segmentation algorithm followed by the water-
shed algorithm. The first column of Fig. 10 shows a tiled
cross section of sizes 64 x 64 pixels and each row shows
results for different approaches. The third and fourth row
show that the DBSCAN approaches encounter difficulties
clustering fibers. For example, Fig. 10(c) shows numer-
ous groups of white pixels (unlabeled pixels) that are near
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Figure 8. Evaluation of average tile scores vs eps parameter in
synthetic data. For the proposed method, we let eps = 7pin

two different fibers. Similarly, Fig. 10(d) shows merging of
fibers that are close to each other. These issues are trans-
lated in the volumetric results as shown in Figs. 10(h) and
Figs. 10(i) where fibers are artificially broken or nearby
fibers are merged. Our method, shown in Fig. 10(e) can
discriminate between nearby fibers and has also the abil-
ity to segment curved fibers when using volume merging as
shown in Fig. 10(j).

The numerical evaluation in Table 2 shows that our
method obtains significantly better scores for both metrics
with an R,, value of 0.638 and a f1 score of 0.917. Fig. 10
shows that we obtain the highest score when the eps param-
eter is equivalent to the true fiber radious. However, Fig, 9
shows that our method is more robust to parameter varia-
tions than the rest of proposed approaches.

4.3. High resolution SFRP: Polypropylene Matrix

This dataset was provided by the ACME Laboratory at
Purdue University[6]. The sample consists of a polypropy-
lene material reinforced with glass fibers, imaged at 1.3um
resolution. The reconstructed volume has dimensions



Method R, f1
Embedding Learning[!] || 0.222 | 0.634
Multitask Learning[9] 0.111 | 0.831
Centroid Regression 0.563 | 0.831
Proposed 0.638 | 0.917

Table 2. f1 and R, results for low resolution SFRP dataset.
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Figure 9. Evaluation of mean tile scores vs eps parameter in Low
Resolution SFRP Dataset. For the proposed method, we let eps =

Tmin.

2300 x 2300 x 1300 voxels and we used a sub-volume com-
prised of 950 x 950 x 150 voxels (shown in Fig. 11(a)).
The ground truth is from the results of Agyei et al.[2] and is
shown in Fig. 11(b).

The first row of Fig. 11 shows the XY-axis cross section
of the testing sample, the second row shows a cropped vol-
ume of size 256 x 256 x 150, and the third row shows a
YZ-axis cross section of the cropped volume. All the net-
works were trained using the synthetic dataset from section
4.1. This data is significantly different from the training
dataset, and hence both the embedding learning and multi-
task method merge multiple nearby fibers. These results
can be noticed in Figs. 11(h), 11(m). and Figs. , 11(),

Method R, f1
Embedding Learning[!] || 0.365 | 0.604
Multitask Learning[9] 0.051 | 0.733
Centroid Regression 0.134 | 0.767
Proposed 0.422 | 0.855

Table 3. fl and R, results for high resolution SFRP: Polypropy-
lene Matrix.

11(n). Our results, shown in Figs. 11(j) and11(o) show that
our method does not merge nearby fibers thanks to the reg-
ularization imposed by cylindrical geometry regularization.
We should also point out that our method detects fibers that
were not detected in the ground truth dataset. Our method
also shows promising results for the merged volume in Fig.
11(e) compared to the merged results shown in Figs.11(c)
and 11(d). Our method shows improvement over the pro-
vided ground truth in detecting long fibers shown in Fig.
11(b).

Table 3 shows the R, and f1 results for each approach.
The R, score is relatively low because it also depends on
the segmentation and our method has an over segmentation
compared to the provided ground truth, and also because the
provided ground truth is not perfect. Fig. 11 shows several
visual examples where we believe our approach captured
fibers that were not captured in the provided ground truth.

5. Conclusion

We presented a neural network approach to detect fibers
in large volumetric datasets by first segmenting and then
regressing a vector pointing from each foreground pixel to
its instance centroid. Our approach depends on the param-
eter r,,;, that is related to the fiber minimum radius and
shows robustness across several datasets thanks to the ge-
ometric constrained clustering and also allows constraining
the detected objects with prior image knowledge. Unlike
common instance segmentation techniques, we propose a
clustering technique that relies on finding objects of spe-
cific shapes(cylinders). We showed that our approach out-
performs 3D fiber detection in several datasets and we be-
lieve that it can contribute to improve fiber-reinforced ma-
terials characterization. Similarly, we believe our approach
can be extended to other geometries such as using spheres
to segment cell nuclei.
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