Edge removal in undirected networks

Michael Langberg

Abstract—The edge-removal problem asks whether the re-
moval of a \-capacity edge from a given network can decrease
the communication rate between source-terminal pairs by more
than \. We prove that for undirected networks, removing a \
capacity edge decreases the rate by O()\). Through previously
known reductive arguments, here newly applied to undirected
networks, our result implies that the zero-error capacity region
of an undirected network equals its vanishing-error capacity
region. Whether it is possible to prove similar results for directed
networks remains an open question.

I. INTRODUCTION

The edge removal problem, defined and studied in [2]], [3],
aims to quantify the loss in capacity that results from the
removal of a single edge (i.e., a point-to-point channel) from
a given network coding instance. For some network coding
instances, it is known that the removal of an edge of capacity
A can decrease the rate of communication for each source-
receiver pair by at most A\ [2], [3]]. These instances include
networks with collocated sources, networks in which we are
restricted to perform linear encoding, networks in which the
edges removed are connected to terminals with no out going
edges, as well as other families of network coding instances.
However, whether the removal of an edge of capacity A
decreases the rate of communication for each source-receiver
pair by at most A for any network coding instance remains
an intriguing open problem connected to a spectrum of (at
times seemingly unrelated) questions in the context of network
communication (see, e.g., [4], [S], [6l, [7], [8], (O, [10], [L1]).

In this work, we study the edge removal problem on undi-
rected networks. In an undirected network, the information on
any edge e = (u,u), can travel from u to v’ and/or from '
to u, as long as the sum of the rates in both directions do
not exceed the edge capacity. Undirected networks have seen
several studies in the context of network coding (e.g., [12],
(130, [14], (150, [16], (171, [18], (191, [20], (210, [22], (23],
[24]). To date, the arguably most well known open question
regarding network coding in undirected networks concerns
the maximal potential benefit in rate that one can obtain
in multiple-unicast instances when comparing communication
via network coding to communication without coding, i.e., the
coding advantage in undirected multiple-unicast networks. It
is conjectured in [12], [[13], [14] that no such advantage exists.
This conjecture has been confirmed on several special cases
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(e.g., [13], [L6], [18]]) but remains an open question in full
generality. We note that, if true, the conjecture will imply
that the removal of a A\ capacity edge from a multiple-unicast
undirected network will decrease the communication rate of
each unicast connection by at most A.

Our work is structured as follows. In Section [[l, we present
our model and define a number of statements regarding the
edge-removal problem. Our main results and analysis are given
in Section In Theorem |1} we show that for any undirected
network coding instance Z there exists a constant ¢ such that
the removal of an edge of capacity A from Z reduces the
rate between source-terminal pairs by at most c\. We then
derive two immediate corollaries to Theorem[l] In Corollary
we prove the so-called asymptotic edge removal statement on
undirected instances. This statement asserts that removing an
edge of negligible capacity has a negligible effect on the rate
between source-terminal pairs. Building on prior work [6],
in Corollary [2] we prove that the zero-error capacity region
and the vanishing-error capacity region of undirected network
coding instances are equal.

II. MODEL

Throughout the paper, the size of a finite set S is de-
noted by |S|. For any positive real k, [k] denotes the set
{1,...,|k]}. We use bold letters to denote vectors; for ex-
ample, R = (Ry,...,Ry) is a vector of dimension %k and
R; is the " element of vector R. We define R — v as
((Ry—v)*", ..., (R —v)") where (R—~)" = max{0, R—~}.
For o« > 0 and a set R of real vectors, the set aR refers to
the set obtained by multiplying each vector in R by a.

A. Network Coding Instances and Network Codes

An undirected instance Z = (G, S, D, M) of the network
coding problem includes an undirected network G = (V, E),
a vector of k source nodes S = (s1,...,s;) € V¥, a vector
of terminal nodes D = (dy,...,d,) € V", and a binary
requirement matrix M = [m;;] in which m,; = 1 if and only
if the message of source s; is requested by terminal d;. Source
node s; € S holds message random variable W, demanded by
terminals {d; | m;; = 1}. Each edge e € E has an associated
capacity ..

We here assume that communication occurs in N rounds,
and in each round, every edge e € E carries a message
over an alphabet X7 of size |2*<™|. We call N the outer
blocklegth and n the inner blocklegth. Namely, we think of
communication over edge e in terms of symbols over the
alphabet X7 corresponding to n channel uses. We thus use
the term time-step to refer to each round of communication.



More formally, for an outer blocklength N, and an inner
blocklegth n, network code

(F,G) = ({forbs {Feu b {0s1)

is an assignment of encoding functions {ﬂ} and {}Z} for
every time step ¢ € [N] and each edge e € F and a decoding
function g; to each terminal d; € D. At each time step ¢ and
for each edge e = (u,u’) the alphabet X’ is represented by
two sets

7
X7, and ¥, ¢+ such that |X nE |X;‘,t\ <|X7|

At each time step ¢ and for each edge e = (u,u’) the
edge message X', € A, from u to v’ and the message
<_i

th € A7, from u to u are equal to the evaluation of

encoding functions {fe, t} and {fe t} on inputs Xln(u) (t—1]
and X} In(u),[t—1] respectively. Here, for a generic node wuy,
and time ¢,

—
Xiuoyn = (Xor w1 € = (v,u0) € Et' < 1), (Wit ug = s4)

captures all information available to node w at time ¢. The
evaluation of decoding function g; on the vector of random
variables Xy, (q4,),(nv] equals the reproduction of message ran-
dom variables (W; : m;; = 1) requested at terminal node
dj eD.

Suppose that we are given rate vector R = (Ry,..., Ry),
constant ¢ € [0, 1], and positive integers n, N. Instance Z of
the network coding problem is said to be (¢, R, n, N)-feasible
if for W; uniformly distributed over [2%:V™] (for i € [k]) there
exists a network code (F,G) with inner-blocklength n and
outer-blocklength N such that, with probability at least 1 —¢,
for each d; € D the output of decoding function g; equals
(Wl sy = 1).

Definition 1 (Capacity region): The capacity region of Z,
denoted by R(Z), is the set of all rate vectors R such that
for all € > 0 and all A > 0 there exist infinitely many
blocklengths n and infinitely many blocklengths /N such that
Zis (¢,R — A, n, N)-feasible.

Definition 2 (Zero-error capacity region): The zero-error
capacity region of Z, denoted by R((Z), is the set of all rate
vectors R such that for all A > 0 there exist infinitely many
blocklengths n and infinitely many blocklengths N such that
Zis (0,R — A, n, N)-feasible.

Some remarks are in place. For directed acyclic networks,
our Definitions [I] and 2] which use both inner and outer
blocklengths, are equivalent to the standard definitions of
capacity, e.g., [25]], in which for a single blocklength parameter
n, each edge e of capacity A\, can communicate a message
in [2*<"|. In this equivalence, the blocklegth 7 equals the
product Nn.

Our notion of inner and outer blocklengths stems from
two aspects of cyclic networks. Primarily, given the cyclic
dependence of information flowing through the network, com-
munication is often defined in rounds, in which each round of
communication depends on the information obtained through

(a)
Fig. 1: A schematic description of Theorem |1} The edge e =
(u,u’) is marked as a dotted line. The first case (a) in which
the graph G of instance Z is disconnected and adding the edge
e = (u,u') connects between two components U and U’. The
second case (b) in which there exists in G a path connecting
u and u'. Here, the path is u,us,us,...,ur, v’ and ~ is the
value of the minimum capacity edge (u4,us) in the path.

previous rounds. Hence we employ the outer blocklegth N.
Secondly, to accommodate networks with edge capacities A,
for which 2% < 1 (equivalently, [2*¢| = 0), e.g., the
bounding model for a binary symmetric channel from [26], we
consider communication over sub-rounds in which outgoing
edge messages are aggregated over an inner blocklegth of size
n. The rate R is normalized by the product Nn.

Operationally speaking, our notion of inner and outer block-
lengths governs the cyclic dependence of coding operations
over time, where for the inner-blocklength n the cyclic de-
pendence is temporarily broken. Therefore, our definitions
imply tradeoffs between the outer-blocklegth N and inner-
blocklegth n. For example, if all edge capacities are integral,
then any network code that is (¢,R — A, n, N)-feasible is
also (¢,R — A, 1,nN)-feasible, but the other direction does
not necessarily hold.

We now address two technical lemmas that are useful in our
analysis (both proven in the full version of this work [1]).

Lemma 1 ([6]): Let T = (G,S,D,M). Let R € R(Z).
Then for any A > 0 there exist infinitely many blocklengths
n and infinitely many blocklengths N such that 7 is (¢, R —
A, n, N)-feasible with ¢ < 1/ max(n?, N?).

Lemma 2: Let T = (G,S,D,M). Let « > 0, and
define oZ = (aG,S,D,M) to be the instance obtained
by multiplying each edge capacity in G by « (to obtain a
graph here described as aG). Then aR(Z) = R(aZ) and
aRo(I) = RQ(OZI)

B. Edge Removal

Throughout the discussions in this work, we use the term
“edge-removal statement,” often shortened to “edge removal,”
to refer to the mathematical statement defined here. Let 7 =
(G,S,D,M). Let GM¢ be the graph obtained by adding an
(undirected) edge e of capacity A > 0 to G Let TM¢ =
(G, S, D, M) describe the resulting network instance. The
edge-removal statements given below compare the rate vectors
achievable over 7 and Z*¢. We use notation stemming from
[L1] to define the following variants of edge removal.

'Instead of starting with a network and then removing an edge as in [2],
[3]], it is more convenient for our presentation to start with a network and
then add an edge as in [11].



Statement 1 (The edge-removal statements on instance I):
e The edge-removal statement holds with function fz(\) on
instance Z and edge capacity A if for any edge e € V x V:
R € R(IM) = R — fz()\) € R(T).
e The zero-error edge-removal statement holds with function
fz(\) on instance Z and edge capacity A if for any edge e €
V xV:R € Ry(ITM) = R — fr(\) € Ro(T).
e The vanishing-edge-removal statement holds on instance 7
if for any edge e € V x V: R(Z) = limy_,o R(Z*).
e The zero-error vanishing-edge-removal statement holds
on instance Z if for any edge e € V x V: Ry(Z) =
lim,\%() RO (Ik’e).

III. MAIN RESULTS

We now present the main result of this work.

Theorem 1: Let T = (G, S, D, M) be an undirected network
instance. Let A > 0. The edge-removal statement and the zero-
error edge-removal statement hold with function fz(A\) = ¢\
for some constant ¢ that depends only on the edge capacities
in Z.

The proof of Theorem [I] applies the follow lemma.

Lemma 3: Let T = (G,S,D,M). Let e = (u,u’) be
an edge in G of capacity A. Let Zpop, = (Gpatn, S, T, M)
be the instance obtained by modifying graph G to yield a
new graph Gpq:n as follows. Starting with G, we remove

the edge ¢ = (u,u') and replace it with a path u =
Uy, U, Us, ..., Ug_1, U = u' of length £ — 1 and capacity A,
where u; for i = 2,3,...,¢ — 1 are nodes in G. Here, edges

(u;, u;11) that appeared in the original graph G will increase
thier capacity in Gpq:, by A and edges (u;, u;+1) that are not
originally in G' will appear in Gpq:n, With capacity A. Then
R(Z) € R(Zpatn) and Ro(Z) C Ro(Zpatn)-

We start by proving Theorem [I] using Lemma [3] We then
prove Lemma 3] The proof of Theorem|I]uses the conceptually
simple idea of rerouting the information of the removed edge e
on an alternative path as expressed in Lemma[3] Such rerouting
gives rise to a number of technical challenges, 1resultir1_g> from
the notion of delay and the time varying nature of X th and

)<(_Z,t, which are addressed in detail below.

Proof: (of Theorem |l)) Let Z = (G, S, D, M). For any
nodes u and u’ in V, let e = (u,u’) be an edge of capacity
A to be added to G. Let Z*¢ = (GM¢, 8, D, M). Let RM¢ =
(R}, ..., RY®) € R(ZM*). We show that R —cA € R(Z)
for some constant ¢ that depends only on the edge capacities
in G. We consider two cases depicted in Figure [I]

In the first case, we assume that the graph G is disconnected
and that adding the edge e = (u, u’) connects two unconnected
components of G. Let U and U’ be a partition of the vertex
set V of G such that v € U, v/ € U’, and subsets U and U’
are disconnected in G. In this case, the added edge e acts as
a bridge of capacity A between (subsets of) U and U’.

We first consider sources s; € U for which there exist
terminals d; in U’ such that m;; = 1. As e is a bridge between
U and U’, then using the cut set bound (e.g., Cor. 25 of [18])) it
follows that R?’e < A. The same holds if s; € U’ and d; € U.

We now consider all sources s; € U such that all d; for
which m;; = 1 satisfy d; € U. Denote this set of sources
by Sy. Let Dy = D N U be the set of terminals in U.
Let Gy be the subgraph of G induced by the vertices in
U. Finally, let My be the minor of M induced on columns
and rows of M corresponding to U. Consider the instance
Ty = (Gu, Sy, Dy, My). We now claim that Ry = (R :
1 € Sy) € R(Zy). We prove this claim using the following
averaging argument. Let (F,G) be an (¢, R*¢ — A n, N)-
feasible network code for Z»¢. By an averaging argument
on the source messages W = (Wq,...,Wy), there exist
fixed values (w; : @ & Sy) for (W; : i € Sy) for which
the probability of successful communication using (F,G)
conditioned on (W; = w; : i & Sy) is at least 1 —e. Moreover,
under the condition (W; = w; : i ¢ Sy) the network code
(F,G) can be simulated on Z;;. That is, there exists a network
code (Fy, Gy) for Iy in which, for any time step ¢ € [N] and
for any edge ¢/ € Gy, the values transmitted over e/ in Z»¢
using (F,G) are also transmitted over edge ¢’ in Zy using
(Fu, Gu). This follows from the fact that node u can simulate
all incoming information from node ' in (F,G) given the
knowledge that (W, : i &€ Sy) = (w; : @ € Sy). Thus,
(Fu,Gu) is an (¢, Ry — A, n, N)-feasible network code for
Ty. As the argument applies for any € > 0 and A > 0, this
implies that Ry € R(Zy). Similarly, one can define Zy and
show that Ryr = (R} : i € Sy/) € R(Zy). Thus, we
conclude that the rate vector R = (Ry,...,Ry) for which
R, = R?’e if 1 € Sy U Sy, and R; = 0 otherwise satisfies
R € R(Z). This follows by running codes over Zyy and Zy in
parallel. As, for each ¢ = 1,...,k, the above analysis implies
that R; > R;\’e — A we conclude the assertion of the theorem
for the case under study with fz(\) = A.

In the second case, we assume that there exists in G a path
connecting u and u'. Let u = uy,us, us, ug—1,uy = u' be
one such path and let v be the capacity of the minimum
capacity edge in the path. Let § > 0 satisfy A = d.
Consider the graph Gpu, obtained from G*¢ by removing
the edge e = (u,u’) and increasing the capacity of all edges
in the path uq, w2, us, us—1, ug by A. Let T4, be the instance
(Gpagns S, D, M). By Lemmal3] it RN = (RY™°,..., R}°) €
R(ZM¢) then RM € R(Zpatn)- Let a = #—A = ﬁ. Con-
sider the instance aZpqin = (@Gpath, S, D, M). By Lemmal[2]
RM¢ € R(Zpan) implies aR*¢ € R(aZpatn ). Notice that the
capacity of every edge in aGq, is at most the capacity of
the corresponding edge in G. This is clearly true for edges in
Gpaen that are not on the path wuy, w2, us, ug—1,ue, and holds
for path-edge (u;, u; 1) of capacity v/ > v as a(y'+ ) < +.
Thus, aRM € R(aZpain) C R(T).

Notice that RM¢— fz()\) < aRM¢, and thus R — f7(\) €
R(Z) for

F200) = 1o max RN < 5(W(Z) + 3) < 20W/(2)

where W (Z) is the sum of all edge capacities in G and
(W(Z)+\) < 2W(Z) is the sum of all edge capacities in G*-°.
Here, we assume without loss of generality that A < W (Z) (as



otherwise, Vi, R;\’e < 2), a setting in which the proof of the
theorem is immediate). Thus, fz(\) < 20W(Z) = WD) ),
Let w(Z) be the minimum edge capacity over all edges in G,

then fz(\) < 27 (II)))\ = ¢ for a constant ¢ = QUVK(II)) that
only depends on the capacities of edges in Z.
An identical proof holds for the zero-error case. |

We now prove Lemma [3]

Proof: The proof follows the line of proof given in
[27], [26], in which it is shown that adding constant time
delays in network communication has no impact on capacity.
Throughout, to simplify our presentation, we consider the
instance Z,,;, = (G445, S, D, M) in which we define G},
(similar to Gpqep) by starting with G, removing the edge e,
and replacing it with a path of length ¢ — 1 and capacity
A consisting of nodes u = wy,us,us,...,up_1,ur = u'.
However, in G, the nodes u; fori = 2,3,...,¢ — 1 are new
nodes that do not originally appear in G. As any network code,
for sources S, terminals D, and demands M, on I;at 5, can be
implemented on Z,q5, it holds that R(I*ath) C R(Zpatn)- To
conclude our proof, we show that R(Z ) C R(Zposn)-

The proof that R(Z) C R(Z,,;,) proceeds as follows.
For R € R(Z) and A > 0, by Lemma [I| consider an
(e,R—A,n, N) feasible code (F,G) on Z with n and N suf-
ficiently large and with ¢ < 1/N?. Interleaving N such codes
on N independent sub-messages from each source in S, as in
[27], we obtain a new code (F,G) that is (Ne,R— A, n, N?)
feasible as follows. (]—' g) executes N independent sessions
of the original (¢,R — A,n, N) feasible-code (F,G) on N
independent sub-messages. The sessions operate in a time-
interleaved manner. In time steps ¢ = ., N of (F,G),
the first time step of all independent sessions of (F,G) is
executed. (Time step 1 of independent session j of (F,G)
operates in time step j of (]—" g) ) In general, in time steps
t = (i —1)N +1,...,iN of (F,G), the i’th time step
of each independent session of (F,G) is executed. (Time
step ¢ of independent session j of (F,G) operates in time
step (i — 1)N + j of (F,G).) After N? time steps, the
N independent sessions of (F,G) are completed, implying

n (Ne,R — A,n, N?) feasible code (F,G) for Z. Here,
we bound the error by a union bound over the individual
independent sessions of (F,G). The glve<_n(N e,R—A,n,N?)
feasible code (F,G) for 7 satisfies Xy, = X ¢ for any
t=(—-1)N+jandt' = (i—1)N +j Wlth] j' € [N]. That
is, for any time steps ¢ w t' of (F,G) in the same sub-block
of length N, we have X7, = A7/, as in that sub-block we
are executing N independent session of m same time step
i in the original code (F,G). Similarly, X7, = X', for all
t,t’ € [(¢ —1)N +1,iN]. Here and in what follows, we refer
to time steps t = (i — 1)N + j for j € [N] in n (F,G) as the
7’th sub-block of time steps of code (.7-" g).

We now use the (Ne,R — A,n,N?) code (F,G) to
construct an (Ne, R—A, n, N(N+{)) code for Z;, ;. That is,
we use a code for the network that includes edge e = (u,u’)
to build a code for the network in which edge e = (u,u’) is
removed and replaced with a path of length ¢ — 1 of the same

capacity. As N is chosen above to be sufficiently large, we
assume here that / is significantly smaller than NV, say £ = 0N
for any constant § > 0 of our choice. The code (Fpatn; Gpatn)
for Z5,,, is a slight modification of the code (F,G). In
(fpafh,gpath) we still communicate with inner-blocklength
n. However the outer-blocklegth is set to N(N +¢) instead of
N2. Like code (F,G), code (Fpath,Gpatn) Operates in sub-
blocks, where for each ¢ € [N], sub-block ¢ here takes the form
t=(i—1)(N+4£)+j for j € [N +{]. Roughly speaking, the
i’th sub-block of code (F,G) determines the i’th sub-block
of code (Fpath,Gpatn)- The first N time steps in each sub-
block ¢ of (Fpath, Gparn) perform the same operations as are
performed in sub-block i of (F,G). The last £ time steps in
each sub-block in (Fpath, Gpatn) are needed to transmit the
information sent across edge e = (u, ') in (F,G) along the
path of length ¢ — 1 that replaced edge e in (Fpain, Gpath)-

We  first describe the coding operations  of
(Fpath,Gpatn) on edges e’ that are not on the path
U = Ui, Us,U3,...,U_1,u = u'. For any such edge
e/ = (v,v’), the transmitted message from v to v’ at time
step t = (i — 1)(N + £) + j in (Fpath; Gpatn) equals the
transmitted message from v to v’ in (F,G) in time step
t = (i — 1)N + j. That is, the message over ¢’ in the j’th
time step of the i’th sub-block in (Fpain, Gparn) equals the
message over ¢ in the j’th time step of the ¢’th sub-block
n (.7-' ,Q) In the remaining time steps in each sub-block
of (Fpath, Gpatn), no information is transmitted in either
direction over edge €’. Namely, for each sub-block 4, in time
steps t = (i — 1)(N 4+ £) + (N + 1) through ¢t = i(N + ¢) a
predetermined fixed message is transmitted over ¢’.

We now describe the coding operations of
(Fpath:Gpath) on edges € = (u,,uy+1) on the path
U = Ui, U2,U3,...,Ur_1,ur = u'. Roughly speaking, these
edges “pipe-line” the message transmitted over the removed
edge e = (u,u’) from u to v’ and from v’ to u, in G. (See
Figure 2]) For edge €’ = (u;,u,11), the transmitted message
from u, to u,4; in time step t = (i — 1)(N+4)+j+r—1
in (Fpath, Gpatn) equals the transmitted message from u to
u' over e = (u,u') in (F,G) in time step t = (i — 1)N + j.
In addition, the transmitted message from u,; to u, in time
stept = (i—1)(N+£)+j+L—r—1of (Fpath; Gparn) equals
the transmitted message from v’ to w over e = (v/,u) in
(F,G) in time step ¢ = (i—1)N +. That is, the message over
e = (u,u') from u to «’ in the j’th time step of the i’th block
of (j:, @) traverses the path u = wy, U2, U3, ..., U1, Us = U
in time steps t = (i—1)(N+£)+7,..., (i—1)(N+£)+j+L—2
in (Fpath; Gpatn). In the other direction, the message over
e = (u',u) from v’ to u in the j ’th time step of the 4’th block
of (F,G) traverses the path u/ = wg, wp_1, ..., U, uy = u in
time steps t = (i—1)(N+£)+7,...,(i— )(N+£)+j+672.

We now show that the above communication scheme of
(Fpaths Gpatn) is feasible on T .n- We first show that any
message on edge ¢/ = (v,v’') from v to v’ in time step
t in (Fpath,Gpatn) can be computed in Gmth from the
information available to node v prior to time step t. If the
edge e = (u,u') removed from Z is not an incoming edge to
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Fig. 2: An illustration of how information sent across edge e = (u, ') in (F,G) traverses the path u = uy, ug, ug, uy, us = u'

in (Fpath; Gpatn). In this example, ¢ =
time ¢ = )
time ¢t = )
time t = (i — 1)(IV

4

t=(—1)(N )+j—|—11n(]-'g)

vin Z (i.e., if v # u and v # '), this follows directly by the
feasibility of (j—' , Q) over Z. Otherwise, we take into account
the delay incurred be replacing e with the path of length £ —1.
Due to the interleaved structure of (F,G), this delay does
not impact the feasibility of (Fpaths Gpatn)- Specifically, the
structure of (.F g) ensures that any message transmitted over
an edge incoming to v in sub-block % of (f , g) will be used
by node v as input to subsequent encoding only in the next
sub-block ¢ 41 of (j—', Q) The same holds for (Fpath, Gpath)-
Moreover, by our definitions, any message transmitted over
an edge incoming to v in sub-block i of (F,G) must also be
transmitted to v in sub-block i of (Fpatn, Gpatn ). We conclude
that any message on edge ¢’ = (v,v’) from v to v’ in time
step ¢ in (Fpath, Gpatn) can be computed in G;ath from the
information available to v prior to time step ¢.

Secondly, we show that the alphabet X', of edges ¢/ =
(v,v') in G3,,,y, support the code (Fpatn, Gpatn) in the sense
that the messages transmitted from v to v’ and from v’ to

v in time step t have support X'J; , and X', , respectively,

—> %
that satisfy [X7, |- [X7 ;| < |X7]. For edges €’ that are not
on the path uy, ..., uy, this follows by the feasibility of the
code (F,G). For edges € = (ur,ur4+1) along the path, the
alphabet X', corresponding to €’ equals X’ of (the removed
edge) e = (u,u’) in G. Moreover, as discussed above, we
e —

have that X'}, = X7, and X7, = X7, for any ¢ and t'
i(n_the i’th &b}—block of (F,G). We thus denote the alphabets
X", and X", in (F,G) for any ¢ in the i’th sub-block of

= o j . . . Sn
(‘F7 g) (l-ew t = (l 71)N + J for J € [N]) by )Cje,block i
and X7 y,c 5 respectively. Thus, for any ¢ in the i’th sub-
block of (Fpaths Gpatn), and any edge ¢’ = (u,, u,4+1) on the
ath v = wuy,us,us,...,up_1,up = u', we define alphabets

Xy pand X7, 4 in (Fpatn, Gpatn) to be equal to Xﬁiblock . and

X¢ prock 3 Of (F,G) respectively. Such a definition for X o

and X7, , allows ¢’ = (u,u,41) to support the messages
defined previously by (Fpaih; Gparn) during time steps ¢ =

5. The solid right arrows (in black) represent information sent from u to u’ at
(i — 1)(N + £) + j in (F, Q) The dotted right arrows (in green) represent information sent from w to u’ at
(i —1)(N +£€) 4+ j+1in (F,G). The solid left arrows (in red) represent information sent from u’ to u at
+4)+jin (.7-" G). The dotted left arrows (in purple) represent information sent from ' to u at time

i(N + ) + j for j € [N + £]. See, Figure [2]

We therefore conclude that (Fpatn,Gpatn) 1s an
(Ne, N(NH)(R — A),n,N(N + {))-feasible code for
Lotn- As € < 1/N2, 2, A > 0 can be chosen to be arbitrarily

small, and for any 6 > 0 we can choose NV sufficiently large
such that £ = 0N, we conclude that R € R(Z;,,,)-

An almost identical proof (with very slight modifications)
holds for the zero-error case as well. |

Corollary [I] follows immediately from Theorem [I]

Corollary 1: The vanishing edge-removal statement and the
zero-error vanishing-edge-removal statement hold for undi-
rected network instances.

Using the connections outlined in [11l], Corrollary [2] also
follows from Theorem (1| Proof appears in the full version [L1].

Corollary 2: Let Z be an undirected network instance, then
R(Z) =Ro(2).

IV. CONCLUSIONS

In this work, we study the edge removal problem on
undirected networks. Using the conceptually simple idea of
rerouting information on the removed edge (if possible in the
given topology) we show that the asymptotic version of the
edge-removal statement holds. That is, we show that removing
an edge of negligible capacity in undirected networks has
only a negligible impact on the capacity region. This, in turn,
implies that the zero-error capacity region of an undirected
network equals its vanishing-error capacity region. Whether
similar results are true for directed networks is an intriguing
open problem. In addition, in light of the multiple-unicast
coding advantage conjecture on undirected networks, it would
be interesting to prove Theorem |l| with a constant ¢ = 1.
Finally, as common in the network coding literature, our model
assumes that each message W; is held by a single network
node s; (before communication starts). Extending our results
to the case in which messages W, can be held by multiple
network nodes involve challenges that are subject to future
studies.
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