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Every Bit Counts: Second-Order Analysis of
Cooperation in the Multiple-Access Channel

Oliver Kosut, Michelle Effros, Michael Langberg

Abstract—The work at hand presents a finite-blocklength
analysis of the multiple access channel (MAC) sum-rate under
the cooperation facilitator (CF) model. The CF model, in which
independent encoders coordinate through an intermediary node,
is known to show significant rate benefits, even when the
rate of cooperation is limited. We continue this line of study
for cooperation rates which are sub-linear in the blocklength
n. Roughly speaking, our results show that if the facilitator
transmits logK bits, then there is a sum-rate benefit of order√︁

logK/n compared to the best-known achievable rate. This
result extends across a wide range of K: even a single bit of
cooperation is shown to provide a sum-rate benefit of order
1/

√
n.

I. INTRODUCTION

The multiple access channel (MAC) model lies at an
interesting conceptual intersection between the notions of
cooperation and interference in wireless communications.
When viewed from the perspective of any single transmitter,
codewords transmitted by other transmitters can only inhibit
the first transmitter’s individual communication rate; thus
each transmitter sees the others as a source of interference.
When viewed from the perspective of the receiver, however,
maximizing the total rate delivered to the receiver often
requires all transmitters to communicate simultaneously; from
the receiver’s perspective, then, the transmitters must cooperate
through their simultaneous transmissions to maximize the
sum-rate delivered to the receiver.

Simultaneous transmission is, perhaps, the weakest form of
cooperation imaginable in a wireless communication model.
Nonetheless, the fact that even simultaneous transmission
of independent codewords from interfering transmitters can
increase the sum-rate deliverable to the MAC receiver begs
the question of how much more could be achieved through
more significant forms of MAC transmitter cooperation.

The information theory literature devotes considerable effort
to studying the impact of encoder cooperation in the MAC.
A variety of cooperation models are considered. Examples
include the “conferencing” cooperation model [2], in which
encoders share information directly in order to coordinate their
channel inputs, the “cribbing” cooperation model [3], in which
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transmitters cooperate by sharing their codeword information
(at times causally), and the “cooperation facilitator” (CF)
cooperation model [4] in which users coordinate their channel
inputs with the help of an intermediary called the CF. The
CF distinguishes the amount of information that must be
understood to facilitate cooperation (i.e., the rate RIN to
the CF) from the amount of information employed in the
coordination (i.e., the rate ROUT from the CF). Key results
using the CF model show that for many MACs, no matter
what the (non-zero) fixed rate CIN, the curve describing the
maximal sum-rate as a function of ROUT has infinite slope at
ROUT = 0 [5]. That is, very little coordination through a CF
can change the MAC capacity considerably. This phenomenon
holds for both average and maximum error sum-rates; it is
most extreme in the latter case, where even a finite number
of bits (independent of the blocklength) — that is, ROUT = 0
— can suffice to change the MAC capacity region [6]–[8].

We study the CF model for 2-user MACs under the average
error criterion. In this setting, the maximal sum-rate is a con-
tinuous function of ROUT at ROUT = 0 [7], [8], implying that
any sub-linear cooperation rate cannot increase the achievable
first-order rates. However, sub-linear CF cooperation may still
increase sum-rate, albeit through second or higher-order terms.
In this work, we seek to understand the impact of the CF over
a wide range of cooperation rates. Specifically, we consider
a CF that, after viewing both messages, can transmit one of
K signals to both transmitters. We prove achievable bounds
that express the benefit of this cooperation as a function of
K. These bounds extend all the way from constant K to
exponential K. Interestingly, we find that even for K = 2 (i.e.,
one bit of cooperation), there is a benefit in the second-order
(i.e., dispersion) term, corresponding to an improvement of
O(

√
n) message bits compared to the best-known achievability

bound. We prove two main achievable bounds, each of which
is better for a different range of K values. The proof of the
first bound is based on refined asymptotic analysis similar to
typical second-order bounds. The proof of the second bound is
based on the method of types. For a wide range of K values,
we find that the benefit is O(

√
n logK) message bits. We have

no matching converse — indeed, even without cooperation the
second-order rate of the MAC is open — so in all cases we
compare against the best known achievability bounds.

II. PROBLEM SETUP

An (M1,M2,K) facilitated multiple access code for mul-
tiple access channel (MAC)

(X1 ×X2, pY |X1,X2
(y|x1, x2),Y)
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is defined by a facilitator code

e : [M1]× [M2] → [K]

a pair of encoders

f1 : [M1]× [K] → X1

f2 : [M2]× [K] → X2

and a decoder
g : Y → [M1]× [M2].

We assume that all alphabets are finite. The encoder’s output
is sometimes described using the abbreviated notation

X1(m1,m2) = f1(m1, e(m1,m2))

X2(m1,m2) = f2(m2, e(m1,m2)).

The average error probability for the given code is

Pe =
1

M1M2

M1∑︂
m1=1

M2∑︂
m2=1

Pr
(︁
g(Y ) ̸= (m1,m2)

⃓⃓
(X1, X2) = (X1(m1,m2), X2(m1,m2))

)︁
.

We also consider codes for the n-length product channel,
where X1,X2,Y are replaced by Xn

1 ,Xn
2 ,Yn respectively, and

pY n|Xn
1 ,Xn

2
(yn|xn

1 , x
n
2 ) =

n∏︂
i=1

pY |X1,X2
(yi|x1i, x2i).

An (M1,M2,K) code for the n-length channel achieving aver-
age probability of error at most ϵ is called an (n,M1,M2,K, ϵ)
code. The fundamental limit for the sum-rate, which will be
our primary interest, is given by

Rsum(n, ϵ,K) = sup
{︂

log(M1M2)
n : ∃(n,M1,M2,K, ϵ) code

}︂
.

The following notation will be useful. Given a MAC, the
sum-capacity without cooperation is given by

Csum = max
pX1

pX2

I(X1, X2;Y ). (1)

Let P⋆ be the set of product distributions pX1pX2 achieving
the maximum in (1). For any pX1

pX2
∈ P⋆, let pY be the

resulting marginal on the channel output, giving

pY (y) =
∑︂

(x1,x2)∈X1×X2

pX1(x1)pX2(x2)pY |X1,X2
(y|x1, x2)

for all y ∈ Y . We use i(x1, x2; y), i(x1; y|x2) and i(x2; y|x1)
to represent the joint and conditional information densities

i(x1, x2; y) = log

(︃
pY |X1,X2

(y|x1, x2)

pY (y)

)︃
i(x1; y|x2) = log

(︃
pY |X1,X2

(y|x1, x2)

pY |X2
(y|x2)

)︃
i(x2; y|x1) = log

(︃
pY |X1,X2

(y|x1, x2)

pY |X1
(y|x1)

)︃
,

where pY |X1
and pY |X2

are conditional marginals on Y under
joint distribution pX1,X2,Y = pX1pX2pY |X1,X2

. We denote the
3-vector of all three quantities as

i(x1, x2; y) =

⎡⎣ i(x1, x2; y)
i(x1; y|x2)
i(x2; y|x1)

⎤⎦ .

It will be convenient to define

i(x1, x2) = E[i(x1, x2;Y )|(X1, X2) = (x1, x2)]

= D(pY |X1=x1,X2=x2
∥pY ).

Let

V1 = Var(i(X1, X2)), (2)
V2 = E[Var(i(X1, X2;Y )|X1, X2)]. (3)

Roughly speaking, V1 represents the information-variance of
the codewords, whereas V2 represents the information-variance
of the channel noise. Given two distributions pX , qX , let the
divergence-variance be

V (pX∥qX) = VarpX

(︃
log

pX(X)

qX(X)

)︃
.

III. MAIN RESULTS

In the literature on second-order rates, there are typically
two types of results: (i) finite blocklength results, with no
asymptotic terms, that are typically written in terms of ab-
stract alphabets, and (ii) asymptotic results that derive from
these finite blocklength results, which are typically easier to
understand. The following is an achievable result which has
some flavor of both: the channel noise is dealt with via an
asymptotic analysis, but the dependence on the randomness
in the codewords is written as in a finite blocklength result.
We provide this “intermediate” result because, depending on
the CF parameter K, the relevant aspect of the codeword
distribution may be in the central limit, moderate deviations,
or large deviations regime. Thus, in this form one may plug
in any concentration bound to derive an achievable bound.
Subsequently, Theorem 2 gives specific achievable results
based on two different concentration bounds. We also prove
another achievable bound, Theorem 3, which does not rely on
Theorem 1, but instead uses an approach based on the method
of types that applies at larger values of K.

Theorem 1. Assume logK = o(n). For any distribution
pX1

, pX2
, let Xn

j (k) be an i.i.d. sequence from pXj
for each

k ∈ [K], with all sequences mutually independent. There exists
an (n,M1,M2,K, ϵ) code if

ϵ ≥ Pr

(︄
max
k∈[K]

n∑︂
i=1

i(X1i(k), X2i(k)) +
√︁
nV2 Z0

< log(M1M2K) +
1

2
log n

)︄

+O

(︄√︃
log n

n

)︄
+O

(︄√︃
logK

n

)︄
(4)

logM1 ≤ nI(X1;Y |X2)− c
√︁

n logK + n log n (5)

logM2 ≤ nI(X2;Y |X1)− c
√︁

n logK + n log n (6)

where Z0 is a standard Gaussian, and where c is a constant.

Since we are primarily interested in the sum-rate, constraint
(4) is more relevant than (5)–(6). By selecting a rate pair that
is close to the sum-capacity but away from the corner points,
the constraints on the individual rates are easily satisfied.
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Fig. 1. The inverse CDF F−1
SK

(ϵ) for ϵ = 0.01, for V1 = V2 = 1 across a
range of K. Note that the horizontal axis is log2 K, i.e., the number of bits
transmitted from the CF.

For fixed K, let Z0, . . . , ZK be drawn i.i.d. from N (0, 1).
Let

SK =
√︁
V2 Z0 +

√︁
V1 max

k∈[1:K]
Zk,

and define the CDF of SK as

FSK
(s) = Pr(SK ≤ s).

Also let F−1
SK

be the inverse of the CDF; that is,

F−1
SK

(p) = sup{s : FSK
(s) ≤ p} for p ∈ [0, 1].

In what follows we use Theorem 1 and the function F−1
SK

to explicitly bound from below the benefit in sum-rate when
cooperating with varying measures of K. A numerical com-
putation of F−1

SK
(ϵ) as a function of K is shown in Fig. 1.

Lemma 1 gives lower and upper bounds on F−1
SK

; we defer
the proof to the extended version [1].

Lemma 1. For K and ϵ that satisfy K > e3
√
2π ln(4/ϵ),

F−1
SK

(ϵ) is at least√︁
V1(2 lnK − 2 ln ln(4/ϵ)− ln lnK − ln(4π))

−
√︁
2V2 ln(2/ϵ).

Moreover, for all K and ϵ,

F−1
SK

(1− ϵ) ≤
√︁

2V1 lnK +
√︁
2V1 ln(4/ϵ) +

√︁
2V2 ln(2/ϵ).

Theorem 2. For any pX1
pX2

∈ P⋆ and the associated
constants V1 and V2, if logK = o(n1/3), then

Rsum(n, ϵ,K) ≥ Csum +
1√
n
F−1
SK

(ϵ)− θn

where

θn = O

(︃
log n

n

)︃
, if K ≤ log n (7)

θn = O

(︃
K

n

)︃
, if log n ≤ K ≤ log3/2 n (8)

θn = O

(︄
log3/2 n

n

)︄
, if log3/2 n ≤ K ≤ n (9)

θn = O

(︄
log3/2 K

n

)︄
, if K ≥ n. (10)

For larger K, our achievability bound employs the function

∆(a) = max
pX1,X2

:I(X1;X2)≤a
I(X1, X2;Y )− Csum.

Note that ∆(0) = 0. Lemma 2 captures the behavior of ∆(a)
for small a. (See [1] for the proof.)

Lemma 2. In the limit as a → 0,

∆(a) =
√︁
a 2V ⋆

1 ln 2 + o(
√
a)

where
V ⋆
1 = max

pX1
pX2

∈P⋆
Var(i(X1, X2)). (11)

Theorem 3. For any K such that logK = ω(log n),

Rsum(n, ϵ,K) ≥ Csum +∆
(︂

logK
n −O

(︂
logn
n

)︂)︂
−O

(︂
1√
n

)︂
.

Remark 1. While Theorems 2 and 3 appear quite different,
Lemmas 1 and 2 imply that for mid-range K values, they give
similar results. In particular, if log n ≪ logK ≪ n1/3, then
applying Theorem 2, and choosing the distribution pX1pX2 ∈
P⋆ that achieves the maximum in (11) gives

Rsum(n, ϵ,K)− Csum ≥ 1√
n
F−1
SK

(ϵ)− θn ≈
√︃

2V ⋆
1 lnK

n
.

For the same range of K, Theorem 3 gives

Rsum(n, ϵ,K)− Csum ≥ ∆
(︂

logK
n −O

(︂
logn
n

)︂)︂
−O

(︂
1√
n

)︂
≈
√︃

V ⋆
1 logK

n
2 ln 2 =

√︃
2V ⋆

1 lnK

n
.

A. Comparison to prior work

In [5], an analog to Theorem 3 is proven for the asymptotic
blocklength regime. Namely, in our notation, [5] proves that
for any ϵ > 0 and δ > 0, if we set K = 2Ω(n) then there exist
n such that,

Rsum(n, ϵ,K)− Csum > ∆

(︃
logK

n

)︃
− δ.

Similarly, in [5], [8], an analog to Lemma 2 is shown for
asymptotic blocklength. Specifically, it is shown that the
existence of distributions pX1

pX2
∈ P⋆ and pX̃1X̃2

over
X1 × X2 such that (a) the support of pX̃1X̃2

is included in
that of pX1pX2 , and (b)

I(X̃1, X̃2, Ỹ ) +D(pX̃1X̃2
∥pX1

pX2
) > I(X1, X2;Y )

for pX1,X2,X̃1,X̃2,Y,Ỹ
(x1, x2, x̃1, x̃2, y, ỹ)

= pX1(x1)pX2(x2)pX̃1,X̃2
(x̃1, x̃2)

· pY |X1,X2
(y|x1, x2)pY |X1,X2

(ỹ|x̃1, x̃2),

imply that there exists a constant σ0 such that

lim
a→0

∆(a) ≥ σ0

√
a.

Although Theorem 3 and Lemma 2 (and their proof tech-
niques) are similar in nature to those of [5], [8], the analysis
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presented here is refined in that it captures higher order
behavior in blocklength n and further optimized to address the
challenges in studying values of K that are sub-exponential
in the blocklength n.

We may also compare our results against prior achievable
bounds without cooperation. Note that the standard MAC, with
no cooperation, corresponds to K = 1. In fact, in this case
Theorem 2 gives the same second-order term as the best-
known achievable bound for the MAC sum-rate [9]–[13]. This
can be seen by noting that S1 ∼ N (0, V1 + V2), and so
F−1
S1

(ϵ) =
√
V1 + V2Φ

−1(ϵ) where Φ is the CDF of N (0, 1).
Thus Theorem 2 gives

Rsum(n, ϵ, 1) ≥ Csum +

√︃
V1 + V2

n
Φ−1(ϵ)−O

(︃
log n

n

)︃
.

Moreover, V1+V2 = Var(i(X1, X2;Y )) which, for the optimal
input distribution, is precisely the best-known achievable dis-
persion. The proof of Theorem 2 uses i.i.d. codebooks, which,
as shown in [12], can be outperformed in terms of second-
order rate by constant combination codebooks. However, as
pointed out in [13, Sec. III-B], the two approaches give the
same bounds on the sum-rate itself.

Another interesting conclusion comes from comparing the
no cooperation case (K = 1) with a single bit of cooperation
(K = 2). As long as V ⋆

1 > 0, it is easy to see that F−1
S2

(ϵ) >

F−1
S1

(ϵ) for any ϵ ∈ (0, 1) (Fig. 1 shows an example). Thus,
the second-order coefficient in Theorem 2 for K = 2 is strictly
improved compared to K = 1. Therefore, even a single bit of
cooperation allows for O(

√
n) additional message bits.

IV. PROOF SKETCHES OF MAIN RESULTS

Due to space limitations, we provide only sketches of the
proofs of Theorems 1–3; full proofs are in [1].

Proof sketch of Theorem 1: We use random code design,
beginning with independent design of the codewords for both
transmitters. For encoder j ∈ {1, 2}, draw each codeword
fj(mj , k) for mj ∈ [Mj ], k ∈ [K] from the n-length i.i.d. dis-
tribution from pXj . The codewords are mutually independent.
The facilitator code e(m1,m2) for (m1,m2) ∈ [M1] × [M2]
is given by

e(m1,m2) = argmax
k∈[K]

s(f1(m1, k), f2(m2, k)),

where the score function s is s(xn
1 , x

n
2 ) =

∑︁n
i=1 i(x1i, x2i).

While maximum likelihood decoding is expected to give the
best performance, instead we here employ a threshold decoder
for simplicity. For notational efficiency, let

(Xn
1 , X

n
2 )(m1,m2)

= (f1(m1, e(m1,m2)), f2(m2, e(m1,m2))).

Given a constant vector c⋆ = [c⋆12, c
⋆
1, c

⋆
2]

T , the decoder g(y)
chooses the unique message pair (m1,m2) such that

i((Xn
1 , X

n
2 )(m1,m2); y) ≥ c⋆,

where the vector inequality means that all three inequalities
must hold simultaneously. If the number of message pairs that
meet this constraint is not one, we declare an error.

To write a finite blocklength bound derived from this
code design, we define the following random variables. Let
(X̃

n

1 , X̃
n

2 ) be the joint distribution of (Xn
1 , X

n
2 )(1, 1) that

results from our choice of CF. Also let Ỹ
n

be the channel
output when (X̃

n

1 , X̃
n

2 ) are the inputs. By analyzing various
types of errors, and applying commonly-used finite block-
length bounding techniques, we find that the expected error
probability satisfies

E[Pe] ≤ Pr

(︃
i(X̃

n

1 , X̃
n

2 ; Ỹ
n
) < log(M1M2K) +

1

2
log n

)︃
+ Pr

(︃
i(X̃

n

1 ; Ỹ
n|X̃n

2 ) < logM1 +
1

2
log n

)︃
+ Pr

(︃
i(X̃

n

2 ; Ỹ
n|X̃n

1 ) < logM2 +
1

2
log n

)︃
+

3√
n
. (12)

By Hoeffding’s inequality and the assumptions in (5)–(6), the
second and third terms in (12) are each no more than 1/

√
n

for a suitable constant c.
Now we consider the first term in (12). For fixed xn

1 , x
n
2 ,

E[i(xn
1 , x

n
2 ;Y

n)] =

n∑︂
i=1

i(x1i, x2i) = s(xn
1 , x

n
2 ).

Thus we can apply the Berry-Esseen theorem (see, e.g. [14,
Ch. XVI.5]) to write

Pr

(︃
i(xn

1 , x
n
2 ;Y

n) < c⋆12

⃓⃓⃓⃓
(Xn

1 , X
n
2 ) = (xn

1 , x
n
2 )

)︃
≤Pr

(︃
s(xn

1 , x
n
2 )+

√︂∑︁
iV (p(y|x1i, x2i)∥pY )Z0 < c⋆12

)︃
+

B√
n

where Z0 ∼ N (0, 1) and B is a constant. To complete
the proof of the theorem requires bounding the divergence-
variance quantity, which can be done via Hoeffding’s in-
equality, and some technical manipulations on the Gaussian
distribution.

Proof sketch of Theorem 2: Given ϵ, our goal is to choose
M1,M2 to satisfy the conditions of Theorem 1, while

log(M1M2) = nCsum +
√
nF−1

SK
(ϵ)− nθn (13)

where θn satisfies one of (7)–(10) depending on K. By
choosing a point on the border of the capacity region that
achieves the sum-capacity but is away from the corner points,
we can easily satisfy (5)–(6). It remains to prove (4). We can
write the probability in (4) as∫︂ ∞

−∞
ϕ(z) Pr

(︃ n∑︂
i=1

i(X1i, X2i) < c⋆12 −
√︁
nV2 z

)︃K

dz (14)

where ϕ is the PDF of N (0, 1), and c⋆12 = log(M1M2K) +
1
2 log n. Note that the random quantity in (14) is an i.i.d. sum
where each term has expectation

E[i(X1, X2)] = I(X1, X2;Y ) = Csum

and variance V1. We divide the remainder of the proof into
two cases.

Case 1: K ≤ log3/2 n. By the Berry-Esseen theorem, (14)
is no more than∫︂ ∞

−∞
ϕ(z)

[︂
Pr
(︂
nCsum +

√
nσZ1 < c⋆12 −

√︁
nV2 z

)︂
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+O
(︂

1√
n

)︂]︂K
dz

≤ Pr(nCsum +
√
nSK < c⋆12) +O

(︃
K√
n

)︃
.

This bound leads to (7)–(8).
Case 2: K ≥ log3/2 n and logK = o(n1/3). In this regime,

we bound the probability in (14) using the following lemma.

Lemma 3 (Moderate deviations [15]). Let X1, X2, . . . be i.i.d.
random variables with zero mean and unit variance, and let
W =

∑︁n
i=1 Xi/

√
n where c = E[et|X1|] < ∞ for some t > 0.

There exist constants a0 and b0 depending only on t and c such
that, for any 0 ≤ w ≤ a0n

1/6,⃓⃓⃓⃓
Pr(W ≥ w)

Q(w)
− 1

⃓⃓⃓⃓
≤ b0(1 + w3)√

n
,

where Q(w) = 1 − Φ(w) is the complementary CDF of the
standard Gaussian distribution.

Since Pr(|Z0| >
√
lnn) ≤ 2/

√
n, we only need to consider

the probability in (14) for |z| ≤
√
lnn. From the target for

M1M2 in (13) and the bound on F−1
SK

(ϵ) from Lemma 1, it
can be shown that for this range of z, in fact the probability
in (14) falls into the regime of the moderate deviations bound.
Thus, (14) is no more than∫︂ √

lnn

−
√
lnn

ϕ(z)
(︂
1−Q

(︂
c⋆12−

√
nV2 z−nCsum√

nV1

)︂
(1− λn)

)︂K
dz

+O
(︂

1√
n

)︂
, where λn = O

(︂
log3/2 K√

n

)︂
+O

(︂
log3/2 n√

n

)︂
To further bound this quantity, we use the fact that for any
w ≥ 0 and any 0 ≤ λ ≤ 3/4, Q(w)(1 − λ) ≥ Q(w + 2λ).
Thus, (14) is no more than

FSK

(︃
c⋆12 − nCsum√

n
+ 2
√︁

V1λn

)︃
+Q

(︃
c⋆12 − nCsum√

nV2

)︃
+O

(︃
1√
n

)︃
.

This is the essential bound that leads to (9)–(10).
Proof sketch of Theorem 3: This proof uses the method

of types. A probability mass function pX is an n-length type
on alphabet X if pX(x) is a multiple of 1/n for each x ∈ X .
For an n-length type pX , the type class is denoted T (pX).

Let pX1,X2
be an n-length joint type on alphabet X1 ×X2.

Note that the marginal distributions pX1
and pX2

are also n-
length types. We employ the following random code construc-
tion. Draw codewords uniformly from the type classes T (pX1

)
and T (pX2). Given message pair (m1,m2), the cooperation
facilitator chooses uniformly from the set of k ∈ [K] where

(f(m1, k), f(m2, k)) ∈ T (pX1,X2).

If there is no such k, the CF chooses k uniformly at random.
These random choices at the CF are taken to be part of the
random code design. For the purposes of this proof, the three
information densities employ the joint distribution pX1,X2

. The
quantity V2 is also defined as in (3) using information density
for this joint distribution. The decoder is as follows. Given yn,
choose the unique message pair (m1,m2) such that

1) i((Xn
1 , X

n
2 )(m1,m2); y

n) ≥ c⋆,

2) ((Xn
1 , X

n
2 )(m1,m2)) ∈ T (pX1,X2)

for a constant vector c⋆ = [c⋆12, c
⋆
1, c

⋆
2]

T to be determined. If
there is no message pair or more than one satisfying these
conditions, declare an error. Note that, given

(Xn
1 , X

n
2 )(m1,m2) ∈ T (pX1,X2

),

(Xn
1 , X

n
2 )(m1,m2) is uniformly distributed on T (pX1,X2).

Let q(xn
1 , x

n
2 ) be the uniform distribution on the type

class T (pX1,X2
), with corresponding conditional distributions

q(xn
1 |xn

2 ) and q(xn
2 |xn

1 ). Define random variables Xn
1 , X

n
2 , Y

n

to have distribution

pXn
1 ,Xn

2 ,Y n(xn
1 , x

n
2 , y

n) = q(xn
1 , x

n
2 )pY n|Xn

1 ,Xn
2
(yn|xn

1 , x
n
2 ).

Applying some tools from the method of types, we may derive
the finite blocklength bound

E[Pe] ≤ Pr((Xn
1 , X

n
2 )(1, 1) /∈ T (pX1,X2))

+ Pr(i(Xn
1 , X

n
2 ;Y

n) < log(M1M2) + d)

+ Pr(i(Xn
1 ;Y

n|Xn
2 ) < logM1 + d)

+ Pr(i(Xn
2 ;Y

n|Xn
2 ) < logM2 + d) +

3√
n
. (15)

where d = 1
2 log n+ |X1| · |X2| log(n+1). Our goal is to show

that the bound in (15) is at most ϵ for

log(M1M2) = nI(X1, X2;Y )−
√︁
nV2 Q

−1(ϵ)− nθn. (16)

where θn = O( logn
n ) is an error term to be chosen below.

Consider the first term in (15). Note that (Xn
1 , X

n
2 )(1, 1) /∈

T (pX1,X2
) only if

(f1(1, k), f2(1, k)) /∈ T (pX1,X2) for all k ∈ [K].

This occurs with probability bounded as

Pr((Xn
1 , X

n
2 )(1, 1) /∈ T (pX1,X2

))

=

(︃
1− |T (pX1,X2

)|
|T (pX1)| · |T (pX2)|

)︃K

≤
(︂
1− (n+ 1)−|X1|·|X2|2−nI(X1;X2)

)︂K
≤ exp

{︂
−K(n+ 1)−|X1|·|X2|2−nI(X1;X2)

}︂
≤ 1√

n
,

where the last inequality holds if

nI(X1;X2) ≤ logK − |X1| · |X2| log(n+ 1)− log
(︁
1
2 lnn

)︁
.

(17)

The second term in (15) can be bounded using the Berry-
Esseen inequality by

Pr(i(Xn
1 , X

n
2 ;Y

n) < log(M1M2) + d)

≤ Q

(︃
nI(X1, X2;Y )− log(M1M2) + d√

nV2

)︃
+O

(︃
1√
n

)︃
.

As in the proof of Thm. 2, we can use Hoeffding’s inequality
to bound the third and fourth terms in (15) from above by
1/
√
n. Plugging in for M1M2 from (16), we find

E[Pe] ≤ Q

(︃
Q−1(ϵ) +

√︃
n

V2
θn −O

(︃
log n√

n

)︃)︃
+O

(︃
1√
n

)︃
.

Therefore, there exists a choice for θn = O( logn
n ) where this

bound is no greater than ϵ.
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