New Methods and Abstractions for RSA-Based
Forward Secure Signatures

Susan Hohenberger!'* and Brent Waters? **

1 Johns Hopkins University, susan@cs. jhu.edu
2 University of Texas at Austin and NTT Research, bvaters@cs.utexas.edu

Abstract. We put forward a new abstraction for achieving forward-
secure signatures that are (1) short, (2) have fast update and signing
and (3) have small private key size. Prior work that achieved these pa-
rameters was pioneered by the pebbling techniques of Itkis and Reyzin
(CRYPTO 2001) which showed a process for generating a sequence of
roots /¢t hY/e2 . hY°T for a group element h in Z%. However, the
current state of the art has limitations.

First, while many works claim that Itkis-Reyzin pebbling can be applied,
it is seldom shown how this non-trivial step is concretely done. Second,
setting up the pebbling data structure takes 7' time which makes key
generation using this approach expensive (i.e., T' time). Third, many past
works require either random oracles and/or the Strong RSA assumption;
we will work in the standard model under the RSA assumption.

We introduce a new abstraction that we call an RSA sequencer. Infor-
mally, the job of an RSA sequencer is to store roots of a public key
U, so that at time period ¢, it can provide Ul/et, where the value e
is an RSA exponent computed from a certain function. This separation
allows us to focus on building a sequencer that efficiently stores such
values, in a forward-secure manner and with better setup times than
other comparable solutions. In addition, our sequencer abstraction has
certain re-randomization properties that allow for constructing forward-
secure signature schemes with a single trusted setup that takes 7' time
and afterward individual key generation takes lg(T") time.

We demonstrate the utility of our abstraction by using it to provide
concrete forward-secure signature schemes. We first give a random-oracle
construction that closely matches the performance and structure of the
Itkis-Reyzin scheme with the important exception that key generation
can be realized much faster (after the one-time setup). We then move on
to designing a standard model scheme. We believe this abstraction and
illustration of how to use it will be useful for other future works.

We include a detailed performance evaluation of our constructions, with
an emphasis on the time and space costs for large caps on the maximum
number of time periods T supported. Our philosophy is that frequently
updating forward secure keys should be part of “best practices” in key

* Supported by NFS CNS-1414023, NSF CNS-1908181, the Office of Naval Research
N00014-19-1-2294, and a Packard Foundation Subaward via UT Austin.

** Supported by NSF CNS-1414082, NSF CNS-1908611, Simons Investigator Award
and Packard Foundation Fellowship.

maintenance. To make this practical, even for bounds as high as T =
232 we show that after an initial global setup, it takes only seconds to
generate a key pair, and only milliseconds to update keys, sign messages
and verify signatures. The space requirements for the public parameters
and private keys are also a modest number of kilobytes, with signatures
being a single element in Zx and one smaller value.

1 Introduction

Compromise of cryptographic key material can be extremely costly for an orga-
nization to weather. In March of 2011 an attack on EMC allowed attackers to
gain the master seeds for EMC’s SecurelD product. The compromise eventually
led the company to offer replacements for the 40 million tokens at an estimated
cost of $66 million USD [12]. Also in 2011, the certificate authority DigiNotar
was compromised and found that several rogue certificates for companies such
as Google were issued in Iran [10]. The attack led to DigiNotar’s root certifi-
cate being removed from all major web browers. Eventually the firm filed for
bankruptcy and cost its parent company, VASCO, millions of dollars [10].

One bulwark to mitigate the impact of private key compromise is the con-
cept of forward security, which abstractly is meant to protect past uses of the
private key material before a compromise by periodically updating or evolving
the private key. In this work, we focus on the concrete case of forward secure sig-
natures [3,4]. In forward secure signatures, public keys are fixed but signatures
that verify under this key can be generated by a private key associated with a
period t. At any point, the private key holder can choose to evolve or update
the private key to the next period ¢ + 1.3 After an update, the signing key is
capable of creating signatures associated with period t+1, but not for any earlier
period. Importantly, if an attacker compromises a private key at period t', it will
be unable to forge signatures on any earlier period. Returning to the example of
DigiNotar, if forward signatures were deployed (and assuming one could make
a conservative estimate on the time of attack) the browsers could have revoked
the root certificate starting at the time of compromise, but at least temporarily
accepted earlier signatures, which would have allowed the organizations certified
by DigiNotar more time to migrate to a new authority.

Since the introduction of forward secure signatures by Anderson [3] and Bel-
lare and Miner [4], there have been several forward secure signature systems put
forth in the literature. One can bifurcate solutions into two types. Those that
are built from general signatures that follow a “tree-based” structure in which
the depth of the tree and signature size grows logarithmically with the number
of time periods T'. And a second category of “hash-and-sign” signatures built in
specific number theoretic contexts such as the RSA setting or in bilinear groups.
The main appeal of the latter category is efficiency and that will be our focus.

3 Key updates could correspond to actual time intervals or be done in some other
arbitrary manner.

In this second category the work of Itkis and Reyzin [22] (pebbling vari-
ant) is notable for giving the first “hash-and-sign” scheme (using the random
oracle model) with fast signing and key update and small (1g(T") sized) private
keys. They do this by introducing a novel “pebbling” technique that allows the
signer to compute successive roots h'/€1 hl/€2 . hY/eT of a group element h
(mod N). This technique was used in many other works including Camenisch and
Koprowski [9] which use it to achieve standard-model forward-secure signatures
with similar parameters to Itkis-Reyzin under the Strong RSA Assumption.

There are three limitations, however, with the current state of the art in
pebbling solutions. First, most subsequent works (e.g., [22,9,1]) that claim to
apply Itkis-Reyzin pebbling simply state that Itkis-Reyzin pebbling applies, but
do not concretely show how to do this. This creates a critical technical gap
where there is an intuitive understanding of what the pebbling version of the
forward-secure scheme is, but no precise description of that scheme (and in
our experience working out these details is non-trivial). The issue appears to
arise from the fact that the original Itkis-Reyzin pebbling techniques are not
abstracted and defined out as a primitive that can be immediately reused in
other works. The second limitation is that these pebbling techniques require the
setup time for each scheme to be linear in T which can be prohibitive. The third
limitation is that some solutions require the Strong RSA Assumption.

We address all of these issues with an abstraction called an RSA-sequencer.
Intuitively, this sequencer performs a function commensurate with earlier peb-
bling work, but abstracted in a way that allows it to be readily applied for proving
schemes in a formal manner. In addition, our sequencer allows for a single global
setup that will run in time 7" to produce a data structure of size 1lg(T") group
elements. Subsequently, the output of the global setup can be re-randomized
in a way that allows for forward secure signatures with fast (lg(7T") operations)
key generation. Using our abstraction we are able to obtain concretely defined
hash-and-sign forward secure signatures in both the standard and random oracle
model. We then give concrete performance evaluations of these.

RSA Sequencers. We introduce an RSA Sequencer concept comprised of five de-
terministic algorithms (SeqSetup, SeqUpdate, SeqCurrent, SeqShift, SeqProgram).
We begin with an informal overview here. Section 4 contains a formal description.

Let N be an RSA modulus and H be a function from [1,7T] to positive
integers where we’ll use the notation e; = H(4). In addition, consider a tuple

(V1,...,V1en) € ZR™. For each j, let V; = v]HiG“’T] . Intuitively, the purpose of
the sequencer is when it is at period t to be able to output Vll/ L, lle{ft A

A call to SeqSetup(N, 17, H,1%® (v1, ..., v1en)) Will produce a “state” out-
put that we denote state;. Next, if we call SeqUpdate(state;) we get another
state states. The update algorithm can be repeated iteratively to compute

4 For the purposes of this overview, we will implicitly assume that all e; values are
relatively prime to ¢(N) and thus le/ ® is uniquely defined. However, this is not
required in our formal specification.

state; for any t € [1,T]. Finally, a call to SeqCurrent(state;) will give as out-

put V;/ ...V} These three algorithms together form the core functionality.
We now turn to the last two.

Consider a set of integers (i.e., exponents) 21, ..., 21en along with group el-
ements gi,...,g1en € Zj where we let v1 = g7',...,V1en = g1==. Then it is the
case that a call to SeqSetup(N, 17, H,1**®, (g1,..., g1en)) that produces state’
followed by a call to SeqShift(state’, (21,...,21en)) produces the same output

as a call to SeqSetup(N, 17, H, 1**® (vy, ..., V1en))-

Why would one want such a functionality? At first it seems superfluous as
one can reach the same endpoint without bothering with the SeqShift algorithm.
Looking forward in our RSA Sequencer construction the SeqShift will be a signif-
icantly cheaper function to call as its computation time will scale proportionally
to lg(T'), while the SeqSetup algorithm will run in time proportional to T'. In
the schemes we build, we can save computation costs by letting a trusted party
pay a one time cost of running SeqSetup to generate a set of global parameters.
Then with these parameters, each individual party will be able to generate their
public/private keys much more cheaply using the SeqShift algorithm.

Finally, we arrive at the SeqProgram algorithm. This algorithm will actually
not be used in our constructions proper, but instead be used by the reduction al-
gorithm to generate a compromised key in the proof of forward security. Thus the

performance of this algorithm is less important, other than it must run in polyno-

. . . l_[Z start—1] €@
mial time. For any value start € [1,T], consider a tuple v} = v, ‘St

Vien = UE;E[I’S““_” . Then SeqProgram(N,17, H, 1% (v},... v].,), start)
produces the same output as SeqSetup(N, 17, H,1%® (vy, ..., v1en)) followed by
start — 1 iterative calls to SeqUpdate. Intuitively, the semantics of SeqProgram
provide an interface to generate the start-th private key without knowing any
of the first start — 1 roots of Vi,..., Vien.

An important point we wish to emphasize is that the RSA Sequencer defini-
tions we give only have correctness properties and do not contain any security
definitions. Issues like choosing a proper RSA modulus N and a hash function
H are actually outside the RSA Sequencer definition proper and belong as part
of the cryptosystems building on top of them.

In Section 5, we provide an efficient RSA Sequencer. The construction itself is
closely adapted from a key storage mechanism by Hohenberger and Waters [14]
used for synchronized aggregate signatures that could support T' synchronization
periods with 1g(7T) private key storage. This storage mechanism in turn had
conceptual roots in the pebbling optimization by Itkis and Reyzin [15] for forward
secure signatures. The RSA Sequencer bears some history and resemblance to
accumulators [6], but has different goals, algorithms and constructions.

In our construction the (optimized version of the) SeqSetup algorithm makes
T calls to H and performs T - 1len exponentiations. If we break the abstraction
slightly and let a trusted party running it know ¢(N) the exponentiations can
be replaced with 7' multiplications mod ¢(N) and 2 - 1len exponentiations. The
space overhead of the states (which will translate to private key size) will be at
most 21g(T") elements of Z%;. The SeqUpdate algorithm will invoke at most 1g(T')

calls to H and 1g(T) - len exponentiations. The SeqShift algorithm will invoke
at most 2 - 1g(T) - len exponentiations and no calls to H. Finally, the call to
SeqCurrent is simply a lookup and thus essentially of no cost.

Building Forward-Secure Signatures with the RSA Sequencer Our work illus-
trates the value of the RSA Sequencer abstraction by showing how to use it. We
show this concretely in Section 6 (random oracle model) and Section 7 (stan-
dard model). For space reasons, our detailed intuition on how we do this is
deferred to the full version. In a nutshell, however, when instantiated with our
logarithmic-update sequencer construction of Section 5, for T' = 232, we obtain
forward-secure schemes with key generations in the milliseconds (random oracle)
or seconds (standard model), whereas pebbling Itkis-Reyzin [15] (or Camenisch-
Koprowski [9]) takes 20 days and tree-based MMM [18] takes roughly 7.8 years!
We provide further performance comparisons in the full version.

In our standard-model construction, we are limited to giving out one signa-
ture per key update. Or put another way the signer must execute a key update
operation after every signature. Arguably, this should actually be considered to
be the “best possible” key hygiene in the sense that we get forward security on
a per signature granularity basis. In the event that the user accidentally issues
more than one signature during time period ¢, the forward security property
guarantees that all signatures issued before ¢ remain secure. Moreover, as we
discuss in Section 7, for our particular construction, all signatures issued after ¢
appear to remain secure as well.

If this single-sign restriction is considered too burdensome, it can be removed
using an idea common in the literature where the forward-secure scheme is com-
bined with a regular signature scheme. During each update, the signer generates
a temporary public/private key pair for a standard (not forward-secure) sig-
nature scheme. She then uses the forward-secure signing algorithm to sign a
certificate for this new (temporary) public key. Now all signatures in this period
are first signed with the temporary private key and the final signature consists of
this signature along with the attached temporary public key and its certificate.

Our constructions make non-black box use of the RSA Sequencer, however,
investigating more general methods and sequencers that could be used in a black-
box manner is an interesting open problem.

1.1 Further Related Work Discussion

Krawczyk [17] provided a generic construction from any signature scheme where
the the public key and signatures have size independent of T', but the signer’s
storage grows linearly with 7. Abdalla and Reyzin [2] showed how to shorten the
private keys in the “hash-and-sign” Bellare-Miner [4] construction in the random
oracle model. Ttkis and Reyzin [15] presented GQ-based signatures with “opti-
mal” signing and verification in the random oracle model using a very elegant
pebbling approach. Camenisch and Koprowski [9] use it to achieve standard-
model forward-secure signatures with similar parameters under the Strong RSA
Assumption. Our later constructions will have mechanics and performance close

to these schemes, with the exceptions that we offer much faster key generation
times and require only the (regular) RSA Assumption.

Kozlow and Reyzin [16] presented the KREUS construction that allows for
very fast key update at the cost of longer signing and verification times. We
observe that one can derive a weakly secure one-time signature secure from the
RSA assumption by combining the RSA Chameleon Hash function of Bellare
and Ristov [5] with a transformation due to Mohassel [19]. If we consider our
Section 7 scheme with a single message chunk (i.e. K = 1) and the randomness
terms for full security stripped away, then the signatures produced at each time
period correspond to this signature scheme.

2 Definitions

Following prior works [4,15], we begin with a formal specification for a key-
evolving signature and then capture the security guarantees we want from such
a scheme in a forward-security definition. Informally, in a key-evolving signature,
the key pair is created to consist of a (fixed) public key and an initial secret key
for time period 1. This secret key can then be locally updated by the key holder
up to a maximum of 7 times. Crucial to security, the signer must delete the
old secret key sk; after the new one skyy; is generated. Any signature produced
with the initial or any one of the updated secret keys will verify with respect
to the fixed public key pk. Our specification below follows Bellare and Miner [4]
with the exception that we introduce a global setup algorithm. Our specification
can be reduced to theirs by having each signer run its own setup as part of the
key generation algorithm. However, as we will later see in our constructions,
some significant efficiency improvements can be realized by separating out and
“re-using” a set of public parameters.

Definition 1 (Key-Evolving Signatures [4,15]). A key-evolving signature
scheme for a max number of periods T and message space M(-) is a tuple of
algorithms (Setup, KeyGen, Update, Sign, Verify) such that

Setup(1*,17) : On input the security parameter A and the period bound T, the
setup algorithm outputs public parameters pp.

KeyGen(pp) : On input the public parameters pp, the key generation algorithm
outputs a keypair (pk,sky). Notationally, we will assume that the time period
of the key can be easily extracted from the secret key.

Update(pp, sk:) : On input the public parameters pp, the update algorithm takes
in a secret key sk; for the current period t < T and returns the secret key
sket1 for the next period t+1. By convention, we set that skpy1 is the empty
string and that Update(pp, skr, T') returns skp1.

Sign(pp, ske,m) : On input the public parameters pp, the signing algorithm takes
in a secret key sky for the current period t < T, a message m € M(\) and
produces a signature o.

Verify(pp, pk,m,t,0) : On input the public parameters pp, the verification al-
gorithm takes in a public key pk, a message m € M()\), a periodt < T and

a purported signature o, and returns 1 if and only if the signature is valid
and 0 otherwise.

Correctness. Let poly(z) denote the set of polynomials in . For a key-evolving
scheme, the correctness requirement stipulates that for all A € N, T € poly(\),
pp € Setup(1*,17), (pk,sky) € KeyGen(pp), 1 <t < T, m € M(N), skiz1 €
Update(pp, sk;) for i =1 to T, o € Sign(pp, sk¢, m), it holds that

Verify(pp, pk, m,t,0) = 1.

We now turn to capturing the forward-security guarantee desired, which was
first formalized by Bellare and Miner [4] and in turn built on the Goldwasser, Mi-
cali and Rivest [11] security definition for digital signatures of unforgeability with
respect to adaptive chosen-message attacks. Intuitively, in the foward-security
game, the adversary will additionally be given the power to “break in” to the
signer’s computer and capture her signing key sk; at any period 1 < b < T'. The
adversary’s challenge is to produce a valid forgery for any time period j < b < T.

Forward-Security. The definition uses the following game between a challenger
and an adversary A for a given scheme IT = (Setup, KeyGen, Update, Sign, Verify),
security parameter), and message space M(A):

Setup: The adversary sends 17 to the challenger, who runs Setup(1*,17) to
obtain the public parameters pp.® Then the challenger runs KeyGen(pp)
to obtain the key pair (pk, ski). The adversary is sent (pp, pk).

Queries: Fromt = 1 to T, the challenger computes sk; 11 via Update(pp, sk¢).
If the adversary issues a signing query for message m € M for time pe-
riod 1 < ¢t < T, then the challenger responds with Sign(pp, sk, m) and
puts (m,t) in a set C. When the adversary issues her break-in query for
period 1 < b < T, the challenger responds with sk;.® If the adversary
does not choose to make a break-in query, then set b =T + 1.

Output: Eventually, the adversary outputs a tuple (m,t,0) and wins the

game if:
1. 1 <¢<b (ie., before the break-in); and
2. m € M; and

3. (m,t) ¢ C; and
4. Verify(pp, pk,m,t,0) = 1.

We define SigAdv 4 ;7 14(A) to be the probability that the adversary A wins
in the above game with scheme IT for message space M and security parameter
A taken over the coin tosses made by A and the challenger.

® Any adversary A that runs in time polynomial in A will be restricted (by its own
running time) to responding with a T" value that is polynomial in A.

8 Technically, it is non-limiting to allow the adversary only one break-in period, be-
cause from this secret key she can run the update algorithm to produce valid signing
keys for all future periods. Her forgery must, in any event, come from a period prior
to her earliest break-in.

Definition 2 (Forward Security). A key-evolving signature scheme II for
message space M is forward secure if for all probabilistic polynomial-time in X
adversaries A, there exists a negligible function negl, such that SigAdv 4 ;7 () <
negl(A).

Single Sign. In the above definition, the adversary can request multiple signa-
tures for each time period. We will also be considering schemes where an honest
signer is required to update his secret key after each signature, and thus the ad-
versary will be restricted to requesting at most one message signed per period.
Formally, during Queries, the challenger will only respond to a signing request
on (m,t)if m e M, 1<t <T, and there is no pair of the form (z,t) € C. We
will call schemes with this restriction single sign key-evolving schemes and the
corresponding unforgeability notion will be called single sign forward security.

Weakly Secure. For any signature scheme, one can also consider a variant of
the security game called existential unforgeability with respect to weak chosen-
message attacks (or weakly secure) (e.g., see Boneh and Boyen [7]) where, at the
beginning of the security game, the adversary must send to the challenger a set
@ of the messages that she will request signatures on. In the case of forward
security, () must contain the message-period pairs (m;,t;). Instead of making
any adaptive signing queries, the challenger will simply produce signatures on
all of these messages for their corresponding period. Then the adversary must
produce a forgery for some (m*,t*) & Q.

3 Number Theoretic Assumptions

We use the variant of the RSA assumption [20] involving safe primes. A safe
prime is a prime number of the form 2p + 1, where p is also a prime.

Assumption 1 (RSA) Let)\ be the security parameter. Let integer N be the
product of two \-bit, distinct safe primes primes p,q where p = 2p' + 1 and
g = 2¢ + 1. Let e be a randomly chosen prime between 2* and 2! — 1. Let
QR be the group of quadratic residues in Z% of order p'q’. Choose x € QRy
and compute h = ¢ mod N. Given (N,e, h), it is hard to compute x such that
h=2x¢ mod N.

4 RSA Sequencers

Shortly, we will present forward-secure signature constructions in the RSA set-
ting. All of these constructions and their proofs make use of an abstraction we
call an RSA Sequencer. We now provide a specification for this abstraction, as
well as minimum efficiency and correctness requirements. In Section 5, we pro-
vide an efficient construction.

Definition 3 (RSA Sequencer). An RSA Sequencer consists of a tuple of de-
terministic algorithms (SeqSetup, SeqUpdate, SeqCurrent, SeqShift, SeqProgram)
such that:

SeqSetup(N € Z, 1T, H : {1,..., T} — Z,1**® (v1, ..., V1en) € ZX®) : On input of
a positive integer N, the number of time periods T, a function H from [1, 7]
to positive integers, a positive integer len and a len-tuple of elements in
Zy, the SeqSetup algorithm outputs a state value state.

SeqUpdate(state) : On input of a state value state, the SeqUpdate algorithm
produces another value state’.

SeqCurrent(state) : On input of a state value state, the SeqCurrent algorithm
produces a tuple (sq, ..., Sien) € ZR".

SeqShift(state, (21, -, 21en) € Z***) : On input of a state value state and a
len-tuple of integers, the SeqShift algorithm produces another value state’.

SeqProgram (N € Z, 1T H : {1...,T} — Z,1** (v},...,v|,,) € Z ", start €
{1,...,T}): On input of a positive integer N, the number of time periods
T, a function H from [1,7T] to positive integers, a positive integer len, a
len-tuple of elements in Zy and an integer start € [1,7T], the SeqProgram
algorithm outputs a state value state.

We note that the SeqProgram algorithm will not appear in our signature
constructions, but instead be employed solely in the proof of forward security.

(Minimum) Efficiency We require that the SeqSetup and SeqProgram algorithms
run in time polynomial in their respective inputs and all other algorithms run
in time polynomial in Ig(N),T and len and the time to evaluate H.

Correctness We specify three correctness properties of an RSA Sequencer. Our
specification implicitly relies on the fact that all of the algorithms (including
SeqSetup) are deterministic. We also use the shorthand that e; = H(t) for ¢t €
[1,T]. The correctness properties are:

Update/Output Correctness For any N € Z,T € Z,H : {1...,T} —
Z,len € Z,(v1,...,V1en) € ZK", the following must hold: Let state; =
SeqSetup(N, 17, H, 11 (vq,...,01e0)). For t =2 to T, let state; =
SeqUpdate(state;_1). Then for all ¢ € [1,T], it must be that

Hi €; HI e:
SeqCurrent(state;) = (vy M NIy iet TNV T

» Ylen

where the arithmetic is done in Zp.
Shift Correctness Forany N € Z,T € Z,H : {1...,T} — Z,1len € Z, (vy,. ..,

Vien) € ZR™ and (21, ..., 21en) € Z**®, the following must hold: Let state =
SeqSetup(N, 17, H, 1% (vq, ..., U1en)). Let v] = vf',... v, = vi® (all in

Zy) and state’ = SeqSetup(N, 17, H, 11 (v}, ..., v},,)), then it must hold
that
state’ = SeqShift(state, (21,.. ., 21en))-

One could define a stronger form of shift correctness that holds after any
number of updates; however, we will only need this to hold for when SeqShift
is operated immediately on the initial state output of SeqSetup.

Program Correctness For any N € Z,T € Z,H : {1...,T} — Z,1len €
Z,(v1,...,01en) € Z3", start € [1,T + 1], the following must hold: Let
state; = SeqSetup(N, 17, H,1**® (vy,..., Vien)). For t = 2 to start, let

state, = SeqUpdate(state;). Let v] = vy S0 gy —
E;E[l’“m’” “ (allin Zy). Finally let state’ = SeqProgram(N, 17, H, 1% (v},

.oy Vo), start). It must hold that stategiart = state’.

5 Our Sequencer Construction

We now give an RSA sequencer construction where the number of hashes and
exponentiations for update is logarithmic in 7. Furthermore, the storage will
consist of a logarithmic in 7" number of elements of Zy. Our sequencer con-
struction will follow closely in description to the key storage technique from
Hohenberger and Waters [14] and is also conceptually similar to the pebbling
optimization from Itkis and Reyzin [15].

Let’s recall the purpose of an RSA sequencer. Let NV be an integer that we’ll
think of as an RSA modulus and H be a function from [1, T] to positive integers
where we’ll use the notation e; = H (7). Focusing on the length len = 1 case, a
sequencer will be given as input a value v € Zy and we let V = pllien e

The goal of a sequencer is two fold. First, after k£ calls to SeqUpdate, the
SeqCurrent call should output V/¢+1. Second, it should be the case that it has
a forward security property where one cannot compute V¢ +1 for k' < k + 1
from the data structure. One easy way to achieve these goals is that after k calls
to SeqUpdate the data structure can simply store vlliens | In this manner
the SeqUpdate algorithm only needs a single exponentiation to update the data
structure, but the SeqCurrent algorithm will need T' — k — 1 exponentiations to
compute V1/er+1 from pllienm &

Instead we use a more complex data structure that stores logarithmic in T’
“partial computations”. After k calls to SeqUpdate, the data structure will al-
ready have V1/¢x+1 ready for retrieval. Moreover, the next SeqUpdate call will
do a logarithmic amount of work that has the next one ready as well. Intu-
itively, each call to SeqUpdate will perform work that both applies to computing
“nearby” roots as well as progress towards further out time periods. The de-
scription below gives the details and supports a tuple of length len.

For ease of exposition, we will assume that the setup algorithm only accepts
values of T for which there is an integer levels where T = 2'¢vels+l _ 9 The
storage will consist of an integer index that determines the current period and
a sequence of sets S1,. .., S1eve1s Storing “partial computations” where elements
of set \S; are of the form

(W1, ..., Wien) € Zi*", open € [1,T], closing € [1,T], count € [1,T].

10

Here if R is the set of integers [open, open+2¢~!1—1]U[closing+count, closing+
2i=1 — 1], then w; = U{[jE[l’T]\R “ Here and throughout this work, we use as
shorthand e; = H(j). We begin with giving the descriptions of and proving cor-
rectness of all of the algorithms except the SeqProgram algorithm which we will
circle back to at the end of the section.

SeqSetup(N, 17, H,1**® (vy,...,v1eq)) Initialize sets Si, ..., Sieve1s to be empty.
Then for ¢ = 2 to levels perform the following:

Let R = [2¢ — 1,21+1 — 2],

_ Compute wy = ,U}_IJE[I,T]\R ej’ e Wien = UE;E[LT]\R Ej.
— Putin S; ((wy® 0BT 20 -1 (20 - 1) 42070 1),
— Put in Si ((wl, - 7wlen), (21 _ 1) 4 2171’21 _ 170)
Finally, let R = [1,2] and compute wy = U}_[JE[I,T]\R ey = UJI;I;E[I,T]\R e
Put in S1 ((wi,...,W1ien), 2,1,0). And set current = (wi?,..., wiZ).
The Output is state = (index = 17 Current, (Sla R Slevels))'

SeqUpdate(state) For ¢ = 1 to levels, perform the following:

— Find a tuple (if any exist) in S; of ((wy,...,Wien), OpPen, closing, count)
with the smallest open value.”

— Replace it with a new tuple ((w} = w{™™ ™ Wi, = wya o),
open’ = open, closing’ = closing, count’ = count+1) where ((wf, ..., wi.,),
open’, closing’, count’) is the newly added tuple.

Then for ¢ = levels down to 2,

— Find a tuple (if any) of the form ((wi,...,wen), open, closing, count =
2i_1) in S;.

— Remove this tuple from the set S;.

— To the set S;_1, add the tuple ((w] = w1, ..., W}, = Wien),0pen’ = open,
closing’ = open+ 272 count’ = 0) where ((w},...,w}.,),open’, closing’,
count’) is the newly added tuple.

— Also add to the set S;_1, the tuple ((w}] = wi,..., W}y, = Wien),0open’ =

open + 272 closing’ = open, count’ = 0).

Finally, from S find the tuple ((w1, ..., Wien), open = index+1, closing, 1).

Remove this from S;. Set index’ = index + 1 and current’ = (w1, ..., W1en).
The output is state’ = (index’, current’, (Sy,..., Slevels)).
SeqCurrent(state) On input state = (index, current, (51, .. .,Slevels)), the
algorithm simply outputs current = (w1,. .., Wien)-

" In a particular S; there might be zero, one or two tuples. If there are two, the one
with the larger open value is ignored. Ties will not occur, as our analysis will show.

11

SeqShift(state, (21, ..., 21en)) For ¢ = 1 to levels, find each tuple (if any ex-

ist) in S; of the form ((wi,...,Wien), open, closing, count). Then replace it
with a new tuple ((w] = wi',...,wi,, = wik"), open’ = open,closing’ =
closing, count’ = count). Finally, set current’ = (wi*,...,w"). The output
is state’ = (index, current’, (S1,..., Slevels)).

We discuss the efficiency and correctness of the above in the full version.

5.1 The SeqProgram Algorithm

We conclude with describing the SeqProgram algorithm. Intuitively, at many
places we are required to compute vllien.m\r i for some set of values R. That is
we need to raise v to all e; values except those in the set R. However, instead of
being given v the algorithm is given v/ = vlliensari—11 ¢ Therefore we must check
(in the correctness argument) that in every case RN 1, start — 1] = 0. If so, we
can let X = [1,T]\ (RU[1, start — 1]) and compute (v/)[Liex ¢ = pllien.mres,

SeqProgram(N, 17, H,1**® (v}, ..., v}.,), start) The algorithm first sets the value
index = start. Next for each i € [1,1levels] the algorithm inserts tuples ac-
cording to the following description.

Case 1: T —index < 2/ — 2. In this case, the set S; will be empty.

Case 2: Not Case 1 and index = k-2 4+ for 0 < r < 2°~'. The algorithm
will place two elements in S;. First, let open = (k + 1) - 2¢ — 1,closing =
(k+1)-2°—1+2! and count = r. Then let R = [open, open+ 2~ —1]U
[closing-+count,closing+2'~!—1] and let X = [1,7]\(RU[1, index—1]).
The first one it places is

(wy = (W) Wsex e wyen = (v,) liex %), open, closing, count).

To create the second tuple, let open = (k + 1) - 2¢ — 1 + 2i~1 closing =
(k+1)-2¢—1 and count = 0. Next let R = [open, open+2i~1 —1]U[closing+
count, closing + 2°~! — 1] and let X = [1,7]\ (RU[1, index — 1]).

(wy = (W) Wsex e wyen = (v),,) liex %), open, closing, count).

Case 3: Not Case 1 and index = k- 2¢ +r for 2071 < r < 2!, The algorithm
inserts a single element. First, let open = (k + 1) - 2! — 14 2'"1, closing =
(k+1)-2° — 1 and count = r — 2=, Then let R = [open, open + 2i~1] U
[closing + count, closing + 27 !] and let X = [1,7]\ (RU 1, index — 1]).

(wy = (W) iex® . wyen = (vh,,)liex ®), open, closing, count).
Finally, let X = [1,T]\[1, start] and current = ((v})liex i .. (v])liex),

Claim 2 The Program correctness condition of Definition 3 holds for our con-
struction. (Proof of this claim is given in the full version.)

We briefly remark that all algorithms are polynomial time in the input. The
concrete efficiency of the SeqProgram algorithm will not be as relevant to the
performance of our forward secure signature schemes it will only be used in the
proof of security and not in the actual construction.

12

6 An Efficient Scheme in the Random Oracle Model

The global setup of our scheme will take as input a security parameter A and the
maximum number of periods 7. The message space M will be {0, 1}% where L
is some polynomial function of A. (One can handle messages of arbitrary length
by first applying a collision-resistant hash.) Our scheme will be parameterized
by an RSA Sequencer as defined in Section 4 consisting of algorithms (SeqSetup,
SeqUpdate, SeqCurrent, SeqShift, SeqProgram).

Our initial scheme utilizes a random oracle G that we assume all algorithms
have access to. For ease of exposition, we’ll model the random oracle as a random
function G : Zy x {0,1}* x [1,T] — [0,2* — 1] where N is an RSA modulus
output from the global setup. We will often omit explicitly writing “mod N”
and assume it implicitly when operations are performed on elements of Zj,.

Hash Function to Prime Exponents. We make use of the hash function intro-
duced in [13] and slightly refined in [14] to map integers to primes of an appro-
priate size. This hash function will not require the random oracle heuristic. The
hash function H : [1,T] — {0, 1}**! takes as input a period ¢ € [1,T] and output
a prime between 2* and 2**! — 1. One samples the hash function by randomly
choosing a K’ for the PRF function F: [1,T] x [1,A- (A2 +)] — {0,1}*, a ran-
dom ¢ € {0,1}* as well as an arbitrary prime egefaui; between 2* and 221 — 1.
We let K = (K’, C, €defau1t).

We describe how to compute Hp(t). For i = 1 to A+ (A2 + X), let y; =
c® Fyr(t,4). If 2) +y; is prime, return it. Else increment ¢ and repeat. If no such
1<\ ()\2 + A) exists, return €default-> This computation returns the smallest i
such that 2* + y; is a prime. Notationally, for ¢ € [1,7] we will let e; = Hg (t).

We will use this hash function in this section and Section 7. For notational
convenience, we will sometimes have algorithms pass a sampled key K instead
of the description of the entire function Hg.

6.1 Construction

Setup(1*,17) First, the setup algorithm chooses an integer N = pq as the
product of two safe primes where p — 1 = 2p’ and ¢ — 1 = 2¢/, such that
22 < ¢(N) < 221 Let QR denote the group of quadratic residues of order
p'q" with generator g. Next, the setup algorithm samples a hash function key K
according to the description above. It follows by computing

state,, = SeqSetup(N, 17, K, 1121 ¢).

The algorithm concludes by computing F = H;‘Ll e; mod ¢(N) and Y = g%
mod N. It publishes the public parameters as pp = (T, N,Y, K, state,,).

& The egefaus value is included to guarantee that Hx () returns some value for each
input, but we have chosen the search space so that egefauit is only returned with
negligible probability.

9 For convenience, we pass the key K to SeqSetup with the assumption that it implic-
itly describes Hg .

13

KeyGen(pp) The algorithm parses pp = (T, N, Y, K, state,p). It chooses a ran-
dom integer u in [1, N]. It computes state; = SeqShift(statep,,u), U = Y
mod N and e; = Hg (1). It sets sk; = (stateq,er, 1) and pk =U.

Update(pp, sk; = (statey, er,t)) The update algorithm computes state;r; =
SeqUpdate(state;) and computes the prime e;1 = Hg (t + 1) using pp. It out-
puts the new secret key as sky11 = (states1,ei41,t+ 1).

Sign(pp,sk; = (statet,es,t), M) The signing algorithm first computes s =
SeqCurrent(state;).' It next chooses a random r € Z% and computes gy =
G(r®* mod N, M,t). It then computes o; = r - s72. The signature for period ¢
is output as o = (01, 02).

Verify(pp, pk = U, M,t,0 = (01,02)) The verification algorithm rejects if o1 =0
mod N; otherwise it first computes the prime e, = Hg(t) using pp. It then

computes a = 07" /(U?2) and outputs 1 to accept if and only if G(a, M,t) . oo.

Theorem 3. If the RSA assumption (Assumption 1) holds, F is a secure pseu-
dorandom function and G is modeled as a random oracle, then the Section 6.1
key-evolving signature construction is forward secure according to Definition 2.

We prove this theorem in the full version via a series of 15 games. Correctness
and efficiency analyses appear in the full version.

7 Streamlined Signatures in the Standard Model

We describe a scheme that is provably secure in the standard model with the
restriction that the key must be updated after each signing (the scheme of the
previous section does not share this restriction). This represents the best forward
security practice assuming the underlying sign and update operations are efficient
enough to support it. Our systems will be designed to provide practically efficient
key generation, signing and update. Moreover we choose a signature structure
that is optimized to provide as short a signature as possible. We achieve this by
avoiding an RSA-based Chameleon hash as discussed in the introduction.

If more than one signature is issued during a time period t, the forward
security property guarantees that all signatures issued before ¢ remain secure.
Moreover, for our particular construction, we claim that all signatures issued
after ¢t would remain secure as well. Informally, to see this, observe that each pe-
riod t’ is associated with a unique prime e;.. Obtaining two signatures associated
with the e;-root could allow the adversary to produce additional signatures for
time period t; however, it should not give the adversary any advantage in taking
ej-roots for any ¢ # t. Indeed, we rely on this property to prove forward secu-
rity. Thus, while single sign, our construction appears rather optimal in terms
of mitigating the damage done if a user accidentally violates this restraint: she
compromises signatures only for the time period for which she over-signed.

10 Technically, SeqCurrent returns a tuple of length len, since len = 1 in this case, we
allow SeqCurrent to return s instead of (s).

14

7.1 Construction

As before, the global setup of our scheme will take as input a security parameter
A and the maximum number of periods 7. The message space M will be {0, 1}
where L is some polynomial function of A. (One can handle messages of arbitrary
length by first applying a collision-resistant hash.) Our scheme will be param-
eterized by an RSA Sequencer as defined in Section 4 consisting of algorithms
(SeqSetup, SeqUpdate, SeqCurrent, SeqShift, SeqProgram. In addition, it will use
the same hashing function H to prime exponents as in Section 6.

Let f : Z — 7 be a function such that f()\)/2” is negligible in A. In this
construction, associated with the scheme will be a “message chunking alphabet”
where we break each L-bit message into k chunks each of ¢ bits where k-¢ = L.
Here, we will require that 2¢ < f()). In our evaluation in Section 8, we will
explore the performance impact of a various choices for the system parameters.

Setup(1*,17') First, setup algorithm chooses an integer N = pq as the product of
two safe primes where p — 1 = 2p’ and ¢ — 1 = 2¢/, such that 2* < ¢(IN) < 2 +1,
Let QR denote the group of quadratic residues of order p’q’ with generator g.
Next, the setup samples a hash function key K according of the description at
the start of Section 6. It follows by computing

statep, = SeqSetup(N, 17, K, 13*=F42 (4 = g g = g, ..., V1en = 9)).

The algorithm concludes by computing F = H;‘Ll e; mod ¢(N) and Y = g%
mod N. It publishes the public parameters as pp = (T, N,Y, K, state,,).

KeyGen(pp) The algorithm retrieves Y from the pp. It chooses random integers
(ug, u1, - .., ug, @) in [1, NJ¥T2 Tt computes state; = SeqShift(statepp, (uo, U1, - - -,
u, @)). Next, for i € [0, k], it computes U; = Y% mod N and U = Y% mod N.

It computes e; = Hg (1). It sets sk; = (statey,er, 1) and pk = (Up, Uy, ..., Uk, U).

Update(pp, sk; = (statey, e, t)) The update algorithm computes state;41 =
SeqUpdate(state;) and computes the prime e;11 = Hg (¢t + 1) using pp. It out-
puts the new secret key as sky11 = (statesr1,ei1,t+ 1).

Sign(pp, sk; = (statey, es,t), M) The signing algorithm parses the L = (¢k)-bit

message M = mq|mg|...|my, where each m; contains ¢-bits. Then it retrieves
(s0,81,---,8%,8) = SeqCurrent(state;). Next, it chooses random integer r €
[0,2* — f(\)]. The signature is generated as o = (01, 02) = (50'§T'H§:1 sgnj, T).

Verify(pp, pk, M, t,0 = (01,02)) Let pk = (Up,...,Us,U) and M = mq]...|my.
The verification first computes the prime e; = Hg (t) using pp. It accepts if and

only if 0 < oy < 2% — f(X) and o' = Uy - U2 - [[5_, U™,

Theorem 4. If the RSA assumption (Assumption 1) holds and F is a secure
pseudorandom function, then the Section 7.1 key-evolving signature construction
1s single-sign forward secure.

Correctness, efficiency and proof of this theorem appear in the full version.

15

8 Performance Evaluation

We now analyze the performance of the two main forward-secure schemes pre-
sented: the random oracle based construction from Section 6 and the standard
model construction from Section 7. The latter has the single sign restriction,
however, our key update operations will be cheap enough to support a high rate
of signing or one can use the hybrid certificate method discussed before.

For both constructions, we consider a 2048-bit RSA modulus N. To perform
the timing evaluations in Figures 2 and 3, we utilized the high-performance
NTL number theory library in C+4 v10.5.0 by Victor Shoup [21]. Averaged
over 10,000 iterations, we measured the cost of a prime search of the relevant
size as well as the time to compute modular multiplications and modular expo-
nentiations for the relevant exponent sizes. We took all time measurements on
an early 2015 MacBook Air with a 1.6 GHz Intel Core i5 processor and 8 GB
1600 MHz DDR3 memory. These timing results are recorded in Figure 1.

[Operation || P1o2s [Pss7 [Pu1s | Psa [Ps1 [[Ezoas| Ess7 [Esse [Ease |
[Time (ms)[[28.533]1.759]0.365]0.317]0.302[4.700]0.815]0.808]0.638]
IOperation “ E1131E112‘ Esz ‘]ESI ‘]Eso ‘ E32 “ M ‘
[Time (ms)[[0.305[0.299[0.226[0.217[0.211]0.098[[0.001]

Fig. 1. Time recorded in milliseconds for the above operations are averaged over 10,000
iterations for a 2048-bit modulus using NTL v10.5.0 on a modern laptop. Let P, denote
an x-bit prime search, E; be an z-bit modular exponentiation, and M be a modular
multiplication.

For the Section 6 (Random Oracle) timing estimates in Figure 2, the message
space is arbitrary, since the message is hashed as an input to the random oracle
G. We set the maximum output length of G to be 80 bits. (Recall from our proof
of security that an additive loss factor of 2789 comes from the probability that
the attacker receives the same challenge value from two forks of the security game
at ¢*.) Since the prime exponent must be larger than this output of G, we set it
to be 81 bits.!'! These evaluations will be considered for a maximum number of
periods of T € {212,216 220 924 928 932} 12 The Setup algorithm computes the
modular multiplications with respect to ¢(N) while the other algorithms due

11 The parameters given for this and the standard model scheme evaluation do not
have a total correspondence to the scheme description, e.g., using 81-bit e values
technically requires a variant of the RSA assumption with smaller exponents. We also
do not attempt to set the modulus size to match the security loss of our reductions.
It is unknown if this loss can be utilized by an attacker and we leave it as future
work to deduce an optimally tight reduction. Our focus here is to give the reader a
sense of the relative performance of the schemes for reasonable parameters.

12 Technically, T = 2*"****! — 2 (see Section 5), we ignore the small constants.

16

Sec. 6 Time when T =

Alg. ||Operation Count 212 ‘ 216 ‘ 220 224 228 232
Setup ||T - Pe| + 21gT - E\n| +|| 1.45s |22.03s| 5.98m | 1.63h | 1.11d | 18.16d
(2T1gT) - M

KeyGen||1-P. + (21gT+1)-En|| 0.12s | 0.16s | 0.19s | 0.23s | 0.27s | 0.31s

Update ||IgT - P +1gT - Ey 6.24ms|8.32ms|10.40ms|12.48ms|14.56ms|16.64ms
Sign |[1-Ej, +1-Ej,, + 1 - M]|[0.43ms|0.43ms| 0.43ms | 0.43ms | 0.43ms | 0.43ms
Verify ||1-(P|¢) +E|+E|5,| +M)||0.73ms|0.73ms| 0.73ms | 0.73ms | 0.73ms | 0.73ms

Fig. 2. Running Time Estimate for the Section 6 (Random Oracle) Scheme with a
2048-bit N. Let P be the time for function Hr to output a prime of |e| bits, E; be
the time to perform a j-bit modular exponentiation, and M be the time to perform a
modular multiplication. 7" is the maximum number of time periods supported by the
forward-secure scheme. We set |e| = 81 bits to be the size of the prime exponents and
|o2| = 80 bits to be the maximum size of the output of G. We set the message space
length L to be an arbitrary polynomial function of A. Times are calculated by taking
the average time for an operation (see Figure 1) and summing up the total times of
each operation. Let ms denote milliseconds, s denote seconds, m denote minutes, h
denote hours, and d denote days.

so with respect to N. However, since ¢(INV) is very close to N, we treat both of
these the same (i.e., at 2048 bits); we do this in the timing of both schemes. In
Sign and Verify, we do not consider the time to compute the random oracle G.

For the Section 7 (Standard Model) timing estimates in Figure 3, the mes-
sages space is L = k - £ = 256, where messages are broken into k chunks each of
£ bits. We consider three different settings of k£ and ¢, keeping the prime expo-
nent associated with that setting to be at least one bit larger than the size of
the message chunks. Here we do not recommend allowing the size of the prime
exponents to fall below 80 bits to avoid collisions.

8.1 Some Comparisons and Conclusions

We make a few brief remarks and observations. First, if one wants to support
a high number of key updates, then it is desirable to offload much of the cost
of the key generation algorithm to a one time global setup. Having a one time
global setup that takes a few days might be reasonable '3, while incurring such
a cost on a per user key setup basis could be prohibitive. With one exception
(k = 256 in Figure 3) all individual key generation times are at most a few
seconds. One question is how much trust needs to be placed into one party for
a global setup. Fortunately, for our constructions, the answer is favorable. First,
there are efficient algorithms for generating RSA moduli that distribute trust
across multiple parties [8], so the shared N could be computed this way. Second,
once the RSA modulus plus generator g and RSA exponent hashing key are
chosen, the rest of the RSA sequencer computation can be done deterministically

13 This could be further reduced by using a faster computer and/or parallelizing.

17

Sec.7 ||Operation Parameters Time when T =
Alg. ||Count k |lel|loal] 2" 216 220 2% | 2% | 2%

T P+ 1 [337|336|| 7.41s | 1.96m |31.42m | 8.42h | 5.63d [90.54d
Setup [|21gT-E|x+| 8 [113|112|| 1.70s | 26.11s | 7.06m | 1.92h | 1.30d |21.25d
(2T1gT) - M||256| 82 | 81 || 1.51s | 23.0s | 6.23m | 1.70h | 1.16d |18.89d

Pie+(k+2)-|| 1 |337|336| 0.35s | 0.47s | 0.58s | 0.69s | 0.81s | 0.92s
KeyGen||(21gT 4+ 1)- || 8 |[113|112|| 1.17s | 1.55s | 1.93s | 2.30s | 2.68s | 3.06s
E|n| 256|182 | 81 || 30.32s | 40.02s | 49.72s | 59.42s | 1.156m |1.31m

lgT - Pe+ 1 |337(336||50.46ms|67.28ms|84.10ms| 0.10s | 0.12s | 0.13s
Update||(k +2)1gT- || 8 |113]|112{|41.01ms|54.67ms|68.34ms|82.01ms|95.68ms| 0.11s
Ee 256(82 81| 0.70s | 0.94s | 1.17s | 1.41s 1.64s | 1.87s

k-E,+]E‘aﬂ 1 |1337(336(| 1.45ms | 1.45ms | 1.45ms | 1.45ms | 1.45ms |1.45ms
Sign |[+(k+1)-M|| 8 |113|112]| 1.09ms | 1.09ms | 1.09ms | 1.09ms | 1.09ms |1.09ms
256|182 | 81 || 0.47ms | 0.47ms | 0.47ms | 0.47ms | 0.47ms [0.47ms

Ppe + k-E,+|| 1 |337(336]| 4.02ms | 4.02ms | 4.02ms | 4.02ms | 4.02ms |4.02ms
Verify ||Ejg,| +Ejej+|| 8 [113{112}| 1.76ms | 1.76ms | 1.76ms | 1.76ms | 1.76ms |1.76ms
(k+1)-M (|256| 82|81 | 1.0lms | 1.0lms | 1.01lms | 1.01ms | 1.01ms |1.01ms

Fig. 3. Running Time Estimate for the Section 7 Scheme with a 2048-bit N. Let P,
be the time for function Hx to output a prime of |e| bits, E; be the time to perform a
j-bit modular exponentiation, and M be the time to perform a modular multiplication.
T is the maximum number of time periods supported by the forward-secure scheme.
We set the message space length L = k - £ = 256 bits. Times are calculated by taking
the average time for an operation (see Figure 1) and summing up the total times of
each operation. Let ms denote milliseconds, s denote seconds, m denote minutes, h
denote hours, and d denote days.

and without knowledge of any secrets. Thus, a few additional parties could audit
the rest of the global setup assuming they were willing to absorb the cost.

We now move to discussing the viability of our standard model construction.
We focus on the setting of & = 8 as a representative that seems to provide
the best tradeoffs of the three settings explored. Here the global setup time
will take around 7 minutes if we want to support up to a million key updates
and will take on the order of a few days if we want to push this to around a
billion updates. The global setup cost here is close to that of the random oracle
counterpart. Individual key generation takes between 1 and 3 seconds depending
of the number of time periods supported. The time cost of signing and verifying
does not scale with T', the max number of time periods, and these incur respective
costs of 1.09ms and 1.76ms. Signatures are 0.26KB regardless of T

The important measurement to zoom in on is key update. This algorithm
however, is more expensive and ranges in cost from 50ms to around 110ms de-
pending on 7. Since (in the basic mode) one is allowed a single signature per key
update, it will serve as the bottleneck for how many signatures one can produce.
In this case the number is between 10 to 20 per second. In many applications this
is likely sufficient. However, if one needs to generate signatures at a faster rate,
then she will need to move to the certificate approach where the tradeoff will be

18

Sec. 6 Space when 7" =

Item || Element Count || 2'2 ‘ 216 ‘ 220 ‘ 2% ‘ 228 ‘ 232
pp |[((21gT) + 1)Zn||6.25K|8.25K|10.25K|12.25K [14.25K|16.25K
pk 1Zn 0.25K|0.25K]| 0.25K | 0.25K | 0.25K | 0.25K

sk [[(2lgT)Zn + 1le]|| 6.0K | 8.0K | 10.0K | 12.0K | 14.0K | 16.0K
o) 1Zn + 1]o2|]|0.26K|0.26K| 0.26K | 0.26K | 0.26K | 0.26K

Fig. 4. Space Evaluation for Section 6 (Random Oracle) Scheme. Let the modulus be
a 2048-bit N. Let K denote a kilobyte (2'° bytes). T is the maximum number of time
periods supported by the forward-secure scheme. We consider |e| = 81 bits to be the
size of the exponents and |oz| = 80 bits to be the maximum size of the output of G.
The public parameters and keys omit the descriptions of T, N and the hash function
Hp . For the public parameters, all len = k + 2 generators are the same, so we use an
optimization detailed in the full version.

that the signature size increases to accommodate the additional signature (e.g.,
certificate) plus temporary public key description.

Finally, we observe that for most of our standard model algorithms paral-
lelization can be used for speedup in fairly obvious ways. In particular in key
update and key generation there are 1g(T") levels as well as k42 message segments
and one can partition the computation along these lines.

References

1. Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. On the tightness of
forward-secure signature reductions. J. Cryptology, 32(1):84-150, 2019.

2. Michel Abdalla and Leonid Reyzin. A new forward-secure digital signature scheme.
In Advances in Cryptology - ASIACRYPT, pages 116—129, 2000.

3. Ross Anderson. Invited Lecture. Fourth Annual Conference on Computer and
Communications Security, ACM, 1997.

4. Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In
Advances in Cryptology - CRYPTO, pages 431-448, 1999.

5. Mihir Bellare and Todor Ristov. Hash functions from sigma protocols and im-
provements to VSH. In ASTACRYPT, pages 125-142, 2008.

6. Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A decentralized
alternative to digital signatures. In FEUROCRYPT, pages 274-285, 1993.

7. Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity-based encryp-
tion without random oracles. In FUROCRYPT, volume 3027, pages 223-238, 2004.

8. Dan Boneh and Matthew K. Franklin. Efficient generation of shared RSA keys. J.
ACM, 48(4):702-722, 2001.

9. Jan Camenisch and Maciej Koprowski. Fine-grained forward-secure signature
schemes without random oracles. Discrete Applied Mathematics, 154(2):175-188,
2006.

10. Dennis Fisher. Final Report on DigiNotar Hack Shows Total Compro-
mise of CA Servers. Threatpost, 10/31/12. At https://threatpost.com/
final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/
77170/.

19

Sec.7 Element Parameters Space when 7" =
Tem| Count B el [lool]] 22 [226 | 20 | 2% | 2 | 2%
pp || ((21gT) + 1)Zn ||any|any|any| 6.25K|8.25K [10.25K|12.25K |14.25K|16.25K
1 |337(336|]0.75K |0.75K | 0.75K | 0.75K | 0.75K | 0.75K
pk (k+2)Zn 8 |113|112|] 2.5K | 2.56K | 2.5K | 2.5K | 2.5K | 2.5K
256| 82 | 81 ||64.5K|64.5K | 64.5K | 64.5K | 64.5K | 64.5K
1 (337(336(18.0K|24.0K| 30.0K | 36.0K | 42.0K | 48.0K
sk |[(k+2)(21lgT)Zn|| 8 [113]112{/60.0K |80.0K |100.0K|120.0K|140.0K |160.0K
+1|e| 256| 82 | 81 |[1.51M|[2.01M|2.52M | 3.02M | 3.53M | 4.03M
1 ({337(336(0.29K|0.29K | 0.29K | 0.29K | 0.29K | 0.29K
o 1Zn + 1|o2| 8 [113|112{/0.26K|0.26K| 0.26K | 0.26K | 0.26K | 0.26K
256] 82 | 81 ||0.26K |0.26K | 0.26K | 0.26K | 0.26K | 0.26K

Fig.5. Space Evaluation for Section 7 Scheme. Let the modulus be a 2048-bit N.
Let K denote a kilobyte (2'° bytes) and M denote a megabyte (2° bytes). T is the
maximum number of time periods supported by the forward-secure scheme. The public
parameters and keys omit the descriptions of T, N and the hash function Hg. For the
public parameters, all len = k + 2 generators are the same, so we use an optimization
detailed in the full version.

11. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal of Computing,
17(2):281-308, 1988.

12. Stefanie Hoffman. RSA SecurelD Breach Costs EMC $66 Million. CRN
Magazine, July 28, 2011. At http://www.crn.com/news/security/231002862/
rsa-secureid-breach-costs—emc-66-million.htm.

13. Susan Hohenberger and Brent Waters. Short and stateless signatures from the
RSA assumption. In CRYPTO ’09, volume 5677 of LNCS, pages 654-670, 2009.

14. Susan Hohenberger and Brent Waters. Synchronized aggregate signatures from
the RSA assumption. In EUROCRYPT, volume 10821, pages 197-229, 2018.

15. Gene Itkis and Leonid Reyzin. Forward-secure signatures with optimal signing and
verifying. In Advances in Cryptology - CRYPTO, pages 332-354, 2001.

16. Anton Kozlov and Leonid Reyzin. Forward-secure signatures with fast key update.
In Security in Communication Networks, pages 241-256, 2002.

17. Hugo Krawczyk. Simple forward-secure signatures from any signature scheme. In
ACM Conference on Computer and Comm. Security, pages 108-115, 2000.

18. Tal Malkin, Daniele Micciancio, and Sara K. Miner. Efficient generic forward-
secure signatures with an unbounded number of time periods. In Advances in
Cryptology - EUROCRYPT, pages 400-417, 2002.

19. Payman Mohassel. One-time signatures and chameleon hash functions. In Selected
Areas in Cryptography - 17th International Workshop, SAC, pages 302-319, 2010.

20. Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Comm. of the ACM, 21(2):120—
126, February 1978.

21. Victor Shoup. NTL: A Library for doing Number Theory, v10.5.0, 2017. Available
at http://www.shoup.net/ntl/.

22. Dawn Xiaodong Song. Practical forward secure group signature schemes. In ACM
Conference on Computer and Communications Security, pages 225-234, 2001.

20

