
PPE Circuits: Formal Definition to Software Automation
Susan Hohenberger

susan@cs.jhu.edu

Johns Hopkins University

Satyanarayana Vusirikala

satya@cs.utexas.edu

University of Texas at Austin

Brent Waters

bwaters@cs.utexas.edu

University of Texas at Austin and

NTT Research

ABSTRACT
Pairing-based cryptography is widely used for its efficiency

and functionality. When designing pairing-based schemes,

one common task is to devise algorithms for verifying a set

of untrusted group elements with respect to a set of trusted

group elements. One might be searching for a verification

algorithm for a signature scheme or a method for verifying

an IBE/ABE private key with respect to the IBE/ABE public

parameters. In ACM CCS 2019 [45], the AutoPPE software

tool was introduced for automatically generating a set of pair-
ing product equations (PPEs) that can verify the correctness

of a set of pairing group elements with respect to a set of

trusted group elements. This task is non-trivial. Some schemes

(e.g., those based on dual system encryption) provably do not

support any efficient algorithm for verifying the private keys

with respect to the public parameters. Other schemes (e.g., the

Boyen-Waters anonymous IBE) were left in a gray area by [45]

– no conjunction of PPEs was known for testing them, but no

proof of untestability either.

In this work, we significantly generalize and expand on the

foundation of [45]. Specifically, we consider a larger space of

verification algorithms, which we call PPE Circuits, to verify a

set of untrusted group elements with respect to a set of trusted

group elements. Informally, a PPE Circuit supports AND, OR,

NOT and PPE gates, thus capturing all of the capability of

AutoPPE while novelly enabling the verification algorithm to

include arbitrary logic (as opposed to only conjunctions of

PPEs). Our contributions include a formalization of PPE cir-

cuits, a provably-correct algorithm for searching for a PPE cir-

cuit given a description of the trusted and untrusted elements

to be verified, and a new open-source software tool
1
called

AutoCircuitPPE that realizes this algorithm. AutoCircuitPPE
was tested on a host of test cases and it output PPE circuits

for all “gray area“ schemes left unresolved in [45] as well as

several new test cases, usually in 100 seconds or less.

CCS CONCEPTS
• Security and privacy → Logic and verification.

KEYWORDS
Automated Proofs; Provable Security; Pairing-based Cryp-

tography

1 INTRODUCTION
Cryptography is a powerful tool for securing digital systems,

but its design and security analyses are often both complex

1
Available at https://github.com/JHUISI/auto-tools

Confidential Submission to ACM CCS 2020, Due 20 Jan 2020, Orlando, USA
2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

and tedious, where a single error can cause catastrophic fail-

ure. This is an ideal situation for employing computers to

help humans improve the speed, accuracy, and design of cryp-

tographic implementations. Indeed, there has already been

significant success in this area. A growing suite of software

tools, e.g., [6–8, 16–18, 20, 20–22, 25, 45], have demonstrated

that many cryptographic tasks can be greatly improved and/or

simplified with computer aid. These tasks typically fall into

one of three categories: (1) designing a scheme, (2) generating

a security proof, or (3) verifying security proof. In this work,

we focus on building an automated tool that helps with the

first task - designing a scheme.

Like many prior works, we focus on the popular pairing-

based algebraic setting. The setting consists of groups G1,G2
and GT of prime order p, and a pairing function which is an

efficient map e : G1 × G2 → GT , such that for all д ∈ G1,

h ∈ G2 and a,b ∈ Zp , it holds that e (д
a ,hb) = e (д,h)ab .

Following [42], a pairing product equation (PPE) over variables
Z , {Xi }

m
i=1, {Yi }

n
i=1 is an equation of the form

Z ·
n∏
i=1

e (Ai ,Yi) ·
m∏
i=1

e (Xi ,Bi) ·
m∏
i=1

n∏
j=1

e (Xi ,Yj)
γi j = 1,

where Ai ,Xi ∈ G1,Bi ,Yi ∈ G2,Z ∈ GT ,γi j ∈ Zp .

Pairing Element Verification is Useful but Non-Trivial. When

designing pairing-based schemes, one common task is that

of figuring out how to verify one or more group elements

with respect to another set of elements using the group oper-

ations and the pairing function. One example is verifying a

signature with respect to a message and public key. Another

example is verifying an IBE private key with respect to the

identity and public parameters. This is useful when designing

new structure-preserving signature schemes [1], accountable

authority IBE [39, 40] or oblivious transfer from blind IBE [41].

Surprisingly, not all IBE schemes have private keys that can

be verified from the identity and public parameters [45]; mak-

ing this problem non-trivial. The Waters dual system IBE [53]

is one such example [45].
2

Our Results in the Context of Prior Work. The goal of this
work (and past works [19, 45]) is realizing a tool that on in-

put a description of trusted and untrusted elements outputs

either (1) an algorithm for verifying the untrusted elements

with respect to the trusted elements or (2) a message unknown
(meaning that the tool failed to find a verification algorithm.)

The correctness requirement on any verification algorithm

output by the tool is that when given properly distributed

2
In the proof of [53], there are real and semi-functional private keys, with no

overlap between these key spaces. The proof uses the fact that, under standard

complexity assumptions, no efficient adversary can distinguish between a real

or a semi-functional private key. Thus, the existence of a polynomial-time

verification algorithm for real private keys would contradict this proof.

1

https://github.com/JHUISI/auto-tools
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Confidential Submission to ACM CCS 2020, Due 20 Jan 2020, Orlando, USA Susan Hohenberger, Satyanarayana Vusirikala, and Brent Waters

trusted elements and a set of untrusted elements, it must out-

put 1 if the untrusted elements are properly distributed and 0

otherwise. (There are no requirements on the tool when the

trusted parameters are incorrectly distributed. E.g., when the

public parameters are not honestly generated.)

To date, tools of this form are comprised of one ormore rules

for when an untrusted element can be moved into the trusted

set. Our tool uses a set of four logic rules (see Section 4). Logic

similar to Rule 1 first appeared in [19], while that of Rule 2 was

introduced in [45]. Rules 3 and 4 are novel to this work and we

prove their correctness in Section 4. As we will see, these new

rules allow us to generate verification algorithms that perform

arbitrary logic over PPEs, as opposed to only conjunctions

of PPEs considered in [19, 45]. This expressiveness, in turn,

allows the tool to output multiple solutions on which prior

tools output unknown. We now describe the first two rules in

the context of prior work and then present the new ones.

In 2015, Barthe, Fagerholm, Fiore, Scedrov, Schmidt and Ti-

bouchi [19] built an automated tool to design optimal structure-

preserving signatures in Type II
3
pairing groups. Their tool

generates thousands of candidate public key and signature

pairs, and then for each pair searches for a corresponding veri-

fication algorithm expressed as the conjunction of PPEs. They

weed out insecure schemes using the GGA tool [18]. Their

searching algorithm uses a logic similar to our Rule 1 in Sec-

tion 4, which checks if an untrusted element can be verified

using one PPE and pairing only with a fixed generator. E.g.,

an untrusted element F ∈ G1 can be moved to the trusted set,

if e (F ,д2) = A for some A that can be computed solely from

the trusted elements and д2 is the generator for G2.
Generalizing this approach beyond signatures, the AutoPPE

software tool [45] takes in a description of any set of trusted

and untrusted elements and outputs either a verification al-

gorithm that consists of a set of pairing product equations

(PPEs) or the message unknown. This tool executes quickly
and worked well for many signature, VRF, and IBE test cases.

It uses logic similar to our Rule 1 and Rule 2. Rule 2 in Section 4

(as an oversimplification) moves an untrusted element F = дu

into the trusted set if the variable u does not yet appear in any

element in the trusted set.

AutoPPE was not able to produce verification algorithms

for the Boyen-Waters anonymous IBE [30], the Bellare-Kiltz-

Peikert-Waters IBE [24] or the Dodis verifiable random func-

tion [34]. This was very curious and unsatisfactory. While

it was possible that the IBE schemes might not have testable

private keys (although we later discovered that they do
4
),

Dodis [34] provides an algorithm for verifying his VRF proofs,

so why couldn’t AutoPPE find this algorithm? The answer is:

it needed broader rules and support for arbitrary logic.

In particular, prior works [19, 45] allow an element F to be

moved to trusted if it can be paired with a generator (in G1 or

G2) and tested against an element inA ∈ GT computable from

the trusted set, e.g., e (F ,д2) = A. Whereas this work will allow

3
See Section 2.1; in the Type II setting, there exists an efficient isomorphism

from G1 to G2 or from G2 to G1 but not both.

4
We had to use our tool to find these answers. We were not aware of any

known algorithms for verifying the private keys of [24, 30] and we were not

able to find one by hand for the Boyen-Waters IBE [30].

an element to be paired with a second element B computable

from the trusted set, e.g., e (F ,B) = A, if B , 1 (and this if
introduces the need for broader logic). Intuitively, schemes that

require this more general pairing test, such as [24, 30, 34], are

one class of schemes for which the new tool is an improvement.

PPE Circuits. In this work, we broaden the search rules and

develop a tool that can automatically find verification algo-

rithms that support arbitrary logic (in the form of AND, OR

and NOT gates) over PPEs, solving an open problem from [45].

The new tool called AutoCircuitPPE automatically searches

for a verification algorithm expressed as a PPE Circuit (see Sec-
tion 3 for a formalization and Figure 11 for a picture example).

Informally, a PPE Circuit can be thought of as a circuit with

AND, OR and NOT gates where some inputs to these gates

come from the evaluation of certain PPEs. The requirement

on any PPE Circuit output by the tool is that given properly

distributed trusted elements and a set of untrusted elements,

it must output 1 if the untrusted elements are properly dis-

tributed and 0 otherwise. (That is, we require perfect correct-

ness.) The search space of PPE Circuits is much larger than

that of only the conjunction of PPEs. This makes this problem

both more interesting and more challenging. But the effort

was worth it: as described in Section 5, AutoCircuitPPE can

find verification algorithms for the Boyen-Waters anonymous

IBE [30], the Bellare et al. IBE [24], the Dodis VRF [34] and

custom test cases – on which AutoPPE output unknown. This
demonstrates the power of supporting arbitrary logic.

Building an Automated Tool for PPE Circuits. The heart of
AutoCircuitPPE is a recursive searching algorithm that, at ev-

ery step, tries to move an untrusted element into the trusted set

and (possibly) adds some logic and/or PPE to the verification

algorithm (PPE Circuit). At each step, it checks if any of our

four logic rules apply. If at any point, no rules are applicable,

then the tool outputs unknown. Once all elements are trusted,

it outputs the PPE Circuit.

We already covered Rules 1 and 2. Informally, Rule 3 is a

generalization of Rule 1, where an untrusted element F ∈ G1
can be moved to the trusted set, if e (F ,B) = A for someA ∈ GT
and B ∈ G2 that can be computed solely from the trusted

elements. However, allowing B instead of only д2 creates an
issue that must be handled carefully. What if B evaluates to д0

2
?

The PPE e (F ,B) = Amight then hold regardless of the value

of F . To deal with this, our verification algorithm must be able

to test if B = д0
2
. If the answer is no, then the PPE e (F ,B) = A

can be used to verify F . If not, then it cannot, but one can

substitute д0
2
= 1 for B anywhere that it appears and then

continue searching for a way to verify the simplified instance.

This rule is necessary for verifying the [24, 30, 34] test cases.

Similarly, Rule 4 is a generalization of Rule 2, where (we are

oversimplifying here) an element F can be moved to trusted

if F = дh1 ·u+h2
1

, where h2 may not yet be computable using

elements from the trusted set, but h1 is computable from the

trusted set, and u is not yet used in any element in the trusted

set. We must deal with the issue when h1 = 0 and the veri-

fication algorithm must test for this and branch in its logic

accordingly. All of the [24, 30, 34] test cases also required this

rule.

2

PPE Circuits: Formal Definition to Software Automation Confidential Submission to ACM CCS 2020, Due 20 Jan 2020, Orlando, USA

In Section 5, we discuss the 29 test cases we explored for

AutoCircuitPPE. AutoCircuitPPE on Boyen-Waters [30] re-

quired all four rules to output a PPE Circuit with 27 PPEs

and 124 boolean gates. To the best of our knowledge, this
is the first time any verification algorithm for verify-
ing Boyen-Waters anonymous IBE private keys with re-
spect to the identity and public parameters has been dis-
covered. The software took less than 19 seconds to find this

verification algorithm, which we were unable (after hours

of trying) to find by hand. The most costly verification algo-

rithm to uncover automatically was that for the Lysyanskaya

VRF [47] requiring almost 110 seconds. There is provably no

PPE Circuit for the Waters dual system IBE [53]; on this input,

AutoCircuitPPE ran for 105 seconds before giving up and out-

putting unknown. Our test cases showed that this new tool is

demonstrably more comprehensive in its coverage than prior

tools, while still efficient enough for easy use.

1.1 Related Work
Our work builds on an impressive collection of prior work

in computer automation for cryptography. We highlight a

selection here. For more, we refer the reader to a recent survey

of computer-aided cryptography by Barbosa et al. [15].

We previously discussed the progress of Barthe et al. [19]

and Hohenberger-Vusirikala [45] from which we build upon.

Additionally, we use the Generic Group Analyzer (GGA) tool

of Barthe et al. [18], which analyzes cryptographic assump-

tions in the generic group model, and was extended to handle

unbounded assumptions by Ambrona et al. [14].

Other works in computer-aided cryptographic design in-

clude: AutoBatch [8, 9] (for batching the verification of PPEs),

AutoStrong [7] (for compiling a signature scheme secure un-

der the standard definition into one that is strongly secure),

AutoGroup+ [6, 7] (for translating a Type-I pairing scheme

into a Type-III pairing scheme; IPConv [2, 4] is an alternative

method, although not open source at this time). Ambrona et

al. [13] showed how to apply computer-aided reasoning to

the design of attribute-based encryption systems. In the pri-

vate key setting, there are interesting automation results for

blockciphers [48] and authenticated encryption [44].

There are many great tools for automating proof genera-

tion or verification, such as Cryptoverif [25], CertiCrypt [21],

EasyCrypt [17] and AutoG&P [22]. In 2019, researchers im-

pressively showed how to use EasyCrypt to machine-check a

security proof for the domain management protocol of Ama-

zon Web Services’ KMS (Key Management Service) [10] and

to verify cryptographic standards such as SHA-3 [12]. These

tools were also used to verify proofs for key exchange proto-

cols [16, 33], MPC protocols [43], commitment schemes [49],

software stacks [11] and protocols in the UC framework [33].

Barthe et al. [22] provided a tool that translates the proofs

output by AutoG&P into a format verifiable by EasyCrypt and

similarly Akinyele et al. [5] showed that the proofs output by

AutoBatch can be automatically verified by EasyCrypt. The

AutoLWE tool [20] semi-automatically proves the security of

cryptographic constructions based on Learning with Errors.

2 PRELIMINARIES
We define the algebraic setting and notation used in through-

out this work. We let [1,n] be shorthand for the set {1, . . . ,n}.
We use v to denote a vector and vi to denote the i-th ele-

ment. For a vector v of length n and a subset U ⊆ [1,n], we
denote vU as the set of elements vi for i = 1, . . . ,n where

i ∈ U . Similarly vU denotes the subset of elements vi for
i = 1, . . . ,n where i < U . Let us denote the set of pairing

group identifiers {1, 2,T } by I. Let x ,y be polynomials over

variables in (u1, . . . ,un), then by x ≡ y, we mean that x and y
are equivalent polynomials.

2.1 Pairings
Let G1, G2 and GT be groups of prime order p. A map e :

G1 × G2 → GT is an admissible pairing (also called a bilinear
map) if it satisfies the following three properties:

(1) Bilinearity: for all д1 ∈ G1, д2 ∈ G2, and a,b ∈ Zp , it

holds that e (дa ,hb) = e (дb ,ha) = e (д,h)ab .
(2) Non-degeneracy: if д1 and д2 are generators of G1 and
G2, resp., then e (д1,д2) is a generator of GT .

(3) Efficiency: there exists an efficient method that given

any д1 ∈ G1 and д2 ∈ G2, computes e (д1,д2).

A pairing generator PGen is an algorithm that on input a

security parameter 1
λ
, outputs the parameters for a pairing

group (p,д1,д2,дT ,G1,G2,GT , e) such that G1, G2 and GT
are groups of prime order p ∈ Θ(2λ) where д1 generates G1,
д2 generatesG2 and e : G1×G2 → GT is an admissible pairing.

The above pairing is called an asymmetric or Type-III pairing.
In Type-II pairings, there exists an efficient isomorphism ψ
fromG1 toG2 or such an isomorphismϕ fromG2 toG1 but not
both. In symmetric or Type-I pairings, efficient isomorphisms

ψ and ϕ both exist, and thus we can consider it as though

G1 = G2. In this work, we support any of these types of

pairings. We will typically refer to Type III pairings in our

text, since they are general and typically the most efficient

choice for implementation, but our software tool in Section 5

can handle any type. We represent identity elements of the

groups G1,G2,GT by I1, I2 and IT respectively.

Given pairing parameters (p,д1,д2,дT ,G1,G2,GT , e), we ex-
tend prior definitions [42, 45] to define a pairing product equa-
tion over variables Z , {Xi }

m
i=1, {Yi }

n
i=1 as an equation of the

form

• Z ·
∏n

i=1 e (Ai ,Yi)·
∏m

i=1 e (Xi ,Bi)·
∏m

i=1
∏n

j=1 e (Xi ,Yj)
γi j

= 1, where Ai ,Xi ∈ G1,Bi ,Yi ∈ G2,Z ∈ GT ,γi j ∈ Zp .
(This is the traditional definition.)

• A ·
∏m

i=1 X
γi
i = 1, where A,Xi ∈ G1,γi ∈ Zp .

• A ·
∏n

i=1 Y
γi
i = 1, where A,Yi ∈ G2,γi ∈ Zp .

The second two PPE formats do not enable any additional

functionality over the traditional definition, but they will later

be useful for obtaining more efficient identity tests. We some-

times rearrange the terms of a PPE to improve readability. As

we will use it later, we observe that under the above definition,

a PPE can be employed as an identity test in groups G1, G2
or GT , either for a single element or according to any of the

above combinations of products and exponents.

3

Confidential Submission to ACM CCS 2020, Due 20 Jan 2020, Orlando, USA Susan Hohenberger, Satyanarayana Vusirikala, and Brent Waters

3 DEFINING PPE CIRCUITS
We introduce and formally define PPE circuits. We begin with

the notion of a PPE problem instance [45].

Definition 3.1 (PPE Problem Instance [45]). A pairing product
equation (PPE) problem instance Π consists of

5

• pairing parameters G =(p,д1,д2,дT ,G1,G2,GT ,e),
• positive integers n,m,

• multivariate polynomials f = (f1, . . . , fm) over n vari-

ables in Zp denoted u = (u1, . . . ,un),
• a sequence of pairing group identifiers in I = {1, 2,T }
denoted α = (α1, . . . ,αm),
• a set Trusted ⊆ [1,m].

The pairing parameters above can optionally indicate the

type of pairing group (e.g., Type I, II or III); unless otherwise

specified we assume Type III pairings. Throughout the paper,

we use the notation InTrusted(Π) to denote the set of vari-

ables that appear in the Trusted set of polynomials of Π i.e.,

InTrusted(Π) = ∪i ∈Trusted{variables used in fi } ⊆ u. We sim-

plify the notation and use InTrusted whenever the problem

instance Π is implicit.

Following [45], we map cryptographic schemes into PPE

problem instances by rewriting the scheme using a single

group generator, when possible. For example, let д1,д2,дT
be group generators of groups G1,G2,GT respectively. Let

a group element in the scheme be hx · дx
2
· д
y
2
. We rewrite

this element as д
xz+x+y
2

, by representing h = дz
2
for a fresh

variable z. Consequently, each group element in the scheme

could be represented by their group indicator (G1/G2/GT)
along with the polynomial present in the exponent.

Definition 3.2 (PPE Challenge [45]). Let Π = (G,n,m, f , u,α ,

Trusted) be a PPE problem instance as in Definition 3.1. Let

F = (F1, . . . , Fm) be comprised of pairing group elements,

where each Fi is in group Gαi . F is called a challenge to PPE
instance Π. Challenges are classified as:

• F = (F1, . . . , Fm) is a YES challenge if there exists an

assignment to variables u = (u1, . . . ,un) ∈ Z
n
p such

that for all i , Fi = д
fi (u)
αi .

• F = (F1, . . . , Fm) is aNO challenge if it is not aYES chal-
lenge and there exists an assignment to u = (u1, . . . ,un)

∈ Znp such that for all i ∈ Trusted, Fi = д
fi (u)
αi .

• F = (F1, . . . , Fm) is an INVALID challenge if it is neither

a YES nor NO challenge.

Following [45], we can view a YES challenge as meaning

that both the trusted and untrusted elements are distributed

as they should be, whereas in a NO challenge the trusted

elements are correctly formed, but the untrusted ones are not.

In an INVALID challenge, the “trusted” elements are not drawn

from the proper distribution (e.g., the public parameters are not

correct), and therefore, we ignore this case since verification

requires correctness of the elements we trust.

The goal of our work will be to (automatically) devise cir-
cuits that take as input a PPE challenge (recall Definition 3.2)

5
Unlike the definition of [45], we do not include the set Fixed in the PPE

Problem Instance definition as we implicitly define this set of variables (called

InTrusted) as those that appear in elements corresponding to the Trusted set.

and output 1 for all YES challenges and 0 for allNO challenges.

That is, where prior work [45] allowed only the conjunction

of PPEs to test the well-formedness of the untrusted elements;

we will now combine the power of PPEs with arbitrary logic.

Informally, the PPE circuit takesm group elements as input

and outputs a single bit. Like regular circuits, each gate of the

circuit could be an AND/OR/NOT gate. In addition, we also

allow the circuit to have PPE gates. Each PPE gate has some

PPE P (over formal variables F1, F2, · · · , Fm denoting them
input wires of the PPE circuit) hardcoded in it and outputs a

boolean value representing whether the m input group ele-

ments satisfy P . Informally, in order to evaluate a PPE circuit

on givenm group elements (x1,x2, · · · xm), we first evaluate
each PPE gate on the given input (check whether the PPE is

satisfied by substituting Fi = xi∀i ∈ [m]), and then evaluate

the boolean circuit logic to obtain the final output. As observed

in Section 2.1, PPEs can also capture identity tests as well as

be a hardwire for 0 (the equation that is never satisfied) or 1

(the equation that is always satisfied).

We now establish some formal notation for our specialized

PPE circuits adapting the more general circuit notation of

Bellare, Hoang, and Rogaway [23] and Garg, Gentry, Halevi,

Sahai and Waters [36].

Definition 3.3 (PPE Circuit). A PPE circuitC is a tuple (G,m,α ,

N ,Gates, out,GateType,A,B), where

• G = (p,д1,д2,дT ,G1,G2,GT , e) establishes the alge-

braic setting,

• integer m specifies the number of group elements in

the circuit input. We will refer to these as Inputs =
{1, . . . ,m}.

• the vector α = (α1, . . . ,αm) is a sequence of pairing
group identifiers in I = {1, 2,T } for the input elements,

• integer N is the number of gates in the PPE circuit,

• Gates = {m + 1, . . . ,m + N }. We will refer to Wires =
Inputs ∪ Gates.
• out is the integer in Gates denoting the output gate.

Unless otherwise stated, out =m + N .

• GateType : Gates → {(PPE, β),AND,OR,NOT} is a
function that identifies the gate functionality. In case

of PPE gates, the description includes a circuit β with

m Inputs wires whose logic forms that of a PPE over

variables F1, . . . , Fm where each Fi ∈ Gαi as specified
by α and the single output wire of the PPE carries a bit

representing whether or not the input satisfies the PPE.

• A : Gates → Wires and B : Gates → Wires are func-
tions. For any gate AND/OR/NOT д, A(д) identifies
д’s first incoming wire. For any AND/OR gate д, B (д)
identifies д’s second incoming wire. We require that

д > B (д) > A(д), ignoring B (д) when undefined. Recall

that the input wires for all PPE gates are the Inputs.

This describes a circuit taking as inputm group elements

and outputting a single output on wire out. We now describe

how to evaluate the above circuit.

Definition 3.4 (PPE Circuit Evaluation). A PPE circuit evalu-
ation algorithm Eval : C × (x1, . . . ,xm) takes as input a PPE
circuit C = (G,m,α ,N ,Gates, out,GateType,A,B) together

4

PPE Circuits: Formal Definition to Software Automation Confidential Submission to ACM CCS 2020, Due 20 Jan 2020, Orlando, USA

with anm-element PPE challenge (x1, . . . ,xm) which must be

consistent with (G,α) (i.e., xi ∈ Gαi). The algorithm outputs

a bit in {0, 1}.

Here we describe a “canonical” evaluation algorithm. The

input group elements (x1, · · · ,xm) are assigned to them in-

put wires. For each gate д ∈ Gates (in the increasing order

of д), compute sд as follows according to the description of

GateType(д):

• if (PPE, β), then evaluate the PPE β using the assign-

ment to variables in (F1, . . . , Fk). If the PPE is satisfied,

then set sд = 1. Otherwise, set sд = 0.

• if AND, then sд = sA(д) ∧ sB (д) .
• if OR, then sд = sA(д) ∨ sB (д) .
• if NOT, then sд = ¬sA(д) .

This algorithm outputs sout. For the AND, OR and NOT gates,

by the rules of the circuit description, sA(д) and sB (д) will be
defined before they are used.

The above conditions guarantee that the circuit does not

have any loops. While we chose to have AND, OR and NOT

gates, this is somewhat arbitrary. We could have chosen only

NAND or allowed gates with larger fan-in, etc. We abuse

notation and let C (x) denote Eval(C, x) i.e., evaluation of the

circuit C on input x.
We next extend the notion of PPE testability and testing

sets [45] to apply to PPE circuits.

Definition 3.5 (PPE Circuit Testable and Testing Circuits). A
PPE problem instance Π = (G,n,m, f , u,α , Trusted) is said to

be PPE circuit testable if and only if there exists a PPE circuit

C = (G,m,α , ·, ·, ·, ·, ·, ·). such that both of the following hold:

• C (x) = 1 for every YES challenge x,
• C (y) = 0 for every NO challenge y.

There are no conditions on the behavior of C for INVALID
challenges. For any PPE problem instance Π, we call such

a PPE circuit C a testing circuit. A testing circuit for a PPE

problem instance need not be unique.

3.1 A Few Shorthand Notations for Circuits
Useful shorthand is informally defined here with formalisms

in Appendix A. We use MakeCircuit(G,m,α , P) to define a

PPE circuit that computes the output of a PPE P and use Cacc
to denote the circuit which always outputs 1.

Consider any two PPE circuits C1 and C2 with the same

group structure G, number of inputsm and group identifiers

α . When building our circuits, we will use shorthand notation

like (C1 AND C2), (C1 OR C2) or (NOT C1). Informally, we

use C1 AND C2 to denote the circuit obtained by ANDing the

output wires of C1 and C2 (i.e., connecting output wires of

C1 and C2 as inputs to a fresh AND gate, and considering the

output wire of the fresh AND gate as output wire of the entire

circuit). Similarly, we use the notationC1 OR C2 to denote the

circuit obtained by ORing the output wires of C1 and C2. We

use NOT C1 to denote the circuit obtained by connecting the

output wire ofC1 to a freshNOT gate and then considering the
output wire of theNOT gate to be the output wire of the entire

circuit. Furthermore, when the circuits share common inputs

(e.g., same PPE challenge elements), we will make sure the

final circuit has only the appropriate number of input wires.

4 SEARCHING FOR A PPE TESTING
CIRCUIT

We now describe an algorithm to search for a testing circuitQ
for a PPE problem. The input is a PPE problem Π and there are

two possible types of outputs. Either it will output thatΠ is PPE

circuit testable and, to confirm this, it will produce one testing

circuitQ or it will output the special response unknown. In the
latter case, NO determination about whether Π is PPE circuit

testable or not can be concluded. This algorithm has one-sided

correctness, where the guarantee for this algorithm is that if

it outputs that Π has testing circuit Q this will be true.

The algorithm proceeds in a sequence of steps, wherein

each step it (attempts to) “reduce the complexity” of its input,

by adding a polynomial fi to the set Trusted. So far, this is

similar to AutoPPE [45], however, here we must expand the

number and type of rules for when a polynomial can be moved

to Trusted. In the end, if we can obtain Trusted = [1,m], then

we will have found a testing circuit. If at any point, Trusted ,
[1,m] but none of the movement rules can be applied, the

algorithm terminates and outputs unknown.

4.1 Review on Computing Completion
Lists for a List of Polynomials

Our rules will make use of completion lists in the pairing

setting as described by Barthe et al. [18]. Consider any list

f = [f1, . . . , fk] of polynomials along with a sequence of

identifiers α1, · · · ,αk , where αi ∈ I = {1, 2,T } for all i ≤ k .
For any i ∈ I, let ti = { fj : α j = i}. We now recall the notion

of completion CL(f) = {s1, s2, sT } of the list f of polynomials

with respect to a group setting [18]. Intuitively, CL(f) is the
list of all polynomials that can be computed by an adversary

by applying pairing and isomorphism operations, when he

has access to the elements in group Gi corresponding to the

polynomials in ti for i ∈ I .

Reception List
Input: Pairing information G, Lengths |t1 |, |t2 |, |tT |
Output: Reception lists r1, r2, rT

(1) for each i ∈ {1, 2, T }, initialize ri with |ti | number

of fresh variables, i.e., let ri = {wi,1, · · · , wi, |ti | }

(2) If an isomorphism ψ : G1 → G2 exists, then r2 :=
r2 ∪ r1

(3) If an isomorphism ϕ : G2 → G1 exists, then r1 :=
r1 ∪ r2

(4) rT := rT ∪ {h1h2 : h1 ∈ r1, h2 ∈ r2 }

Figure 1: Algorithm to find reception list of a list of
polynomials

We now describe an algorithm to compute the completion

CL(f), which is taken from [18] and handles pairing groups.

The algorithm proceeds in two steps. In the first step, it com-

putes the reception lists {ri }i ∈I . The elements of the reception

lists are monomials over variableswi, j for i ∈ I, j ∈ |ti | and
are computed as shown in Figure 1.

5

Confidential Submission to ACM CCS 2020, Due 20 Jan 2020, Orlando, USA Susan Hohenberger, Satyanarayana Vusirikala, and Brent Waters

The monomials characterize which products of elements in

t the adversary can compute by applying pairing operations.

The result of the first step is independent of the elements in

the lists t and only depends on the lengths of the lists. In the

second step, it computes the actual polynomials from the recep-

tion lists as si = [m1 (t), . . . ,m |ri | (t)] for [m1, . . . ,m |ri |] = ri ,
where every mk is a monomial over the variables wi, j and

mk (t) denotes the result of evaluating the monomialmk by

substitutingwi, j with ti [j] for i ∈ I and j ∈ |ti |.

Description of Rule 1
Input: A PPE problem Π = (G, n,m, f, u, α , Trusted) and
an integer k ∈ [1,m].

Output: A PPE circuit C and a PPE problem Π′, or the

symbol ⊥ (meaning could not apply rule).

Steps of Rule1(Π, k):

(1) If k ∈ Trusted or fk ∈ f has variables not in

InTrusted, then abort and output ⊥.

(2) Let the formal variables F1, F2, · · · , Fm represent

group elements of any PPE challenge correspond-

ing to Π. These formal variables also represent the

input wires of the PPE circuit C being constructed.

(3) Compute completion lists {s1, s2, sT } =

CL(fTrusted). For any i ∈ I and j ≤ |si |,
let Si [j] = дsi [j]αi , and let Ui [j] be the pairing

product term computing Si [j] in terms of formal

variables F1, · · · , Fm .

(4) If there exists a constant vector a =

(a1, · · · , a |sαk |) with entries in Zp such that

fk ≡
∑|sαk |
j=1 aj · sαk [j], then set the PPE

A :=

|sT |∏
j=1

UT [j]aj = Fk

(5) If αk ∈ {1, 2}, A is not set, and there exists a con-

stant vector a = (a1, · · · , a |sT |) with entries in Zp

such that fk ≡
∑|sT |
j=1 aj · sT [j], then create the PPE

A :=

|sT |∏
j=1

UT [j]aj =



e (Fk , д2) if αk = 1

e (д1, Fk) if αk = 2

(6) If A is set, output the PPE circuit C =

MakeCircuit(G,m, α , A) and the PPE problem

Π′ = (G, n,m, f, u, α , Trusted ∪ {k }), else out-

put ⊥.

Note that for any i ∈ I, computing a coefficient

vector a such that fk ≡
∑|si |
j=1 aj ·si [j] is equivalent

to checking if the polynomial 0 belongs to the span
of polynomials si ∪ {fk }.

Figure 2: Procedure for moving certain polynomials fk
with all InTrusted variables to Trusted set

4.2 Rules for Moving Polynomials into the
Trusted Set

We now describe five rules for reducing the complexity of

a PPE instance, whereby we mean reducing the number of

elements represented by polynomials not in the set Trusted.
The first two rules are closely derived from [45].The more

complex third, fourth and fifth rules are novel to this work

and require the AND/OR/NOT/PPE logic we introduced.

4.2.1 Rule 1: Simplemove a polynomialwith all InTrusted
variables to Trusted set. In Figure 2, we adapt Rule 1 from [45]

to output a PPE circuit. Given a PPE problem Π = (G,n,m, f ,
u,α ,Trusted) and an index k ∈ [m], Rule 1 can possibly be

applied if k < Trusted and the polynomial fk ∈ f consists only
of variables ui ∈ InTrusted (these conditions are necessary,

but not sufficient).

Lemma 4.1 (Correctness of Rule 1). Let Π = (G,n,m, f , u,
α , Trusted) be a PPE problem instance as in Definition 3.1 and
let k ∈ [m]. Suppose ⊥, (C,Π′) = Rule1(Π,k). Then, for every
testing circuit C ′ for Π′, it holds that C AND C ′ is a testing
circuit for Π.

The proof of the lemma follows from the correctness of the

similar Rule 1 in [45].
6
We include this proof in Appendix B.

4.2.2 Rule 2: Simplemove of a polynomial with exactly
one non-InTrusted variable to Trusted set. In Figure 3, we

recall Rule 2 from [45]; it does not need any changes for our

purposes. Given a PPE problem Π = (G,n,m, f , u,α , Trusted)
and indices j ∈ [n] and k ∈ [m], Rule 2 can possibly be applied

if j < InTrusted, k < Trusted and the polynomial fk ∈ f is of
the form c · udj + h, where the variable uj ∈ u, the polynomial

h contains only variables in InTrusted, constant c ∈ Z∗p , and
constant d ∈ Zp s.t. d is relatively prime to p − 1.

Description of Rule 2 [45]
Input: A PPE problem Π = (G, n,m, f, u, α , Trusted) and
integers j ∈ [n] and k ∈ [m].

Output: A PPE problem Π′ or ⊥ (meaning could not apply

the rule).

Steps of Rule2(Π, j, k):

(1) If polynomial fk ∈ f is of the form c ·udj +h, where
• j < InTrusted, k < Trusted,
• the polynomial h contains only variables in

InTrusted,
• the constant c ∈ Z∗p and

• the constant d ∈ Zp is relatively prime to p − 1,

then proceed to the next step. Otherwise, abort and

output ⊥.

(2) Output Π′ = (G, n,m, f, u, α , Trusted ∪ {k }).

Figure 3: Procedure for moving certain polynomials fk
containing exactly one non-InTrusted variable to Trusted

Lemma 4.2 (Correctness of Rule 2). Let Π = (G,n,m, f , u,
α , Trusted) be a PPE problem instance as in Definition 3.1, j ∈
[n] and k ∈ [m]. Suppose ⊥, Π′ = Rule2(Π, j,k). Then, every
testing circuit of Π′ is also a testing circuit for Π.

The proof follows from the correctness of the similar Rule

2 in [45]. For completeness, we include it in Appendix C.

6
Although [45] proved the correctness property for a weaker notion of PPE

Testability, the proof can be easily adapted to our setting.

6

PPE Circuits: Formal Definition to Software Automation Confidential Submission to ACM CCS 2020, Due 20 Jan 2020, Orlando, USA

Description of SubstituteZero Algorithm
Input: A PPE Problem Π = (G, n,m, f, u, α , Trusted) and
polynomial h.
Output: A PPE Problem Π′.

• Construct vector f′ ofm polynomials as follows.

For each k ∈ [m], if fk = h1 · h + h2 for some

polynomials h1 and h2, such that (1) h2 does not
have h as a factor, and (2) the number of monomials

in h2 is less than fk when expressed in canonical

form, then set f ′k = h2. Otherwise, set f
′
k = fk .

• Output Π′ = (G, n,m, f′, u, α , Trusted).

Figure 4: Algorithm for updating a PPE problem in-
stance when a specified polynomial h is set to 0.

4.2.3 Rule 3: More general move of a polynomial with
all InTrusted variables to Trusted set. Rule 3 is a novel ex-
tension of Rule 1 (see Figure 2) formoving an untrusted polyno-

mial fk to the trusted set. Let us first observe some drawbacks

in Rule 1 when the untrusted polynomial is in the group G1
or G2. For simplicity, let us consider execution of Rule 1 on

input (Π,k) such that αk = 1. The Rule 1 algorithm explores

a space of PPEs of the form e (Fk ,д2) =
∏ |sT |

j=1 UT [j]
aj

where

constants aj are in Zp . In other words, Rule 1 only explores

PPEs where the untrusted element Fk is paired with the gen-

erator of G2. Hohenberger and Vusirikala [45] observed that

such a small class of PPEs appears insufficient to validate

the proofs of the Dodis VRF [34] or the private keys of the

Boyen-Waters IBE [30]. One could think of a natural exten-

sion of Rule 1 which explores a larger space of PPEs, where

Fk is paired with some function of trusted polynomials, i.e.,

PPEs of the form e (Fk ,
∏ |s2 |

j=1U2[j]
bj) =

∏ |sT |
j=1 UT [j]

aj
, where

constants aj ,bj are in Zp . Such an extended algorithm com-

putes constant vectors a, b such that fk · (
∑ |sαk |
j=1 bj · sαk [j]) ≡∑ |sT |

j=1 aj · sT [j] and outputs the circuit corresponding to PPE:

e (Fk ,
∏ |s2 |

j=1U2[j]
bj) =

∏ |sT |
j=1 UT [j]

aj
.

However, this extension introduces a technical issue. Con-

sider the PPE problem instance Π = (G,n = 2,m = 7, f =
{1, 1, 1,x3,y,xy,x },α = {1, 2,T , 1, 2,T , 1}, u = {x ,y}, Trusted =
{1, 2, 3, 4, 5, 6}). Here, x ,y are InTrusted variables and the only

untrusted polynomial is x in groupG1. On input (Π,k = 7), the
above extended rule outputs the PPE e (F7, F5) = F6 and moves

the only untrusted polynomial to the trusted set. Surprisingly,

e (F7, F5) = F6 is not a PPE testing circuit for the problem Π.
Consider the following PPE challenge (д1,д2,дT ,д

8

1
,д0

2
,д0T ,д

5

1
).

This is clearly aNO challenge, as there isNOx such thatx3 = 8

and x = 5 simultaneously. However, the challenge satisfies

the PPE e (F7, F5) = F6. Intuitively, the issue occurs because
for the given PPE challenge F5 = д

0

2
and therefore the PPE

e (F7, F5) = F6 does not validate the element F7.

More generally, suppose the rule outputs e (Fk ,
∏ |s2 |

j=1U2[j]
bj)

=
∏ |sT |

j=1 UT [j]
aj
. For the PPE challenges inwhich

∏ |s2 |
j=1U2[j]

bj

evaluates to д0
2
, the PPE does not validate the correctness of

Fk . To resolve the issue, our Rule 3 computes a PPE (from a

larger class of PPEs than pairing only with a generator), and

the resultant testing circuit is designed so that whenever the

exponent of the paired element evaluates to zero, the logic of

the testing circuit handles it properly. In Section 5, we show

that this generalization of Rule 1 is very useful for the au-

tomated verification of the Dodis VRF proofs [34] and the

Boyen-Waters IBE private keys [30].
7

Rule 3 is formally described in Figure 5, its correctness

property is captured in Lemma 4.3 and the proof of this lemma

appears in Appendix D.

Lemma 4.3 (Correctness of Rule 3). Let Π = (G,n,m, f , u,
α , Trusted) be a PPE problem instance as in Definition 3.1 and
let k ∈ [m]. Suppose ⊥, (IsIdentity,C,Π′,Π′′) = Rule3(Π,k).
Then, for every pair of testing circuitsC ′ andC ′′ for Π′ and Π′′

respectively, the PPE circuit Z := ((NOT IsIdentity) ∧C ∧C ′)
∨(IsIdentity ∧C ′′) is a testing circuit for Π.

4.2.4 Rule 4: General move of a polynomial withmulti-
ple non-InTrusted variables to the Trusted set. In Figure 6,

we describe a new Rule 4, which is an extension of Rule 2 for

moving an untrusted polynomial fk which has a variable in

InTrusted8 set to the Trusted set of polynomials. Recall that

in order to apply Rule 2 to a polynomial fk , the coefficient of

the non-InTrusted variable uj needs to be a non-zero constant.
Hohenberger et al. [45] observed that this restriction to a con-

stant coefficient appears insufficient to validate the private

keys of the Boyen-Waters IBE [30]. One could naturally think

of extending Rule 2 by allowing the coefficient of variableuj to
be an arbitrary polynomial h of InTrusted variables. However,

if the polynomial h evaluates to 0 for a given set of InTrusted
variables, then this becomes an issue becauseuj is now zero-ed

out in the fk polynomial. We design our Rule 4 to validate this

larger class of untrusted polynomials and the resulting testing
circuit checks if the coefficient of the non-InTrusted variable

uj evaluates to 0 and handles it accordingly. Below, we further
generalize this concept to validate untrusted polynomials with

multiple non-InTrusted variables. Rule 4 is formally described

in Figure 6 and prove its correctness property in Lemma 4.4.

Lemma 4.4 (Correctness of Rule 4). Let Π = (G,n,m, f , u,
α , Trusted) be a PPE problem instance as in Definition 3.1,
j ∈ [n] and k ∈ [m]. Suppose ⊥, (IsIdentity,Π′,Π′′) =
Rule4(Π, j,k). Then for every pair of testing circuits C ′ and
C ′′ of problem instances Π′ and Π′′ respectively, the PPE circuit
((NOT IsIdentity) ∧C ′) ∨ (IsIdentity∧C ′′) is a testing circuit
for Π. (Proof of this lemma appears in Appendix E.)

4.3 Applying the Rules
Rules 1-4 are combined into themain algorithm, calledQSearch,
in Figure 7 that takes as input a PPE problem and outputs a

PPE circuit or the special message unknown. We prove that if

QSearch outputs a testing circuit, then that circuit is guaran-

teed to correctly classify PPE challenges for this PPE problem.

7
The issue with verification not working due to an exponent evaluating to

zero is not a security issue in [30, 34], because this event happens with negligible

probability when the public parameters are honestly generated. However, our

definition of a testing circuit requires perfect correctness and therefore, we must

check for and properly address this “zero” case.

8
Recall that InTrusted variables are the set of all variables used in the

Trusted set of polynomials.

7

Confidential Submission to ACM CCS 2020, Due 20 Jan 2020, Orlando, USA Susan Hohenberger, Satyanarayana Vusirikala, and Brent Waters

Description of Rule 3
Input: A PPE problem Π = (G, n,m, f, u, α , Trusted) and an integer k ∈ [1,m].

Output: Two PPE circuits IsIdentity, C and two circuit PPE problems Π′, Π′′, or the symbol ⊥ (meaning could not apply rule).

Steps of Rule3(Π, k):

(1) If k ∈ Trusted or αk = T or fk ∈ f has variables not in InTrusted, abort and output ⊥.

(2) Let the formal variables F1, F2, · · · , Fm represent group elements of any PPE challenge corresponding to Π. These formal

variables also represent the input wires of the PPE circuits IsIdentity and C being constructed.

(3) Compute completion lists {s1, s2, sT } = CL(fTrusted). For any i ∈ I and j ≤ |si |, let Si [j] = д
si [j]
αi , and let Ui [j] be the pairing

product term computing Si [j] in terms of formal variables F1, · · · , Fm .

(4) Let αk = 3 − αk . Check if there exist constant vectors a = (a1, · · · , a |sT |) and b = (b1, · · · , b |sαk |
) with entries in Zp s.t.

(
∑|sαk |
j=1 bj · sαk [j]) is not a constant polynomial when expressed in canonical form, and

fk · (

|sαk |∑
j=1

bj · sαk [j]) ≡
|sT |∑
j=1

aj · sT [j].

(Computing coefficient vectors a, b reduces to checking if the polynomial 0 belongs to the span of polynomials sT ∪ fk · sαk .)
(5) If such (a, b) exist, then
• Compute PPEs

A := (

|sαk |∏
j=1

Uαk [j]
bj = Iαk),

B :=

|sT |∏
j=1

UT [j]aj =



e (Fk ,
∏|sαk |

j=1 Uαk [j]
bj) if αk = 1

e (
∏|sαk |

j=1 Uαk [j]
bj , Fk) if αk = 2

where Iαk is the identity element in group Gαk .

• Compute Π′ = (G, n,m, f, u, α , Trusted ∪ {k }) and Π′′ = SubstituteZero(Π,
∑|sαk |
j=1 bj · sαk [j]), where the SubstituteZero

algorithm is described in Figure 4. (Intuitively, SubstituteZero creates a new PPE problem instance by substituting

∑|sαk |
j=1 bj ·

sαk [j] with 0 in the Trusted set of polynomials).

• If Π′′ = Π, then output ⊥. Otherwise, output the circuit IsIdentity = MakeCircuit(G,m, α , A), the circuit C =

MakeCircuit(G,m, α , B) and PPE problems Π′, Π′′.
(6) If such (a, b) do not exist, then output ⊥.

Figure 5: Procedure for moving certain polynomials fk with all InTrusted variables to Trusted

Theorem 4.5 (Correctness of the PPE Circuit Search-

ingAlgorithm in Figure 7). LetΠ = (G,n,m, f , u,α , Trusted)
be a PPE problem instance as in Definition 3.1. LetC = QSearch(Π).
IfC , unknown, thenC is a PPE testing circuit for Π as in Defi-
nition 3.5, and therefore Π is circuit testable.

Proof of this theorem appears in Appendix F.

5 IMPLEMENTATION
We implemented the PPE circuit searching algorithm described

in Figure 7 in a software tool called AutoCircuitPPE. We ran

the tool on several signature, verifiable random function and

advanced encryption schemes as well as other types of pairing-

based public/private parameters, including some that are PPE

circuit testable and some that are provably not PPE circuit

testable. Fortunately, our tool was able to produce outputs

for the two main schemes left open by the previous AutoPPE
tool [45] and for some new schemes not studied in that prior

work. We now present the design of the AutoCircuitPPE tool

followed by its test case results and performance numbers.

5.1 AutoCircuitPPE Implementation
We implemented AutoCircuitPPE using Ocaml version 4.02.3.

We built the code on top of the AutoPPE9 tool (Hohenberger
and Vusirikala [45]; ACM CCS 2019), which in turn utilizes

some of the parsing tools and data structures (to store poly-

nomials) of the Generic Group Analyzer (GGA) tool
10

(Barthe

et al. [18]; CRYPTO 2014). We also used the SageMath pack-

age
11

to solve systems of linear equations and implemented

the remaining logic ourselves.

The input format of AutoCircuitPPE is the same as the

AutoPPE tool, which makes testing with both tools easier.
12

For the sake of completeness, we present the input format be-

low. The tool’s input consists of pairing information (such as

the Type I, II or III) and a set of trusted/untrusted polynomials

along with their group identifiers.
13

Besides, the tool option-

ally takes as input information that allows the tool to help the

user encode some cryptosystem parameters as a PPE problem

9
https://github.com/JHUISI/auto-tools

10
https://github.com/generic-group-analyzer/gga

11
https://www.sagemath.org/

12
Unlike AutoPPE, our tool does not take fixed/unfixed variables as input,

as we did not find this information to be necessary or useful.

13
While this program input is in a slightly different format than Defini-

tion 3.1, we stress that it is the same information.

8

PPE Circuits: Formal Definition to Software Automation Confidential Submission to ACM CCS 2020, Due 20 Jan 2020, Orlando, USA

Description of Rule 4
Input: A PPE problem Π = (G, n,m, f, u, α , Trusted) and
integers j ∈ [n] and k ∈ [m].

Output: Either ⊥ (meaning could not apply the rule) or a

PPE circuit IsIdentity and two PPE problems Π′, Π′′.
Steps of Rule4(Π, j, k):

(1) If polynomial fk ∈ f is of the form h1 · udj + h2,
where

• j < InTrusted, k < Trusted,
• the polynomial h1 contains only variables in

InTrusted, and
• the polynomial h2 contains any variables other

than uj , and
• the constant d ∈ Zp is relatively prime to p − 1,

then proceed to the next step. Otherwise, abort and

output ⊥.

(2) Let the formal variables F1, F2, · · · , Fm represent

group elements of any PPE challenge for Π. These
formal variables will also represent the input wires

of the PPE circuit IsIdentity being constructed.

(3) Compute completion lists {s1, s2, sT } =

CL(fTrusted). For any i ∈ I and j ≤ |si |,
let Si [j] = дsi [j]αi , and let Ui [j] be the pairing

product term computing Si [j] in terms of formal

variables F1, · · · , Fm .

(4) If there exists an α ∈ I (recall I = {1, 2, T } in
the Type III setting) and a constant vector a =
(a1, a2, · · · , a |sα |) with elements in Zp such that

h1 =
∑|sα |
j=1 aj · sα [j], then set PPE

A :=

|sα |∏
j=1

Uα [j]aj = Iα ,

where Iα is the identity element of the

group Gα . Then define IsIdentity =

MakeCircuit(G,m, α , A).
(5) If IsIdentity is defined, then set PPE problem

Π′ = (G, n,m, f, u, α , Trusted ∪ {k }) and

Π′′ = SubstituteZero(Π, h1), where the func-

tion SubstituteZero is defined in Figure 4. Output

IsIdentity and Π′, Π′′.
(6) If IsIdentity is not defined, output ⊥.

Figure 6: Procedure for moving certain polynomials fk
containing exactly one non-InTrusted variable to Trusted

instance. In particular, all trusted and untrusted elements (rep-

resented by polynomials) are bilinear group elements inG1,G2
or GT and Definition 3.1 does not allow including an element

in Zp in either set. However, since it is not uncommon for

schemes to contain elements in the Zp domain as part of their

public or private parameters, we implemented a workaround

for those schemes similar to AutoPPE.
14

The tool runs the

PPE circuit searching algorithm in Figure 7 along with a few

optimizations implemented in AutoPPE such as computing

completion list before applying all the rules. It outputs either

a PPE circuit or the special symbol unknown. The PPE circuit

computed by the QSearch algorithm is generally very large;

14
Whenever a polynomial fi is added to the Trusted set, then the imple-

mentation also adds uj · fi for any variables uj representing elements in Zp .

Main Algorithm for PPE Testing Circuit Search
Input: A PPE problem Π = (G, n,m, f, u, α , Trusted).
Output: A PPE circuit Q or the special symbol unknown.
Steps of QSearch(Π):

Start. If Trusted = [m], then output the always accepting

circuit Q := Cacc.

Rule 1. For k = 1 tom,

(a) Call z = Rule1(Π, k).
(b) If z = (C, Π′) ,⊥, then

(i) Call C′ = QSearch(Π′) and
(ii) ifC′ , unknown, then output the PPE circuit

Q := C AND C′.
Rule 2. For k = 1 tom and j = 1 to n,

(a) Call z = Rule2(Π, j, k).
(b) If z = Π′ ,⊥, then

(i) Call C′ = QSearch(Π′) and
(ii) ifC′ , unknown, then output the PPE circuit

Q := C′.
Rule 3. For k = 1 tom,

(a) Call z = Rule3(Π, k).
(b) If z = (IsIdentity, C, Π′, Π′′) ,⊥, then

(i) Call C′ = QSearch(Π′) and
(ii) if C′ , unknown, then call C′′ =

QSearch(Π′′) and
(iii) if C′ , unknown and C′′ , unknown, then

output the PPE circuit Q :=

((NOT IsIdentity) AND C AND C′) OR (IsIdentity AND C′′).
Rule 4. For k = 1 tom and j = 1 to n,

(a) Call z = Rule4(Π, j, k).
(b) If z = (IsIdentity, Π′, Π′′) ,⊥, then

(i) Call C′ = QSearch(Π′),
(ii) if C′ , unknown, then call C′′ =

QSearch(Π′′) and
(iii) if C′ , unknown and C′′ , unknown, then

output the PPE circuit

Q := ((NOT IsIdentity) AND C′) OR (IsIdentity AND C′′).
Final. Otherwise, output unknown.

Figure 7: Recursive procedure for searching for a PPE
Testing Circuit

therefore we optimize the circuit by a few techniques such as

computing common sub-circuits only once.
15

The source code for AutoCircuitPPE comprises roughly 4K

lines of Ocaml code. The input file to the tool consists of the

type of pairing, set of trusted and untrusted polynomials. For

the schemes in Table 1, this information can be expressed

within 3-6 lines of code. In our experience, most pairing-

based schemes can be encoded into this input format within

a few minutes. The ease of converting a given pairing-based

scheme into the input format for AutoCircuitPPE makes the

tool highly practical and useful. The code for AutoCircuitPPE
is publicly available at https://github.com/JHUISI/auto-tools.

15
Note that recursive calls to QSearch with the same arguments result

in common sub-circuits. However, common sub-circuits could occur even in

other scenarios. As a simple example, one recursive call to QSearch may result

in a sub-circuit of the form (NOT PPE1) OR (PPE1 AND PPE2), and an-

other recursive call to QSearch with different inputs may result in a sub-circuit

((NOT PPE1) AND PPE3) OR (PPE1 AND PPE4). In this case, (NOT PPE1)
is a common sub-circuit that can be evaluated only once.

9

https://github.com/JHUISI/auto-tools

Confidential Submission to ACM CCS 2020, Due 20 Jan 2020, Orlando, USA Susan Hohenberger, Satyanarayana Vusirikala, and Brent Waters

Input:

AutoCircuitPPE

Output:

PPE circuit

“unknown”

SageMath

PPE Instance
- pairing Info
- Trusted polys
- Untrusted polys
- group ids 𝛂

+
- Variables in Zp

Qsearch

GGA,
AutoPPE

New PPE Instance
- pairing Info
- Trusted’ polys
- Untrusted polys
- group ids 𝛂

+
- Variables in Zp

Preprocess

Figure 8: The workflow of the AutoCircuitPPE tool. The
tool first preprocesses the problem instance, i.e., for
every polynomial f in the trusted set and variable v
in Zp_vars, the tool adds the polynomial f · v to the
trusted set. It then runs the QSearch algorithm, which
may output a new problem instance. AutoCircuitPPE pre-
processes this instance before feeding it back to Qsearch.
The tool utilizes and adapts portions of existing tools
such as the GGA and AutoPPE for handling polynomi-
als and completion sets and the SageMath package for
solving systems of linear equations.

Input File Example
maps G1 * G1 ->GT.

Zp_vars [x1, x2]. (*input x*)

trusted_polys [F1 = a1*c, F2 = a2*c, F3 = c] in G1. (*public key*)

untrusted_polys [F4 = (a1*x1 + (1-x1))] in G1. (*proof*)

untrusted_polys [F5 = (a1*x1 + (1-x1)) * (a2*x2 + (1-x2))] in G1.

(*VRF output*)

Figure 9: Input file for Dodis VRF scheme when input
length is 2.

5.2 A Detailed Example for the Dodis VRF
(a [45] "gray area" scheme)

Let’s walk through an example of using our tool on the Veri-

fiable Random Function by Dodis [34]. The Setup algorithm

takes as input security parameter λ and an input length n.
It samples a Type I group G = (p,д1,дT ,G1,GT , e), samples

c ← Zp , ai ← Zp for i ∈ [n]. It then outputs secret key sk =
(д1,a1,a2, · · ·an) and verification key vk = (д1,д

c
1
,дc ·a1

1
,дc ·a2

1
,

· · · ,дc ·an
1

). The VRF algorithm takes as input secret key sk

and bit string input x . It then outputs y = д

∏n
i s.t. xi =1

ai
1

and

proof π =
(
д

∏j
i s.t. xi =1

ai
1

)
j ∈[n−1]

. The goal of this example is

to use this tool to generate a PPE circuit for verifying this VRF

proof π ; AutoPPE [45] output unknown on this scheme.

Figure 9 shows how to encode this scheme as input for

AutoCircuitPPE. For space reasons, we will let n = 2. The pair-

ing information is specified using the line maps G1*G1->GT,
which denotes a Type I pairing

16
. The trusted set of polyno-

mials (vk) along with their group identifiers are specified by

trusted_polys [_] in G_, and the untrusted set of poly-

nomials (VRF output) along with their group identifiers by

untrusted_polys[_] in G_. For each polynomial, we also

specify a formal variable F_ which is used in the PPE circuit

16
Alternately, a Type II pairing could be specified by maps G1*G2-> GT,

isos G1 -> G2, and a Type III pairing could be specified by maps G1*G2->GT.

Output of the Tool
Including polynomial F0 = 1 in trusted set of groups G1, GT.

Trusted set in G1: F1 = a1*c, F2 = a2*c, F3 = c

Untrusted set in G1: F4 = 1 - x1 + a1*x1, F5 = 1 - x1 - x2 + a1*x1 +

a2*x2 + x1*x2 - a1*x1*x2 - a2*x1*x2 + a1*a2*x1*x2,

rule 3 on F4. isidentity := F3 = I C := e(F4,F3) = (e(F3,F0^x1))^-

1*e(F1,F0^x1)*e(F0,F3)

Trusted set in G1: F1 = a1*c, F2 = a2*c, F3 = c, F4 = 1 - x1 + a1*x1

Untrusted set in G1: F5 = 1 - x1 - x2 + a1*x1 + a2*x2 + x1*x2 -

a1*x1*x2 - a2*x1*x2 + a1*a2*x1*x2,

rule 3 on F5. isidentity := F3 = I C := e(F5,F3) = (e(F3^x2,F4))^-

1*e(F2^x2,F4)*e(F3,F4)

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0, F4 = 1 - x1 + a1*x1

Untrusted set in G1: F5 = 1 - x1 - x2 + a1*x1 + a2*x2 + x1*x2 -

a1*x1*x2 - a2*x1*x2 + a1*a2*x1*x2,

rule 4 on F5 and variable a2. isidentity := F4^x2 = I

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0, F4 = 1 - x1 + a1*x1

Untrusted set in G1: F5 = 1 - x1 + a1*x1,

rule 1 on F5. C := F5 = F4

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0

Untrusted set in G1: F4 = 1 - x1 + a1*x1, F5 = 1 - x1 - x2 + a1*x1 +

a2*x2 + x1*x2 - a1*x1*x2 - a2*x1*x2 + a1*a2*x1*x2,

rule 4 on F4 and variable a1. isidentity := F0^x1 = I

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0, F4 = 1 - x1 + a1*x1

Untrusted set in G1: F5 = 1 - x1 - x2 + a1*x1 + a2*x2 + x1*x2 -

a1*x1*x2 - a2*x1*x2 + a1*a2*x1*x2,

rule 4 on F5 and variable a2. isidentity := F4^x2 = I

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0, F4 = 1 - x1 + a1*x1

Untrusted set in G1: F5 = 1 - x1 + a1*x1,

rule 1 on F5. C := F5 = F4

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0,

Untrusted set in G1: F4 = 1, F5 = 1 - x2 + a2*x2,

rule 1 on F4. C := F4 = F0

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0, F4 = 1

Untrusted set in G1: F5 = 1 - x2 + a2*x2,

rule 4 on F5 and variable a2. isidentity := F0^x2 = I

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0, F4 = 1

Untrusted set in G1: F5 = 1,

rule 1 on F5 = 1. C := F5 = F0

Execution time : 1.682712s

((((NOT F3 = I) AND e(F4,F3) = (e(F3,F0^x1))^-

1*e(F1,F0^x1)*e(F0,F3)) AND ((((NOT F3 = I) AND e(F5,F3)

= (e(F3^x2,F4))^-1*e(F2^x2,F4)*e(F3,F4)) AND ACC) OR (F3 = I

AND (((NOT F4^x2 = I) AND ACC) OR (F4^x2 = I AND (F5 = F4

AND ACC)))))) OR (F3 = I AND (((NOT F0^x1 = I) AND (((NOT

F4^x2 = I) AND ACC) OR (F4^x2 = I AND (F5 = F4 AND ACC))))

OR (F0^x1 = I AND (F4 = F0 AND (((NOT F0^x2 = I) AND ACC)

OR (F0^x2 = I AND (F5 = F0 AND ACC))))))))

List of gates after optimizing the circuit

G1 : F3 = I G2 : e(F4,F3) = (e(F3,F0^x1))^-1*e(F1,F0^x1)*e(F0,F3)

G3 : e(F5,F3) = (e(F3^x2,F4))^-1*e(F2^x2,F4)*e(F3,F4)

G4 : F4^x2 = I G5 : F5 = F4 G6 : F0^x1 = I G7 : F4 = F0

G8 : F0^x2 = I G9 : F5 = F0 G10 : NOT G1 G11 : G10

AND G2 G12 : G11 AND G3 G13 : NOT G6 G14 : NOT

G4 G15 : G4 AND G5 G16 : G14 OR G15 G17 : G13 AND

G16 G18 : NOT G8 G19 : G8 AND G9 G20 : G18 OR G19

G21 : G7 AND G20 G22 : G6 AND G21 G23 : G17 OR G22

G24 : G1 AND G23 G25 : G12 OR G24

Figure 10: Output of the tool on Dodis VRF scheme
when input length is 2.

10

PPE Circuits: Formal Definition to Software Automation Confidential Submission to ACM CCS 2020, Due 20 Jan 2020, Orlando, USA

G3

F5 = F0

G2

F3 = I

G11

F4 = F0F0^x1 = I

F0^x2 = IF4^x2 = I F5 = F4

 G18

G19

G20

G21

G22

G14 G15

G16

G13

G17

G23

G24G12

G10

G25

Figure 11: The PPE circuit output by AutoCircuitPPE on
theDodis VRF for 2-bit Inputs. PPE gates G1-G9 (see Fig-
ure 10) are mentioned at input wires.

output by the tool. Each bit of VRF input x is treated as a

variable in Zp and specified using Zp_vars [_]. Internally
for every problem instance Π, for each trusted polynomial f
and a Zp variable xi , the AutoCircuitPPE tool adds xi · f to

the trusted set
17
. Comments are specified with (*....*).

Figure 10 shows AutoCircuitPPE’s output the Figure 9 in-
put. The tool applies the QSearch algorithm (see Section 4.3).

For each recursive call made to QSearch, it prints the trusted

and untrusted set polynomials, along with each rule applied.

It then prints the PPE circuit output by QSearch. As this PPE

circuit may contain some redundancy, the tool further opti-

mizes the PPE circuit using simple tricks such as evaluating

common sub-circuits only once and replacing a sub-circuit of

the form x AND ((NOT x) OR y) with a circuit of the form

(x AND y). The tool finally outputs the list of gates in the

optimized PPE circuit, which we show pictorially in Figure 11.

5.3 Case Studies
We evaluated AutoCircuitPPE on various types of pairing-

based schemes using a MacBook Pro 2015 laptop with 2.7GHz

Intel Core i5 processor and 8GB 1867MHz DDR3 RAM. We

present the results along with average execution times over

10 runs in Table 1. We retain AutoPPE’s optimizations for

computing PPEs in the rules efficiently. Lke AutoPPE, we sim-

plified checking whether the constant d is relatively prime to

p − 1 in Rule 2 and 4, by checking whether d is a small prime

(d ∈ {1, 3, 5, 7, 11}), as none of the real world schemes have

polynomials with a high degree on their variables.

Table 1 summarizes 29 test results. For IBE schemes, we ran

our tool to output a PPE circuit which tests forwell-formedness

17
Ideally, for each polynomial poly on Zp variables x, one should include

poly(x) · f in the trusted set. The AutoCircuitPPE tool supports such an oper-

ation for all bounded degree polynomials on Zp variables. However, for this

example, it suffices to include only xi · f to trusted set.

of a secret key of an identity given the master public key and

the identity. For Verifiable Random Function (VRF) schemes,

we aimed to construct a PPE circuit that tests for the valid-

ity of VRF output and proof of pseudorandomness given the

verification key and VRF input. For signature schemes, we

ran the tool to output a PPE circuit which acts as a verifica-

tion procedure that checks the well-formedness of a signature

given message and verification key. We encoded each of the

schemes into a PPE problem instance similar to [45] (See [45]

Section 5.2 for more details). As in [45], we encode the VRF bit

string input of [34, 46, 47] schemes as a vector of Zp variables.

We observe that the size of the polynomials in these schemes

grows exponentially in size with respect to the length of the

encoding of the input. Consequently, we tested these schemes

only with a short length encoding.

We demonstrate the flexibility of our tool by testing it on

problem instances in Type I, II and III pairing settings. Many of

PPE problem instances in Table 1 are in the Type I setting (we

first encoded in whatever setting the scheme’s authors chose).

We also translated several of these schemes into the Type III

setting for testing. AutoCircuitPPE outputs a PPE testing cir-
cuit for all the problem instances on which AutoPPE outputs a
PPE testing set18. More importantly, our tool outputs PPE test-
ing circuits for the Bellare-Kiltz-Peikert-Waters IBE [24], Dodis
VRF [34], Boyen-Waters IBE [30] and some custom test cases on
which AutoPPE was not able to produce a valid PPE testing set.

We tested our tool on a few custom examples, some of

them having more than 100 polynomials. The 100-DDH and

100-DBDH examples have already be tested in [45]. In the

(new) DLIN test case, the trusted set contains polynomials

{a,b, c,ax ,by} in groupG1, and the untrusted set contains the

polynomial c (x + y) in group G1. The 100-DBDH and DLIN

examples are not PPE Testable under the Decisional Bilinear

Diffie-Hellman (DBDH) assumption and DLIN assumptions

respectively. We additionally designed two custom test cases

meant to utilize all of our tool’s rules. The results are in Table 1

and the details are in Appendix G.

Recall that AutoCircuitPPE optimizes the output of the

QSearch algorithm (Section 4.3). Table 1 shows the number

of PPE gates and Boolean gates output post-optimization. On

the Bellare et. al. IBE scheme for 4-bit identities, Dodis VRF

for 4-bit inputs and the Boyen-Waters IBE scheme, the PPE

circuit output by QSearch has 98, 180 and 491 boolean gates,

respectively, whereas post-optimization the corresponding

PPE circuits have only 31, 49 and 124 boolean gates.

5.4 Open Problems
This work solves a major open problem posed by [45] by defin-

ing PPE circuits and developing a method for automatically

generating them. We remark on two limitations of our tool,

which are exciting directions for future research.

First, we do not handle rational polynomials; that is, our

tool cannot accept inputs with elements of the form д1/x ,

18
For all instances on which AutoPPE outputs a PPE testing set, our tool also

outputs the same PPE circuit. This is because we retain Rules 1 and 2 used by

AutoPPE and prioritize these rules over Rules 3 and 4 in our QSearch algorithm.

11

Confidential Submission to ACM CCS 2020, Due 20 Jan 2020, Orlando, USA Susan Hohenberger, Satyanarayana Vusirikala, and Brent Waters

Scheme Pairing Type

AutoPPE

output

PPE Circuit

Testability

Our Tool

Output

#PPE

Gates

#Bool

Gates

Run

Time

Boneh-Franklin01 ([28]) Type I IBE Testable Testable Testable 1 0 1.63s

Gentry-Silverberg02 ([38]) Type I IBE Testable Testable Testable 1 0 1.54s

Boneh-Boyen04a ([26]) (ℓ = 160) Type I HIBE Testable Testable Testable 1 0 167s

Waters05 ([52]) (|H (id) | = 16) Type I IBE Testable Testable Testable 1 0 10.92s

Naccache05 ([50]) (B (H (id)) = 8) Type III IBE Testable Testable Testable 1 0 1.62s

BBG05 ([27]) (ℓ = 8) Type I HIBE Testable Testable Testable 5 4 5.04s

Waters09 ([54]) Type I IBE Unknown Not testable Unknown 0 0 105.37s

BKPW12 ([24]) (|id| = 4) Type I IBE Unknown Testable Testable 14 31 4.57s

Boyen-Waters ([30]) Type I Anon-IBE Unknown Testable Testable 27 124 18.39s

BLS01 ([29]) Type I Signature Testable Testable Testable 1 0 1.69s

CL04 Scheme A ([32]) Type I Signature Testable Testable Testable 2 1 2.32s

CL04 Scheme B ([32]) Type I Signature Testable Testable Testable 4 3 1.60s

CL04 Scheme B ([32]) Type III Signature Testable Testable Testable 4 3 1.57s

CL04 Scheme C ([32]) (B (msg) = 8) Type I Signature Testable Testable Testable 16 15 16.06s

Boyen-Waters ([31]) Type I Signature Testable Testable Testable 1 0 9.83s

AGOT14 ([3]) Type II Signature Testable Testable Testable 1 0 1.49s

Dodis ([34]) (|C (x) | = 2) Type I VRF Unknown Testable Testable 9 16 1.68s

Dodis ([34]) (|C (x) | = 4) Type I VRF Unknown Testable Testable 25 49 41.34s

Lys02 ([47]) (|C (x) | = 5) Type I VRF Testable Testable Testable 5 4 109.81s

Lys02 ([47]) (|C (x) | = 5) Type III VRF Testable Testable Testable 5 4 22.70s

Jager15 ([46]) (|H (x) | = 4) Type I VRF Testable Testable Testable 5 4 26.05s

Jager15 ([46]) (|H (x) | = 4) Type III VRF Testable Testable Testable 5 4 11.92s

RW13 ([51]) (a = 60) Type I CP-ABE Testable Testable Testable 9 8 10.01s

RW13 ([51]) (a = 8) Type III CP-ABE Testable Testable Testable 9 8 5.20s

100-DDH Type I Custom Testable Testable Testable 1 0 4.99s

100-DBDH Type I Custom Unknown Not Testable Unknown 0 0 4.48s

DLIN Type I Custom Unknown Not Testable Unknown 0 0 1.2s

Custom Testcase 1 (Figure 12) Type I Custom Unknown Testable Testable 9 16 4.76s

Custom Testcase 2 (Figure 14) Type I Custom Unknown Testable Testable 6 9 3.58s

Table 1: The output of AutoCircuitPPE on various PPE circuit testability problems. Here, ℓ represents the number of
delegation levels in a HIBE scheme, |id| denotes the length of the identity, |H (id) | denotes the length of the hash of
identity id, B (H (id)) denotes the number of blocks in the hash of identity id, B (msg) denotes the number of blocks in
message msg, |C (x) | denotes the length of encoding of input x , |H (x) | denotes the length of encoding of input x , and
a denotes the number of attributes.

which rules out many interesting schemes such as the Gen-

try IBE [37], the Boneh-Boyen signatures [26] and the Dodis-

Yampolskiy VRF [35]. A well-formedness test for such schemes

should check if the denominators of the untrusted rational

polynomials evaluate to 0, and output INVALID accordingly.

While this was also an open problem from [45], we believe

the general logic capabilities realized in this work create a

foundation that could perform this check and then branch

accordingly. Working this out, however, appears non-trivial.

Second, we’d like a more efficient method for encoding

schemes for automated analysis. In the Dodis VRF scheme [34],

the VRF function on input bit string x and private key {a1,a2,

· · ·an } outputs д
∏n
i s.t. xi =1

ai
. In order to input the scheme to

our tool, we encode the exponent polynomials as

∏n
i=1 (aixi +

1−xi). Notice that this polynomial has an exponential number

of monomials incurring a huge computational cost for find-

ing PPEs in our rules. This is notably the case in other VRF

schemes [46, 47] as well. As a result, we could test the schemes

only on small input lengths.

6 CONCLUSION
Computer automation holds great promise for improving the

speed, accuracy and capabilities of cryptographic implemen-

tations. This work presents an automation algorithm and soft-

ware tool for designing (pairing-based) cryptographic verifi-

cation algorithms that can support arbitrary logic. The tool

found verification algorithms for schemes that could not be

handled by prior tools and for which we were unable to find

solutions by hand. It executes quickly (usually 100 seconds

or less) even for schemes with 100 or more elements in their

description. There are many exciting future directions for au-

tomated cryptographic design and this tool will help in the

automated design of algorithms requiring arbitrary logic.

12

PPE Circuits: Formal Definition to Software Automation Confidential Submission to ACM CCS 2020, Due 20 Jan 2020, Orlando, USA

ACKNOWLEDGMENTS
Susan Hohenberger was supported by NSF CNS-1414023, NSF

CNS-1908181, the Office of Naval Research N00014-19-1-2294,

and a Packard Foundation Subaward via UT Austin. Satya-

narayana Vusirikala was supported by a UTAustin Provost Fel-

lowship, NSF grants CNS-1908611 and CNS-1414082, and the

Packard Foundation. Brent Waters was supported in part by

NSF CNS-1414082, CNS-1908611, Simons Investigator Award

and Packard Foundation Fellowship.

REFERENCES
[1] Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo

Nishimaki, and Miyako Ohkubo. 2012. Constant-Size Structure-Preserving

Signatures: Generic Constructions and Simple Assumptions. Cryptology

ePrint Archive, Report 2012/285. https://eprint.iacr.org/2012/285.

[2] Masayuki Abe, Jens Groth, Miyako Ohkubo, and Takeya Tango. 2014. Con-

verting Cryptographic Schemes from Symmetric to Asymmetric Bilinear

Groups. In Advances in Cryptology - CRYPTO. Springer, 241–260.
[3] Masayuki Abe, Jens Groth, Miyako Ohkubo, and Mehdi Tibouchi. 2014.

Structure-Preserving Signatures from Type II Pairings. In Advances in
Cryptology - CRYPTO 2014. 390–407.

[4] Masayuki Abe, Fumitaka Hoshino, and Miyako Ohkubo. 2016. Design

in Type-I, Run in Type-III: Fast and Scalable Bilinear-Type Conversion

Using Integer Programming. InAdvances in Cryptology - CRYPTO. Springer,
387–415.

[5] Joseph A. Akinyele, Gilles Barthe, Benjamin Grégoire, Benedikt Schmidt,

and Pierre-Yves Strub. 2014. Certified Synthesis of Efficient Batch Verifiers.

In IEEE 27th Computer Security Foundations Symposium. IEEE Computer

Society, 153–165.

[6] Joseph A. Akinyele, Christina Garman, and Susan Hohenberger. 2015.

Automating Fast and Secure Translations from Type-I to Type-III Pairing

Schemes. In ACM SIGSAC Conference on Computer and Communications
Security. ACM, 1370–1381.

[7] Joseph A. Akinyele, Matthew Green, and Susan Hohenberger. 2013. Us-

ing SMT solvers to automate design tasks for encryption and signature

schemes. In ACM SIGSAC Conference on Computer and Communications
Security. ACM, 399–410.

[8] Joseph A. Akinyele, Matthew Green, Susan Hohenberger, and Matthew W.

Pagano. 2012. Machine-generated algorithms, proofs and software for the

batch verification of digital signature schemes. In the ACM Conference on
Computer and Communications Security. ACM, 474–487.

[9] Joseph A. Akinyele, Matthew Green, Susan Hohenberger, and Matthew W.

Pagano. 2014. Machine-generated algorithms, proofs and software for

the batch verification of digital signature schemes. Journal of Computer
Security 22, 6 (2014), 867–912.

[10] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Matthew Campagna,

Ernie Cohen, Benjamin Grégoire, Vitor Pereira, Bernardo Portela, Pierre-

Yves Strub, and Serdar Tasiran. 2019. AMachine-Checked Proof of Security

for AWS Key Management Service. In CCS. 63–78.
[11] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Francois Dupressoir,

Benjamin Grégoire, Vincent Laporte, and Vitor Pereira. 2017. A Fast and

Verified Software Stack for Secure Function Evaluation. In CCS 2017.
[12] José Bacelar Almeida, Cecile Baritel-Ruet, Manuel Barbosa, Gilles Barthe,

Francois Dupressoir, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira,

Alley Stoughton, and Pierre-Yves Strub. 2019. Machine-Checked Proofs

for Cryptographic Standards: Indifferentiability of Sponge and Secure

High-Assurance Implementations of SHA-3. In CCS. 1607–1622.
[13] Miguel Ambrona, Gilles Barthe, Romain Gay, and Hoeteck Wee. 2017.

Attribute-Based Encryption in the Generic Group Model: Automated

Proofs and New Constructions. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 647–664.

[14] Miguel Ambrona, Gilles Barthe, and Benedikt Schmidt. 2016. Automated

Unbounded Analysis of Cryptographic Constructions in the Generic Group

Model. In Advances in Cryptology - EUROCRYPT. Springer, 822–851.
[15] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas

Cremers, Kevin Liao, and Bryan Parno. 2019. SoK: Computer-Aided

Cryptography. Cryptology ePrint Archive, Report 2019/1393. https:

//eprint.iacr.org/2019/1393.

[16] Gilles Barthe, Juan Manuel Crespo, Yassine Lakhnech, and Benedikt

Schmidt. 2015. Mind the Gap: Modular Machine-Checked Proofs of One-

Round Key Exchange Protocols. In Advances in Cryptology - EUROCRYPT.
Springer, 689–718.

[17] Gilles Barthe, Francois Dupressoir, Benjamin Gregoire, Alley Stoughton,

and Pierre-Yves Strub. 2018. EasyCrypt: Computer-Aided Cryptographic

Proofs. https://www.easycrypt.info/trac/.

[18] Gilles Barthe, Edvard Fagerholm, Dario Fiore, John C. Mitchell, Andre

Scedrov, and Benedikt Schmidt. 2014. Automated Analysis of Crypto-

graphic Assumptions in Generic Group Models. In Advances in Cryptology
- CRYPTO. Springer, 95–112.

[19] Gilles Barthe, Edvard Fagerholm, Dario Fiore, Andre Scedrov, Benedikt

Schmidt, andMehdi Tibouchi. 2015. Strongly-Optimal Structure Preserving

Signatures from Type II Pairings: Synthesis and Lower Bounds. In Public-
Key Cryptography - PKC 2015. 355–376.

[20] Gilles Barthe, Xiong Fan, Joshua Gancher, Benjamin Grégoire, Charlie

Jacomme, and Elaine Shi. 2018. Symbolic Proofs for Lattice-Based Cryp-

tography. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS. ACM, 538–555.

[21] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009.

Formal certification of code-based cryptographic proofs. In Proceedings of
the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM, 90–101.

[22] Gilles Barthe, Benjamin Grégoire, and Benedikt Schmidt. 2015. Automated

Proofs of Pairing-Based Cryptography. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM, 1156–

1168.

[23] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. 2012. Foundations of

garbled circuits. In the ACM Conference on Computer and Communications
Security. 784–796.

[24] Mihir Bellare, Eike Kiltz, Chris Peikert, and Brent Waters. 2012. Identity-

Based (Lossy) Trapdoor Functions and Applications. In EUROCRYPT.
[25] Bruno Blanchet. 2006. A Computationally Sound Mechanized Prover for

Security Protocols. In 2006 IEEE Symposium on Security and Privacy. IEEE
Computer Society, 140–154.

[26] Dan Boneh and Xavier Boyen. 2004. Efficient Selective-ID Secure Identity-

Based Encryption Without Random Oracles. In Advances in Cryptology -
EUROCRYPT. Springer, 223–238.

[27] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. 2005. Hierarchical Identity

Based Encryptionwith Constant Size Ciphertext. InAdvances in Cryptology
- EUROCRYPT 2005. 440–456.

[28] Dan Boneh and Matthew K. Franklin. 2001. Identity-Based Encryption

from the Weil Pairing. In Advances in Cryptology - CRYPTO. Springer,
213–229.

[29] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short Signatures from

the Weil Pairing. In ASIACRYPT. Springer, 514–532.
[30] Xavier Boyen and Brent Waters. 2006. Anonymous Hierarchical Identity-

Based Encryption (Without Random Oracles). In Advances in Cryptology -
CRYPTO. Springer, 290–307.

[31] Xavier Boyen and Brent Waters. 2006. Compact Group Signatures Without

Random Oracles. In Advances in Cryptology - EUROCRYPT 2006. 427–444.
[32] Jan Camenisch and Anna Lysyanskaya. 2004. Signature Schemes and

Anonymous Credentials from Bilinear Maps. In Advances in Cryptology -
CRYPTO. Springer, 56–72.

[33] Ran Canetti, Alley Stoughton, and Mayank Varia. 2019. EasyUC: Using

EasyCrypt to Mechanize Proofs of Universally Composable Security. In

IEEE Computer Security Foundations Symposium, CSF 2019.
[34] Yevgeniy Dodis. 2003. Efficient Construction of (Distributed) Verifiable

Random Functions. In Public Key Cryptography - PKC. Springer, 1–17.
[35] Yevgeniy Dodis and Aleksandr Yampolskiy. 2005. A Verifiable Random

Function with Short Proofs and Keys. In Proceedings of the 8th International
Conference on Theory and Practice in Public Key Cryptography (PKC’05).

[36] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters.

2013. Attribute-Based Encryption for Circuits from Multilinear Maps.

Cryptology ePrint Archive, Report 2013/128. http://eprint.iacr.org/.

[37] Craig Gentry. 2006. Practical Identity-Based Encryption Without Random

Oracles. In Advances in Cryptology - EUROCRYPT. Springer, 445–464.
[38] Craig Gentry and Alice Silverberg. 2002. Hierarchical ID-Based Cryptog-

raphy. In Advances in Cryptology - ASIACRYPT. Springer, 548–566.
[39] Vipul Goyal. 2007. Reducing Trust in the PKG in Identity Based Cryptosys-

tems. In Advances in Cryptology - CRYPTO. Springer, 430–447.
[40] Vipul Goyal, Steve Lu, Amit Sahai, and Brent Waters. 2008. Black-box

accountable authority identity-based encryption. In Proceedings of the
2008 ACM Conference on Computer and Communications Security. ACM,

427–436.

[41] Matthew Green and Susan Hohenberger. 2007. Blind Identity-Based En-

cryption and Simulatable Oblivious Transfer. In Advances in Cryptology -
ASIACRYPT. Springer, 265–282.

[42] Jens Groth and Amit Sahai. 2008. Efficient non-interactive proof systems

for bilinear groups. In EUROCRYPT. Springer, 415–432.
[43] Helene Haagh, Aleksandr Karbyshev, Sabine Oechsner, Bas Spitters, and

Pierre-Yves Strub. 2018. Computer-Aided Proofs for Multiparty Com-

putation with Active Security. In IEEE Computer Security Foundations
Symposium, CSF 2018.

13

https://eprint.iacr.org/2012/285
https://eprint.iacr.org/2019/1393
https://eprint.iacr.org/2019/1393
https://www.easycrypt.info/trac/
http://eprint.iacr.org/

Confidential Submission to ACM CCS 2020, Due 20 Jan 2020, Orlando, USA Susan Hohenberger, Satyanarayana Vusirikala, and Brent Waters

[44] Viet Tung Hoang, Jonathan Katz, and Alex J. Malozemoff. 2015. Automated

Analysis and Synthesis of Authenticated Encryption Schemes. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 84–95.

[45] Susan Hohenberger and Satyanarayana Vusirikala. 2019. Are These Pair-

ing Elements Correct? Automated Verification and Applications. In ACM
Conference on Computer and Communications Security.

[46] Tibor Jager. 2015. Verifiable Random Functions fromWeaker Assumptions.

In Theory of Cryptography - 12th Theory of Cryptography Conference, TCC.
Springer, 121–143.

[47] Anna Lysyanskaya. 2002. Unique Signatures and Verifiable Random Func-

tions from the DH-DDH Separation. In Advances in Cryptology - CRYPTO.
Springer, 597–612.

[48] Alex J. Malozemoff, Jonathan Katz, and Matthew D. Green. 2014. Auto-

mated Analysis and Synthesis of Block-Cipher Modes of Operation. In IEEE
27th Computer Security Foundations Symposium. IEEE Computer Society,

140–152.

[49] Roberto Metere and Changyu Dong. 2017. Automated Cryptographic

Analysis of the Pedersen Commitment Scheme. In MMM-ACNS 2017.
[50] David Naccache. 2005. Secure and Practical Identity-Based Encryption.

IACR Cryptology ePrint Archive (2005). http://eprint.iacr.org/2005/369

[51] Yannis Rouselakis and Brent Waters. 2013. Practical constructions and

new proof methods for large universe attribute-based encryption. In 2013
ACM SIGSAC Conference on Computer and Communications Security, CCS.
ACM, 463–474.

[52] Brent Waters. 2005. Efficient Identity-Based Encryption Without Random

Oracles. In EUROCRYPT. Springer, 114–127.
[53] Brent Waters. 2009. Dual System Encryption: Realizing Fully Secure IBE

and HIBE under Simple Assumptions. In CRYPTO. Springer, 619–636.
[54] Brent Waters. 2009. Dual System Encryption: Realizing Fully Secure IBE

and HIBE under Simple Assumptions. In CRYPTO. Springer, 619–636.

A SHORTHAND NOTATIONS FOR
CIRCUITS (CONT’D FROM SECTION 3.1)

In this section, we provide formal definitions for the shorthand

notations introduced in Section 3.1.

• MakeCircuit(G,m,α , P): Given group structureG, num-

ber of inputsm, group identifiers α , and a PPE P , the
function outputs a PPE circuit C = (G,m,α ,N ,Gates,
out,GateType,A,B), where N = 1,Gates = {m + 1},

out =m + 1,GateType(m + 1) = (PPE, P),A = ∅,B = ∅.
• Cacc: We use the notation Cacc to denote the circuit

MakeCircuit(G,m,α , P), where P is an always accept-

ing PPE (for example, д1 = д1).

The formal definitions of the notations (C1 AND C2) and
(C1 OR C2) are a little tricky as both C1 and C2 might share

the same gate names. Henceforth, we first define the notation

Shift(C,k) which renames the gates of a circuit C by an offset

integer k . We then define (C1 AND C2), for example, by first

shifting the gate names of C2 by some offset k and then AND-

ing output wires of the circuits C1 and Shift(C2,k). Note that
the input wires will remain the same.

• Shift(C,k) : Given a circuitC = (G,m,α ,N ,Gates, out,
GateType,A,B) and integerk ≥ 1, the function Shift(C,k)
outputs a circuitC ′ obtained by shifting the gate names

Gates by an offset k i.e.,C ′ = (G,m,α ,N ,Gates′, out′,
GateType′,A′,B′), where Gates′ = {д+k : д ∈ Gates},
out′ = out+k ,GateType′(д+k) = GateType(д),A′(д+
k) = A(д) and B′(д + k) = B (д), whenever A(д),B (д)
are defined. Note: Shift(C,k) still has {1, 2, · · · ,m} as
the input wires.

• C1 OP C2 (where OP ∈ {AND,OR}): Given circuits

C1 = (G,m,α ,N1,Gates1, out1,GateType1,A1,B1) and
C2 = (G,m,α ,N2,Gates2, out2,GateType2,A2,B2), let
k be the smallest integer not inGates1. LetC ′

2
= Shift(C2,

k) = (G,m,α ,N2,Gates′
2
, out′

2
,GateType′

2
,A′

2
,B′

2
). The

circuitC1 OP C2 is given by (G,m,α ,N1+N2+1,Gates,
out,GateType,A,B), where out is the smallest integer

not in Gates1 ∪ Gates′
2
, the set Gates = Gates1 ∪

Gates′
2
∪ {out}, the functions

GateType(д) =




GateType
1
(д) if д ∈ Gates1

GateType′
2
(д) if д ∈ Gates′

2

OP if д = out

A(д) =




A1 (д) if д ∈ Gates1
A′
2
(д) if д ∈ Gates′

2

out1 if д = out

B (д) =




B1 (д) if д ∈ Gates1
B′
2
(д) if д ∈ Gates′

2

out′
2

if д = out

• NOT C : Given a circuit C = (G,m,α ,N ,Gates, out,
GateType,A,B), we use the notation NOT C to denote

the circuit (G,m,α ,N+1,Gates′, out′,GateType′,A′,B′),
where out′ is the smallest integer not in Gates, the set
Gates′ = Gates ∪ {out′}, functions

GateType′(д) =



GateType(д) if д ∈ Gates

NOT if д = out′

A(д) =



A(д) if д ∈ Gates

out if д = out′

and B′ is the same as B.

B CORRECTNESS OF RULE 1
In this section, we prove the correctness of Rule 1 (Lemma 4.1).

This proof is adapted from the proof of Rule 1 in [45].

Proof. We observe that every PPE challenge for Π is also

a challenge for Π′, as they all share the same group structure,

the number of elements ofm, and the group indicator vector

α . Consider any testing circuit C ′ for Π′. We now argue by

contradiction that if C ∧C ′ is not a testing circuit for Π, then
C ′ cannot be a testing circuit for Π′. Since C ∧ C ′ is not a
testing set for Π, then either:

• Case 1: There exists a YES challenge F for Π such that

C ∧C ′ is not satisfied, or
• Case 2: There exists a NO challenge F for Π such that

C ∧C ′ is satisfied.

We now analyze each of these cases.

In Case 1, we know that C ∧C ′ is not satisfied by the chal-

lenge F. We take this in two subcases. First, suppose that F
satisfies PPE C but not the circuit C ′. This means that F is

also a YES challenge for Π′ (it can use the same settings for

the variables), but for which C ′ is not satisfied. This contra-
dicts the starting assumption that C ′ was a testing circuit for
Π′. Second, suppose that F does not satisfy the PPE C . By
definition of being a YES challenge, we know there exists an

assignment to the variables u such that Fi = д
fi (u)
αi for all i .

PPE C tests that Fk is equal to д
fi (u)
αi , thus this equation being

false contradicts the fact the F was a YES challenge.

14

http://eprint.iacr.org/2005/369

PPE Circuits: Formal Definition to Software Automation Confidential Submission to ACM CCS 2020, Due 20 Jan 2020, Orlando, USA

In Case 2, since F is aNO challenge forΠ whereC∧C ′ is sat-
isfied, then F is also aNO challenge for Π′ whereC ′ is satisfied.
We argue this as follows. By Definition 3.2 of a NO challenge

for Π, there exists an assignment to u = (u1, . . . ,un) ∈ Z
n
p

such that for all i ∈ Trusted, Fi = д
fk (u)
αk . To convert this to a

NO challenge for Π′, we also need to show that Fk = д
fk (u)
αk for

this same assignment u. This follows from the fact that PPE C
is satisfied by this challenge and that C explicitly tests that Fk
is computed this way, possibly with respect to an equivalent

polynomial for fk ≡
∑ |sT |
j=1 aj · sT [j]. Now since F is NO chal-

lenge for Π′, it remains to see how it performs with respect

to the circuit C ′. However, since C ∧ C ′ is satisfied by this

challenge F, then C ′ is satisfied as well. This contradicts the

original assumption that C ′ was a testing circuit for Π′.

C CORRECTNESS OF RULE 2
We prove the correctness of Rule 2 (Lemma 4.3). This proof is

adapted from the proof of Rule 2 in [45].

Proof. We observe that every PPE challenge for Π is also

a challenge for Π′, as they all share the same group structure,

the number of elements ofm, and the group indicator vector

α . We first show that every YES challenge for Π is an YES
challenge for Π′, and similarly every NO challenge for Π is a

NO challenge for Π′. This implies that every testing circuitC ′

for Π′ is also a testing circuit for Π.
The PPE problemsΠ andΠ′ differ only in Trusted set, where

the Π′ set has the additional element {k }. As the definition of

an YES challenge has no dependence on Trusted set, each YES
challenge for Π is also an YES challenge for Π′ and vice versa.

We now argue that any NO challenge for Π is also a NO
challenge for Π′. Consider any NO challenge F for the PPE

problem Π. By definition, F is not a YES challenge for Π (or, by

the above, for Π′), and there exists an assignment of u∗ ∈ Znp
such that Fi = д

fi (u∗)
αi ∀i ∈ Trusted.

We want to show that Fk = д
fk (u∗)
αk . Since Rule2(Π, j,k) ,⊥,

we know that the polynomial fk was of the form c · udj + h,

according to the constraints of Rule2 i.e., the variable uj is
not used in any Trusted polynomials. Thus, for this setting

of Fk in the challenge F, there exists only one setting of the

variable uj ∈ Zp that is consistent with Fk being derived via

the polynomial fk and the settings of ui ∈ u∗. Let Fk = дy for

some y ∈ Zp . Then let

uj =
(y − h

c
mod p

)
1/d mod (p−1)

.

There is a unique solution to the above since d is relatively

prime to p − 1. Thus, for setting of variables u∗ ∈ Znp with u∗j

substituted with uj , it holds that Fi = д
fi (u∗)
αi ∀i ∈ (Trusted ∪

{k }). Therefore F is a NO challenge for Π′.

D CORRECTNESS OF RULE 3
In this section, we prove the correctness of Rule 3 (Lemma 4.3).

Proof. We observe that every challenge for Π is also a chal-

lenge for Π′ and Π′′, as they all share same group structure,

the number of elements ofm, and the group indicator vector

α . Consider any testing circuitsC ′,C ′′ for Π′,Π′′ respectively
and any PPE challenge F = (F1, F2, · · · Fm). We prove that if

F is a YES challenge for Π, then it satisfies circuit Z defined

above, and if F is a NO challenge for Π, it does not satisfy the

circuit Z . We organize the proof into four cases.

Case 1 (F is an YES challenge for Π & doesn’t satisfy IsIdentity):
In this case, by definition, there exists an assignment of vari-

ables v such that Fℓ = д
fℓ (v)
αℓ

for all ℓ ∈ [m]. We know that

{д
fℓ (v)
αℓ

)}ℓ satisfies the circuit C for any variable assignment

v. Therefore, the challenge F also satisfies the circuit C . We

also observe that F is a YES challenge for Π′. This is because
Π and Π′ have the same set of polynomials { fj }j ∈[m]

and only

differ in the Trusted set. As a result, F satisfies the circuit

(NOT IsIdentity) ∧C ∧C ′, thus satisfying Z .

Case 2 (F is an YES challenge for Π & satisfies IsIdentity):
In this case, we want to show that F is a YES challenge for Π′′.

We know that fℓ = hℓ · (
∑ |sαk |
j=1 bj · sαk [j])+ f

′′
ℓ

for some poly-

nomial hℓ and other values as computed in Rule 3, where f ′′
ℓ

was replaced as the ℓth polynomial in Π′′, due to (
∑ |sαk |
j=1 bj ·

sαk [j]) = 0 via the fact that IsIdentity is satisfied. Consider any

assignment of variables v s.t. Fℓ = д
fℓ (v)
αℓ
, ∀ℓ ∈ [m]. We know

that

∏
j Uαk [j]

bj = Iαk and therefore

∑
j bj · sαk [j] evaluates

to 0 for the variable assignment v. This implies, Fℓ = д
f ′′
ℓ
(v)

αℓ

for each ℓ ∈ [m]. Therefore, F is an YES instance for Π′′ and
satisfies the circuit IsIdentity ∧C ′′, thus satisfying Z .

Case 3 (F is a NO challenge for Π & doesn’t satisfy IsIdentity):
Since we assume F does not satisfy the circuit IsIdentity in

this case, we focus only on whether F satisfies C ∧C ′. By def-

inition, F is a NO challenge for Π and therefore it cannot be

a YES challenge for Π′, as both Π and Π′ share the same set

of polynomials. (Either it will be a NO challenge or an invalid

challenge; the latter in the case where the single element dif-

ference in the Trusted set between the two problems was an

improperly formed element.) Observe that if F satisfiesC , then
F is a NO instance for Π′. Consider any assignment of vari-

ables v such that Fℓ = д
fℓ (v)
αℓ

for all ℓ ∈ Trusted. If F satisfies

C , it means Fk = д
fk (v)
αk

19
. Consequently, Fℓ = д

fℓ (v)
αℓ

for each

ℓ ∈ Trusted ∪ {k }, and Π′ is a NO instance. Therefore, F does

not simultaneously satisfy the circuits C ∧C ′ and IsIdentity,
and thereby does not satisfy Z .

Case 4 (F is a NO challenge for Π & satisfies IsIdentity):
In this case, we argue that F is a NO challenge for Π′′. We

know that for each ℓ ∈ [m], fℓ = hℓ · (
∑
j bj · sαk [j]) + f ′′

ℓ
, for

19
Note that this crucially relies on the fact that

∏
j Uαk [j]

bj , Iαk and

therefore

∑
j bj · sαk [j] does not evaluate to 0 for the variable assignment v.

15

Confidential Submission to ACM CCS 2020, Due 20 Jan 2020, Orlando, USA Susan Hohenberger, Satyanarayana Vusirikala, and Brent Waters

some polynomial hℓ , where f ′′
ℓ

is the ℓth polynomial in Π′′.

Consider any assignment of variables v such that Fℓ = д
fℓ (v)
αℓ

for all ℓ ∈ Trusted. As (
∏ |sαk |

j=1 Uαk [j]
bj) = Iαk , the polyno-

mial (
∑
j bj · sαk [j]) evaluates to 0 for the variable assignment

v. Therefore, Fℓ = д
f ′′
ℓ
(v)

αℓ
for each ℓ ∈ Trusted. Moreover, F

cannot be an YES instance for Π′′. This is because if there a
variable assignment v such that Fℓ = д

f ′′
ℓ
(v)

ℓ
for each ℓ ∈ [m],

that would mean Fℓ = д
fℓ (v)
αℓ

for each ℓ ∈ [m] which con-

tradicts our initial assumption that F is a NO instance for Π.
Therefore, F does not satisfy the circuits NOT IsIdentity and
C ′′, and thereby does not satisfy Z .

E CORRECTNESS OF RULE 4
In this section, we prove the correctness of Rule 4 (Lemma 4.4).

Proof. We first observe that every valid challenge for Π is

also a valid challenge for Π′ and Π′′, as they all share the same

group structure, the number of elementsm, and the group indi-

cator vectorα . Consider any testing circuitsC ′,C ′′ for Π′,Π′′

respectively and any PPE challenge F = (F1, F2, · · · Fm). We

prove that if F is a YES challenge for Π, it satisfies circuit
Z := ((NOT IsIdentity) ∧ C ′) ∨ (IsIdentity ∧ C ′′), and if F
is a NO challenge for Π, it does not satisfy the circuit Z . We

organize the proof into 4 cases.

Case 1 (F is a YES challenge for Π & doesn’t satisfy IsIdentity):
We first observe that F is also a YES challenge for Π′, as Π
and Π′ have the same set of polynomials { fℓ }ℓ∈[m]

and only

differ in the Trusted set. As a result, F satisfies the circuit

(NOT IsIdentity) ∧C ′, and thus satisfies Z .

Case 2 (F is a YES challenge for Π & satisfies IsIdentity):
In this case, we argue that F is an YES challenge for Π′′. Con-

sider any assignment of variables v s.t. Fℓ = д
fℓ (v)
αℓ
, ∀ℓ ∈ [m].

We know that fℓ = βℓ · h1 + f ′′
ℓ

for some polynomial βℓ ,

where f ′′
ℓ

is ℓth polynomial in Π′′. As F satisfies the circuit

IsIdentity, h1 evaluates to 0 on input variable assignment v.

Consequently, Fℓ = д
fℓ (v)
αℓ

= д
f ′′
ℓ
(v)

αℓ
for each ℓ ∈ [m], and F is

an YES instance for Π′′ and satisfies the circuit IsIdentity∧C ′′,
and thus satisfies Z .

Case 3 (F is a NO challenge for Π & doesn’t satisfy IsIdentity):
In this case, F is not a YES instance for Π′ as Π and Π′ share
the same set of polynomials. Also, there exists an assignment

of InTrusted variables {vi }i ∈InTrusted such that Fℓ = д
fℓ (v)
αℓ

for

all ℓ ∈ Trusted. As F does not satisfy the circuit IsIdentity, h1
does not evaluate to 0 on variable assignment {vi }i ∈InTrusted,
and therefore for every possible value of Fk andh2, there exists

a value of uj such that Fk = д
h1 ·uj+h2
αk . Consequently, there

exists a variable assignment v such that Fℓ = д
fℓ (v)
αℓ
, ∀ℓ ∈

Trusted ∪ {k }, and therefore F is a NO challenge for Π′ and
does not satisfyC ′. Because it does not satisfyC ′ or IsIdentity,

it cannot satisfy Z .

Case 4 (F is a NO challenge for Π & satisfies IsIdentity):
We know that for any ℓ ∈ [m], fℓ = βℓ ·h1+ f

′′
ℓ

for some poly-

nomial βℓ , where f
′′
ℓ

is the ℓth polynomial of Π′′. Let v be any

variable assignment such that Fℓ = д
fℓ (v)
αℓ

for all ℓ ∈ Trusted.
As F satisfies the circuit IsIdentity,h1 evaluates to 0 on variable

assignment v, and Fℓ = д
f ′′
ℓ
(v)

αℓ
, ∀ℓ ∈ Trusted. Furthermore,

F cannot be an YES instance for Π′′. This is because if F is

an YES for Π′′, there exists a variable assignment v such that

Fℓ = д
f ′′
ℓ
(v)

αℓ
= д

fℓ (v)
αℓ

for all ℓ ∈ [m], which contradicts our

assumption that F is a NO instance for Π. Therefore, F is a NO
challenge for Π′′ and does not satisfy (NOT IsIdentity) orC ′′,
thus it cannot satisfy Z .

F QSEARCH: CORRECTNESS AND
EFFICIENCY

We prove the correctness of QSearch algorithm (Theorem 4.5).

Proof. We provide a sketch of how to prove this theorem

by induction on the number of untrusted polynomials and

the total number of monomials in all the polynomials of f .
The critical correctness arguments required have already been

covered for each rule in Lemmas 4.1 to 4.4. When QSearch is

invoked on Π with either zero untrusted polynomials or zero

total number of monomials, it outputs the always accepting

circuit Cacc which is a valid testing circuit. Now suppose the

QSearch algorithm outputs a valid testing circuit or unknown
on every problem Π′ which has at most α number of untrusted

polynomials and at most β total number of monomials in f .
SupposeQSearch outputs a circuitC , unknown on a problem
Π with α+1 untrusted polynomials and at most β total number

of monomials in f . It must have invoked one of the 4 rules.

By Lemmas 4.1 to 4.4 and our induction hypothesis, C is a

valid testing circuit. Similarly, QSearch outputs either a valid

testing circuit or unknownwhen invoked on a problem Π with

at most α untrusted polynomials and β + 1 total number of

monomials in f . By induction, for any Π, if QSearch(Π) does
not output unknown, then it outputs a valid testing circuit for

the PPE problem Π.

Efficiency of QSearch. We now turn to the asymptotic

complexity of the QSearch algorithm. A call to QSearch scans

all the untrusted polynomials to check if any rule is applicable,

and then calls QSearch recursively at most 2 times.

Let us first compute the time taken to scan all the untrusted

polynomials and check if any rule is applicable. Let us denote

the size of a polynomial to be the total number of additions and

multiplications involved in the normal form of the polynomial

(e.g., the size of x2yz + 3z3y3 is 5). Therefore, multiplying 2

polynomials of size s1 and s2 takes O (s1s2) time. Let the maxi-

mum size of all polynomials f in the input be s . Executing any
rule involves computing completion lists followed by check-

ing if 0 lies in the span of certain polynomials. Computing

completion lists ofm polynomials involvesO (m2) polynomial

16

PPE Circuits: Formal Definition to Software Automation Confidential Submission to ACM CCS 2020, Due 20 Jan 2020, Orlando, USA

Input to the Tool
maps G1 * G1 ->GT.

trusted_polys [F1 = x, F2 = x*a, F3 = x*b, F4 = x*c] in G1.

untrusted_polys [F5 = r, F6 = x*r, F7 = a, F8 = a+b*r, F9 =

a*c+d*r] in G1.

Figure 12: Input to the tool on our custom testcase 1.

F5 = I
F1 = I

G10
G3

G11

G12

G6

G13

G14
G15

G4

G16

F7 = I

G17

F9 = I

G18

G19

G20

F8 = F7

G21

G22

G23

F1 = I

G24
G1

G25

Figure 13: The PPE circuit output by our AutoCircuitPPE
tool on Figure 12 testcase

multiplications taking O (m2 · s2) time. Checking if 0 lies in

the span of O (m2) polynomials (number of polynomials in

the completion lists) each having at most O (s2) monomials

involves solving a system ofO (m2 ·s2) linear equations (upper
bound on the number of monomials in the completion list)

each of size O (m2), which takes at most O ((m2 · s2)ω) time,

where nω is the complexity of multiplying two n × n matrices.

Executing Rules 2 and 4 additionally involves checking if an

untrusted polynomial is in the desired format which takes

at most O (s) time. Therefore, applying all the rules to all the

untrusted polynomials takes at most O (m · (ms)2ω) time.

Now let us compute the total number of times the QSearch
algorithm is called recursively. Suppose QSearch is run on

problem Π and suppose it triggers a rule that outputs two

PPE problems Π1 and Π2. (Rules 1 and 2 output only one PPE

problem, but we can treat them as Rules 3 and 4 respectively

in the worst case.) The problem Π1 is obtained by moving an

untrusted polynomial to the trusted set, and the problem Π2

is obtained by substituting some polynomial by zero. Note

that Π2 cannot be equal to the original problem as Rule3 out-
puts ⊥ otherwise, and Rule 4 substitutes some monomial for

zero. Therefore some polynomial of Π2 has at least one lesser

monomial than Π. Let the total number of monomials in all

the polynomials of Π be k . By the above analysis, the QSearch
is recursively invoked at most 2

m+k
times. As each recursive

call takes at most O (m · (ms)2ω) time, the total time taken by

our algorithm is O (m · (ms)2ω · 2m+k) time.

Input to the Tool
maps G1 * G1 ->GT.

trusted_polys [F1 = x, F2 = x*a, F3 = x*b] in G1.

untrusted_polys [F4 = r, F5 = x*r, F6 = a, F7 = a+b*r] in G1.

Figure 14: Input to the tool for our custom testcase 2.

Even though our algorithm has high theoretical complexity,

in Section 5 we show that it runs reasonably fast for many

real-world schemes. This is due to the fact that when we call

the SubstituteZero function to substitute a polynomial with

zero, the resulting problem usually has a much smaller size.

F1 = I

G7

G8

G3

G9

G4

F4 = I

G10

F7 = F6

G11

G12

G13

G14

G1

G15

Figure 15: The PPE circuit output by our AutoCircuitPPE
tool on custom testcase 2 shown in Figure 14

G CUSTOM TESTCASES
We demonstrate AutoCircuitPPE on some custom test cases.

Custom Testcase 1. The input to the tool is described

in Figure 12. The output of the tool is displayed in Figure 17. For

space reasons, we show only the optimized PPE circuit com-

puted by the tool. It is interesting to note that AutoCircuitPPE
utilizes all our 4 rules to construct a PPE circuit. We plot the

PPE circuit in Figure 13.

Custom Testcase 2. The input to the tool is described

in Figure 14. The output of the tool is displayed in Figure 16.

We plot the PPE circuit in Figure 15.

17

Confidential Submission to ACM CCS 2020, Due 20 Jan 2020, Orlando, USA Susan Hohenberger, Satyanarayana Vusirikala, and Brent Waters

Output of the Tool
Trusted set in G1: F0 = 1, F1 = x, F2 = a*x, F3 = b*x,

Untrusted set in G1: F4 = r, F5 = r*x, F6 = a, F7 = a + b*r,

rule 2 applied to F4 = r.

Trusted set in G1: F0 = 1, F1 = x, F2 = a*x, F3 = b*x, F4 = r,

Untrusted set in G1: F5 = r*x, F6 = a, F7 = a + b*r,

rule 1 applied to F5 = r*x. C := e(F5,F0) = e(F1,F4)

Trusted set in G1: F0 = 1, F1 = x, F2 = a*x, F3 = b*x, F4 = r, F5 = r*x,

Untrusted set in G1: F6 = a, F7 = a + b*r,

rule 3 applied on F6 = a. isidentity := F1 = I C := e(F6,F1) = e(F0,F2)

Trusted set in G1: F0 = 1, F1 = x, F2 = a*x, F3 = b*x, F4 = r, F5 = r*x,

F6 = a,

Untrusted set in G1: F7 = a + b*r,

rule 3 applied on F7 = a + b*r. isidentity := F1 = I C := e(F7,F1) =

e(F3,F4)*e(F1,F6)

Trusted set in G1: F0 = 1, F1 = 0, F2 = 0, F3 = 0, F4 = r, F5 = 0, F6 = a,

Untrusted set in G1: F7 = a + b*r,

rule 4 applied on F7 = a + b*r and variable b. isidentity := F4 = I

Trusted set in G1: F0 = 1, F1 = 0, F2 = 0, F3 = 0, F4 = 0, F5 = 0, F6 = a,

Untrusted set in G1: F7 = a,

rule 1 applied to F7 = a. C := F7 = F6

Trusted set in G1: F0 = 1, F1 = 0, F2 = 0, F3 = 0, F4 = r, F5 = 0,

Untrusted set in G1: F6 = a, F7 = a + b*r,

rule 2 applied to F6 = a.

Trusted set in G1: F0 = 1, F1 = 0, F2 = 0, F3 = 0, F4 = r, F5 = 0, F6 = a,

Untrusted set in G1: F7 = a + b*r,

rule 4 applied on F7 = a + b*r and variable b. isidentity := F4 = I

Trusted set in G1: F0 = 1, F1 = 0, F2 = 0, F3 = 0, F4 = 0, F5 = 0, F6 = a,

Untrusted set in G1: F7 = a,

rule 1 applied to F7 = a. C := F7 = F6

Execution time : 1.857338s

List of gates after optimizing the circuit

G1 : e(F5,F0) = e(F1,F4) G2 : F1 = I G3 : e(F6,F1) = e(F0,F2)

G4 : e(F7,F1) = e(F3,F4)*e(F1,F6) G5 : F4 = I G6 : F7 = F6

G7 : NOT G2 G8 : G7 AND G3 G9 : G8 AND G4 G10
: NOT G5 G11 : G5 AND G6 G12 : G10 OR G11 G13 :

G2 AND G12 G14 : G9 OR G13 G15 : G1 AND G14

Figure 16: Output of the tool on the custom testcase 2
shown in Figure 14.

18

PPE Circuits: Formal Definition to Software Automation Confidential Submission to ACM CCS 2020, Due 20 Jan 2020, Orlando, USA

Assigning FID 0 to every unit polynomial 1

Trusted set in G1: F1 = x, F2 = a*x, F3 = b*x, F4 = c*x,

Untrusted set in G1: F5 = r, F6 = r*x, F7 = a, F8 = a + b*r, F9 =

a*c + d*r,

rule 2 applied to F5 = r.

Trusted set in G1: F1 = x, F2 = a*x, F3 = b*x, F4 = c*x, F5 = r,

Untrusted set in G1: F6 = r*x, F7 = a, F8 = a + b*r, F9 = a*c + d*r,

rule 1 applied to F6 = r*x. C := e(F6,F0) = e(F1,F5)

Trusted set in G1: F1 = x, F2 = a*x, F3 = b*x, F4 = c*x, F5 = r, F6

= r*x,

Untrusted set in G1: F7 = a, F8 = a + b*r, F9 = a*c + d*r,

rule 3 applied on F7 = a. isidentity := F1 = I C := e(F7,F1) =

e(F0,F2)

Trusted set in G1: F1 = x, F2 = a*x, F3 = b*x, F4 = c*x, F5 = r, F6

= r*x, F7 = a,

Untrusted set in G1: F8 = a + b*r, F9 = a*c + d*r,

rule 3 applied on F8 = a + b*r. isidentity := F1 = I C := e(F8,F1)

= e(F3,F5)*e(F1,F7)

Trusted set in G1: F1 = x, F2 = a*x, F3 = b*x, F4 = c*x, F5 = r, F6

= r*x, F7 = a, F8 = a + b*r,

Untrusted set in G1: F9 = a*c + d*r,

rule 4 applied on F9 = a*c + d*r and variable d. isidentity := F5 = I

Trusted set in G1: F1 = x, F2 = a*x, F3 = b*x, F4 = c*x, F5 = 0, F6

= 0, F7 = a, F8 = a,

Untrusted set in G1: F9 = a*c,

rule 3 applied on F9 = a*c. isidentity := F1 = I C := e(F9,F1) =

e(F4,F8)

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0, F4 = 0, F5 = 0, F6 = 0,

F7 = a, F8 = a,

Untrusted set in G1: F9 = a*c,

rule 4 applied on F9 = a*c and variable c. isidentity := F7 = I

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0, F4 = 0, F5 = 0, F6 = 0,

F7 = 0, F8 = 0,

Untrusted set in G1: F9 = 0,

rule 1 applied to F9 = 0. C := F9 = I

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0, F4 = 0, F5 = r, F6 = 0,

F7 = a,

Untrusted set in G1: F8 = a + b*r, F9 = a*c + d*r,

rule 4 applied on F8 = a + b*r and variable b. isidentity := F5 = I

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0, F4 = 0, F5 = r, F6 = 0,

F7 = a, F8 = a + b*r,

Untrusted set in G1: F9 = a*c + d*r,

rule 4 applied on F9 = a*c + d*r and variable c. isidentity := F7 = I

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0, F4 = 0, F5 = r, F6 = 0,

F7 = 0, F8 = b*r,

Untrusted set in G1: F9 = d*r,

rule 4 applied on F9 = d*r and variable d. isidentity := F5 = I

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0, F4 = 0, F5 = 0, F6 = 0,

F7 = 0, F8 = 0,

Untrusted set in G1: F9 = 0, rule 1 applied to F9 = 0. C := F9 = I

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0, F4 = 0, F5 = 0, F6 = 0,

F7 = a,

Untrusted set in G1: F8 = a, F9 = a*c,

rule 1 applied to F8 = a. C := F8 = F7

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0, F4 = 0, F5 = 0, F6 = 0,

F7 = a, F8 = a,

Untrusted set in G1: F9 = a*c,

rule 4 applied on F9 = a*c and variable c. isidentity := F7 = I

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0, F4 = 0, F5 = 0, F6 = 0,

F7 = 0, F8 = 0,

Untrusted set in G1: F9 = 0, rule 1 applied to F9 = 0. C := F9 = I

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0, F4 = 0, F5 = r, F6 = 0,

Untrusted set in G1: F7 = a, F8 = a + b*r, F9 = a*c + d*r,

rule 2 applied to F7 = a.

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0, F4 = 0, F5 = r, F6 = 0,

F7 = a,

Untrusted set in G1: F8 = a + b*r, F9 = a*c + d*r,

rule 4 applied on F8 = a + b*r and variable b. isidentity := F5 = I

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0, F4 = 0, F5 = r, F6 = 0,

F7 = a, F8 = a + b*r,

Untrusted set in G1: F9 = a*c + d*r,

rule 4 applied on F9 = a*c + d*r and variable c. isidentity := F7 = I

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0, F4 = 0, F5 = r, F6 = 0,

F7 = 0, F8 = b*r,

Untrusted set in G1: F9 = d*r,

rule 4 applied on F9 = d*r and variable d. isidentity := F5 = I

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0, F4 = 0, F5 = 0, F6 = 0,

F7 = 0, F8 = 0,

Untrusted set in G1: F9 = 0, rule 1 applied to F9 = 0. C := F9 = I

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0, F4 = 0, F5 = 0, F6 = 0,

F7 = a, Untrusted set in G1: F8 = a, F9 = a*c,

rule 1 applied to F8 = a. C := F8 = F7

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0, F4 = 0, F5 = 0, F6 = 0,

F7 = a, F8 = a, Untrusted set in G1: F9 = a*c,

rule 4 applied on F9 = a*c and variable c. isidentity := F7 = I

Trusted set in G1: F1 = 0, F2 = 0, F3 = 0, F4 = 0, F5 = 0, F6 = 0,

F7 = 0, F8 = 0,

Untrusted set in G1: F9 = 0, rule 1 applied to F9 = 0. C := F9 = I

Execution time : 1.882642s

List of gates after optimizing the circuit

G1 : e(F6,F0) = e(F1,F5) G2 : F1 = I G3 : e(F7,F1) = e(F0,F2)

G4 : e(F8,F1) = e(F3,F5)*e(F1,F7) G5 : F5 = I G6 : e(F9,F1)

= e(F4,F8) G7 : F7 = I G8 : F9 = I G9 : F8 = F7 G10 :

NOT G2 G11 : G10 AND G3 G12 : NOT G5 G13 : G5

AND G6 G14 : G12 OR G13 G15 : G4 AND G14 G16 :

G11 AND G15 G17 : NOT G7 G18 : G7 AND G8 G19
: G17 OR G18 G20 : G9 AND G19 G21 : G5 AND G20

G22 : G12 OR G21 G23 : G2 AND G22 G24 : G16 OR G23

G25 : G1 AND G24

Figure 17: Output of the tool on the test case in Figure 12

19

	Abstract
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Pairings

	3 Defining PPE Circuits
	3.1 A Few Shorthand Notations for Circuits

	4 Searching for a PPE Testing Circuit
	4.1 Review on Computing Completion Lists for a List of Polynomials
	4.2 Rules for Moving Polynomials into the Trusted Set
	4.3 Applying the Rules

	5 Implementation
	5.1 AutoCircuitPPE Implementation
	5.2 A Detailed Example for the Dodis VRF (a HV19 "gray area" scheme)
	5.3 Case Studies
	5.4 Open Problems

	6 Conclusion
	Acknowledgments
	References
	A Shorthand Notations for Circuits (Cont'd from Section 3.1)
	B Correctness of Rule 1
	C Correctness of Rule 2
	D Correctness of Rule 3
	E Correctness of Rule 4
	F QSearch: Correctness and Efficiency
	G Custom Testcases

