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ABSTRACT

Pairing-based cryptography is widely used for its efficiency
and functionality. When designing pairing-based schemes,
one common task is to devise algorithms for verifying a set
of untrusted group elements with respect to a set of trusted
group elements. One might be searching for a verification
algorithm for a signature scheme or a method for verifying
an IBE/ABE private key with respect to the IBE/ABE public
parameters. In ACM CCS 2019 [45], the AutoPPE software
tool was introduced for automatically generating a set of pair-
ing product equations (PPEs) that can verify the correctness
of a set of pairing group elements with respect to a set of
trusted group elements. This task is non-trivial. Some schemes
(e.g., those based on dual system encryption) provably do not
support any efficient algorithm for verifying the private keys
with respect to the public parameters. Other schemes (e.g., the
Boyen-Waters anonymous IBE) were left in a gray area by [45]
- no conjunction of PPEs was known for testing them, but no
proof of untestability either.

In this work, we significantly generalize and expand on the
foundation of [45]. Specifically, we consider a larger space of
verification algorithms, which we call PPE Circuits, to verify a
set of untrusted group elements with respect to a set of trusted
group elements. Informally, a PPE Circuit supports AND, OR,
NOT and PPE gates, thus capturing all of the capability of
AutoPPE while novelly enabling the verification algorithm to
include arbitrary logic (as opposed to only conjunctions of
PPEs). Our contributions include a formalization of PPE cir-
cuits, a provably-correct algorithm for searching for a PPE cir-
cuit given a description of the trusted and untrusted elements
to be verified, and a new open-source software tool! called
AutoCircuitPPE that realizes this algorithm. AutoCircuitPPE
was tested on a host of test cases and it output PPE circuits
for all “gray area” schemes left unresolved in [45] as well as
several new test cases, usually in 100 seconds or less.

CCS CONCEPTS
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1 INTRODUCTION

Cryptography is a powerful tool for securing digital systems,
but its design and security analyses are often both complex

! Available at https://github.com/JHUISI/auto-tools
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and tedious, where a single error can cause catastrophic fail-
ure. This is an ideal situation for employing computers to
help humans improve the speed, accuracy, and design of cryp-
tographic implementations. Indeed, there has already been
significant success in this area. A growing suite of software
tools, e.g., [6-8, 16—18, 20, 20—22, 25, 45], have demonstrated
that many cryptographic tasks can be greatly improved and/or
simplified with computer aid. These tasks typically fall into
one of three categories: (1) designing a scheme, (2) generating
a security proof, or (3) verifying security proof. In this work,
we focus on building an automated tool that helps with the
first task - designing a scheme.

Like many prior works, we focus on the popular pairing-
based algebraic setting. The setting consists of groups G1, G
and GT of prime order p, and a pairing function which is an
efficient map e : G; X Go — Gr, such that for all g € Gy,
h € Gy and a,b € Z,, it holds that e(g%, h®) = e(g, h)?®.
Following [42], a pairing product equation (PPE) over variables
Z,{X;}m {Yi}?:1 is an equation of the form

i=1
n m m n

Z- ]_! e(Ai,Yi) - H e(Xi, Bi) - H H e(X;, Yj)Vi =1,
1= 1= =1 j=

where A;,X; € G1,B;,Y; € G2, Z € GT,yi5 € Zyp.

Pairing Element Verification is Useful but Non-Trivial. When
designing pairing-based schemes, one common task is that
of figuring out how to verify one or more group elements
with respect to another set of elements using the group oper-
ations and the pairing function. One example is verifying a
signature with respect to a message and public key. Another
example is verifying an IBE private key with respect to the
identity and public parameters. This is useful when designing
new structure-preserving signature schemes [1], accountable
authority IBE [39, 40] or oblivious transfer from blind IBE [41].

Surprisingly, not all IBE schemes have private keys that can
be verified from the identity and public parameters [45]; mak-
ing this problem non-trivial. The Waters dual system IBE [53]
is one such example [45].2

Our Results in the Context of Prior Work. The goal of this
work (and past works [19, 45]) is realizing a tool that on in-
put a description of trusted and untrusted elements outputs
either (1) an algorithm for verifying the untrusted elements
with respect to the trusted elements or (2) a message unknown
(meaning that the tool failed to find a verification algorithm.)
The correctness requirement on any verification algorithm
output by the tool is that when given properly distributed

%In the proof of [53], there are real and semi-functional private keys, with no
overlap between these key spaces. The proof uses the fact that, under standard
complexity assumptions, no efficient adversary can distinguish between a real
or a semi-functional private key. Thus, the existence of a polynomial-time
verification algorithm for real private keys would contradict this proof.
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trusted elements and a set of untrusted elements, it must out-
put 1 if the untrusted elements are properly distributed and 0
otherwise. (There are no requirements on the tool when the
trusted parameters are incorrectly distributed. E.g., when the
public parameters are not honestly generated.)

To date, tools of this form are comprised of one or more rules
for when an untrusted element can be moved into the trusted
set. Our tool uses a set of four logic rules (see Section 4). Logic
similar to Rule 1 first appeared in [19], while that of Rule 2 was
introduced in [45]. Rules 3 and 4 are novel to this work and we
prove their correctness in Section 4. As we will see, these new
rules allow us to generate verification algorithms that perform
arbitrary logic over PPEs, as opposed to only conjunctions
of PPEs considered in [19, 45]. This expressiveness, in turn,
allows the tool to output multiple solutions on which prior
tools output unknown. We now describe the first two rules in
the context of prior work and then present the new ones.

In 2015, Barthe, Fagerholm, Fiore, Scedrov, Schmidt and Ti-
bouchi [19] built an automated tool to design optimal structure-
preserving signatures in Type II> pairing groups. Their tool
generates thousands of candidate public key and signature
pairs, and then for each pair searches for a corresponding veri-
fication algorithm expressed as the conjunction of PPEs. They
weed out insecure schemes using the GGA tool [18]. Their
searching algorithm uses a logic similar to our Rule 1 in Sec-
tion 4, which checks if an untrusted element can be verified
using one PPE and pairing only with a fixed generator. E.g.,
an untrusted element F € G1 can be moved to the trusted set,
if e(F, g2) = A for some A that can be computed solely from
the trusted elements and g is the generator for Gy.

Generalizing this approach beyond signatures, the AutoPPE
software tool [45] takes in a description of any set of trusted
and untrusted elements and outputs either a verification al-
gorithm that consists of a set of pairing product equations
(PPEs) or the message unknown. This tool executes quickly
and worked well for many signature, VRF, and IBE test cases.
It uses logic similar to our Rule 1 and Rule 2. Rule 2 in Section 4
(as an oversimplification) moves an untrusted element F = g“
into the trusted set if the variable u does not yet appear in any
element in the trusted set.

AutoPPE was not able to produce verification algorithms
for the Boyen-Waters anonymous IBE [30], the Bellare-Kiltz-
Peikert-Waters IBE [24] or the Dodis verifiable random func-
tion [34]. This was very curious and unsatisfactory. While
it was possible that the IBE schemes might not have testable
private keys (although we later discovered that they do?),
Dodis [34] provides an algorithm for verifying his VRF proofs,
so why couldn’t AutoPPE find this algorithm? The answer is:
it needed broader rules and support for arbitrary logic.

In particular, prior works [19, 45] allow an element F to be
moved to trusted if it can be paired with a generator (in G; or
Gg) and tested against an element in A € Gt computable from
the trusted set, e.g., e(F, g2) = A. Whereas this work will allow

3See Section 2.1; in the Type Il setting, there exists an efficient isomorphism
from G; to G or from G to G; but not both.

4We had to use our tool to find these answers. We were not aware of any
known algorithms for verifying the private keys of [24, 30] and we were not
able to find one by hand for the Boyen-Waters IBE [30].
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an element to be paired with a second element B computable
from the trusted set, e.g., e(F,B) = A, if B # 1 (and this if
introduces the need for broader logic). Intuitively, schemes that
require this more general pairing test, such as [24, 30, 34], are
one class of schemes for which the new tool is an improvement.

PPE Circuits. In this work, we broaden the search rules and
develop a tool that can automatically find verification algo-
rithms that support arbitrary logic (in the form of AND, OR
and NOT gates) over PPEs, solving an open problem from [45].
The new tool called AutoCircuitPPE automatically searches
for a verification algorithm expressed as a PPE Circuit (see Sec-
tion 3 for a formalization and Figure 11 for a picture example).
Informally, a PPE Circuit can be thought of as a circuit with
AND, OR and NOT gates where some inputs to these gates
come from the evaluation of certain PPEs. The requirement
on any PPE Circuit output by the tool is that given properly
distributed trusted elements and a set of untrusted elements,
it must output 1 if the untrusted elements are properly dis-
tributed and 0 otherwise. (That is, we require perfect correct-
ness.) The search space of PPE Circuits is much larger than
that of only the conjunction of PPEs. This makes this problem
both more interesting and more challenging. But the effort
was worth it: as described in Section 5, AutoCircuitPPE can
find verification algorithms for the Boyen-Waters anonymous
IBE [30], the Bellare et al. IBE [24], the Dodis VRF [34] and
custom test cases — on which AutoPPE output unknown. This
demonstrates the power of supporting arbitrary logic.

Building an Automated Tool for PPE Circuits. The heart of
AutoCircuitPPE is a recursive searching algorithm that, at ev-
ery step, tries to move an untrusted element into the trusted set
and (possibly) adds some logic and/or PPE to the verification
algorithm (PPE Circuit). At each step, it checks if any of our
four logic rules apply. If at any point, no rules are applicable,
then the tool outputs unknown. Once all elements are trusted,
it outputs the PPE Circuit.

We already covered Rules 1 and 2. Informally, Rule 3 is a
generalization of Rule 1, where an untrusted element F € Gy
can be moved to the trusted set, if e(F, B) = Afor some A € Gt
and B € Gy that can be computed solely from the trusted
elements. However, allowing B instead of only g creates an
issue that must be handled carefully. What if B evaluates to gg?
The PPE e(F, B) = A might then hold regardless of the value
of F. To deal with this, our verification algorithm must be able
to testif B = gg, If the answer is no, then the PPE e(F, B) = A
can be used to verify F. If not, then it cannot, but one can
substitute gg = 1 for B anywhere that it appears and then
continue searching for a way to verify the simplified instance.
This rule is necessary for verifying the [24, 30, 34] test cases.

Similarly, Rule 4 is a generalization of Rule 2, where (we are
oversimplifying here) an element F can be moved to trusted
if F = g{”'whz, where hy may not yet be computable using
elements from the trusted set, but h; is computable from the
trusted set, and u is not yet used in any element in the trusted
set. We must deal with the issue when h; = 0 and the veri-
fication algorithm must test for this and branch in its logic
accordingly. All of the [24, 30, 34] test cases also required this
rule.
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In Section 5, we discuss the 29 test cases we explored for
AutoCircuitPPE. AutoCircuitPPE on Boyen-Waters [30] re-
quired all four rules to output a PPE Circuit with 27 PPEs
and 124 boolean gates. To the best of our knowledge, this
is the first time any verification algorithm for verify-
ing Boyen-Waters anonymous IBE private keys with re-
spect to the identity and public parameters has been dis-
covered. The software took less than 19 seconds to find this
verification algorithm, which we were unable (after hours
of trying) to find by hand. The most costly verification algo-
rithm to uncover automatically was that for the Lysyanskaya
VRF [47] requiring almost 110 seconds. There is provably no
PPE Circuit for the Waters dual system IBE [53]; on this input,
AutoCircuitPPE ran for 105 seconds before giving up and out-
putting unknown. Our test cases showed that this new tool is
demonstrably more comprehensive in its coverage than prior
tools, while still efficient enough for easy use.

1.1 Related Work

Our work builds on an impressive collection of prior work
in computer automation for cryptography. We highlight a
selection here. For more, we refer the reader to a recent survey
of computer-aided cryptography by Barbosa et al. [15].

We previously discussed the progress of Barthe et al. [19]
and Hohenberger-Vusirikala [45] from which we build upon.
Additionally, we use the Generic Group Analyzer (GGA) tool
of Barthe et al. [18], which analyzes cryptographic assump-
tions in the generic group model, and was extended to handle
unbounded assumptions by Ambrona et al. [14].

Other works in computer-aided cryptographic design in-
clude: AutoBatch [8, 9] (for batching the verification of PPEs),
AutoStrong [7] (for compiling a signature scheme secure un-
der the standard definition into one that is strongly secure),
AutoGroup+ [6, 7] (for translating a Type-I pairing scheme
into a Type-III pairing scheme; IPConv [2, 4] is an alternative
method, although not open source at this time). Ambrona et
al. [13] showed how to apply computer-aided reasoning to
the design of attribute-based encryption systems. In the pri-
vate key setting, there are interesting automation results for
blockciphers [48] and authenticated encryption [44].

There are many great tools for automating proof genera-
tion or verification, such as Cryptoverif [25], CertiCrypt [21],
EasyCrypt [17] and AutoG&P [22]. In 2019, researchers im-
pressively showed how to use EasyCrypt to machine-check a
security proof for the domain management protocol of Ama-
zon Web Services’ KMS (Key Management Service) [10] and
to verify cryptographic standards such as SHA-3 [12]. These
tools were also used to verify proofs for key exchange proto-
cols [16, 33], MPC protocols [43], commitment schemes [49],
software stacks [11] and protocols in the UC framework [33].
Barthe et al. [22] provided a tool that translates the proofs
output by AutoG&P into a format verifiable by EasyCrypt and
similarly Akinyele et al. [5] showed that the proofs output by
AutoBatch can be automatically verified by EasyCrypt. The
AutoLWE tool [20] semi-automatically proves the security of
cryptographic constructions based on Learning with Errors.

Confidential Submission to ACM CCS 2020, Due 20 Jan 2020, Orlando, USA
2 PRELIMINARIES

We define the algebraic setting and notation used in through-
out this work. We let [1, n] be shorthand for the set {1,...,n}.
We use v to denote a vector and v; to denote the i-th ele-
ment. For a vector v of length n and a subset U C [1,n], we
denote vV as the set of elements v; for i = 1,...,n where
i € U. Similarly vU denotes the subset of elements v; for
i =1,...,n where i ¢ U. Let us denote the set of pairing
group identifiers {1, 2, T} by 7. Let x, y be polynomials over
variables in (u1, ..., up), then by x = y, we mean that x and y
are equivalent polynomials.

2.1 Pairings

Let Gy, G2 and Gt be groups of prime order p. A map e :
G1 X G2 — Gr is an admissible pairing (also called a bilinear
map) if it satisfies the following three properties:

(1) Bilinearity: for all g1 € Gy, g2 € Gz, and a,b € Zy, it
holds that e(g%, h?) = e(g?, h?) = e(g, h)?®.

(2) Non-degeneracy: if g1 and g are generators of G; and
@y, resp., then e(g1, g2) is a generator of Gr.

(3) Efficiency: there exists an efficient method that given
any g1 € G and g2 € Gy, computes e(g1, g2)-

A pairing generator PGen is an algorithm that on input a
security parameter 14, outputs the parameters for a pairing
group (p, g1, 92, 91, G1, G2, GT, €) such that Gy, G2 and Gr
are groups of prime order p € ©(2%) where g; generates Gy,
g2 generates Gy and e : G1 XGy — Gr is an admissible pairing.
The above pairing is called an asymmetric or Type-III pairing.
In Type-II pairings, there exists an efficient isomorphism ¢
from G to Gy or such an isomorphism ¢ from G; to G1 but not
both. In symmetric or Type-I pairings, efficient isomorphisms
Y and ¢ both exist, and thus we can consider it as though
G1 = G;. In this work, we support any of these types of
pairings. We will typically refer to Type III pairings in our
text, since they are general and typically the most efficient
choice for implementation, but our software tool in Section 5
can handle any type. We represent identity elements of the
groups G1, G, Gt by I3, I, and IT respectively.

Given pairing parameters (p, 91,92, 97,G1, G2,Gr, €), we ex-
tend prior definitions [42, 45] to define a pairing product equa-
tion over variables Z, {X;}" ,{Y;}I_ as an equation of the
form

o Z-I17, e(A Yi) TTZ e(Xi, Bi)-TT72, T17, e(Xi, Yp)¥e
=1, where A;,X; € G1,B;,Y; € G2, Z € Gr.,yij € Zp.
(This is the traditional definition.)

e A- H:ZIXIY’ =1, where A, X; € Gy,y;i € Zp.

e A-T1L, Yl.Y‘ =1, where A,Y; € Ga,y; € Zp.

The second two PPE formats do not enable any additional
functionality over the traditional definition, but they will later
be useful for obtaining more efficient identity tests. We some-
times rearrange the terms of a PPE to improve readability. As
we will use it later, we observe that under the above definition,
a PPE can be employed as an identity test in groups Gi, Gy
or G, either for a single element or according to any of the
above combinations of products and exponents.
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3 DEFINING PPE CIRCUITS

We introduce and formally define PPE circuits. We begin with
the notion of a PPE problem instance [45].

Definition 3.1 (PPE Problem Instance [45]). A pairing product
equation (PPE) problem instance I consists of °

e pairing parameters G =(p,g1,92.97.G1, G2,Gr.€),

e positive integers n, m,

e multivariate polynomials f = (f1, ..., fm) over n vari-
ables in Zp denoted u = (uq,...,un),

e a sequence of pairing group identifiers in 7 = {1,2,T}
denoted & = (a1,...,am),

e aset Trusted C [1,m].

The pairing parameters above can optionally indicate the
type of pairing group (e.g., Type L, II or IIl); unless otherwise
specified we assume Type III pairings. Throughout the paper,
we use the notation InTrusted(IT) to denote the set of vari-
ables that appear in the Trusted set of polynomials of IT i.e.,
InTrusted(IT) = U;cTrysted { variables used in f;} € u. We sim-
plify the notation and use InTrusted whenever the problem
instance II is implicit.

Following [45], we map cryptographic schemes into PPE
problem instances by rewriting the scheme using a single
group generator, when possible. For example, let g1, g2, g7
be group generators of groups Gi, Gz, Gt respectively. Let
a group element in the scheme be h* - g7 - gg . We rewrite
this element as g; Zraty, by representing h = g5 for a fresh
variable z. Consequently, each group element in the scheme
could be represented by their group indicator (G1/G2/GT)
along with the polynomial present in the exponent.

Definition 3.2 (PPE Challenge [45]). LetIl = (G,n,m,f,u, «,
Trusted) be a PPE problem instance as in Definition 3.1. Let
F = (Fi,...,Fm) be comprised of pairing group elements,
where each F; is in group Gy, . F is called a challenge to PPE
instance II. Challenges are classified as:

o F = (F,...,Fn) is a YES challenge if there exists an
assignment to variables u = (u1,...,up) € Zz such

that for all i, F; = gﬁi(“).

o F=(Fy,...,Fy)isaNO challengeifitisnota YES chal-
lenge andthere exists an assignmenttou = (uy, ..., u,)
€ Zj, such that for all i € Trusted, F; = ggi(“).

o F = (Fy,...,Fny)isan INVALID challenge if it is neither
a YES nor NO challenge.

Following [45], we can view a YES challenge as meaning
that both the trusted and untrusted elements are distributed
as they should be, whereas in a NO challenge the trusted
elements are correctly formed, but the untrusted ones are not.
In an INVALID challenge, the “trusted” elements are not drawn
from the proper distribution (e.g., the public parameters are not
correct), and therefore, we ignore this case since verification
requires correctness of the elements we trust.

The goal of our work will be to (automatically) devise cir-
cuits that take as input a PPE challenge (recall Definition 3.2)

5Unlike the definition of [45], we do not include the set Fixed in the PPE

Problem Instance definition as we implicitly define this set of variables (called
InTrusted) as those that appear in elements corresponding to the Trusted set.
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and output 1 for all YES challenges and 0 for all NO challenges.
That is, where prior work [45] allowed only the conjunction
of PPEs to test the well-formedness of the untrusted elements;
we will now combine the power of PPEs with arbitrary logic.
Informally, the PPE circuit takes m group elements as input
and outputs a single bit. Like regular circuits, each gate of the
circuit could be an AND/OR/NOT gate. In addition, we also
allow the circuit to have PPE gates. Each PPE gate has some
PPE P (over formal variables Fi, Fy, - - - , F,, denoting the m
input wires of the PPE circuit) hardcoded in it and outputs a
boolean value representing whether the m input group ele-
ments satisfy P. Informally, in order to evaluate a PPE circuit
on given m group elements (x1, x2, - - - X, ), we first evaluate
each PPE gate on the given input (check whether the PPE is
satisfied by substituting F; = x;Vi € [m]), and then evaluate
the boolean circuit logic to obtain the final output. As observed
in Section 2.1, PPEs can also capture identity tests as well as
be a hardwire for 0 (the equation that is never satisfied) or 1
(the equation that is always satisfied).

We now establish some formal notation for our specialized
PPE circuits adapting the more general circuit notation of
Bellare, Hoang, and Rogaway [23] and Garg, Gentry, Halevi,
Sahai and Waters [36].

Definition 3.3 (PPE Circuit). A PPE circuit Cisatuple (G, m, @,
N, Gates, out, GateType, A, B), where

* G = (p,91,92,97,G1,G2,Gr, €) establishes the alge-
braic setting,

e integer m specifies the number of group elements in
the circuit input. We will refer to these as Inputs =
{1,...,m}.

o the vector & = (a1,...,am) is a sequence of pairing
group identifiers in 7 = {1, 2, T} for the input elements,

e integer N is the number of gates in the PPE circuit,

e Gates={m+1,...,m+ N}. We will refer to Wires =
Inputs U Gates.

e out is the integer in Gates denoting the output gate.
Unless otherwise stated, out = m + N.

e GateType : Gates — {(PPE, ), AND,OR,NOT} is a
function that identifies the gate functionality. In case
of PPE gates, the description includes a circuit § with
m Inputs wires whose logic forms that of a PPE over
variables Fy, . .., Fp, where each F; € G, as specified
by « and the single output wire of the PPE carries a bit
representing whether or not the input satisfies the PPE.

e A: Gates — Wires and B : Gates — Wires are func-
tions. For any gate AND/OR/NOT g, A(g) identifies
g’s first incoming wire. For any AND/OR gate g, B(g)
identifies ¢g’s second incoming wire. We require that
g > B(g) > A(g), ignoring B(g) when undefined. Recall
that the input wires for all PPE gates are the Inputs.

This describes a circuit taking as input m group elements
and outputting a single output on wire out. We now describe
how to evaluate the above circuit.

Definition 3.4 (PPE Circuit Evaluation). A PPE circuit evalu-
ation algorithm Eval : C X (x1,...,xm) takes as input a PPE
circuit C = (G, m, a, N, Gates, out, GateType, A, B) together
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with an m-element PPE challenge (x1, . . ., X ) which must be
consistent with (G, er) (i.e., x; € Gg,). The algorithm outputs
a bit in {0, 1}.

Here we describe a “canonical” evaluation algorithm. The
input group elements (x1, - - -, x,,) are assigned to the m in-
put wires. For each gate g € Gates (in the increasing order
of g), compute sy as follows according to the description of
GateType(g):

o if (PPE, §8), then evaluate the PPE f using the assign-
ment to variables in (Fy, ..., F). If the PPE is satisfied,
then set sg =1 Otherwise, set sg = 0.

e if AND, then sg = s4(g) A SB(g)-

o if OR, then sy = s4(4) V SB(g)-

e if NOT, then Sg = TSA(g)-

This algorithm outputs seyt. For the AND, OR and NOT gates,
by the rules of the circuit description, s4(4) and sp4) will be
defined before they are used.

The above conditions guarantee that the circuit does not
have any loops. While we chose to have AND, OR and NOT
gates, this is somewhat arbitrary. We could have chosen only
NAND or allowed gates with larger fan-in, etc. We abuse
notation and let C(x) denote Eval(C, x) i.e., evaluation of the
circuit C on input x.

We next extend the notion of PPE testability and testing
sets [45] to apply to PPE circuits.

Definition 3.5 (PPE Circuit Testable and Testing Circuits). A
PPE problem instance IT = (G, n, m, f, u, &, Trusted) is said to
be PPE circuit testable if and only if there exists a PPE circuit

e C(x) = 1 for every YES challenge x,
e C(y) = 0 for every NO challenge y.

There are no conditions on the behavior of C for INVALID
challenges. For any PPE problem instance II, we call such
a PPE circuit C a testing circuit. A testing circuit for a PPE
problem instance need not be unique.

3.1 A Few Shorthand Notations for Circuits

Useful shorthand is informally defined here with formalisms
in Appendix A. We use MakeCircuit(G, m, r, P) to define a
PPE circuit that computes the output of a PPE P and use Cacc
to denote the circuit which always outputs 1.

Consider any two PPE circuits C; and C, with the same
group structure G, number of inputs m and group identifiers
. When building our circuits, we will use shorthand notation
like (C; AND C3), (C; OR C3) or (NOT Cy). Informally, we
use C; AND Cjy to denote the circuit obtained by ANDing the
output wires of C; and C; (i.e., connecting output wires of
C1 and Cy as inputs to a fresh AND gate, and considering the
output wire of the fresh AND gate as output wire of the entire
circuit). Similarly, we use the notation C; OR Cy to denote the
circuit obtained by ORing the output wires of C; and Cy. We
use NOT C; to denote the circuit obtained by connecting the
output wire of C; to a fresh NOT gate and then considering the
output wire of the NOT gate to be the output wire of the entire
circuit. Furthermore, when the circuits share common inputs
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(e.g., same PPE challenge elements), we will make sure the
final circuit has only the appropriate number of input wires.

4 SEARCHING FOR A PPE TESTING
CIRCUIT

We now describe an algorithm to search for a testing circuit Q
for a PPE problem. The input is a PPE problem IT and there are
two possible types of outputs. Either it will output that IT is PPE
circuit testable and, to confirm this, it will produce one testing
circuit Q or it will output the special response unknown. In the
latter case, NO determination about whether I is PPE circuit
testable or not can be concluded. This algorithm has one-sided
correctness, where the guarantee for this algorithm is that if
it outputs that IT has testing circuit Q this will be true.

The algorithm proceeds in a sequence of steps, wherein
each step it (attempts to) “reduce the complexity” of its input,
by adding a polynomial f; to the set Trusted. So far, this is
similar to AutoPPE [45], however, here we must expand the
number and type of rules for when a polynomial can be moved
to Trusted. In the end, if we can obtain Trusted = [1, m], then
we will have found a testing circuit. If at any point, Trusted #
[1,m] but none of the movement rules can be applied, the
algorithm terminates and outputs unknown.

4.1 Review on Computing Completion
Lists for a List of Polynomials

Our rules will make use of completion lists in the pairing
setting as described by Barthe et al. [18]. Consider any list
f = [fi,..., fx] of polynomials along with a sequence of
identifiers a1, - - , ag, where a; € 7 = {1,2,T} for all i < k.
Foranyi € I,lett; = {fj : @j = i}. We now recall the notion
of completion CL(f) = {s1, s2,s7} of the list f of polynomials
with respect to a group setting [18]. Intuitively, CL(f) is the
list of all polynomials that can be computed by an adversary
by applying pairing and isomorphism operations, when he
has access to the elements in group G; corresponding to the
polynomials in t; for i € I.

Reception List
Input: Pairing information G, Lengths |t;|, |t2], |tT|
Output: Reception listsry, 1o, rT

(1) foreachi € {1, 2, T}, initialize r; with |t; | number
of fresh variables, i.e., let r; = {w; 1, -+ -, wi ;| }

(2) If an isomorphism ¢ : G; — Gy exists, then ry :=
roUr;

(3) If an isomorphism ¢ : G, — G; exists, then r; :=
riurp

(4) rr:=r7 U {hihy : hy €11, hy €12}

Figure 1: Algorithm to find reception list of a list of

polynomials
e now describe an algorithm to compute the completion

CL(f), which is taken from [18] and handles pairing groups.
The algorithm proceeds in two steps. In the first step, it com-
putes the reception lists {r;};c 7. The elements of the reception
lists are monomials over variables w; j for i € 7, j € |t;| and
are computed as shown in Figure 1.
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The monomials characterize which products of elements in
t the adversary can compute by applying pairing operations.
The result of the first step is independent of the elements in
the lists t and only depends on the lengths of the lists. In the
second step, it computes the actual polynomials from the recep-
tionlists as s; = [my(t),...,mr, ()] for [my1,...,mp,|] =15,
where every my is a monomial over the variables w; ; and
my (t) denotes the result of evaluating the monomial my by
substituting w; ; with t;[j] fori € 7 and j € [t;].

Description of Rule 1
Input: A PPE problem I = (G, n, m, f, u, &, Trusted) and
an integer k € [1, m].
Output: A PPE circuit C and a PPE problem IT’, or the
symbol L (meaning could not apply rule).
Steps of Rule1(IL, k):

(1) If k € Trusted or f € f has variables not in
InTrusted, then abort and output L.

(2) Let the formal variables Fy, Fy, - - -, Fy, represent
group elements of any PPE challenge correspond-
ing to II. These formal variables also represent the
input wires of the PPE circuit C being constructed.

(3) Compute completion lists {sq, s, sT} =
CL(fTrusted) For any i € 7 and j < |sil,
let S;[j] = g3V, and let Uj[j] be the pairing
product term computing S;[j] in terms of formal
variables Fy, « - -, Fp,.

(4) If there exists a constant vector a =
(ay, -+, a|sak|) with entries in Z, such that

fr = lesflkl aj - Sy [j], then set the PPE

IsT]
A= UrlY = B
j=1

J

s

~

If ar € {1, 2}, Ais not set, and there exists a con-
stant vectora = (ay, - - -+ , ajs;|) With entries in Z,,

such that f; = Z‘J.Sgll aj -st[j], then create the PPE

IsT| .
A= ﬁ Urljl% = e(Fr, 92) ifage =1
a1 e(gi, Fr) ifag =2

(6) If A is set, output the PPE circuit C =
MakeCircuit(G, m, @, A) and the PPE problem
Il = (G, n, m, f, u, &, Trusted U {k}), else out-
put L.
Note that for any i € 7, computing a coefficient
vector a such that fi. = Z‘]sz"l a; -s;[j]is equivalent
to checking if the polynomial 0 belongs to the span
of polynomials s; U {fx }.

Figure 2: Procedure for moving certain polynomials f;.
with all InTrusted variables to Trusted set

4.2 Rules for Moving Polynomials into the
Trusted Set

We now describe five rules for reducing the complexity of
a PPE instance, whereby we mean reducing the number of
elements represented by polynomials not in the set Trusted.
The first two rules are closely derived from [45].The more

Susan Hohenberger, Satyanarayana Vusirikala, and Brent Waters

complex third, fourth and fifth rules are novel to this work
and require the AND/OR/NOT/PPE logic we introduced.

4.2.1 Rule 1: Simple move a polynomial with all InTrusted
variables to Trusted set. In Figure 2, we adapt Rule 1 from [45]
to output a PPE circuit. Given a PPE problem IT = (G,n, m, f,
u, &, Trusted) and an index k € [m], Rule 1 can possibly be
applied if k ¢ Trusted and the polynomial f;. € f consists only
of variables u; € InTrusted (these conditions are necessary,
but not sufficient).

LEMMA 4.1 (CORRECTNESS OF RULE 1). LetIl = (G, n,m,f,u,
o, Trusted) be a PPE problem instance as in Definition 3.1 and
let k € [m)]. Suppose L# (C,11") = Rule1(IL, k). Then, for every
testing circuit C’ for I, it holds that C AND C’ is a testing
circuit forII.

The proof of the lemma follows from the correctness of the
similar Rule 1 in [45].° We include this proof in Appendix B.

4.2.2 Rule 2: Simple move of a polynomial with exactly
one non-InTrusted variable to Trusted set. In Figure 3, we
recall Rule 2 from [45]; it does not need any changes for our
purposes. Given a PPE problem IT = (G, n, m, f, u, &, Trusted)
and indices j € [n] and k € [m], Rule 2 can possibly be applied
if j ¢ InTrusted, k ¢ Trusted and the polynomial f; € f is of
the form c - u]?d + h, where the variable u; € u, the polynomial
h contains only variables in InTrusted, constant ¢ € Z;‘,, and
constant d € Zj, s.t. d is relatively prime to p — 1.

Description of Rule 2 [45]
Input: A PPE problem I = (G, n, m, f, u, &, Trusted) and
integers j € [n] and k € [m].
Output: A PPE problem IT” or L (meaning could not apply
the rule).
Steps of Rule2(I1, j, k):

(1) If polynomial fz € f is of the form ¢ - u]d + h, where
e j ¢ InTrusted, k ¢ Trusted,
e the polynomial & contains only variables in

InTrusted,

o the constant ¢ € Z;, and
o the constant d € Z,, is relatively prime to p — 1,
then proceed to the next step. Otherwise, abort and
output L.

(2) Output I’ = (G, n, m, f, u, &, Trusted U {k}).

Figure 3: Procedure for moving certain polynomials f;
containing exactly one non-InTrusted variable to Trusted

LEMMA 4.2 (CORRECTNESS OF RULE 2). LetIl = (G, n,m,f,u,
a, Trusted) be a PPE problem instance as in Definition 3.1, j €
[n] and k € [m]. Suppose L# 11’ = Rule2(IL, j, k). Then, every
testing circuit of I’ is also a testing circuit for IL.

The proof follows from the correctness of the similar Rule
2 in [45]. For completeness, we include it in Appendix C.

6 Although [45] proved the correctness property for a weaker notion of PPE
Testability, the proof can be easily adapted to our setting.
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Description of SubstituteZero Algorithm
Input: A PPE ProblemII = (G, n, m, f, u, &, Trusted) and

polynomial A.
Output: A PPE Problem IT'.

e Construct vector ' of m polynomials as follows.
For each k € [m], if fr = h; - h + hy for some
polynomials h; and hg, such that (1) h; does not
have h as a factor, and (2) the number of monomials
in hy is less than f; when expressed in canonical
form, then set flé = hy. Otherwise, set f,: = fk.

e Output Il = (G, n, m, f’, u, &, Trusted).

Figure 4: Algorithm for updating a PPE problem in-
stance when a specified polynomial 4 is set to 0.

4.2.3 Rule 3: More general move of a polynomial with
all InTrusted variables to Trusted set. Rule 3 is a novel ex-
tension of Rule 1 (see Figure 2) for moving an untrusted polyno-
mial fi to the trusted set. Let us first observe some drawbacks
in Rule 1 when the untrusted polynomial is in the group G
or G,. For simplicity, let us consider execution of Rule 1 on
input (II, k) such that a; = 1. The Rule 1 algorithm explores

a space of PPEs of the form e(Fy, g2) = Hjl.s:Tll Ur[j]% where
constants a; are in Z. In other words, Rule 1 only explores
PPEs where the untrusted element Fy is paired with the gen-
erator of Gy. Hohenberger and Vusirikala [45] observed that
such a small class of PPEs appears insufficient to validate
the proofs of the Dodis VRF [34] or the private keys of the
Boyen-Waters IBE [30]. One could think of a natural exten-
sion of Rule 1 which explores a larger space of PPEs, where
Fy is paired with some function of trusted polynomials, i.e.,

PPEs of the form e(Fy, ]_[jlszzl| Uz /] bj )= [‘[Jl.slel Ur[j]%, where

constants aj, b; are in Zp. Such an extended algorithm com-
Isa] .
putes constant vectors a, b such that f. - (ijlk bj - sgclil) =

IsT|

j=1
e(Fe T2 U 11%) = T Ur 1)

Jj=1 J=1

However, this extension introduces a technical issue. Con-
sider the PPE problem instance IT = (G,n = 2,m = 7,f =
{1,1, 1,x3,y,xy,x},a =1{1,2,7,1,2,T,1},u = {x, y}, Trusted =
{1,2,3,4,5,6}). Here, x, y are InTrusted variables and the only
untrusted polynomial is x in group G;. On input (IL, k = 7), the
above extended rule outputs the PPE e(F7, F5) = Fs and moves
the only untrusted polynomial to the trusted set. Surprisingly,
e(F7, F5) = Fg is not a PPE testing circuit for the problem II.
Consider the following PPE challenge (g1, g2, 9T, gf, gg, gg, g?)
This is clearly a NO challenge, as there is NO x such that =8
and x = 5 simultaneously. However, the challenge satisfies
the PPE e(Fy7, F5) = Fe. Intuitively, the issue occurs because
for the given PPE challenge F5 = gg and therefore the PPE
e(F7, Fs) = Fg does not validate the element F.

aj - st[j] and outputs the circuit corresponding to PPE:

More generally, suppose the rule outputs e(Fy., ]_[Jlszzl| Uo[1%)

= ]‘[j‘.S:Tll Ur[j]%.For the PPE challenges in which ]_[jlszzll Uz /] bj
evaluates to gg, the PPE does not validate the correctness of
Fy.. To resolve the issue, our Rule 3 computes a PPE (from a
larger class of PPEs than pairing only with a generator), and

the resultant testing circuit is designed so that whenever the
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exponent of the paired element evaluates to zero, the logic of
the testing circuit handles it properly. In Section 5, we show
that this generalization of Rule 1 is very useful for the au-
tomated verification of the Dodis VRF proofs [34] and the
Boyen-Waters IBE private keys [30].

Rule 3 is formally described in Figure 5, its correctness
property is captured in Lemma 4.3 and the proof of this lemma
appears in Appendix D.

LEMMA 4.3 (CORRECTNESS OF RULE 3). LetIl = (G, n,m,f,u,
a, Trusted) be a PPE problem instance as in Definition 3.1 and
let k € [m]. Suppose L# (Isldentity, C,IT',11"") = Rule3(IL k).
Then, for every pair of testing circuits C’ and C”" for11” and 11"’
respectively, the PPE circuit Z := ((NOT Isldentity) A C A C’)
V(Isldentity A C’) is a testing circuit for I1.

4.2.4 Rule 4: General move of a polynomial with multi-
ple non-InTrusted variables to the Trusted set. In Figure 6,
we describe a new Rule 4, which is an extension of Rule 2 for
moving an untrusted polynomial f; which has a variable in
InTrusted® set to the Trusted set of polynomials. Recall that
in order to apply Rule 2 to a polynomial f}, the coefficient of
the non-InTrusted variable u; needs to be a non-zero constant.
Hohenberger et al. [45] observed that this restriction to a con-
stant coefficient appears insufficient to validate the private
keys of the Boyen-Waters IBE [30]. One could naturally think
of extending Rule 2 by allowing the coefficient of variable u; to
be an arbitrary polynomial & of InTrusted variables. However,
if the polynomial h evaluates to 0 for a given set of InTrusted
variables, then this becomes an issue because u; is now zero-ed
out in the f; polynomial. We design our Rule 4 to validate this
larger class of untrusted polynomials and the resulting testing
circuit checks if the coeflicient of the non-InTrusted variable
uj evaluates to 0 and handles it accordingly. Below, we further
generalize this concept to validate untrusted polynomials with
multiple non-InTrusted variables. Rule 4 is formally described
in Figure 6 and prove its correctness property in Lemma 4.4.

LEMMA 4.4 (CORRECTNESS OF RULE 4). LetIl = (G, n,m,f,u,
a, Trusted) be a PPE problem instance as in Definition 3.1,
j € [n] and k € [m]. Suppose L# (Isldentity, I, 1I") =
Rule4(Il, j, k). Then for every pair of testing circuits C' and
C’’ of problem instances 1" and 11" respectively, the PPE circuit
((NOT Isldentity) A C”) V (Isldentity A C") is a testing circuit
forII. (Proof of this lemma appears in Appendix E.)

4.3 Applying the Rules

Rules 1-4 are combined into the main algorithm, called QSearch,
in Figure 7 that takes as input a PPE problem and outputs a
PPE circuit or the special message unknown. We prove that if
QSearch outputs a testing circuit, then that circuit is guaran-
teed to correctly classify PPE challenges for this PPE problem.

"The issue with verification not working due to an exponent evaluating to
zero is not a security issue in [30, 34], because this event happens with negligible
probability when the public parameters are honestly generated. However, our
definition of a testing circuit requires perfect correctness and therefore, we must
check for and properly address this “zero” case.

8Recall that InTrusted variables are the set of all variables used in the
Trusted set of polynomials.
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Input: A PPE problem IT =

Steps of Rule3(II, k):
(2) Let the formal variables Fy, Fs, - - -

(3) Compute completion lists {sy, sz, sT} =

Iszzg

(5) If such (a, b) exist, then
e Compute PPEs

Isecl

ae ]

where I is the identity element in group G

e Compute I

Sap [j] with 0 in the Trusted set of polynomials).

MakeCircuit(G, m, a, B) and PPE problems IT', I1”.
(6) If such (a, b) do not exist, then output L.

Description of Rule 3
(G, n, m, f, u, &, Trusted) and an integer k € [1, m].
Output: Two PPE circuits Isldentity, C and two circuit PPE problems IT’, IT”, or the symbol L (meaning could not apply rule).

(1) If k € Trusted or ax = T or fi € f has variables not in InTrusted, abort and output L.

, F, represent group elements of any PPE challenge corresponding to II. These formal

variables also represent the input wires of the PPE circuits Isldentity and C being constructed.

CL(fTrusted) Forany i € 7 and j < |s; |, let S;[j] = gzlm and let U;[j] be the pairing
product term computing S;[j] in terms of formal variables Fj, - - -

(4) Let @ = 3 — aj.. Check if there exist constant vectors a = (ay, - - -

|
(" j:{‘ b; - SWU]) is not a constant polynomial when expressed in canonical form, and

fi- (Z bj -salil) = ) aj -stlil-

(Computing coefficient vectors a, b reduces to checking if the polynomial 0 belongs to the span of polynomials st U fi - sz;)

1Y = ).

Ioc
i Uagll®)

IsTl e(Fk, l—[
B=]Url1v = L
[ 1or { (T,

=(G, n, m, f,u, &, Trusted U {k}) and II” = SubstituteZero(II, Z ak bj - sgrljl), where the SubstituteZero

algorithm is described in Figure 4. (Intuitively, SubstituteZero creates a new PPE problem instance by substituting Z b

e If IT” = TII, then output L. Otherwise, output the circuit Isldentity = MakeCircuit(G, m, a, A), the circuit C =

> Fm.

, Qspl) and b = (by, - -, b|5ﬁ|) with entries in Z,, s.t.

IsT]

Jj=1

ifap =1
Uz[1%, F) if o =2

Figure 5: Procedure for moving certain polynomials f; with all InTrusted variables to Trusted

THEOREM 4.5 (CORRECTNESS OF THE PPE CIRCUIT SEARCH-
ING ALGORITHM IN FIGURE 7). LetIl = (G, n, m,f,u, &, Trusted)

be a PPE problem instance as in Definition 3.1. Let C = QSearch(II).

IfC # unknown, then C is a PPE testing circuit for I as in Defi-
nition 3.5, and thereforeI1 is circuit testable.

Proof of this theorem appears in Appendix F.

5 IMPLEMENTATION

We implemented the PPE circuit searching algorithm described
in Figure 7 in a software tool called AutoCircuitPPE. We ran
the tool on several signature, verifiable random function and
advanced encryption schemes as well as other types of pairing-
based public/private parameters, including some that are PPE
circuit testable and some that are provably not PPE circuit
testable. Fortunately, our tool was able to produce outputs
for the two main schemes left open by the previous AutoPPE
tool [45] and for some new schemes not studied in that prior
work. We now present the design of the AutoCircuitPPE tool
followed by its test case results and performance numbers.

5.1 AutoCircuitPPE Implementation

We implemented AutoCircuitPPE using Ocaml version 4.02.3.
We built the code on top of the AutoPPE? tool (Hohenberger
and Vusirikala [45]; ACM CCS 2019), which in turn utilizes
some of the parsing tools and data structures (to store poly-
nomials) of the Generic Group Analyzer (GGA) tool!? (Barthe
et al. [18]; CRYPTO 2014). We also used the SageMath pack-
age!l to solve systems of linear equations and implemented
the remaining logic ourselves.

The input format of AutoCircuitPPE is the same as the
AutoPPE tool, which makes testing with both tools easier.!?
For the sake of completeness, we present the input format be-
low. The tool’s input consists of pairing information (such as
the Type I, IT or IIT) and a set of trusted/untrusted polynomials
along with their group identifiers.'® Besides, the tool option-
ally takes as input information that allows the tool to help the
user encode some cryptosystem parameters as a PPE problem

*https://github.com/JHUISI/auto-tools
1%https://github.com/generic-group-analyzer/gga
Uhttps://www.sagemath.org/
2Unlike AutoPPE, our tool does not take fixed/unfixed variables as input,

as we did not find this information to be necessary or useful.
3While this program input is in a slightly different format than Defini-
tion 3.1, we stress that it is the same information.
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Description of Rule 4
Input: A PPE problemII = (G, n, m, f, u, &, Trusted) and
integers j € [n] and k € [m].
Output: Either L (meaning could not apply the rule) or a
PPE circuit Isldentity and two PPE problems IT’, I1”.
Steps of Rule4(Il, j, k):

(1) If polynomial fj € f is of the form hy - u]d + hy,

where

e j ¢ InTrusted, k ¢ Trusted,

o the polynomial h; contains only variables in
InTrusted, and

o the polynomial h; contains any variables other
than u;, and

o the constant d € Z,, is relatively prime to p — 1,

then proceed to the next step. Otherwise, abort and

output L.

Let the formal variables Fy, Fy, - - -, F,, represent

group elements of any PPE challenge for IT. These

formal variables will also represent the input wires

of the PPE circuit Isldentity being constructed.

Compute completion lists {sq, s, sT} =

CL(fTrustedy For any i € 7 and j < |sil,

let S;[j] = g5V, and let Uj[j] be the pairing

product term computing S;[j] in terms of formal

variables Fy, « - -, Fp,.

If there exists an @« € I (recall 7 = {1,2, T} in

the Type III setting) and a constant vector a =

(a1, az, - - -, ajs,|) With elements in Zyp such that

hy = Z}sfll aj - sq[j], then set PPE

@

-

@3

=

“

a2

[Sex
A= [ |Vl = la,

Jj=1
where 1, is the identity element of the
group Gg. Then define Isldentity =
MakeCircuit(G, m, ar, A).
If Isldentity is defined, then set PPE problem
I = (G, nmf,u «, Trusted U {k}) and
I1” = SubstituteZero(Il, k1), where the func-
tion SubstituteZero is defined in Figure 4. Output
Isldentity and IT’, I1”.
(6) If Isldentity is not defined, output L.

G

=

Figure 6: Procedure for moving certain polynomials f;
containing exactly one non-InTrusted variable to Trusted

instance. In particular, all trusted and untrusted elements (rep-
resented by polynomials) are bilinear group elements in Gy, G
or Gt and Definition 3.1 does not allow including an element
in Z in either set. However, since it is not uncommon for
schemes to contain elements in the Z;, domain as part of their
public or private parameters, we implemented a workaround
for those schemes similar to AutoPPE.!* The tool runs the
PPE circuit searching algorithm in Figure 7 along with a few
optimizations implemented in AutoPPE such as computing
completion list before applying all the rules. It outputs either
a PPE circuit or the special symbol unknown. The PPE circuit
computed by the QSearch algorithm is generally very large;

4Whenever a polynomial f; is added to the Trusted set, then the imple-
mentation also adds u; - f; for any variables u; representing elements in Z,,.
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Main Algorithm for PPE Testing Circuit Search
Input: A PPE problem IT = (G, n, m, f, u, &, Trusted).
Output: A PPE circuit Q or the special symbol unknown.
Steps of QSearch(II):

Start. If Trusted = [m], then output the always accepting
circuit Q := Cyec.
Rule 1. For k = 1to m,
(a) Call z = Rule1(I, k).
(b) If z = (C, IT") #.L, then
(i) Call C’ = QSearch(IT’) and
(ii) if C’ # unknown, then output the PPE circuit
Q:=CANDC'.
Rule 2. Fork =1tomandj =1ton,
(a) Call z = Rule2(IL, j, k).
(b) If z =II" #1, then
(i) Call C’ = QSearch(Il’) and
(ii) if C’ # unknown, then output the PPE circuit
Q:=C.
Rule 3. For k = 1to m,
(a) Call z = Rule3(IL, k).
(b) If z = (Isldentity, C, I', IT”) #L, then
(i) Call C’ = QSearch(IT") and
(i) if ¢’ # unknown, then call C”
QSearch(I1”) and
(iii) if C” # unknown and C” # unknown, then
output the PPE circuit Q :=
((NOT Isldentity) AND C AND C’) OR (Isldentity AND C”)
Rule 4. Fork =1tomandj =1ton,
(a) Call z = Rule4(IL, j, k).
(b) If z = (Isldentity, I, IT”) #., then
(i) Call C’ = QSearch(Il’),
(i) if ¢’ # unknown, then call C”
QSearch(I1”) and
(iii) if C" # unknown and C” # unknown, then
output the PPE circuit
Q = ((NOT Isldentity) AND C’) OR (Isldentity AND C”).

Final. Otherwise, output unknown.

Figure 7: Recursive procedure for searching for a PPE
Testing Circuit

therefore we optimize the circuit by a few techniques such as
computing common sub-circuits only once.!®

The source code for AutoCircuitPPE comprises roughly 4K
lines of Ocaml code. The input file to the tool consists of the
type of pairing, set of trusted and untrusted polynomials. For
the schemes in Table 1, this information can be expressed
within 3-6 lines of code. In our experience, most pairing-
based schemes can be encoded into this input format within
a few minutes. The ease of converting a given pairing-based
scheme into the input format for AutoCircuitPPE makes the
tool highly practical and useful. The code for AutoCircuitPPE

is publicly available at https://github.com/JHUISI/auto-tools.

15Note that recursive calls to QSearch with the same arguments result
in common sub-circuits. However, common sub-circuits could occur even in
other scenarios. As a simple example, one recursive call to QSearch may result
in a sub-circuit of the form (NOT PPE;) OR (PPE; AND PPE;), and an-
other recursive call to QSearch with different inputs may result in a sub-circuit
((NOT PPE;) AND PPE3) OR (PPE; AND PPE,). In this case, (NOT PPE;)
is a common sub-circuit that can be evaluated only once.
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AutoCircuitPPE
Input: | Output:
PPE Instance New PPE Instance L
pairing Info pairing Info Qsearch PPE circuit
Trusted polys Trusted’ polys
Untrusted polys Untrusted polys | —
group ids « | | Preprocess group ids « "| GCA, "> “Unknown”

+
Variables in Zp

AutoPPE___
+ //

Variables in Zp

Figure 8: The workflow of the AutoCircuitPPE tool. The
tool first preprocesses the problem instance, i.e., for
every polynomial f in the trusted set and variable v
in Zp_vars, the tool adds the polynomial f - v to the
trusted set. It then runs the QSearch algorithm, which
may output a new problem instance. AutoCircuitPPE pre-
processes this instance before feeding it back to Qsearch.
The tool utilizes and adapts portions of existing tools
such as the GGA and AutoPPE for handling polynomi-
als and completion sets and the SageMath package for
solving systems of linear equations.

Input File Example
maps G1 * G1 ->GT.

Zp_vars [x1,x2].  (*input x*)
trusted_polys [F1 = al*c, F2 = a2*c, F3 =c] in G1.  (*public key*)
untrusted_polys [F4 = (a1*x1 + (1-x1))] in G1.  (*proof™)

untrusted_polys [F5 = (a1*x1 + (1-x1)) * (a2*x2 + (1-x2))] in G1.
(*VRF output®)

Figure 9: Input file for Dodis VRF scheme when input
length is 2.

5.2 A Detailed Example for the Dodis VRF
(a [45] "gray area" scheme)

Let’s walk through an example of using our tool on the Veri-
fiable Random Function by Dodis [34]. The Setup algorithm
takes as input security parameter A and an input length n.
It samples a Type I group G = (p, 91,97.G1,GT, €), samples
¢ < Zp, a; « Zp for i € [n]. It then outputs secret key sk =
(91,a1, a2, - - an) and verification key vk = (g1, 95, gf'al, gf'az,
e ,gf'a"). The VRF algorithm takes as input secret key sk
19i

n
is.t. x;=

and bit string input x. It then outputs y = g{[ and

[Tt xpmr @i
proof 7 = (91 ! )
Jjeln-1]
to use this tool to generate a PPE circuit for verifying this VRF
proof 7; AutoPPE [45] output unknown on this scheme.
Figure 9 shows how to encode this scheme as input for
AutoCircuitPPE. For space reasons, we will let n = 2. The pair-
ing information is specified using the line maps G1*G1->GT,
which denotes a Type I pairing!®. The trusted set of polyno-
mials (vk) along with their group identifiers are specified by
trusted_polys [_] in G_, and the untrusted set of poly-
nomials (VRF output) along with their group identifiers by
untrusted_polys[_] in G_. For each polynomial, we also
specify a formal variable F_ which is used in the PPE circuit

. The goal of this example is

16 Alternately, a Type II pairing could be specified by maps G1xG2-> GT,
isos G1 -> G2, and a Type III pairing could be specified by maps G1xG2->GT.
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Output of the Tool
Including polynomial FO = 1 in trusted set of groups G1, GT.

Trusted set in G1: F1 = al*c, F2 = a2*c, F3 = ¢

Untrusted set in G1: F4 =1 - x1 + al*x1, F5 =1 -x1 - x2 + al*x1 +
a2*x2 + x1*x2 - al*x1*x2 - a2*x1*x2 + al*a2*x1*x2,

rule 3 on F4. isidentity := F3 =1 C := e(F4,F3) = (e(F3,F0"x1))"-
1*e(F1,F0"x1)*e(F0,F3)

Trusted set in G1: F1 = al*c, F2 = a2*c, F3 =¢,F4 =1 -x1 + al*x1
Untrusted set in G1: F5 = 1 - x1 - x2 + al*x1 + a2*x2 + x1*x2 -
al*x1*x2 - a2*x1*x2 + al*a2*x1*x2,
rule 3 on F5. isidentity := F3 =1
1*e(F2"x2,F4)*e(F3,F4)

C := e(F5,F3) = (e(F3"x2,F4))"-

Trusted set in G1: F1=0,F2=0,F3=0,F4 =1 -x1 + al*x1
Untrusted set in G1: F5 = 1 - x1 - x2 + al*x1 + a2*x2 + x1"x2 -
al*x1*x2 - a2*x1*x2 + al*a2*x1*x2,

rule 4 on F5 and variable a2. isidentity := F4"x2 = I

Trusted set in G1: F1=0,F2=0,F3=0,F4 =1 -x1 + al*x1
Untrusted set in G1: F5 = 1 - x1 + al*x1,
rule 1onF5.C:=F5=F4

Trusted set in G1: F1=0,F2=0,F3=0

Untrusted setin G1: F4 = 1 - x1 + al*x1, F5 =1 -x1 - x2 + al*x1 +
a2*x2 + x1*x2 - al*x1*x2 - a2*x1*x2 + al*a2*x1*x2,

rule 4 on F4 and variable al. isidentity := FO*x1 =1

Trusted set in G1: F1=0,F2=0,F3=0,F4 =1 -x1 + al*x1
Untrusted set in G1: F5 = 1 - x1 - x2 + al*x1 + a2*x2 + x1*x2 -
al*x1*x2 - a2*x1*x2 + al*a2*x1*x2,

rule 4 on F5 and variable a2. isidentity := F4"x2 = I

Trusted set in G1: F1=0,F2=0,F3=0,F4 =1 -x1 + al*x1
Untrusted set in G1: F5 = 1 - x1 + al*x1,
rule 1 on F5.C:=F5 =F4

Trusted set in G1: F1=0,F2=0,F3 =0,
Untrusted set in G1: F4 = 1, F5 = 1 - x2 + a2*x2,
rule 1 on F4. C := F4 = F0

Trusted setin G1: F1=0,F2=0,F3=0,F4=1
Untrusted set in G1: F5 = 1 - x2 + a2*x2,
rule 4 on F5 and variable a2. isidentity := FO"x2 =1

Trusted setin G1: F1=0,F2=0,F3=0,F4=1
Untrusted set in G1: F5 =1,
rule 1onF5 =1. C := F5 = F0

Execution time : 1.682712s

((NOT F3 = 1) AND e(F4F3) = (e(F3,F0"x1))"-
1*e(F1,F0"x1)*e(F0,F3)) AND (((NOT F3 = I) AND e(F5,F3)
= (e(F3"x2,F4))"-1"e(F2"x2,F4)*e(F3,F4)) AND ACC) OR (F3 =1
AND ((NOT F4"x2 =I) AND ACC) OR (F4"x2 = I AND (F5 = F4
AND ACC()))))) OR (F3 = I AND (((NOT F0"x1 = I) AND ((NOT
F4*x2 =) AND ACC) OR (F4"x2 = I AND (F5 = F4 AND ACCQ))))
OR (F0*x1 = I AND (F4 = FO AND ((NOT F0"x2 = I) AND ACC)
OR (F0"x2 = I AND (F5 = FO AND ACQ))))))))

List of gates after optimizing the circuit

G1:F3=1 G2:e(F4,F3) = (e(F3,F0"x1))"-1*e(F1,F0"x1)*e(F0,F3)
G3 : e(F5,F3) = (e(F3"x2,F4))"-1"e(F2"x2,F4) “e(F3,F4)
G4:F4"x2=1 G5:F5=F4 G6:F0"x1=1
G8:F0"x2=1 G9:F5=F0 G10: NOT G1 G11: G10
AND G2 G12:G11 AND G3 G13:NOTG6 G14:NOT
G4 G15:G4ANDG5 G16:G140ORG15 G17:G13 AND
G16 G18:NOTG8 G19:G8ANDGY9 G20:G18 OR G19
G21:G7 AND G20  G22: G6 AND G21 G23 : G17 OR G22
G24:G1 AND G23  G25:G12 OR G24

G7 :F4 = F0

Figure 10: Output of the tool on Dodis VRF scheme
when input length is 2.
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F4rx2 =1

F5=F4 FO~x2 = | F5 = FO

Figure 11: The PPE circuit output by AutoCircuitPPE on
the Dodis VREF for 2-bit Inputs. PPE gates G1-G9 (see Fig-
ure 10) are mentioned at input wires.

output by the tool. Each bit of VRF input x is treated as a
variable in Z,, and specified using Zp_vars [_]. Internally
for every problem instance II, for each trusted polynomial f
and a Z,, variable x;, the AutoCircuitPPE tool adds x; - f to
the trusted set!”. Comments are specified with (x. ...*).
Figure 10 shows AutoCircuitPPE’s output the Figure 9 in-
put. The tool applies the QSearch algorithm (see Section 4.3).
For each recursive call made to QSearch, it prints the trusted
and untrusted set polynomials, along with each rule applied.
It then prints the PPE circuit output by QSearch. As this PPE
circuit may contain some redundancy, the tool further opti-
mizes the PPE circuit using simple tricks such as evaluating
common sub-circuits only once and replacing a sub-circuit of
the form x AND ((NOT x) OR y) with a circuit of the form
(x AND y). The tool finally outputs the list of gates in the
optimized PPE circuit, which we show pictorially in Figure 11.

5.3 Case Studies

We evaluated AutoCircuitPPE on various types of pairing-
based schemes using a MacBook Pro 2015 laptop with 2.7GHz
Intel Core i5 processor and 8GB 1867MHz DDR3 RAM. We
present the results along with average execution times over
10 runs in Table 1. We retain AutoPPE’s optimizations for
computing PPEs in the rules efficiently. Lke AutoPPE, we sim-
plified checking whether the constant d is relatively prime to
p — 1in Rule 2 and 4, by checking whether d is a small prime
(d € {1,3,5,7,11}), as none of the real world schemes have
polynomials with a high degree on their variables.

Table 1 summarizes 29 test results. For IBE schemes, we ran
our tool to output a PPE circuit which tests for well-formedness

71deally, for each polynomial poly on Zp variables x, one should include
poly(x) - f in the trusted set. The AutoCircuitPPE tool supports such an oper-
ation for all bounded degree polynomials on Zj, variables. However, for this
example, it suffices to include only x; - f to trusted set.
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of a secret key of an identity given the master public key and
the identity. For Verifiable Random Function (VRF) schemes,
we aimed to construct a PPE circuit that tests for the valid-
ity of VRF output and proof of pseudorandomness given the
verification key and VRF input. For signature schemes, we
ran the tool to output a PPE circuit which acts as a verifica-
tion procedure that checks the well-formedness of a signature
given message and verification key. We encoded each of the
schemes into a PPE problem instance similar to [45] (See [45]
Section 5.2 for more details). As in [45], we encode the VRF bit
string input of [34, 46, 47] schemes as a vector of Z,, variables.
We observe that the size of the polynomials in these schemes
grows exponentially in size with respect to the length of the
encoding of the input. Consequently, we tested these schemes
only with a short length encoding.

We demonstrate the flexibility of our tool by testing it on
problem instances in Type I, IT and III pairing settings. Many of
PPE problem instances in Table 1 are in the Type I setting (we
first encoded in whatever setting the scheme’s authors chose).
We also translated several of these schemes into the Type III
setting for testing. AutoCircuitPPE outputs a PPE testing cir-
cuit for all the problem instances on which AutoPPE outputs a
PPE testing set'8. More importantly, our tool outputs PPE test-
ing circuits for the Bellare-Kiltz-Peikert-Waters IBE [24], Dodis
VRF [34], Boyen-Waters IBE [30] and some custom test cases on
which AutoPPE was not able to produce a valid PPE testing set.

We tested our tool on a few custom examples, some of
them having more than 100 polynomials. The 100-DDH and
100-DBDH examples have already be tested in [45]. In the
(new) DLIN test case, the trusted set contains polynomials
{a, b, c, ax, by} in group Gy, and the untrusted set contains the
polynomial ¢(x + y) in group G;. The 100-DBDH and DLIN
examples are not PPE Testable under the Decisional Bilinear
Diffie-Hellman (DBDH) assumption and DLIN assumptions
respectively. We additionally designed two custom test cases
meant to utilize all of our tool’s rules. The results are in Table 1
and the details are in Appendix G.

Recall that AutoCircuitPPE optimizes the output of the
QSearch algorithm (Section 4.3). Table 1 shows the number
of PPE gates and Boolean gates output post-optimization. On
the Bellare et. al. IBE scheme for 4-bit identities, Dodis VRF
for 4-bit inputs and the Boyen-Waters IBE scheme, the PPE
circuit output by QSearch has 98, 180 and 491 boolean gates,
respectively, whereas post-optimization the corresponding
PPE circuits have only 31, 49 and 124 boolean gates.

5.4 Open Problems

This work solves a major open problem posed by [45] by defin-
ing PPE circuits and developing a method for automatically
generating them. We remark on two limitations of our tool,
which are exciting directions for future research.

First, we do not handle rational polynomials; that is, our

tool cannot accept inputs with elements of the form g!/*,

18For all instances on which AutoPPE outputs a PPE testing set, our tool also
outputs the same PPE circuit. This is because we retain Rules 1 and 2 used by
AutoPPE and prioritize these rules over Rules 3 and 4 in our QSearch algorithm.
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Scheme Pairing Type AutoPPE | PPE Circ.uit Our Tool | #PPE | #Bool Run

output Testability Output | Gates | Gates | Time

Boneh-Franklin01 ([28]) Type I IBE Testable Testable Testable 1 0 1.63s

Gentry-Silverberg02 ([38]) Typel IBE Testable Testable Testable 1 0 1.54s

Boneh-Boyeno04a ([26]) (£ = 160) | Typel HIBE Testable Testable Testable 1 0 167s
Waters05 ([52]) (|H(id)| = 16) Type I IBE Testable Testable Testable 1 0 10.92s

Naccache05 ([50]) (B(H(id)) = 8) | Type III IBE Testable Testable Testable 1 0 1.62s

BBGO5 ([27]) (¢ = 8) Type I HIBE Testable Testable Testable 5 4 5.04s
Waters09 ([54]) Type I IBE Unknown | Not testable | Unknown 0 0 105.37s

BKPW12 ([24]) (lid| = 4) Type I IBE Unknown Testable Testable 14 31 4.57s
Boyen-Waters ([30]) Typel | Anon-IBE | Unknown | Testable Testable 27 124 | 18.39s

BLS01 ([29]) Type I | Signature | Testable Testable Testable 1 0 1.69s

CL04 Scheme A ([32]) Typel | Signature | Testable Testable Testable 2 1 2.32s

CL04 Scheme B ([32]) Typel | Signature | Testable Testable Testable 4 3 1.60s

CL04 Scheme B ([32]) Type III | Signature | Testable Testable Testable 4 3 1.57s
CL04 Scheme C ([32]) (B(msg) = 8) | Typel | Signature | Testable Testable Testable 16 15 16.06s

Boyen-Waters ([31]) Typel | Signature | Testable Testable Testable 1 0 9.83s

AGOT14 ([3]) Type II | Signature | Testable Testable Testable 1 1.49s

Dodis ([34]) (IC(x)| = 2) Type I VRF Unknown | Testable Testable 9 16 1.68s
Dodis ([34]) (IC(x)] = 4) Type I VRF Unknown Testable Testable 25 49 41.34s
Lys02 ([47]) (IC(x)| = 5) Type I VRF Testable Testable Testable 5 4 109.81s
Lys02 ([47]) (IC(x)| = 5) Typelll| VRF Testable Testable Testable 5 4 22.70s
Jager15 ([46]) (|H(x)| = 4) Type I VRF Testable Testable Testable 5 4 26.05s
Jager15 ([46]) (IH(x)| = 4) Type III VRF Testable Testable Testable 5 4 11.92s
RW13 ([51]) (a = 60) Typel | CP-ABE | Testable Testable Testable 9 8 10.01s

RW13 ([51]) (a = 8) TypeIll| CP-ABE | Testable Testable Testable 9 8 5.20s

100-DDH Typel | Custom | Testable Testable Testable 1 0 4.99s

100-DBDH TypeI | Custom | Unknown | Not Testable | Unknown 0 0 4.48s

DLIN TypeI | Custom | Unknown | Not Testable | Unknown 0 0 1.2s

Custom Testcase 1 (Figure 12) Typel | Custom | Unknown | Testable Testable 9 16 4.76s

Custom Testcase 2 (Figure 14) Typel | Custom | Unknown | Testable Testable 6 9 3.58s

Table 1: The output of AutoCircuitPPE on various PPE circuit testability problems. Here, ¢ represents the number of
delegation levels in a HIBE scheme, |id| denotes the length of the identity, |H(id)| denotes the length of the hash of
identity id, B(H(id)) denotes the number of blocks in the hash of identity id, 8(msg) denotes the number of blocks in
message msg, |C(x)| denotes the length of encoding of input x, |H(x)| denotes the length of encoding of input x, and

a denotes the number of attributes.

which rules out many interesting schemes such as the Gen-
try IBE [37], the Boneh-Boyen signatures [26] and the Dodis-
Yampolskiy VRF [35]. A well-formedness test for such schemes
should check if the denominators of the untrusted rational
polynomials evaluate to 0, and output INVALID accordingly.
While this was also an open problem from [45], we believe
the general logic capabilities realized in this work create a
foundation that could perform this check and then branch
accordingly. Working this out, however, appears non-trivial.
Second, we’d like a more efficient method for encoding
schemes for automated analysis. In the Dodis VRF scheme [34],
the VRF function on input bit string x and private key {a1, az,
-+ -ap} outputs gn?” xi=1% In order to input the scheme to
our tool, we encode the exponent polynomials as []7._; (aix; +
1—x;). Notice that this polynomial has an exponential number
of monomials incurring a huge computational cost for find-
ing PPEs in our rules. This is notably the case in other VRF
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schemes [46, 47] as well. As a result, we could test the schemes
only on small input lengths.

6 CONCLUSION

Computer automation holds great promise for improving the
speed, accuracy and capabilities of cryptographic implemen-
tations. This work presents an automation algorithm and soft-
ware tool for designing (pairing-based) cryptographic verifi-
cation algorithms that can support arbitrary logic. The tool
found verification algorithms for schemes that could not be
handled by prior tools and for which we were unable to find
solutions by hand. It executes quickly (usually 100 seconds
or less) even for schemes with 100 or more elements in their
description. There are many exciting future directions for au-
tomated cryptographic design and this tool will help in the
automated design of algorithms requiring arbitrary logic.
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A SHORTHAND NOTATIONS FOR
CIRCUITS (CONT’D FROM SECTION 3.1)

In this section, we provide formal definitions for the shorthand
notations introduced in Section 3.1.

o MakeCircuit(G, m, a, P): Given group structure G, num-
ber of inputs m, group identifiers &, and a PPE P, the
function outputs a PPE circuit C = (G, m, &, N, Gates,
out, GateType, A, B), where N = 1,Gates = {m + 1},
out = m+ 1, GateType(m+ 1) = (PPE,P),A=0,B = 0.

e C,cc: We use the notation Caec to denote the circuit
MakeCircuit(G, m, &, P), where P is an always accept-
ing PPE (for example, g1 = g1).

The formal definitions of the notations (C; AND C3) and
(C1 OR (y) are a little tricky as both C; and Cz might share
the same gate names. Henceforth, we first define the notation
Shift(C, k) which renames the gates of a circuit C by an offset
integer k. We then define (C; AND C3), for example, by first
shifting the gate names of Cz by some offset k and then AND-
ing output wires of the circuits C; and Shift(Ca, k). Note that
the input wires will remain the same.

e Shift(C, k) : Given a circuit C = (G, m, ¢, N, Gates, out,
GateType, A, B) and integer k > 1, the function Shift(C, k)
outputs a circuit C’ obtained by shifting the gate names
Gates by an offset k i.e., C’ = (G, m, &, N, Gates’, out’,
GateType’, A’, B’), where Gates’ = {g+k : g € Gates},
out’ = out+k, GateType’(g+k) = GateType(g), A’ (g+
k) = A(g) and B’(g9 + k) = B(g), whenever A(g), B(g)
are defined. Note: Shift(C, k) still has {1,2,--- ,m} as
the input wires.

C1 OP C; (where OP € {AND, OR}): Given circuits
C1 = (G, m, a, N1, Gatesy, outy, GateType;, A1, By) and
C2 = (G, m, a, N, Gatesy, outy, GateType,, Ay, By), let
k be the smallest integer not in Gates;. Let C;, = Shift(C2,
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k) =(G,m, a,Ng,Gatesé,outé,GateTypeé,Ag,Bé).The
circuit C; OP Cy is given by (G, m, &, N1+ N2 +1, Gates,
out, GateType, A, B), where out is the smallest integer
not in Gates; U Gatesé, the set Gates = Gates; U
Gates;, U {out}, the functions

GateType;(g) if g € Gates;
GateType(g) = { GateType;(g) if g € Gates;
oP if g = out
Ai1(g) if g € Gatesy
A(g) = {A%(g) if g € Gates)
out; ifg=out
Bi(g) if g € Gates;

B(g) = {Bj(9) ifg € Gates)

out)  ifg=out

e NOT C : Given a circuit C = (G, m, «, N, Gates, out,
GateType, A, B), we use the notation NOT C to denote
the circuit (G, m, @, N+1, Gates’, out’, GateType’, A’, B’),
where out’ is the smallest integer not in Gates, the set
Gates’ = Gates U {out’}, functions

GateT’ if g € Gat
GateType/(g) = { =2 ype(9) if g € Gates
NOT if g = out’
if g € Gates

Alg) = {A(g)

out ifg=out’

and B’ is the same as B.

B CORRECTNESS OF RULE 1

In this section, we prove the correctness of Rule 1 (Lemma 4.1).
This proof is adapted from the proof of Rule 1 in [45].

Proor. We observe that every PPE challenge for IT is also
a challenge for IT’, as they all share the same group structure,
the number of elements of m, and the group indicator vector
a. Consider any testing circuit C’ for II’. We now argue by
contradiction that if C A C” is not a testing circuit for II, then
C’ cannot be a testing circuit for II". Since C A C’ is not a
testing set for II, then either:

e Case 1: There exists a YES challenge F for IT such that
C A C’ is not satisfied, or
o Case 2: There exists a NO challenge F for II such that
C A (' is satisfied.
We now analyze each of these cases.

In Case 1, we know that C A C” is not satisfied by the chal-
lenge F. We take this in two subcases. First, suppose that F
satisfies PPE C but not the circuit C’. This means that F is
also a YES challenge for IT’ (it can use the same settings for
the variables), but for which C’ is not satisfied. This contra-
dicts the starting assumption that C’ was a testing circuit for
IT’. Second, suppose that F does not satisfy the PPE C. By
definition of being a YES challenge, we know there exists an
assignment to the variables u such that F; = géii(u) for all i.

PPE C tests that F. is equal to g{;"i(“), thus this equation being
false contradicts the fact the F was a YES challenge.
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In Case 2, since F is a NO challenge for IT where CAC’ is sat-
isfied, then F is also a NO challenge for IT” where C is satisfied.
We argue this as follows. By Definition 3.2 of a NO challenge
for II, there exists an assignment to u = (u1,...,up) € ZZ

such that for all i € Trusted, F; = gnf,’j((u). To convert this to a

NO challenge for IT’, we also need to show that Fj. = ggj((u) for
this same assignment u. This follows from the fact that PPE C
is satisfied by this challenge and that C explicitly tests that Fi
is computed this way, possibly with respect to an equivalent
polynomial for f; = ZJ'.S:Tll aj - st[j]. Now since F is NO chal-
lenge for IT’, it remains to see how it performs with respect
to the circuit C’. However, since C A C’ is satisfied by this
challenge F, then C’ is satisfied as well. This contradicts the
original assumption that C’ was a testing circuit for II’. [l

C CORRECTNESS OF RULE 2

We prove the correctness of Rule 2 (Lemma 4.3). This proof is
adapted from the proof of Rule 2 in [45].

Proor. We observe that every PPE challenge for IT is also
a challenge for IT’, as they all share the same group structure,
the number of elements of m, and the group indicator vector
a. We first show that every YES challenge for IT is an YES
challenge for I1’, and similarly every NO challenge for IT is a
NO challenge for IT". This implies that every testing circuit C’
for I1’ is also a testing circuit for II.

The PPE problems IT and I’ differ only in Trusted set, where
the II’ set has the additional element {k}. As the definition of
an YES challenge has no dependence on Trusted set, each YES
challenge for II is also an YES challenge for I1” and vice versa.

We now argue that any NO challenge for IT is also a NO
challenge for IT’. Consider any NO challenge F for the PPE
problem IT. By definition, F is not a YES challenge for IT (or, by
the above, for I1’), and there exists an assignment of u* € Zz

such that F; = g{fji(“*) Vi € Trusted.

We want to show that Fj. = gé’;c(u*), Since Rule2(IL, j, k) #1,
we know that the polynomial f; was of the form c - ud + h,
according to the constraints of Rule2 i.e., the variable u ;i is
not used in any Trusted polynomials. Thus, for this setting
of Fy. in the challenge F, there exists only one setting of the
variable u; € Z,, that is consistent with Fj being derived via
the polynomial f; and the settings of u; € u*. Let F, = g¥ for
some y € Z,. Then let

—h

y 1/d mod (p—-1)
uj = (T mod p) .

There is a unique solution to the above since d is relatively
prime to p — 1. Thus, for setting of variables u* € Z with u]*

substituted with u;, it holds that F; = gf;'i(“*) Vi € (Trusted U
{k}). Therefore F is a NO challenge for IT’.
[ |

D CORRECTNESS OF RULE 3

In this section, we prove the correctness of Rule 3 (Lemma 4.3).
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ProOF. We observe that every challenge for IT is also a chal-
lenge for I1” and 1", as they all share same group structure,
the number of elements of m, and the group indicator vector
a. Consider any testing circuits C’, C’” for I”, II”” respectively
and any PPE challenge F = (Fy, Fa, - - - Fp,). We prove that if
F is a YES challenge for II, then it satisfies circuit Z defined
above, and if F is a NO challenge for II, it does not satisfy the
circuit Z. We organize the proof into four cases.

Case 1 (F is an YES challenge for IT & doesn’t satisfy Isldentity):

In this case, by definition, there exists an assignment of vari-

ables v such that Fy = ggf(v) for all £ € [m]. We know that

{ggf(v))}g satisfies the circuit C for any variable assignment
v. Therefore, the challenge F also satisfies the circuit C. We
also observe that F is a YES challenge for II”. This is because
IT and TT” have the same set of polynomials { fj};c[m) and only
differ in the Trusted set. As a result, F satisfies the circuit
(NOT Isldentity) A C A C’, thus satisfying Z.

Case 2 (F is an YES challenge for IT & satisfies Isldentity):

In this case, we want to show that F is a YES challenge for IT”.

We know that fy = hg- (ZJ'.S:(T"I bj - secli]) +f(f’ for some poly-

nomial hy and other values as computed in Rule 3, where f;’
sz

: bi -
]:] J
szzLi]) = 0via the fact that Isldentity is satisfied. Consider any

was replaced as the £:# polynomial in 1”7, due to (3

assignment of variables v s.t. Fp = gg{(v), V¢ € [m]. We know
that []; Uz [J] by = Iz and therefore 3’ b - sz-[j] evaluates
17 (v)

to 0 for the variable assignment v. This implies, Fy = g,
for each ¢ € [m]. Therefore, F is an YES instance for II” and
satisfies the circuit Isldentity A C”’, thus satisfying Z.

Case 3 (F is a NO challenge for IT & doesn’t satisfy Isldentity):
Since we assume F does not satisfy the circuit Isldentity in
this case, we focus only on whether F satisfies C A C’. By def-
inition, F is a NO challenge for IT and therefore it cannot be
a YES challenge for IT’, as both IT and IT” share the same set
of polynomials. (Either it will be a NO challenge or an invalid
challenge; the latter in the case where the single element dif-
ference in the Trusted set between the two problems was an
improperly formed element.) Observe that if F satisfies C, then
F is a NO instance for II’. Consider any assignment of vari-

ables v such that Fp = gg,(v) for all £ € Trusted. If F satisfies

C, it means Fp = gﬁ,’;fv)”. Consequently, Fp = ggf[(v) for each
¢ € Trusted U {k}, and IT’ is a NO instance. Therefore, F does
not simultaneously satisfy the circuits C A C” and Isldentity,
and thereby does not satisfy Z.

Case 4 (F is a NO challenge for IT & satisfies Isldentity):

In this case, we argue that F is a NO challenge for I1”7. We
know that for each € € [m], fy = he - (X bj - sg[]) + ', for

“Note that this crucially relies on the fact that [] j UWD] bj ¢ I and
therefore 3 ; b; - SW[]] does not evaluate to 0 for the variable assignment v.
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’

some polynomial g, where f;” is the ¢* h polynomial in T1”.

7(v)
ar

Isa] b
for all £ € Trusted. As (szlk U@[_}]bf) = Iz, the polyno-
mial (3 bj - sz;-[j]) evaluates to 0 for the variable assignment

Consider any assignment of variables v such that Fy =

7"

v. Therefore, Fp = g4, @) for each ¢ € Trusted. Moreover, F
cannot be an YES instance for I1”. Thisﬁis because if there a

variable assignment v such that Fy = g(f " for each £ € [m],

that would mean Fp = gg[(v) for each ¢ € [m] which con-
tradicts our initial assumption that F is a NO instance for II.
Therefore, F does not satisfy the circuits NOT Isldentity and
C”, and thereby does not satisfy Z.

E CORRECTNESS OF RULE 4

In this section, we prove the correctness of Rule 4 (Lemma 4.4).

ProoF. We first observe that every valid challenge for II is
also a valid challenge for 1" and I1”, as they all share the same
group structure, the number of elements m, and the group indi-
cator vector . Consider any testing circuits C’, C”’ for IT’, 11"
respectively and any PPE challenge F = (Fy, Fa, - - - Fp). We
prove that if F is a YES challenge for II, it satisfies circuit
Z := ((NOT Isldentity) A C’) v (Isldentity A C”’), and if F
is a NO challenge for II, it does not satisfy the circuit Z. We
organize the proof into 4 cases.

Case 1 (F is a YES challenge for IT & doesn’t satisfy Isldentity):
We first observe that F is also a YES challenge for I, as II
and I1" have the same set of polynomials {fz}¢c[;,] and only
differ in the Trusted set. As a result, F satisfies the circuit
(NOT Isldentity) A C’, and thus satisfies Z.

Case 2 (F is a YES challenge for IT & satisfies Isldentity):

In this case, we argue that F is an YES challenge for I1”". Con-
sider any assignment of variables v s.t. Fp = gﬁ,@("), V¢ € [m].
We know that fy = B¢ - b1 + f;” for some polynomial Sy,

where f;" is ¢ th polynomial in T1”. As F satisfies the circuit

Isldentity, hq evaluates to 0 on input variable assignment v.

Consequently, Fp = gé‘;(v) = g£’€ ) for each ¢ € [m], and F is

an YES instance for I1" and satisfies the circuit Isldentity AC”’,
and thus satisfies Z.

Case 3 (F is a NO challenge for IT & doesn’t satisfy Isldentity):

In this case, F is not a YES instance for I1” as IT and II’ share
the same set of polynomials. Also, there exists an assignment

of InTrusted variables {v;}; cinTrusted Such that Fp = gé{;(v) for
all ¢ € Trusted. As F does not satisfy the circuit Isldentity, hy
does not evaluate to 0 on variable assignment {v; };cinTrusted>
and therefore for every possible value of Fy. and hy, there exists

hi-uj+h
a value of u; such that F = g,, A

. Consequently, there

exists a variable assignment v such that Fp = gj;ff(v), Ve e
Trusted U {k}, and therefore F is a NO challenge for I1” and

does not satisfy C’. Because it does not satisfy C” or Isldentity,
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it cannot satisfy Z.

Case 4 (F is a NO challenge for IT & satisfies Isldentity):
We know that for any ¢ € [m], f¢ = B¢ hi1 + f;’ for some poly-

nomial iy, where f;” is the 2" polynomial of IT”. Let v be any

variable assignment such that Fp = ggf(v) for all £ € Trusted.
As F satisfies the circuit Isldentity, hq evaluates to 0 on variable

17 )

assignment v, and Fy = g, °, Y€ € Trusted. Furthermore,
F cannot be an YES instance for II”. This is because if F is
an YES for I1”, there exists a variable assignment v such that

Fp = gZ, R gg[,(v) for all ¢ € [m], which contradicts our
assumption that F is a NO instance for IT. Therefore, F is a NO
challenge for IT”” and does not satisfy (NOT lIsldentity) or C”/,

thus it cannot satisfy Z.

F QSEARCH: CORRECTNESS AND
EFFICIENCY

We prove the correctness of QSearch algorithm (Theorem 4.5).

Proor. We provide a sketch of how to prove this theorem
by induction on the number of untrusted polynomials and
the total number of monomials in all the polynomials of f.
The critical correctness arguments required have already been
covered for each rule in Lemmas 4.1 to 4.4. When QSearch is
invoked on IT with either zero untrusted polynomials or zero
total number of monomials, it outputs the always accepting
circuit Caec which is a valid testing circuit. Now suppose the
QSearch algorithm outputs a valid testing circuit or unknown
on every problem I1” which has at most @ number of untrusted
polynomials and at most § total number of monomials in f.
Suppose QSearch outputs a circuit C # unknown on a problem
IT with o+ 1 untrusted polynomials and at most §§ total number
of monomials in f. It must have invoked one of the 4 rules.
By Lemmas 4.1 to 4.4 and our induction hypothesis, C is a
valid testing circuit. Similarly, QSearch outputs either a valid
testing circuit or unknown when invoked on a problem IT with
at most a untrusted polynomials and § + 1 total number of
monomials in f. By induction, for any II, if QSearch(IT) does
not output unknown, then it outputs a valid testing circuit for
the PPE problem II. [ |

Efficiency of QSearch. We now turn to the asymptotic
complexity of the QSearch algorithm. A call to QSearch scans
all the untrusted polynomials to check if any rule is applicable,
and then calls QSearch recursively at most 2 times.

Let us first compute the time taken to scan all the untrusted
polynomials and check if any rule is applicable. Let us denote
the size of a polynomial to be the total number of additions and
multiplications involved in the normal form of the polynomial
(e.g., the size of x?yz + 32343 is 5). Therefore, multiplying 2
polynomials of size s; and sy takes O(s1s2) time. Let the maxi-
mum size of all polynomials f in the input be s. Executing any
rule involves computing completion lists followed by check-
ing if 0 lies in the span of certain polynomials. Computing
completion lists of m polynomials involves O(m?) polynomial
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Input to the Tool
maps G1 * G1 ->GT.
trusted_polys [F1 = x, F2 = x*a, F3 = x*b, F4 = x*c] in G1.
untrusted_polys [F5 =r, F6 = x*r, F7 = a, F8 = a+b*r, F9 =
a*c+d’r] in G1.

Figure 12: Input to the tool on our custom testcase 1.

Figure 13: The PPE circuit output by our AutoCircuitPPE
tool on Figure 12 testcase

multiplications taking O(m? - s?) time. Checking if 0 lies in
the span of O(m?) polynomials (number of polynomials in
the completion lists) each having at most O(s?) monomials
involves solving a system of O(m? - s%) linear equations (upper
bound on the number of monomials in the completion list)
each of size O(m?), which takes at most O((m? - s?)®) time,
where n® is the complexity of multiplying two n X n matrices.
Executing Rules 2 and 4 additionally involves checking if an
untrusted polynomial is in the desired format which takes
at most O(s) time. Therefore, applying all the rules to all the
untrusted polynomials takes at most O(m - (ms)?®) time.

Now let us compute the total number of times the QSearch
algorithm is called recursively. Suppose QSearch is run on
problem IT and suppose it triggers a rule that outputs two
PPE problems I1; and IT2. (Rules 1 and 2 output only one PPE
problem, but we can treat them as Rules 3 and 4 respectively
in the worst case.) The problem II; is obtained by moving an
untrusted polynomial to the trusted set, and the problem II
is obtained by substituting some polynomial by zero. Note
that Iy cannot be equal to the original problem as Rule3 out-
puts L otherwise, and Rule 4 substitutes some monomial for
zero. Therefore some polynomial of IT; has at least one lesser
monomial than II. Let the total number of monomials in all
the polynomials of IT be k. By the above analysis, the QSearch
is recursively invoked at most 2™*¥ times. As each recursive
call takes at most O(m - (ms)?®) time, the total time taken by
our algorithm is O(m - (ms)?® - 2m+kY time.
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Input to the Tool
maps G1 * G1 ->GT.
trusted_polys [F1 = x, F2 = x*a, F3 = x*b] in G1.
untrusted_polys [F4 = r, F5 = x*r, F6 = a, F7 = a+b"r] in G1.

Figure 14: Input to the tool for our custom testcase 2.

Even though our algorithm has high theoretical complexity,
in Section 5 we show that it runs reasonably fast for many
real-world schemes. This is due to the fact that when we call
the SubstituteZero function to substitute a polynomial with
zero, the resulting problem usually has a much smaller size.

Figure 15: The PPE circuit output by our AutoCircuitPPE
tool on custom testcase 2 shown in Figure 14

G CUSTOM TESTCASES

We demonstrate AutoCircuitPPE on some custom test cases.

Custom Testcase 1. The input to the tool is described
in Figure 12. The output of the tool is displayed in Figure 17. For
space reasons, we show only the optimized PPE circuit com-
puted by the tool. It is interesting to note that AutoCircuitPPE
utilizes all our 4 rules to construct a PPE circuit. We plot the
PPE circuit in Figure 13.

Custom Testcase 2. The input to the tool is described
in Figure 14. The output of the tool is displayed in Figure 16.
We plot the PPE circuit in Figure 15.
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Output of the Tool
Trusted set in G1: FO = 1, F1 = x, F2 = a*x, F3 = b*x,
Untrusted set in G1: F4 =, F5 = r*x, F6 = a, F7 = a + b"r,
rule 2 applied to F4 =r.

Trusted set in G1: FO = 1, F1 = x, F2 = a*x, F3=b*x, F4 =1,
Untrusted set in G1: F5 = r*x, F6 = a, F7 = a + b’r,
rule 1 applied to F5 = r*x. C := e(F5,F0) = e(F1,F4)

Trusted set in G1: FO = 1, F1 = x, F2 = a*x, F3 = b*x, F4 = 1, F5 = r'x,
Untrusted set in G1: F6 = a, F7 = a + b’r,
rule 3 applied on F6 = a. isidentity :=F1 =1  C:= e(F6,F1) = e(F0,F2)

Trusted set in G1: FO = 1, F1 = x, F2 = a*x, F3 =b*x, F4 = 1, F5 = r'x,
F6 = a,

Untrusted set in G1: F7 = a + b’r,

rule 3 applied on F7 = a + b*r. isidentity :=F1 =1 C:=e(F7,F1) =
e(F3,F4)*e(F1,F6)

Trusted setin G1: FO=1,F1=0,F2=0,F3=0,F4 =1, F5=0,F6 = a,
Untrusted set in G1: F7 = a + b’r,
rule 4 applied on F7 = a + b*r and variable b. isidentity := F4 =1

Trusted setin G1: F0=1,F1=0,F2=0,F3=0,F4=0,F5=0,F6 = a,
Untrusted set in G1: F7 = a,
rule 1 applied to F7 = a. C := F7 = F6

Trusted setin G1: FO=1,F1=0,F2=0,F3=0,F4=r,F5=0,
Untrusted set in G1: F6 = a, F7 = a + b'r,
rule 2 applied to F6 = a.

Trusted setin G1: FO=1,F1=0,F2=0,F3=0,F4=1r,F5=0,F6 = a,
Untrusted set in G1: F7 = a + b*r,
rule 4 applied on F7 = a + b*r and variable b.  isidentity := F4 = I

Trusted setin G1: FO=1,F1=0,F2=0,F3=0,F4=0,F5=0,F6 = a,
Untrusted set in G1: F7 = a,
rule 1 applied to F7=a. C:=F7=F6

Execution time : 1.857338s

List of gates after optimizing the circuit

G1:e(F5F0) = e(FLF4) G2:Fl=1  G3:e(F6F1) = e(FOF2)
G4 : e(F7.F1) = e(F3.F4)*e(F1,F6)  G5:F4=1  G6:F7=F6
G7:NOT G2 G8: G7 AND G3 G9 : G8 AND G4 G10
: NOT G5 G11: G5 AND G6 G12:G10 OR G11 G13:
G2 AND G12 G14: G9OR G13 G15:G1 AND G14

Figure 16: Output of the tool on the custom testcase 2
shown in Figure 14.
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Assigning FID 0 to every unit polynomial 1

Trusted set in G1: F1 = x, F2 = a*x, F3 = b*x, F4 = ¢*x,
Untrusted set in G1: F5 =1, F6 = r*x, F7 = a,F8 = a + b*r, F9 =
a*c + d*r,

rule 2 applied to F5 = r.

Trusted set in G1: F1 = x, F2 = a*x, F3 =b*x, F4 = ¢*x, F5 =1,
Untrusted set in G1: F6 = r*x, F7 = a, F8 = a + b*r, F9 = a*c + d’r,
rule 1 applied to F6 = r*x. C := e(F6,F0) = e(F1,F5)

Trusted set in G1: F1 = x, F2 = a*x, F3 = b*x, F4 = ¢*x, F5 = 1, F6
=r'x,

Untrusted set in G1: F7 = a, F8 = a + b*r, F9 = a*c + d*r,

rule 3 applied on F7 = a. isidentity := F1 = I C := e(F7,F1) =
e(F0,F2)

Trusted set in G1: F1 = x, F2 = a*x, F3 = b*x, F4 = ¢*x, F5 = 1, F6
=1*x,F7=a,

Untrusted set in G1: F8 = a + b*r, F9 = a*c + d’r,

rule 3 applied on F8 = a + b*r. isidentity := F1 = I C := e(F8,F1)
= e(F3,F5)*e(F1,F7)

Trusted set in G1: F1 = x, F2 = a*x, F3 = b*x, F4 = ¢*x, F5 = 1, F6
=r"x,F7=a,F8 =a+ b,

Untrusted set in G1: F9 = a*c + d*r,

rule 4 applied on F9 = a*c + d*r and variable d. isidentity := F5 =T

Trusted set in G1: F1 = x, F2 = a*x, F3 = b*x, F4 = ¢*x, F5 = 0, F6
=0,F7=a,F8=a,

Untrusted set in G1: F9 = a*c,

rule 3 applied on F9 = a*c. isidentity := F1 =I C := ¢(F9,F1) =
e(F4,F8)

Trusted setin G1: F1=0,F2=0,F3=0,F4=0,F5=0,F6 =0,
F7=a,F8 =a,

Untrusted set in G1: F9 = a*c,

rule 4 applied on F9 = a*c and variable c. isidentity := F7 = I

Trusted setin G1: F1=0,F2=0,F3=0,F4=0,F5=0,F6 =0,
F7=0,F8 =0,

Untrusted set in G1: F9 = 0,

rule 1 appliedtoF9 =0.C:=F9 =1

Trusted setin G1: F1=0,F2=0,F3=0,F4=0,F5=r1,F6 =0,
F7 = a,

Untrusted set in G1: F8 = a + b*r, F9 = a*c + d*r,

rule 4 applied on F8 = a + b*r and variable b. isidentity := F5 =T

Trusted setin G1: F1=0,F2=0,F3=0,F4=0,F5=1,F6 =0,
F7=a,F8=a+Db'r,

Untrusted set in G1: F9 = a*c + d*r,

rule 4 applied on F9 = a*c + d*r and variable c. isidentity := F7 =1

Trusted setin G1: F1=0,F2=0,F3=0,F4=0,F5=r1,F6 =0,
F7=0,F8 =b’r,

Untrusted set in G1: F9 = d*r,

rule 4 applied on F9 = d*r and variable d. isidentity := F5 =1

Trusted set in G1: F1=0,F2=0,F3=0,F4=0,F5=0,F6 =0,
F7=0,F8=0,

Untrusted setin G1: F9=0, rule 1 appliedtoF9=0.C:=F9=1
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Trusted setin G1: F1=0,F2=0,F3=0,F4=0,F5=0,F6 =0,
F7 =a,

Untrusted set in G1: F8 = a, F9 = a*c,

rule 1 applied to F8 = a. C := F8 = F7

Trusted setin G1: F1=0,F2=0,F3=0,F4=0,F5=0,F6 =0,
F7=a,F8=a,

Untrusted set in G1: F9 = a*c,

rule 4 applied on F9 = a*c and variable c. isidentity := F7 = I

Trusted setin G1: F1=0,F2=0,F3=0,F4=0,F5=0,F6 =0,
F7=0,F8 =0,

Untrusted setin G1: F9 =0, rule 1 appliedtoF9=0.C:=F9=1

Trusted set in G1: F1=0,F2=0,F3=0,F4=0,F5=r,F6 =0,
Untrusted set in G1: F7 = a, F8 = a + b*r, F9 = a*c + d*r,
rule 2 applied to F7 = a.

Trusted setin G1: F1=0,F2=0,F3=0,F4=0,F5=1,F6 =0,
F7 = a,

Untrusted set in G1: F8 = a + b*r, F9 = a*c + d*r,

rule 4 applied on F8 = a + b*r and variable b. isidentity := F5 =1

Trusted setin G1: F1=0,F2=0,F3=0,F4=0,F5=r1,F6 =0,
F7=a,F8 =a+Db'r,

Untrusted set in G1: F9 = a*c + d*r,

rule 4 applied on F9 = a*c + d*r and variable c. isidentity := F7 =1

Trusted setin G1: F1=0,F2=0,F3=0,F4=0,F5=r1,F6 =0,
F7=0,F8 = b™r,

Untrusted set in G1: F9 = d*r,

rule 4 applied on F9 = d*r and variable d. isidentity := F5 = I

Trusted setin G1: F1=0,F2=0,F3=0,F4=0,F5=0,F6 =0,
F7=0,F8=0,

Untrusted setin G1: F9 =0, rule 1 appliedtoF9=0.C:=F9=1

Trusted setin G1: F1=0,F2=0,F3=0,F4=0,F5=0,F6 =0,
F7 =a, Untrusted set in G1: F8 = a, F9 = a*c,
rule 1 applied to F8 = a. C := F8 = F7

Trusted setin G1: F1=0,F2=0,F3=0,F4=0,F5=0,F6 =0,
F7=a,F8=a, Untrusted set in G1: F9 = a*c,
rule 4 applied on F9 = a*c and variable c. isidentity := F7 =1

Trusted setin G1: F1=0,F2=0,F3=0,F4=0,F5=0,F6 =0,
F7=0,F8 =0,

Untrusted setin G1: F9=0, rule 1 appliedtoF9=0.C:=F9=1

Execution time : 1.882642s

List of gates after optimizing the circuit

G1:e(F6,F0) =e(F1,F5) G2:F1=1 G3:e(F7,F1)=e(F0,F2)
G4 : e(F8,F1) = e(F3,F5)*e(F1,F7) G5:F5=1  G6: e(F9,F1)
=e(F4F8) G7:F7=1 G8:F9=1 G9:F8=F7 G10:
NOTG2 G11:G10ANDG3 G12:NOTG5 G13:G5
ANDG6 G14:G120RG13 G15:G4AND G14 G16:
GI1ANDG15 G17:NOTG7 G18:G7ANDG8 G19
:G17O0RG18  G20:G9 AND G19  G21: G5 AND G20
G22:G120RG21  G23:G2ANDG22  G24:G16 ORG23
G25: G1 AND G24

Figure 17: Output of the tool on the test case in Figure 12
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