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ABSTRACT

Reconfigurable Hybrid (electrical/optical) Network (RHN)
[14, 6, 8, 10, 11, 13-19] for modern datacenter architectures
has gained significant momentum during the last decade.
The primary advantage of such RHN architectures is the
dynamic topological reconfigurability enabled by optical
circuit switches (OCS). On one hand, RHN can benefit
throughput-intensive applications by providing on-demand
high-bandwidth links between the hosts (CPU/GPU/TPU),
such as distributed deep neural network training and recom-
mendation systems, etc. On the other hand, RHN can reduce
the hop-count between the host pairs, improving the per-
formance for latency-sensitive applications such as real-time
customer interactions with in-memory file system. However,
previous works mostly focused on finding a suitable topology
to efficiently handle a given traffic demand. Performing such
topology update together with SDN policy update in a holistic
manner while maintaining per-packet consistency and other
network invariants is still an open issue. Existing network
maintenance and policy update solutions define the notion of
per-packet consistency assuming a pure SDN network where
the physical network topology is static. This assumption does
not hold for RHN because dynamic topology reconfiguration
is inherent to RHN. In this paper, first, we define an ex-
tended notion of per-packet consistency and discuss the other
critical requirements for RHN updates. Next, we provide an
abstraction of RHN update and propose Transtate, a general
method to perform such RHN update while satisfying the
critical requirements. We believe such innovations remove
one of the key obstacles towards reconfigurable-hybrid SDN.
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1 MOTIVATION
1.1 Extended Per-packet Consistency

During the network update, one critical requirement is to
satisfy per-packet consistency [12], which requires any packet
to only use either the configuration prior to the update
or the configuration after the update, but never a mix of
two. That definition of consistency assumes the physical
topology remains the same during the updates. However,
reconfigurability is one of the main advantages of RHN. And
for an RHN update, it should include both optical topology
updates and the corresponding SDN policy updates. In this
case, we extend the per-packet consistency for the RHN and
include the network topology change as a part of the update.
RHN Per-packet Consistency (RHNPC). Each packet is pro-
cessed either using the previous SDN policies and previous
network topology before the update, or the new SDN poli-
cies and new network topology after the update. Not only
a mixture of two SDN policy is not allowed, a mixture of
the previous SDN policy and the new topology is also not
allowed, and vice versa.
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Figure 1: (a) Some RHN solutions ignore the per-packet con-
sistency, which causes transient problems during the update;
(b) network suffers from severe bandwidth drop and unreach-
ability issue when the RHN uses existing SDN solutions di-
rectly.
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1.2 Insufficient Existing Solutions

RHN architectures’ solutions. Most of the papers about the
RHN architectures introduce an update plan to instruct the
reconfiguration, like the flexible rack-level inter-connection
in OSA [2], and the longest time-slot first scheduling in
Mordia [11]. Firstly, the RHNPC cannot be preserved de-
spite the short optical link interruption time (11.5us for
2D-MEMS switches),since the update of the optical link and
the SDN policy is not guaranteed to finish at the same time.
As Figure 1(a) shows, if the optical update or SDN update
finishes earlier than the other one, the SDN switch will send
the packet to the wrong destination; and during the optical
port downtime, the packet will be sent to an optical link that
hasn’t been established yet. Secondly, the extra retransmis-
sion delay introduced by wrong routing and packet loss is
also not favorable for the nowadays NVMe technologies and
in-memory file systems, which requires 10us latency at 1M+
IOPS. Thirdly, for switches with ACL policies or firewalls,
the packets with the wrong routing path may even break the
security rules.

SDN networks’ solutions. The existing network maintenance
and network policy update works are both feasible to be
applied for RHN update if the traffic is drained from the
optical links affected by topology reconfiguration. But such
naive solution can be disruptive for applications. Most of
the SDN network update works only consider fixed topology
and usually conduct consistent updates by packets version
changing, which indicate both the previous and new policies
exist at the same time [9, 12]. Similarly, they also assume the
previous routing path and the new routing path can always
co-exist in the same topologies. While in RHN, the new links
cannot be established until the previous links have been
turned down. Though by draining the traffic from affected
optical links, some of the network update strategies [9] can
be applied to the RHN updates. However, the RHN may get
split apart during the update as shown in Figure 1, which
may create reachability issues or experience severe bandwidth
drop during the updates.

1.3 RHN Update Principles

Based on the above discussion, we summarized three princi-
ples for the RHN updates.

Guarantee RHNPC during updates. By ensuring the RHNPC
is preserved during the update, we could avoid the problems
like the wrong routing path, unnecessary packet drop, and
security rule violation. Moreover, for some specific network
applications, RHNPC can also help them achieve better
performance, like a more accurate measurement for network
monitoring and better link utilization for the load balancer.

Preserve network invariants. During the updates of the RHN,
the network invariants still need to be preserved at all times,
including no forwarding loop for every packet, all-to-all con-
nectivity between all end-points, no violation of the access
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control policies, and isolation between virtual networks. If
the RHNPC is provided already, then the network invariants
only need to be checked for the previous policies, the new
policies, and the policies during the transition states.
Minimize bandwidth reduction. To relieve the congestion and
reduce the tail latency during the update, the bandwidth
reduction should also be minimized. If the bandwidth between
two end-points or two groups of end-points drops dramatically
during the update, though the update only takes a short time,
a lot of packets will be dropped and flows may decrease the
congestion window size largely or even invoke TCP timeout.

2 TRANSTATE DESIGN

‘We propose Transtate, which is an RHN update planner and
scheduler to help achieve the above three reconfiguration
principles.

2.1 Abstractions

An RHN has two parts, the SDN network part, and the re-
configurable optical network part. To abstract the RHN, we
view the whole network as a reconfigurable optical network
connecting multiple regions of network referred to as islands,
where the optical network either behaves as the only connec-
tivity substrate among the islands or complements the SDN
network.

The scope of the island varies across different reconfig-
urable hybrid networks: In general, an island is the biggest
network region beyond where the packets may be transmitted
through the optical links, if necessary. Namely, the packets
generated and destined within an island do not cross the op-
tical boundary. Therefore, an island has the following three
properties: 1) An island may consist of an SDN switch or a
group of SDN switches. 2) The network components in an
island are always connected by the SDN network, and the
connectivity never gets impacted during the optical network
topology reconfiguration. 3) Different islands may or may not
get always connected by the SDN network. The connectiv-
ity among the islands may get impacted during the optical
topology reconfiguration.

For example, rack-level reconfigurable optical networks [5,
7, 14] connect the ToR switches in a pod, complementing the
SDN network. As a result, each ToR is an island, since intra-
ToR traffic never uses the optical links while the traffic across
the ToRs may use the reconfigurable optical links. For the
ones like Rotornet [10] and Sirius [1], the optical network acts
as the only connectivity substrate among ToRs. Therefore,
each ToR switch should also be considered as an island.
Similarly, if the reconfigurable optical network provides direct
connectivity between multiple pods or multiple fat-tree units,
then the individual pod or fat-tree unit would be considered
an island.

Topology abstraction. In summary, we abstract any RHN
topology to be an undirected graph G =(V, E) where islands
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Figure 2: (a) Initial topology (G), (b) Final topology (G’), (c)
Topology consisting only the common links between G and
led (marked as red). There are three connected groups i.e.,
{1},{2,3,5,6}, {4}

are the nodes {v|v € V} and links (include both SDN and
optical links and SDN links can be viewed as optical links
that will not be changed during updates) between islands
are the undirected edges {e = {u,v},u,v € Vl]e € E}. Note
that, there can be multiple links between two islands, and
we treat those links as separate edges. We define the number
of links associated with each island as its nodal degree.

Update Process Abstraction. Based on the given topology
abstraction, we can view any RHN update as a transition
between two such undirected graphs where the degree of each
node remains unchanged. For example, Figure 2(a&b) show
the initial and final topologies of the abstract RHN with 6
islands and 12 links (each nodal degree is 4).

Before going into the detail of our solution, we introduce
more notions that will be used in the discussion. For a RHN
update, we have the initial topology G (Fig.2(a)) and the
final topology G’ (Fig.2(b)). For every node in the graph,
its degree D(G,v;) represents the number of links that are
connected to itself in graph G. And the set of links to be
updated as Eypqqte (blue edges) and E;pdate (green edges)
in G and G’ respectively. The rest of the links remaining
fixed during update is Ey;, (red edges). If some of the islands
are connected by the fixed links Ef;,, we call this subset
of islands which remains connected during the update as
a connected group. For example, Figure 2(c) shows three
connected groups as {1},{2,3,5,6}, {4}. Note that, if there
is no common link between G and G, each island is considered
as a connected group.

2.2 Updating Strategies

Similar to many SDN network update solutions, Transtate
uses the packet version changing (two-phase update) as
atomic update operations, which will pre-install the new
rules onto the SDN switches and then switch the packet ver-
sion to use different rules to achieve consistent update. Since
the RHN update also includes the SDN policy updates, we
will use this method for update whenever the SDN policies
are changed.

If we use the packet version changing method, the packets
may have different version numbers during the update. Thus,
it requires both the previous topology and the new topology

to coexist at the same time. To satisfy that, RHN must use
packet version change to drain the traffic from the whole
network to a subgraph of the network, where the previous
and new topology can coexist. Then those link without traffic,
can be reconfigured with RHNPC guarantees since no packet
is involved. By draining the traffic from all the affected
optical links and then bring the traffic back after optical
reconfiguration, existing SDN network solution can perform
an update that satisfies RHNPC. However, this one-transtate
solution (when the traffic is only placed only on a subgraph
of the network and wait for the optical to be updated, we call
it a transtate.) may fail to preserve the reachability between
islands and has severe bandwidth drop as shown in Figure 1.

Two-transtate update. To preserve the reachability and re-
duce the bandwidth reduction, we propose the two-transtate
update strategy by introducing two different transtates in-
stead of one. Intuitively, this strategy moves the traffic to a
subgraph (transtate 1) and reconfigure some of the optical
links that need to be updated; then move the traffic to an-
other subgraph (transtate 2) and reconfigure the rest of the
optical links. As shown in Figure 3, we could achieve all the
requirements if we could find a valid two-transtate update
plan.

The detailed algorithms are shown in Algorithm 1. (Some
notations are introduced in §2.3.)

Algorithm 1: Transtate Updating Algorithms

1 def OneTranstate(G, G'):

2 drain traffic from Ep4qte in G;
/ )
update’

4 move the traffic back to G';
5 def TwoTranstate(G, G'):
6 drain traffic from E,pgqte 1 in Gj

3 update Eyp,qqte to E

!
7 update Eypgate 1 to Eupdateil;

8 move the traffic to Ep;, U E;pdate 1
/ _
9 update EupdatefQ to Eupdate_Z;

10 move the traffic back to G’;

2.3 Find Valid Transtates

For the two valid subgraphs as the two transtates, G 1
and Gy g, transtate 1 takes down some links Fypgqte 1
in G, and establish some links E;pdateil in G’ using the
same ports, while transtate 2 takes down links Eypqqte 2
and update its connection to E;pdate72' We can easily get
Gt 1= Epiz UFEypdate 2 (fixed links and links that will not
be updated in transtate 1) and G;_o = Ey;p U E;,pdateil
(fixed links and links that finished update in transtate 1).
Then we can summarize the following key properties: 1. in
any transtate, the update should turn links in the initial
topology to links in final topology (Equa 1&2); 2. the links
updated during the first transtate and the second transtate
should contain all the links in Eypgqte (Equa 1&2); 3. the
node degree should never exceed its original degree in G
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Figure 3: Examples for one-transtate update and two-
transtate updates with two different approaches. The solid
line represents active links which is transmitting traffic, and
the dotted lines represents the links being updated during
that transtate and cannot serve traffic.

during any transtate (Equa 3); 4. any transtate topology
should be a connected graph to satisfy network invariants
(Equa 4). More constraints besides the key properties are
included in §A.1.

Eupdate_l U Eupdate_2 = Eupdate cG (1)
/ ’ / /
Eupdate_l U Eupdate_2 = Eupdate cG (2)
DGy k,v; < DG, v, Vv; € V,VE €{1,2} (3)
DGy g,v; > 0,Vv; € V,Vk €{1,2} (4)

Based on the above properties, we could derive two heuris-
tic approaches to find the valid two transtates. And each of
them has different suitable scenarios:

Approach A. Update as many links as possible during the first
transtate: Only a spanning tree among connected groups are
preserved during the first transtate, while all other links
are updated. As shown in Approach A of Figure 3, this ap-
proach preserves a minimally connected graph for latency-
sensitive traffic, and minimizes the interruption time for
the throughput-intensive traffic, since most of the links will
resume at the beginning of the second transtate.

Approach B. Update an equal number of links during the two
transtates: Only reconfigure half of the links that need to be
changed in the first transtate as shown in Approach B of
Figure 3. In this way, the bandwidth drop for the network
are minimized, so that less packet drop due to congestion
will happens when draining the traffic, which is suitable for
workloads requiring high throughput.

3 IMPLEMENTATION & EVALUATION

We implemented a simple zero-one integer linear program-
ming algorithm to find the update plans for the two-transtate
update, using Gurobi with 367 lines of Python code.
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To evaluate the performance of two-transtate update, we
vary the number of islands (nodes) and each node’s degree,
then randomly generate an initial network topology and a
final network topology which satisfied the network invariants.
Then we apply both approaches to find a valid two-transtate
plan with our Gurobi Solver. For the results, we show the
number of unreachable island pairs in Table. 1, and the aver-
age computation time for finding a valid update plan with
different sizes of the network in Table. 2. For each network
size, we did 20 repeat experiments for each data point.

Number of islands (nodes)
Degree 1-Transtate 2-Transtate
10 50 100 500 1000 All
2 8.6 | 42.3 | 1214 397.9 797.9 0
4 15.4 | 150.2 | 378.7 | 2220.9 | 4347.9 0
6 9.8 | 332.5 | 688.8 | 4459.4 | 9514.5 0
8 2.7 | 431.2 | 1205.4 | 6985.7 | 15131.5 0
10 0.8 | 488.9 | 1492.0 | 11215.3 | 23995.2 0

Table 1: The number of average unreachable island pairs for
two different update methods.

De. Number of islands (nodes)
gree 10 50 100 500 1000
Al B |A|[B]| A B A B A B

2 1.1 06 [ 0.8]08(| 08 | 0.9 2.4 2.6 4.9 5.2
4 19| 21 | 49|94 ] 87 | 114|739 | 151 | 158.4 | 539.6
6 271142 8 |59 113|141 | 73 | 1744 | 1773 | 614
8 3.7 6 72|6.6| 133 |14.1 | 83.6 | 233 | 221.7 | 850.3
10 | 14| 26 | 53|74 ]11.5]19.3|95.1 | 214.2 | 2474 | 722.1

Table 2: The valid transtates computation time (ms) for both
approaches.

As shown in Table 1, a one-transtate update leads to a lot
of reachability issue during the update, while two-transtate
update solves the connectivity problems for most of the
networks with nodal degrees larger than 2. And Table 2
shows the approach B takes slightly longer time than A, but
both approaches can be found in a very short time. The
computation time scales well with the increasing network
size, which only takes less than 1 second to find a valid plan
for a network with up to 1000 nodes.

4 CONCLUSION

We extend the definition of per-packet consistency and pro-
pose reconfigurable hybrid network per-packet consistency,
which adds topology change into the problem scope. On
top of RHNPC, we present Transtate, which is a reconfig-
urable hybrid network update planner and scheduler. The
two-transtate update method solves the reachability issue
and bandwidth drop issue when applying the current SDN
policies on the reconfigurable hybrid networks directly, which
make the RHN more friendly to latency-sensitive workloads
and throughput-intensive workloads.
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A APPENDIX

A.1 Two-transtate Properties

For a hybrid network update, we have the initial topology
G and the final topology G’. For every node in the graph,
its degree DG, v; represents the number of links that are
connected to itself in graph G. And the set of links to be
updated as Fypqqte and E;pdate in G and G’ respectively.
The rest of the links remaining fixed during update is Eg;;.
If some of the islands are connected by the fixed links E'¢;,,
we call this subset of islands that remains connected during
the update as a connected group. For example, 2(c) shows the
common links (marked red), which leads to three connected
groups such as {1},{2,3,5,6},{4}. Note that, if there is no
common link between G and G’, each individual island is
considered as a connected group.

For the two valid subgraphs as the two transtates, G; 1
and G¢_2. And transtate 1 break the links set E,pqqte 1
and establish links in E;pdateib
Eypdate 2 and update its connection to E;pdat e 2

We can summarize the following properties:

while transtate 2 disable

e In any transtate, the update should turn links in the
initial topology to links in final topology (Equa 1&2);

e The links updated during the first transtate and the sec-
ond transtate should contains all the links in Eypgqte
(Equa 1&2);

e The node degree should never exceed its original degree
in G during any transtate (Equa 3);

e Any transtate topology should be a connected graph
to satisfy network invariants (Equa 4);

e All the fixed links should not be changed during any
transtate (Equa 5&6);

e The links that are not updated in the current transtate
should be active (Equa 7&8);
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Efie N Eypdate 1 =0,Vk € {1,2} (5)
Efiz N Eypaate 1 =0, Vk € {1,2} (6)
Gy 1=Efiz UEBypdate 2 (7)
Gt 2= Efip UEypdate 1 (8)
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