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Abstract: As COVID-19 cases continue to rise globally, many researchers have developed mathematical mod-
els to help capture the dynamics of the spread of COVID-19. Speci�cally, the compartmental SEIR model and
its variations have been widely employed. These models di�er in the type of compartments included, nature
of the transmission rates, seasonality, and several other factors. Yet, while the spread of COVID-19 is largely
attributed to a wide range of social behaviors in the population, several of these SEIR models do not account
for such behaviors. In this project, we consider novel SEIR-based models that incorporate various behaviors.
We created a baseline model and explored incorporating both explicit and implicit behavioral changes. Fur-
thermore, using the Next GenerationMatrixmethod, we derive a basic reproduction number, which indicates
the estimated number of secondary cases by a single infected individual. Numerical simulations for the vari-
ous models we made were performed and user-friendly graphical user interfaces were created. In the future,
we plan to expand our project to account for the use of face masks, age-based behaviors and transmission
rates, and mixing patterns.
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1 Introduction
COVID-19 has been a pandemic of monumental proportions. Ever since the identi�cation of the cause of the
outbreak of COVID-19 in late 2019 and its pandemic designation in March of 2020 [14, 12], research and devel-
opment activities have been evolving into a broader understanding of the epidemiology of the novel coron-
avirus as a “super-spreader” of infectious disease. Speci�cally, there have been several mathematical models
that have been proposed to forecast the spread as well as the future of the coronavirus disease 2019 (COVID-
19) epidemics in the US and worldwide. The primary and most e�ective use of these epidemiological models
have been to estimate the relative e�ect of various interventions in reducing disease burden rather than to
produce precise quantitative predictions about extent or duration of disease burdens.

Mathematicalmodels have been used by several researchers to study the transmission dynamics of infec-
tious diseases. A typical framework for many of the mathematical models include employing classical com-
partmental models involving an ordinary di�erential equation (ODE) system using a Susceptible-Exposed-
Infected-Recovered (SEIR) compartmental structure for modeling the spread of a disease [1]. Ever since the
news of COVID-19 was traced back to Wuhan, several researchers tried to model the dynamics using phe-
nomenological models [13] and variations of the SEIR model [6] to analyze this epidemic. Many of the papers
have studied public health interventions within the SIR/SEIR such as focusing on social distancing [11]. Most
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of these models make many key assumptions based on limited data. While they may have captured aspects
of epidemics e�ectively they often neglected to account for other factors, such as the e�ect of undetected in-
fected people [8]; e�ect of containment strategies [10]; details of immunity to disease; reinfection potential;
or population characteristics, such as age distribution, population with co-morbidities, and risk factors (e.g.,
smoking, exposure to air pollution). Some critical variables, including the reproductive number (the average
number of new infections associated with one infected person) and social distancing e�ects, can also change
over time. Most importantly, many of these models do not capture the e�ect of social behavior and how that
impacts the spread of the disease, which is the focus of this work.

It is important to realize that COVID-19 spread can impact behavior in thepopulation. For example, people
could decide to con�ne at home as a government lockdown continues, wash their hands more frequently,
wear protective masks, and avoid crowded places and schools, theaters, bars, and libraries could be closed,
social and sports events could be canceled, people could stay home from work, and businesses could close.
Surprisingly, most of the mathematical models do not explicitly include the occurrence of these behavior
changes. Without including behavioral changes, the simulations will predict the ‘worst’ possible scenario.
The impact of individual and community behavioral changes in response to an outbreak of a disease like
COVID-19 with high mortality needs to be therefore taken into account while modeling.

The main goal of this paper is to develop a new mathematical model well adapted to COVID-19 taking
into account the the impact of social behavior. This model will expand on earlier models that have been es-
tablished for coronavirus transmission dynamics [7, 9]. The model developed herein, is complex enough to
capturemost dynamic interactions, but also simple enough to allow an a�ordable identi�cation of its param-
eters from available data that can help build policy in response to the spread of this pandemic.

The outline of the paper is as follows. In Section 2, we present themathematical framework used to study
the transmission dynamics of COVID-19. Here we present a baseline model that introduces the main states of
the human sub-population through an enhanced SEIR model for COVID-19. For this model, the basic repro-
duction number is derived using a Next Generation matrix approach. In section 3, the baseline model is then
enhanced using an explicit intervention model with social behavior under lockdown conditions. Section 4
presents an implicit intervention model again expanding on the baseline model, that incorporates social be-
haviour into the transmission parameter. Section 5 presents numerical experiments for the various models
presented in the paper. We also develop Graphical User Interfaces that can serve as interactive dashboards
for simulating all models developed in this work for public use.

2 Mathematical Model and Governing Equations

2.1 A Baseline COVID-19 Model

In this work, an extended SEIR mathematical model is presented that incorporates multiple classes of infec-
tions in humans, asymptomatic and symptomatic, which are assumed to be equally infectious and of similar
duration (period of infectiousness) as well as quarantine, recovered, hospitalized and dead sub-populations.
We also keep track of the number of deaths through a separate compartment. For simplicity, the model ne-
glects natural birth and death rates. The baseline model is organized around the following �ow diagram (see
Figure 1). The model assumes the following human sub-populations that include:

• Susceptible (S): Individuals who have not been infected with COVID-19 and have not isolated themselves
from the population

• Exposed (E): Individuals in the incubation period of disease progression
• Asymptomatic (IA): Infectious individuals who do not show symptoms of COVID-19
• Symptomatic (IS): Infectious individuals who show symptoms of COVID-19
• Hospitalized (H): Infectious individuals, hospitalized with symptoms of COVID-19
• Quarantine (Q): Symptomatic infectious individuals who are isolated
• Recovered (R): Individuals who survived COVID-19
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Figure 1: Flow diagram of a Baseline COVID-19 Model

• Dead (D): Individuals who did not survive COVID-19

Wewill assume that the statesH and Q no longer spread COVID-19. Thismodel is describedwith the following
governing equations:

dS
dt = −βS

(
IA + IS
N

)
(1)

dE
dt = βS

(
IA + IS
N

)
− σE (2)

dIA
dt = (1 − p)σE − ωIA (3)

dIS
dt = pσE + (1 − ν)ωIA − ξIS (4)

dH
dt = qγQ − ((1 − x)αR + xαD)H (5)

dQ
dt = ξIS − γQ (6)

dR
dt = νωIA + (1 − q)γQ + (1 − x)αRH (7)

dD
dt = xαDH (8)

In a population of N = S + E + IA + IS + H + Q + R + D humans, susceptible individuals S move to
the exposed class E after acquiring the COVID-19 disease through interaction with an infected individual.
This transmission is being modeled via the addition of terms directly proportional to the respective infected
human classes (asymptomatic IA and symptomatic IS) involved in the transmission and an infection rate
proportional to the infected individuals. The rate of transmission from the infected to susceptible humans is
given by the usual product β. Note that the exposed category models the incubation period before a human
becomes infectious, contrasting the asymptomatic IA and symptomatic IS categories.Members of the exposed
class E move to become either symptomatic infectious or asymptomatic infectious at a human incubation
rate proportional to σ which is the intrinsic human latent period. A fraction (1 − p) of the latent becomes
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asymptomatic infectious and a fraction p become symptomatic infectious. Members of the asymptomatic IA

class recover with a rate proportional to ωwith a fraction (1− ν)moving to become symptomatic IS infectious
and the fraction ν moving to the recovered class. Symptomatic individuals become quarantined at a rate
of ξ . Individuals leave the quarantine compartment at a rate proportional to γ with a fraction q becoming
hospitalized and a fraction (1 − q) becoming recovered. Finally, hospitalized individuals die at a rate of x
and are hospitalized for a duration of 1/αD while hospitalized individuals recover at a rate of (1 − x) and are
hospitalized for a duration of 1/αR. The death rate, x = x(t), is de�ned as a function of time:

x(t) =


x̂ if H ≤ B,

x̂B + H − B
H if H > B,

(9)

where B is the number of ICU beds and x̂ is the lethality rate of individuals who have access to an ICU bed.
Note that the �rst part of the above function represents when the number of hospitalized individuals is less
than or equal to the number of beds. In other words, there is enough beds for all hospitalized individuals. The
second part of the function represents when there is a shortage of beds such that the number of hospitalized
individuals is greater than the number of beds. The de�nition of the parameters are given in Table 1.

Table 1: De�nition of Parameters in the Baseline COVID-19 model

Parameter De�nition
β Transmission Rate
σ Rate at which Exposed individuals become Infected
ω Rate at which Asymptomatic individuals become Symptomatic or Recovered
ξ Rate at which Symptomatic individuals become Quarantined
γ Rate at which Quarantined individuals become Hospitalized or Recovered

1/αR Duration at which Hospitalized individuals who recover remain hospitalized
1/αD Duration at which Hospitalized individuals who die remain hospitalized
x Rate at which Hospitalized individuals die
x̂ Lethality Rate of Hospitalized individuals with access to an ICU Bed
p Fraction of Symptomatic individuals out of Exposed individuals
q Fraction of Hospitalized individuals out of Quarantined individuals
ν Fraction of Recovered individuals out of Asymptomatic individuals

2.2 Derivation of the Basic Reproduction Number R0

In this section, we will derive a basic reproduction number R0 that can be used to measure the transmission
potential of COVID-19 as proposed by the system (1)-(8). R0 is the average number of secondary infections
produced by a typical case of an infection in a population where everyone is susceptible [4].

Let us recall that the proposedmathematicalmodel for COVID-19 includes sub-populationswith di�erent
infectious states. Therefore, we will employ a general approach called the Next Generation Matrix [1] to �nd
the basic reproduction number R0 which is given by the following theorem.

Theorem 2.1. The basic reproduction number R0 is given by

R0 = R10 + R20 + R30 (10)
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where,

R10 = β · pξ (11)

R20 = β · (1 − p)ω (12)

R30 = β · (1 − ν)(1 − p)ξ (13)

Proof. Given that the infectious states: E, IA , IS in equations (1)-(8), we can create a vector F that represents
the new infections �owing only into the exposed compartments given by:

F =
{
β(IA + IS), 0, 0

}
(14)

Along with F, we will also consider V which denotes the out�ow from the infectious compartments in
equations (1)-(8) which is given by:

V =
{
σE, ωIA − (1 − p)σE, ξIs − pσE − (1 − ν)ωIA

}
(15)

Next, we compute the Jacobian F from F given by,

F =

 0 β β
0 0 0
0 0 0


and the Jacobian V from V given by,

V =

 σ 0 0
−(1 − p)σ ω 0

−pσ −(1 − ν)ω ξ


We can then compute the inverse of the matrix V to be:

V−1 =


1
σ 0 0

1−p
ω

1
ω 0

(1−ν)(1−p)
ξ + p

ξ
1−ν
ξ

1
ξ


Using matrices F and V one can then compute the Next Generation Matrix FV−1 given by:

FV−1 = β


p
ξ +

1−p
ω + (1−ν)(1−p)

ξ
1
ω + 1−v

ξ
1
ξ

0 0 0

0 0 0


Note that (i, j) entry of the Next Generation Matrix FV−1 is the expected number of secondary infec-

tions in compartment i produced by individuals initially in compartment j assuming that the environment
seen by the individual remains homogeneous for the duration of its infection. Also, matrix FV−1 is non-
negative and therefore has a non-negative eigenvalue. The basic reproduction number can then be computed
asR0 = ρ

(
FV−1)which is the spectral radius of thematrix. This non-negative eigenvalue is associatedwith a

non-negative eigenvector which represents the distribution of infected individuals that produce the greatest
number R0 of secondary infections per generation.

The basic reproduction number R0 corresponds to the dominant eigenvalue and therefore:

R0 = β
[
p
ξ + 1 − p

ω + (1 − ν)(1 − p)
ξ

]
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which can be rewritten as the sum of three expressions:

R0 = R10 + R20 + R30

where,

R10 = β · pξ

R20 = β · (1 − p)ω

R30 = β · (1 − ν)(1 − p)ξ

Note that Theorem 2.1 yields a general result for the basic reproduction number R0 corresponding to the
COVID-19 disease transmission model given by equations (1)-(8). In addition, note that the three expressions
R10, R20, R30 are written as the product of the transmission rate, the probability of entering an infectious state
(symptomatic, asymptomatic, or asymptomatic to symptomatic), and the mean duration of that infectious
state, respectively. Thus, each expression represents the average number of secondary cases produced by an
infectious individual in a certain infectious state during their infectious period.

Corollary 2.2. Suppose we assume p = 1. In this case, the basic reproduction number is given by

R0 =
β
ξ

This assumes all infectious cases are symptomatic. Hence, this basic reproduction number shows the ratio of
the transmission rate to the quarantine rate.

3 An Explicit COVID-19 Model
Over the past few months, many parts of the globe have seen curfews, quarantines, and similar restrictions
(described as stay-at-home orders, shelter-in-place orders, shutdowns, or lockdowns). For modeling lock-
down, there have been attempts to consider vertical con�nement as an exit strategy to the regular lockdown.
In this section we study the impact of introducing a con�nement compartment explicitly into the system of
equations (1) - (8). This con�ned group (C) will consist of individuals who have not been infectedwith COVID-
19 and have isolated themselves from the population. Speci�cally, we will assume that lockdown removes a
fraction of the susceptible (S) population at a rate given by ϕ = ϕ(t), making them con�ned (C).

Figure 2 illustrates the �ow diagram of the expansion of the baseline model to the explicit model whose
equations may be described by:
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Figure 2: Flow Diagram of an Explicit COVID-19 Model

dS
dt = −ϕS + ψC − βS

(
IA + IS
N

)
(16)

dC
dt = ϕS − ψC (17)

dE
dt = βS

(
IA + IS
N

)
− σE (18)

dIA
dt = (1 − p)σE − ωIA (19)

dIS
dt = pσE + (1 − ν)ωIA − ξIS (20)

dH
dt = qγQ − ((1 − x)αR + xαD)H (21)

dQ
dt = ξIS − γQ (22)

dR
dt = νωIA + (1 − q)γQ + (1 − x)αRH (23)

dD
dt = xαDH (24)

We have assumed susceptible individuals become con�ned at a rate of ϕ and con�ned individuals become
susceptible at a rate of ψ. Here ϕ and ψ are de�ned as Dirac Delta functions based on lockdown times:

ϕ(t) = aδ(t − tlock) (25)

ψ(t) = bδ(t − tli�) (26)

where a is the fraction of susceptible individuals that enter con�nement, b is the fraction of con�ned indi-
viduals that become susceptible, tlock is the lockdown time in days, and tli� is the lockdown lift time in
days.
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4 An Implicit COVID-19 Model
In this section, we introduce a new implicit model, in which a population of individuals are subject to COVID-
19 outbreak developing according to system (1)-(8), but in which contact rates depend on the behavioral pat-
terns adopted across the population. For this new model, we allow susceptible individuals to adopt one of
two behaviors: normal behavior or altered behavior. Susceptible individuals with normal behavior (Sn) do not
reduce their social contacts, whereas susceptible individuals with altered behavior (Sa) reduce their contacts
through interventions such as social distancing and self-isolation. Both groups are assumed to have di�erent
transmission rates associated with their behavior: βn and βa, where βa = rβn, with r representing the reduc-
tion of contagious contacts associated with altered behavior. We can then model the susceptible individuals
adopting behavior βn and βa, respectively as

Ṡn = −βnSn
(
IA + IS
N

)
Ṡa = −βaSa

(
IA + IS
N

)
Letting the total susceptible population to be S = Sa + Sn, we can rewrite Ṡ = Ṡn + Ṡa.

Introducing the variable y to denote the proportion of Susceptible individuals adopting normal behavior,
given by y = Sn

Sn + Sa
, we have,

Ṡ = Ṡn + Ṡa

= −(βnSn + βaSa)
(
IA + IS
N

)
= −β(y)S

(
IA + IS
N

)
where, β(y) = βn[y + r(1 − y)]. Note that y changes according to a natural selection process that bene�ts
susceptible individuals with altered behavior and satis�es the following di�erential equation:

dy
dt = y(1 − y)(βa − βn)

(
IA + IS
N

)
(27)

This can be proved using the de�nition of y in terms of the two susceptible populations Sa and Sn and using
thequotient rulewithde�nitions for βa, βn and β(y). Note that equation (27) describes the changeof behaviors
distribution in susceptible individuals deriving from the di�erent rates of infection, βn and βa.

We describe this new model with the following updated system of ODEs:

dS
dt = −β(y)S

(
IA + IS
N

)
(28)

dE
dt = β(y)S

(
IA + IS
N

)
− σE (29)

dIA
dt = (1 − p)σE − ωIA (30)

dIS
dt = pσE + (1 − ν)ωIA − ξIS (31)

dH
dt = qγQ − ((1 − x)αR + xαD)H (32)

dQ
dt = ξIS − γQ (33)

dR
dt = νωIA + (1 − q)γQ + (1 − x)αRH (34)

dD
dt = xαDH (35)

dy
dt = y(1 − y)(βa − βn)

(
IA + IS
N

)
(36)
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Wenowhave the following theorem for the basic reproduction number for the implicitmodel correspond-
ing to social behavior.

Theorem 4.1. The basic reproduction number R0(y) for system (28)-(36) is given by

R0(y) = (R1,n0 + R2,n0 + R3,n0 )y + (R1,a0 + R2,a0 + R3,a0 )(1 − y) (37)

Proof. Following theorem 2.1, we can show that:

R0(y) = β(y)
(
p
ξ + (1 − p)

ω + (1 − ν)(1 − p)
ξ

)
Using the de�nition β(y) = βn[y+ r(1− y)] in this equation and rearranging the terms we can prove the results
for i = n, a,

R1,i0 = βi ·
p
ξ (38)

R2,i0 = βi ·
(1 − p)
ω (39)

R3,i0 = βi ·
(1 − ν)(1 − p)

ξ (40)

Corollary 4.2. Suppose we assume p = 1. The basic reproduction number is given by

R0(y) =
β(y)
ξ

This assumes all infectious cases are symptomatic. Hence, this basic reproduction number shows the ratio of
the transmission rate as a function of human behavior to the quarantine rate.

5 Numerical Computations
In this section, we implement the models developed in this paper and perform numerical simulations. We
implement our models in Python using the Runge-Kutta method for solving systems of ODEs. For our sim-
ulations, we implement our models for an initial population size N(0) of 10,000,099, which is based on the
approximate average population size of a U.S. state. We assume the number of beds B is 2,700. Additionally,
we assume our initial populations to be S(0) = 9, 999, 999, E(0) = 100, and the remaining compartments to
start with zero population.

We also used the following set of parameter values for our computations from various references.

Table 2: Parameter Values

Parameter Value References
σ−1 6 days [15]
ω−1 14 days [15]
γ−1 5 days [5]
αR−1 12 days [2, 3]
αD−1 14 days [2, 3]
q 0.19 [2, 3]

For most of the computations, the values of the transmission probabilities were chosen to be p = 0.6 and
ν = 0.8. The value chosen for x̂ = 0.04 and r = 0.8. First, we consider the basic reproduction number that
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was derived in Theorem 2.1 and Theorem 4.1. We study the in�uence of the proportion of symptomatic cases,
transmission rate, quarantine rate, and social behavior on the basic reproduction number.

Figure 3: Influence of p and β on R0

In Figure 3, we demonstrate the impact of the proportion of symptomatic cases, p, and the transmission
rate, β, on R0. Here ξ = 0.5. Our graph indicates that a higher proportion of symptomatic cases decreases
the basic reproduction number. In other words, when p increase, R20 and R30 decreases and R10 increases, and
thus results in a lower basic reproduction number. Additionally, the graph shows there is a positive linear
relationship between the transmission rate and the basic reproduction number. As the transmission rate in-
creases, the basic reproduction number increases. Also, recall from Theorem 2.1, for the basic reproduction
number to be less than 1 (which will control an epidemic [4]), we would require,

β < 1
p
ξ +

1−p
ω + (1−ν)(1−p)

ξ

With ω = 1/14 and ν = 0.8, this inequality suggests that a value of β < 0.14 will control the COVID-19
outbreak from spreading. Figure 3 clearly illustrates this.

Furthermore, we investigate the in�uence of the quarantine rate on the basic reproduction number in
Figure 4. Here, β = 0.5 and p = 0.6. This graph highlights the importance of a higher quarantine rate. A
lower quarantine rate signi�cantly increases the basic reproduction number.

Now, we investigate the in�uence of social behavior on the basic reproduction number in Figure 5 using
the result from Theorem 4.1. Here βn = 0.5, ξ = 0.5, and p = 0.6 Again, notice a linear relationship between
the proportion of normally behaved susceptibles and the basic reproduction number. Asmore susceptible in-
dividuals adopt normal behavior, the basic reproduction number increases. This emphasizes the importance
of social distancing and con�nement within the population. Thus, it is critical that the general population is
encouraged to social distance to reduce the spread of COVID-19.

Figure 6 plots all eight states in system (1)-(8) and the in�uence of the transmission rate on the disease
dynamics in the baseline model. Here, we have considered β = 0.5 and ξ = 0.5.

Figure 7 illustrates the in�uence of β on the maximum number of exposed, asymptomatic, and symp-
tomatic cases.

Next we considered the explicit model simulations and studied the in�uence of lockdown on disease dy-
namics. This is shown in Figure 8. Notice how a higher tlock increases the peak number of exposed, asymp-
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Figure 4: Influence of Quarantine Rate

Figure 5: Influence of Social Behavior

tomatic, and symptomatic cases. Though, in our model, a tlock of 30, 60, and 90 days produced similar out-
comes. But, the graph indicates that tlock = 120 days was too late, since much of the susceptible population
had already been exposed and infected. Thismeans that there were fewer con�ned individuals that were pro-
tected from the disease. Consequently, the number of cases was higher and peaked sooner than in the other
lockdown times. Hence, sooner lockdown times protects a larger portion of the population and reduces the
spread of COVID-19.

Additionally, we performed some simulations on our implicit model. The in�uence of the normal trans-
mission rate on disease dynamics is shown in Figure 9. Here, we show how changing βn, the normal trans-
mission rate, impacts the peak number of exposed, asymptomatic, and symptomatic cases for the implicit
model. Notably, the peaks are very similar to that of the baseline model. This can be attributed to the in�u-
ence of susceptible individuals with normal behavior. Even though most susceptible individuals eventually
adopt altered behavior over the course of the simulation, the e�ect of just susceptibles with normal behavior
is similar to the e�ect of all susceptible individuals having normal behavior as in our baseline model.

Moreover, we observed using equation (9) when the number of hospitalizations exceeded the number
of ICU beds B = 2700. We found that by around day 65, two months into the pandemic, the hospitalized
population exceeded the number of beds for our baseline model. This corresponds to when the number of
hospitalizations began to increase more quickly. When lockdown occurs after 30 days in the explicit model,
it takes 68 days for the number of hospitalizations to exceed the hospital bed capacity. A much sooner lock-
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Figure 6: Dynamics of the various sub-populations in the Baseline Model including Susceptible, Exposed, Asymptomatic,
Symptomatic, Hospitalized, Quarantined, Recovered and Dead

Figure 7: Baseline Model: Influence of Beta on Peak values

down, after two weeks, it takes 70 days for the number of hospitalizations to exceed the bed size. Lockdown
may cause the number of hospitalizations to peak later and prolong the bed capacity.

Note that in this work, we have assumed the transmission rate β was the same for the infected asymp-
tomatic and infected symptomatic individuals as re�ected in the �rst two equations of system (1)-(8). How-
ever, one could also consider the �rst two equations replaced as:

dS
dt = −βASI

A

N − βSSI
S

N
dE
dt = βASIA

N + βSSI
S

N − σE
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Figure 8: Explicit Model: Influence of lockdown Time on Peak values
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Figure 9: Implicit Model: Influence of Normal Transmission Rate on Peak values

where the transmission rate is denoted by βA for infected asymptomatic and βS for infected symptomatic
individuals, respectively with βS = ϵβA. Here ϵ is a parameter introduced to incorporate di�erences in trans-
mission rates between asymptomatic and symptomatic individuals. Figure 10 illustrates the in�uence of in-
creased infectivity of asymptomatic individuals on the dynamics of the states in system (1)-(8).

Figure 10: Baseline Model: Influence of varying transmission rates between symptomatic and asymptomatic infected popula-
tions

In addition to performing these simulations, we created graphical user interfaces for each of the models
presented in this work, which are seen in Figures 11, 12, and 13. The purpose of these graphical user inter-
faces is for users to be able manipulate certain values and view the resulting graphs. On the left-hand side of
each graphical user interface are the parameter values, which users can control. On the right-hand side, the
programoutputs the resulting graph.Wemay expand these graphical user interfaces in the future aswe incor-
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porate more features into our models. Notice that such graphical user interfaces and dashboards have been
extremely helpful for people across the world to make predictions and decisions regarding the pandemic.

Figure 11: Baseline Model Graphical User Interface

Figure 12: Explicit Model Graphical User Interface

6 Conclusions and future work
In this work, we considered three new epidemiological models for COVID-19 that incorporated human behav-
iors. Through these models, we explored adding new compartments as well as the role of both explicit and
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Figure 13: Implicit Model Graphical User Interface

implicit human behaviors. We also derived a basic reproduction number for our models using the Next Gen-
eration Matrix approach. Lastly, we performed numerical simulations on our models. We demonstrated how
a higher proportion of symptomatic cases, lower transmission rate, lower normal transmission rate, higher
quarantine rate, and lower proportion of susceptibles with normal behavior all contribute to a lower basic
reproduction number. Furthermore, we showed how a lower transmission rate and sooner lockdown time
reduces the peak number of cases. Our models are also able to predict ICU bed capacity requirements based
on the number of days of the spread of COVID-19 which can be useful information for hospitals to plan ac-
cordingly. In addition, we explored the e�ects of varying the infectivity of asymptomatic and symptomatic
individuals.

In the future, we plan on expanding our models. Speci�cally, we may add risk-perception and irra-
tionality into our implicit model. We may also include age-structured models in behaviors and transmission
rates. This will allow us to split the population into di�erent age groups and account for di�erent risk
perceptions and other behavior related parameters. We also hope to explore the role of homogeneous and
heterogeneous mixing, especially across and within age groups. Additionally, we would like to incorporate
the use of face masks, which impacts the likelihood of contracting COVID-19. We also plan to investigate the
level of intervention prescribed as an optimal control to manage a disease outbreak, such as when e�ective
treatments or vaccines are not readily available or too costly to be widely used.
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