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Abstract

Segmentation of anatomical regions of interest such as

vessels or small lesions in medical images is still a difficult

problem that is often tackled with manual input by an ex-

pert. One of the major challenges for this task is that the

appearance of foreground (positive) regions can be similar

to background (negative) regions. As a result, many auto-

matic segmentation algorithms tend to exhibit asymmetric

errors, typically producing more false positives than false

negatives. In this paper, we aim to leverage this asymme-

try and train a diverse ensemble of models with very high

recall, while sacrificing their precision. Our core idea is

straightforward: A diverse ensemble of low precision and

high recall models are likely to make different false posi-

tive errors (classifying background as foreground in differ-

ent parts of the image), but the true positives will tend to

be consistent. Thus, in aggregate the false positive errors

will cancel out, yielding high performance for the ensem-

ble. Our strategy is general and can be applied with any

segmentation model. In three different applications (carotid

artery segmentation in a neck CT angiography, myocardium

segmentation in a cardiovascular MRI and multiple sclero-

sis lesion segmentation in a brain MRI), we show how the

proposed approach can significantly boost the performance

of a baseline segmentation method.

1. Introduction

Deep learning techniques, such as the U-Net [20], pro-

duce most state-of-the-art biomedical image segmentation

tools. However, delineating a relatively small region of in-

terest in a biomedical image (such as a small vessel or le-

Figure 1: (a) An example CTA image with both internal and

external carotid artery. (b) The image and overlaid manual

ground-truth of the internal carotid artery

sion) is a challenging problem that current segmentation al-

gorithms still struggle with. In these applications, one of

the main problems is that there are different anatomic struc-

tures present in the images with similar shapes and inten-

sity values to the foreground structure(s), making it difficult

to distinguish them from each other [23]. Those intrinsi-

cally hard segmentation tasks are considered challenging

even for human experts. One such task is the localization

of the internal carotid artery in computed tomography an-

giography (CTA) scans of the neck. As shown in Figure 1,

there are no features that separate the internal and exter-

nal carotid arteries in the CTA appearance other than their

relative position[18]. Learning these features, particularly

with limited data, can be challenging for convolutional neu-

ral networks.

In this paper, we propose an easy-to-use novel ensemble

learning strategy to deal with the challenges we mention

above. Ensemble learning is an effective general-purpose
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machine learning technique that combines predictions of

individual models to achieve better performance. In deep

learning, it often involves ensembling of several neural net-

works trained separately with random initialization [19, 16].

It has also been used to calibrate the predictive confidence

in classification models, particularly when the individual

model is over-confident as in the case of modern deep learn-

ing models [12]. In problem settings where it is more likely

to make low precision predictions such as nodule detection,

ensemble learning has been used to reduce the false positive

rate [24, 13, 4].

Ensemble learning has previously been used for binary

segmentation, where multiple probabilistic models are com-

bined, for example by weighted averaging, and the final bi-

nary output is computed by thresholding the weighted aver-

age at 0.5 [9, 26]. The performance of a regular ensemble

model depends on both the accuracy of the individual seg-

menters and the diversity among them [11, 31]. Previous

works using ensembling for image segmentation mainly fo-

cus on having diverse base segmenters while maintaining

individual segmenter accuracy [8, 14]. In this conventional

ensemble segmentation framework, the diverse errors are

often distributed between foreground and background pix-

els.

In this paper, we present a different take on ensembling

for binary image segmentation. Our approach is to create an

ensemble of models that each exhibit low precision (speci-

ficity) but very high recall (sensitivity). These individual

models are also likely to have relatively low accuracy due

to over-segmentation. We achieve this by altering widely

used loss functions in a manner that tolerates false posi-

tives (FP) while keeping the false negative (FN) rate very

low. During training of models in an ensemble, the rela-

tive weights of FP vs. FN predictions in each model are

also selected randomly to promote diversity among them. In

this way, each model will produce segmentation results that

largely cover the foreground pixels, while possibly making

different mistakes in background regions. These weak seg-

menters have high agreement on foreground pixels and low

agreement on the predictions for background pixels. Com-

pared to other ensembling strategies, our method thus does

not focus on getting accurate base segmenters, but rather

diverse models with high recall. We use two popular and

easy-to-implement strategies to create the ensemble: bag-

ging and random initialization. Each model is trained using

a random subset of data and all parameters are randomly

initialized to maximize the model diversity.

The proposed approach is general and can be used in a

wide range of segmentation applications with a variety of

models. We present three different experiments. In the first

one, we consider the challenging problem of segmenting the

internal carotid artery in a neck CTA scan. The second ex-

periment deals with myocardium segmentation in a cardio-

vascular MRI. In the third experiment, we test our method

on multiple sclerosis lesion segmentation in a brain MRI.

Our results demonstrate that the proposed ensembling tech-

nique can substantially boost the performance of a baseline

segmentation method in all of our experimental settings.

2. Methods

Our proposed method uses weak segmenters with low

accuracy and specificity to collectively make predictions.

Although individual models are prone to over segment the

image, they are capable of capturing most of the true pos-

itive pixels. During the final prediction, an almost unani-

mous agreement is required to classify a pixel as the fore-

ground in order to eliminate the false positive predictions

made by each model. The key is for all models in the en-

semble to have a high amount of overlap in the true positive

parts and low overlap in the false positive predictions. We

can achieve this by modifying the loss function to put more

weight on false negative than false positive predictions, and

use a random weight for each model in the ensemble. We

will show in section 2.3 that this simple modification can

encourage diverse false positive errors.

Our ensemble approach is different from existing ensem-

ble methods, which usually combine several high accuracy

models and use majority voting for the final prediction.

2.1. Supervised Learning Based Segmentation

For a binary image segmentation problem, conditioned

on an observed (vectorized) image x ∈ R
N with N pixels

(or voxels), the objective is to learn the true posterior dis-

tribution p(y|x) where y ∈ {0, 1}N ; and 0 and 1 stand for

background or foreground, respectively.

Given some training data, {xi,yi}, supervised deep

learning techniques attempt to capture p(y|x) with a neural

network (e.g. a U-Net architecture) that is parameterized

with θ and computes a pixel-wise probabilistic (e.g., soft-

max) output f(x, θ), which can be considered to approxi-

mate the true posterior, of say, each pixel being foreground.

So f j(x, θ) models p(yj = 1|x), where the superscript

indicates the j’th pixel. Loss functions widely used to train

these neural networks include Dice, cross-entropy, and their

variants. The probabilistic Dice loss quantifies the overlap

of foreground pixels:

LDice(y,f(x, θ)) = 1−
2
∑N

j=1 y
jf j

∑N

j=1 y
j +

∑N

j=1 f
j

(1)

Cross-entropy loss, on the other hand, is defined as:

LCE(y,f(x, θ)) =
N
∑

j=1

−yj log(f j)

− (1− yj) log((1− f j)) (2)
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Training a segmentation model, therefore, involves finding

the model parameters θ that minimize the adopted loss func-

tion on the training data.

2.2. Ensemble of Segmentation Models

One can execute the aforementioned training K times

using the loss functions defined above to obtain K different

parameter solutions {θ1, . . . , θK}. Each of these training

sessions can rely on slightly different training data as in the

case of bagging [2] or different random initializations [12].

Given an ensemble of models, the classical approach is to

average the individual predictive probabilities, which would

be considered as a better approximation of the true poste-

rior:

pensemble(y
j = 1|x) =

1

K

K
∑

k=1

f j(x, θk). (3)

The ensemble probabilistic prediction is usually thresh-

olded with 0.5 to obtain a binary segmentation. In the re-

mainder of the paper, we refer to this approach as the base-

line ensembling method.

2.3. Ensembling Low Precision Models

In this paper, we propose an ensemble learning strategy

that combines diverse models with low precision but high

recall. Since each model will have a relatively high recall,

each model will label the ground truth foreground pixels

largely correctly. On the other hand, there will be many

false positives due to the low precision of each model. If the

models are diverse enough, these false positives will largely

be very different and thus can cancel out when averaged.

To enforce all models within the ensemble to have high

recall, we experimented with two different loss functions:

Tversky [22] and balanced cross-entropy loss (BCE) [27],

which are generalizations of the classical Dice and cross-

entropy loss functions mentioned above. These loss func-

tions, defined below, have a hyper-parameter that gives the

user the control to adopt a different operating point on the

precision/recall trade-off.

LTv(y,f) = 1−
∑

N
j=1

yjfj

∑
N
j=1

[

yjfj+βyj(1−fj)+(1−β)(1−yj)fj

]

(4)

LBCE(y,f) =
N
∑

j=1

−βyj log(f j)

− (1− β)(1− yj) log((1− f j)) (5)

Note β ∈ [0, 1) is a hyper-parameter and plays a similar

role for both loss functions. When β = 0.5, Tversky loss

becomes equivalent to Dice, and BCE is the same as regu-

lar cross-entropy. For higher values of β, these loss func-

tions will penalize false negatives (pixels with yj = 1 and

f j < 0.5) more than false positives (pixels with yj = 0 and

f j > 0.5). E.g., for β > 0.9, the false negative rates will

be kept low (such that the recall rate is greater than 90%,

for instance) while producing many false positives, yield-

ing low precision. One can achieve the opposite effect of

high precision but low recall with low values of β.

The idea we are promoting in this paper is to use the

Tversky or BCE loss with a relatively high β in training

individual models that make up an ensemble. We believe

that other loss functions that can be tuned to control the

precision/recall trade-off should also work for our purpose.

The comparison between using different losses need to be

further explored. In our experiments, when training each

model, we randomly choose a value between [0.9, 1) and

use that to define the loss function for that training session

in order to promote diversity among individual models. The

exact range of β can be adjusted based on validation perfor-

mance and desired level of recall. We then average these

predictions in an ensemble, as in Equation 3. We thresh-

old the ensemble prediction at the relatively high value of

0.9, which we found is effective in removing residual false

positives. We present results for alternative thresholds in

our Supplemental Material. We note that the threshold is

an important hyper-parameter that can be tuned for best en-

sembling performance during validation. In all of our three

experiments presented below, however, we simply used a

threshold of 0.9. In an ensemble of ten or fewer models, this

strategy is similar to aggregating the individual model seg-

mentation (e.g. obtained after thresholding with 0.5) with a

logical AND operation.

The key of our method is to combine diverse high re-

call models to reduce the false positives in the final predic-

tion. We empirically observe that a β value between [0.9, 1)
is sufficient to make the model output to have a recall rate

greater than 0.9. On the other hand, changing the β used in

the loss function from 0.9 to 0.99 effectively changes the

relative weights of false positive and false negative from

1 : 9 to 1 : 99. Models trained with different weights of

FP and FN have different sets of accessible hypotheses and

optimization trajectories in the corresponding hypothesis

space [3]. For example, a set of parameters that reduces the

false negative rate by 1% at the cost of increasing the false

positive rate by 20% might be rejected by models trained

with β = 0.9, but considered as an acceptable hypothesis

for models trained with β = 0.99. Thus, by randomizing

over β during training, we can promote more diversity in

our ensembles, while achieving a minimum amount of false

negative error that can be determined empirically by setting

the lower bound in the range of β.
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2.4. Metric for Model Diversity

To quantify the diversity in an ensemble, we measured

the agreement between pairs of models. More specifically,

we measured the similarity between two models f1 and f2

for both true positive and false positive parts of the predic-

tions, and computed the average across all model pairs in an

ensemble:

sim(p1,p2) =
2
∑N

j=1 p
j
1p

j
2

∑N

j=1 p
j
1 +

∑N

j=1 p
j
2

(6)

where pj = f j × yj or f i × (1 − yj) depending on

whether we wanted the true positive or false positive simi-

larity. Our insight is that in an ideal ensemble, true positive

similarity should be high, whereas false positive similarity

should be low.

3. Experiments

3.1. Internal Carotid Artery Lumen Segmentation

We first implemented our ensemble learning strategy on

the challenging task of internal carotid artery (ICA) lumen

segmentation. Segmentation of the ICA is clinically impor-

tant because different types of plaque tissue confer different

degrees of risk of stroke in patients with carotid atheroscle-

rosis. Our IRB approved anonymized data-set consists of

76 Computed Tomography Angiogram images collected at

Weill Cornell Medicine/New York Presbyterian Hospital.

All CTA images were obtained from patients with unilat-

eral > 50% extracranial carotid artery stenosis. All ground

truth segmentation labels were created by a human expert

(H. Ong) with clinical experience. The ICA lumen pixels

were annotated within the volume of 5 slices above and be-

low the narrowest part of the internal artery, in the vicin-

ity of the carotid artery bifurcation point. We first used a

neural network-based multi-scale landmark detection algo-

rithm to locate the bifurcation [15], and crop a volumet-

ric patch of 72 × 72 × 12 from the original image with

0.35 − 0.7 mm voxel spacing in x and y directions and

0.6 − 2.5 mm voxel spacing in the z-direction, preserving

the original voxel spacings. For each case, we confirmed

that the annotated lumen is included in the patch. The data

were then randomly split into 48 training, 12 validation, and

16 test patients. The created 3D image patches were used

for all subsequent training and testing. We employed a 3D

U-Net as our architecture for all of the models we trained

in the ensemble, using the same design choices [6]. In

this first experiment, we used the Tversky loss with high β

values (we also experimented with balanced cross-entropy,

and present those results in Supplemental Material). We

used a mini-batch size of 4, and trained our models using

the Adam optimizer [10] with a learning rate of 0.0001 for

1000 epochs.

We trained 12 different models with uniform β = 0.95,

and another 12 models with uniformly distributed random

β values ranging from 0.9 to 1, resulting in low precision

but high recall models. All models were randomly initial-

ized, and a distinct set of training and validation images

were used to increase model diversity. We called them low

prec ensemble (β = 0.95) and low prec ensemble (ran-

dom β) respectively. We also trained another 12 models

with β = 0.5, creating a baseline ensemble of models

trained with Dice loss, random initialization, and random

train/validation split. Bagging were used for both baseline

and low precision ensemble.

Figure 2 plots the quantitative results of the two ensem-

ble strategies (low prec ensemble with random β and base-

line ensemble) for different numbers of models in the en-

semble. We randomly picked K models from all 12 models

to generate the ensemble (where K is between 1 and 10).

For each K, we created 10 random K-sized ensembles and

computed the mean and standard deviation of the results

across the ensembles.

As the number of models included in the ensemble in-

creases, models trained with regular Dice loss show some

improvement in Dice score from 0.576 to 0.614, as well as

a small increase in terms of precision. On the other hand, as

can be seen for K = 1 a single low precision model has a

relatively low Dice score, but high recall (around 90%). The

Dice score improves dramatically from 0.435 to 0.708 as we

include more low precision models in the ensemble. The

precision also improves substantially, indicating that many

of the false positives are canceling each other. The ensem-

ble recall decreases slightly as some of the true positives are

removed in the ensemble. We observe that in this dataset,

the low precision ensemble’s performance (Dice) plateaus

around 4 models.

Figure 3 visualizes example results from different low

precision models trained with random β. (h) is the ground

truth label, and the image has several regions including the

internal and external carotid arteries with similar gray val-

ues. Note that it is hard even for a human expert to dis-

tinguish the internal and external carotid arteries during an-

notation (see below for inter-human agreement). Fig. 3 (b),

(c), (d), (e) and (f) are predictions made by 5 models trained

with random β. We can see that they all make different

false positive predictions but capture the structure of inter-

est. (g) is the result after applying our ensemble strategy,

and it manages to eliminate most of the false positives.

Table 1 lists the average Dice score, recall, and precision

for single baseline and low precision models (random βs),

two ensemble strategies (with K = 12, both fixed β and

random β), an additional top performing ensemble baseline

M-Heads [21], as well as a secondary manual annotation

by another expert who was blinded to the first annotations.

By using the baseline ensemble strategy with averaging and
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Figure 2: Dice score, recall, and precision for two ensemble strategies vs. the number of models in the ensemble for

segmentation of internal carotid artery in neck CTA

Method Dice Recall Precision

Single Baseline Model 0.576± 0.302 0.672± 0.393 0.563± 0.346
Single Low Precision Model 0.435± 0.192 0.944± 0.220 0.304± 0.255

Baseline Ensemble 0.614± 0.294 0.665± 0.388 0.649± 0.324
Low prec Ensemble (β=0.95) 0.643± 0.152 0.736± 0.191 0.628± 0.182

Low Prec Ensemble (random β) 0.708± 0.170 0.815± 0.212 0.670± 0.202
M-Heads [21] 0.655± 0.134 0.757± 0.152 0.634± 0.158

Second Human Expert 0.791± 0.140 0.906± 0.161 0.714± 0.146

Table 1: Performance of different methods for Internal

Carotid Artery Segmentation in Neck CTA. Best non-

manual dice score is boldfaced.

thresholding at 0.5, we boost the single model dice from

0.576 to 0.614, demonstrating the effectiveness of a regular

ensemble strategy in our application. Our low precision en-

semble method, on the other hand, is capable of greatly en-

hancing the performance from a relatively low single model

dice of 0.435 to 0.708, utilizing weak segmenters to make a

more accurate prediction. We can see that the biggest dice

score improvement (from 0.643 to 0.708) comes from us-

ing random β instead of a single fixed value. The proposed

method also has a better dice score compared to the M-

Heads method. Compared to the baseline ensemble method,

the low-precision ensemble (random β) has a higher Dice

score, a lower false negative rate, and a comparable false

positive rate. However, there is still room for improvement,

Method True Positive False Positive All Positive

Baseline Ensemble 0.768 0.637 0.696

Low prec Ensemble (β=0.95) 0.951 0.572 0.655

Low Prec Ensemble (random β) 0.954 0.515 0.643

Table 2: Average pairwise model similarity scores of true

positive, false positive, and all positive (foreground) predic-

tions for the different ensemble methods in the neck CTA

experiment. Lower values indicate more diversity. A good

ensemble should have high diversity in its (e.g. false posi-

tive) errors, but less diversity in correct predictions.

particularly in recall rates, as can be observed from the sec-

ond human expert performance.

For our diversity analysis, Table 2 lists the pairwise sim-

ilarity scores of the true positive, false positive, and all pos-

itive (foreground) predictions for different ensemble meth-

ods. A higher score means less diverse predictions. Com-

pared to a baseline ensemble, models in the low precision

ensemble have a higher (lower) score for their true positive

(false positive) predictions. Thus, our low precision ensem-

ble is capable of making more diverse false positive errors

but consistent true positive predictions. We observe that the

false positive diversity is higher in the random β ensemble,

relative to the fixed β = 0.95 ensemble. With an average
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Figure 3: An example CTA image and overlaid predictions of the internal carotid artery. (a) is the raw image. (b),(c),(d),(e),(f)

are predictions made by different low precision models. (g) is the ensemble result. (h) manual ground-truth

true positive similarity of ∼ 0.95, the correctly identified

internal carotid artery can be mostly preserved in low pre-

cision ensembles.

3.2. Myocardium Segmentation

In our second experiment, we employed the dataset from

the HVSMR 2016: MICCAI Workshop on Whole-Heart

and Great Vessel Segmentation from 3D Cardiovascular

MRI [17]. This dataset consists of 10 3D cardiovascular

magnetic resonance (CMR) images. The image dimension

and voxel spacing varied across subjects, and averaged at

390 × 390 × 165 and 0.9 × 0.9 × 0.85 mm. The ground

truth manual segmentations of both the blood pool and ven-

tricular myocardium are provided. In our experiment, we

focused on the myocardium segmentation because it is a

more challenging task with a low state-of-the-art average

dice score. Before training, certain pre-processing steps

were carried out. We first normalized all images to have

zero mean and unit variance intensity values. Data augmen-

tation was also performed via image rotation and flipping in

the axial plane. We implemented a 5 fold cross-validation,

holding 2 images for testing and 8 images for training.

To demonstrate that our method is not restricted to a spe-

Method Dice Recall Precision

Single Baseline Model [28] 0.786± 0.045 0.845± 0.047 0.747± 0.081
Single Low Precision Model 0.757± 0.065 0.974± 0.062 0.607± 0.121

Baseline Ensemble 0.790± 0.033 0.872± 0.022 0.750± 0.078
Low Prec Ensemble (β=0.95) 0.796± 0.046 0.904± 0.028 0.715± 0.092

Low Prec Ensemble (random β) 0.815± 0.052 0.949± 0.034 0.719± 0.097

Table 3: Performance for Segmentation of Ventricular My-

ocardium in MRI. Best dice score is boldfaced.

cific network architecture and loss function, we adopted the

network and method used by the challenge winner [28]. We

implemented the 3D FractalNet, with the same parameters

and experimental settings proposed by the authors, trained

with regular cross-entropy loss. We trained 12 different

models, and we call this the Baseline Ensemble. To train

models with high recall and low precision, we used bal-

anced binary cross-entropy loss with random β ∈ [0.9, 1).
Note that results obtained with Tversky loss are presentede

in Supplemental Material. We trained 12 different models to

create the low precision ensemble (random β) and another

12 models with fixed β=0.95.

Similar to the previous experiment, we randomly picked
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Figure 4: Performance of Low-Precision Ensemble vs

Number of Models: Segmentation of Ventricular My-

ocardium in MRI

Method True Positive False Positive All Positive

Baseline Ensemble 0.926 0.760 0.898

Low prec Ensemble (β=0.95) 0.971 0.644 0.842

Low Prec Ensemble (random β) 0.974 0.621 0.818

Table 4: Average pairwise model similarity scores of true

positive, false positive, and all positive (foreground) predic-

tions for the different ensemble methods in the myocardium

segmentation experiment. Lower values indicate more di-

versity. A good ensemble should have high diversity in its

(e.g. false positive) errors, but less diversity in correct pre-

dictions.

K models from all 12 models to generate an ensemble,

where K goes from 1 to 10. For each K, we created 10

random K-sized ensembles, and computed the mean and

standard deviation of the results across the ensembles (see

Figure 4). Table 3 shows the experimental results of the av-

erage of 5 fold testing. The low precision ensemble model

trained with fixed β = 0.95 value does not show significant

improvement over the regular ensemble. The Dice score

improves from 0.790 (for the state-of-the-art baseline) to

0.815 (for the low precision ensemble with random β). The

low precision ensemble with random β method has higher

Dice score and recall, but lower precision. We also observe

a higher improvement in terms of average dice scores from

single models to the ensemble.

Additionally, we perform a diversity analysis for differ-

ent ensemble models. As we observe in Table 4, models in

the low precision ensemble have more consistent true posi-

tive predictions but more diverse false positive errors.

3.3. Multiple Sclerosis (MS) Lesion Segmentation

We conduct our third experiment on MS lesion seg-

mentation. MS is a chronic, inflammatory demyelinating

disease of the central nervous system in the brain. Pre-

cise segmentation can help characterize MS lesions and

provide important markers for clinical diagnosis and dis-

ease progress assessment [29]. However, MS lesion seg-

mentation is challenging and complicated as lesions vary

vastly in terms of location, appearance, and shape. Concur-

rent hyper-intensities make MS lesion tracing more difficult

even for experienced neural radiologists (as shown in Fig 5).

Dice score between masks traced by two raters from a ISBI

dataset is only 0.732 [5].

We employ the dataset from ISBI 2015 Longitudinal MS

Lesion Segmentation Challenge [5] to verify our method.

The ISBI dataset contains MRI scans from 19 subjects,

and each subject has 4-6 time-point scans. For each scan,

FLAIR, PD-weighted, T2-weighted, and T1-weighted im-

ages are provided. All image modalities are skull-stripped,

dura-stripped, N4 inhomogeneity corrected, and rigidly co-

registered to a 1mm isotropic MNI template. Each image

contains 182 slices with FOV = 182 × 256. Two expe-

rienced raters manually traced all lesions, so there are two

gold-standard masks. To our knowledge, using the inter-

section of the two masks to train our model yields the best

performance. Only 5 training subjects (21 images) have

publicly available gold-standard masks. We can evaluate

our model on an online website by submitting predicted re-

sults of the remaining 14 subjects (61 images). Unlike ICA

lumen and myocardium segmentation, MS patients usually

contain numerous lesions with different sizes. Thus, to eval-

uate the performance of the method, we apply metrics of

lesion-wise precision (L-precision) and lesion-wise recall

(L-recall), which are defined as follows.

• Lesion-wise Precision

L-Precision =
LTP

PL
, (7)

• Lesion-wise Recall

L-Recall =
LTP

GL
, (8)

where LTP denotes the number of lesion-wise true posi-

tives, GL is the total number of lesions in the gold-standard

segmentation, and PL is the total number of lesions in the

predicted segmentation. We calculate lesion-wise F1 score

as harmonic mean of lesion-wise recall and precision.

We compare our ensemble method with four recent

works [30, 1, 25, 7] on MS lesion segmentation. We build

our baseline network architecture based on a publicly avail-

able implementation [30] designed for MS lesion segmen-

tation. Other three methods for comparison are multi-

branch network (MB-Net) [1], multi-scale network (MS-

Net) [7], and cascaded-network (CD-Net) [25]. Similar

to myocardium segmentation, all images are normalized to

have zero mean and unit variance intensity values. We use

random crop, intensity shifting, and elastic deformation to

augment our data.
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Figure 5: Example FLAIR images and corresponding masks traced by two human experts and marked in red. The left three

are a flair image, 1st rater’s mask, 2nd rater’s mask from subject-01’s first time-point scan. The right three are from subject-

02’s first time-point scan. We can see from the figure, besides ms lesion areas, there are many other hyperintensities that can

confuse algorithms or even human experts.

Method Dice L-Recall L-Precision L-F1

Baseline Ensemble [30] 0.624 0.458 0.889 0.605
Low Prec Ensemble (β = 0.95) 0.645 0.473 0.823 0.601
Low Prec Ensemble (random β) 0.662 0.491 0.849 0.622

MB-Net [1] 0.611 0.410 0.860 0.555
CD-Net [25] 0.630 0.367 0.847 0.512
MS-Net [7] 0.501 0.429 0.434 0.431

Table 5: Performance comparison for segmenting MS le-

sions in brain MRI. Best dice and L-F1 scores are bold-

faced.

We trained 10 different models with regular dice loss, 10

models using Tversky loss with random high β ∈ [0.9, 1),
and another 10 models with high β = 0.95 1. We refer these

three methods as Baseline Ensemble, Low Prec Ensemble

(random β) and Low Prec Ensemble (β = 0.95) in Table 5.

We can see from Table 5 that compared with the base-

line ensemble model, the low-precision ensemble achieves

a slightly higher lesion-wise F1 score. In terms of over-

all dice score, the low precision ensemble is 6% higher

than the baseline ensemble. Also, compared to the recently

proposed MB-Net [1] , CD-Net [25], and MS-Net [7], the

proposed low precision ensemble exhibits superior perfor-

mance in all aspects. We also note that randomizing β im-

proves the quality of segmentations, yielding a dice score

boost of 1.7 points and an increase in lesion-wise F1 score.

Because we do not have ground truth labels for the test

images, we cannot show diversity measurements for true

positive and false positive predictions. For overall posi-

tive predictions, however, the pairwise similarity scores are

listed in Table 6. We observe that the low precision ensem-

ble achieves the lowest among all three methods, indicating

a more diverse set of results generated by models trained

with random high β’s.

1Results obtained with balanced cross-entropy loss are included in the

Supplemental Material.

Method Pairwise Similarity of Foreground Pixels

Baseline Ensemble 0.814

Low prec Ensemble (β=0.95) 0.753

Low Prec Ensemble (random β) 0.737

Table 6: Pairwise model similarity scores of foreground

predictions for the different ensemble methods. Lower val-

ues indicate more diversity.

4. Conclusion

In this paper, we presented a novel low-precision ensem-

bling strategy for binary image segmentation. Similar to

regular ensemble learning, predictions from multiple mod-

els are combined by averaging.

However, in contrast to regular ensemble learning, we

encourage the individual models to have a high recall, typi-

cally at the expense of low precision and accuracy. Our goal

is to have a diverse ensemble of models that largely capture

the foreground pixels, but make different types of false pos-

itive predictions that can be canceled after averaging.

We conducted experiments on three different data-sets,

with different loss functions and network architectures. The

proposed method achieves better Dice score compared to

using a single model or a regular ensembling strategy that

does not combine high recall models. We believe that our

method can be applied to a wide range of hard segmenta-

tion problems, with different loss functions and architec-

tures. Finally, the proposed strategy can also be used in

other types of challenging classification problems.
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