
QuantumHammer: A Practical Hybrid Attack on the LUOV
Signature Scheme

Koksal Mus∗

kmus@wpi.edu
Worcester Polytechnic Institute

Istanbul Aydin University
Worcester, MA, USA

Saad Islam∗

sislam@wpi.edu
Worcester Polytechnic Institute

Worcester, MA, USA

Berk Sunar
sunar@wpi.edu

Worcester Polytechnic Institute
Worcester, MA, USA

ABSTRACT

Post-quantum schemes are expected to replace existing public-key

schemes within a decade in billions of devices. To facilitate the

transition, the US National Institute for Standards and Technology

(NIST) is running a standardization process. Multivariate signatures

is one of the main categories in NIST’s post-quantum cryptogra-

phy competition. Among the four candidates in this category, the

LUOV and Rainbow schemes are based on the Oil and Vinegar

scheme, first introduced in 1997 which has withstood over two

decades of cryptanalysis. Beyond mathematical security and effi-

ciency, security against side-channel attacks is a major concern

in the competition. The current sentiment is that post-quantum

schemes may be more resistant to fault-injection attacks due to

their large key sizes and the lack of algebraic structure. We show

that this is not true.

We introduce a novel hybrid attack, QuantumHammer, and

demonstrate it on the constant-time implementation of LUOV cur-

rently in Round 2 of the NIST post-quantum competition. The

QuantumHammer attack is a combination of two attacks, a bit-

tracing attack enabled via Rowhammer fault injection and a divide

and conquer attack that uses bit-tracing as an oracle. Using bit-

tracing, an attacker with access to faulty signatures collected using

Rowhammer attack, can recover secret key bits albeit slowly. We

employ a divide and conquer attack which exploits the structure in

the key generation part of LUOV and solves the system of equations

for the secret key more efficiently with few key bits recovered via

bit-tracing.

We have demonstrated the first successful in-the-wild attack

on LUOV recovering all 11K key bits with less than 4 hours of

an active Rowhammer attack. The post-processing part is highly

parallel and thus can be trivially sped up using modest resources.

QuantumHammer does notmake any unrealistic assumptions, only

requires software co-location (no physical access), and therefore

can be used to target shared cloud servers or in other sandboxed

environments.

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’20, November 9–13, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00
https://doi.org/10.1145/3372297.3417272

CCS CONCEPTS

• Security and privacy→Hardware attacks and countermea-

sures; Cryptanalysis and other attacks.

KEYWORDS

Rowhammer attack, fault attacks, post-quantum cryptography, mul-

tivariate cryptography, algebraic attack.

ACM Reference Format:

Koksal Mus, Saad Islam, and Berk Sunar. 2020. QuantumHammer: A Prac-

tical Hybrid Attack on the LUOV Signature Scheme. In Proceedings of the

2020 ACM SIGSAC Conference on Computer and Communications Security

(CCS ’20), November 9–13, 2020, Virtual Event, USA. ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3372297.3417272

1 INTRODUCTION

The emergence of quantum computers will render traditional public-

key schemes such as RSA and ECC insecure. Shor’s algorithm [41]

will be able to break the underlying hard factorization and discrete

log problems. Quantum computers will also affect symmetric-key

cryptosystems, but their impact can be overcome by mildly increas-

ing key sizes. For instance, using Grover’s search algorithm [20]

one may brute force a 128-bit secure system in 264 iterations. In

general, Grover’s algorithm reduces the complexity of symmetric-

key schemes from 𝑂 (𝑁) to 𝑂 (
√
𝑁), where log2 (𝑁) is the security

level in bits. Hence, doubling the key size may be a solution to

retain the security level.

The US NIST has recently started a competition for quantum

secure public-key cryptosystems for digital signatures, Public-Key

Encryption (PKE) and Key-Establishment Mechanisms (KEMs) [33].

In the NIST Post-Quantum Cryptography (PQC) Standardization

process [1], 26 schemes passed the first round and are currently com-

peting in the second round, of which 9 are digital signature schemes.

The evaluation criteria consists of three major components security,

cost and performance and algorithm and implementation charac-

teristics.

Based on the underlying hard problems, the submissions are di-

vided into 5 broad categories: lattice-based, code-based, hash-based,

isogeny-based and multivariate schemes. These categories have

different characteristics with varying key sizes and performances.

Multivariate is one of the main categories which is known to be

very efficient for resource constraint devices but on the other hand,

the key sizes are quite large. Under this category, there are four

signature schemes namely GeMSS, LUOV, MQDSS and Rainbow.

MQDSS is based on the Fiat-Shamir construction and GeMSS is

a faster variant of QUARTZ. Lifted Unbalanced Oil and Vinegar

(LUOV) is an improvement of the Unbalanced Oil and Vinegar

Session 4A: Post-Quantum Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

1071

(UOV) scheme with smaller public keys. Rainbow is an extension

of UOV with an additional oil layer.

A number of side-channel attacks have been performed on PQC

schemes. Bruinderink et al. [8] performed the first side-channel

attack on lattice-based signature schemes in 2016, specifically a

flush and reload attack on BLISS. The attack was extended to BLISS-

B by Pessl et al. [36]. Both of these attacks targeted the Bernoulli and

CDT sampling. An extension to this work was presented by Bootle

et al. [6] which manages to recover 100% of the secret key compared

to only 7% in the previous work [17]. Another side-channel attack

by Ravi et al. [37] achieving existential forgery targeted Dilithium,

a lattice-based signature scheme.

A more recent timing attack focused on the error-correcting

codes used in lattice-based schemes by D’Anvers et al. [12] in 2019.

Correlation Power Analysis (CPA) attack has also been shown to

be effective by Park et al. [34] on Rainbow and UOV. The early

timing attacks motivated a number of efforts to design constant-

time discrete gaussian samplers, i.e. [25, 26, 49]. In fact, many of

the NIST submissions, including LUOV, provided constant-time

implementations to eliminate any passive side-channel attacks. The

NIST Round 2 version of LUOV, specifically added a random salt for

every message and required randomly generated vinegars to defend

against the side-channel and fault injection attacks.

A more recent noteworthy work by Ding et al. [13, 15] pre-

sented a (purely) algebraic attack, i.e. the subfield differential at-

tack. Without any side-channel information, the attack managed

to significantly reduce the security level of LUOV. Specifically, for

LUOV-8-58-237, the complexity is reduced from 2146 to 2105 which

is lower than the minimum security level criteria established by

NIST for the post-quantum competition. The updated version of

LUOV now uses finite fields 𝐺𝐹 (2𝑟), where r is a prime, which

renders the subfield differential attack inapplicable1

There is some research aimed at evaluating the resilience of

post-quantum schemes against fault attacks. Genet et al. [19] have

demonstrated a fault attack on a hash-based digital signature scheme

SPHINCS. Another differential fault attack was introduced by Bruin-

derink et al. [9] on deterministic lattice signatures. Espitau et al.

[16] have presented fault attacks on lattice based signature schemes

BLISS, GLP, PASSSign and Ring-TESLA. Blindel et al. [4] have also

applied fault attacks on lattice based signature schemes namely

BLISS, ring-TESLA and GLP. Ravi et al. [38] have presented fault at-

tacks on lattice based schemesNewHope, Kyber, Frodo andDilithium.

This research is based on hardware faults like electromagnetic fault

injections and clock glitches. Post-quantum schemes are more diffi-

cult to attack via side-channel or fault attacks due to their massive

keys that run into many KBytes in many cases and the lack of alge-

braic structure. Collecting KBytes through slow bit-flips or leakages

observed by the attacker over extended durations is impractical

since its highly unlikely for a victim to be present and continu-

ously running the target cryptographic primitive. Therefore, small

side-channel leakages and fewer faults may not entirely break the

scheme. On the other hand, these schemes are based on strong

post-quantum (conjectured) hard problems which have withstood

years of cryptanalysis. Here we opt for a different attack strategy,

i.e., we analyze LUOV using a combination of fault injections while

1The updated version is available at the author’s website [44].

simultaneously targeting the algebraic structure. Hence we follow

a hybrid attack strategy.

1.1 Our Contribution

We have discovered a practical technique which recovers all se-

cret key bits in LUOV. QuantumHammer proceeds by injecting

faults, collecting faulty signatures, followed by the divide and con-

quer attack. The faults are achieved using a realistic software only

approach via a Rowhammer attack. In summary, in this work:

(1) We introduce a simple technique that uses faulty signatures

to mathematically trace and recover key bits. Each faulty

signature yields a key bit. While not efficient, the technique

gives us a tool we then amplify the efficiency of our attack

using a analytical approach.

(2) The analytical attack exploits structures in the generation

of the public key using a small number of recovered key bits

(using a modest number of faults injections), the complexity

of attacking the overall multivariate system reduced to a

number of much smaller MV problems, which are tractable

with modest resources using brute force.

(3) Our attack is software only, i.e. we do not assume any phys-

ical access to the device. This also permits remote attacks

on shared cloud servers or in browsers. We assume that

the memory module is susceptible to Rowhammer and that

faulty signatures can be recovered.

(4) Earlier fault attacks on post-quantum schemes assumed hy-

pothetical faults.We present a successful end-to-end Rowham-

mer attack on constant-timeAVX2 optimized implementation

of the multivariate post-quantum signature scheme LUOV.

(5) We have demonstrated full key recovery of 11,229 bits for

LUOV-7-57-197 in less than 4 hours of online Rowhammer

attack and 49 hours of offline post-processing.

(6) This attack is applicable to all the variants of LUOV Scheme

currently competing in Round 2 of NIST’s competition in-

cluding the updates [44] after Ding et al. attack [15].

1.2 Outline

In Section 1.3, we explain the related work in detail. In Section 2,

we give a brief explanation of Rowhammer attack and Oil and Vine-

gar Schemes, specifically LUOV Scheme. In Section 3, our novel

bit-tracing attack on LUOV is explained with experiments and re-

sults. Section 4 details our QuantumHammer on LUOV. Section 5

contains experimental results of QuantumHammer. Section 6 pro-

poses the countermeasures. We provide a discussion in Section 7

and Section 8 concludes the work.

1.3 Related Work

On Rainbow-like schemes, Ding et al. [14] introduced an algebraic

Reconciliation attack as an early work in 2008. Afterwards, as for

fault attacks on multivariate schemes, only a few results exist: In

2011 by Hashimoto et al. [23] on Big Field type and Stepwise Trian-

gular System (STS) including UOV and Rainbow. In 2019, Kramer

et al. [30] have also worked on UOV and Rainbow extending the

earlier work. We will only talk about UOV and Rainbow in this

section and not the Big Field type schemes. Reconciliation is an

algebraic attack whereas other two works assume physical fault

Session 4A: Post-Quantum Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

1072

attacks, first introduced by Boneh et al. [5] but there are no details

on fault injection technique. Kramer et al. claimed that randomness

of vinegar variables and also the layers in Rainbow provide good

protection against fault attacks. These studies consider there attack

scenarios:

Scenario 1 (Algebraic Attack) In this scenario [14], we assume

a purely algebraic attack that improves on brute force but does

not assume any physical fault or any side channel information.

Specifically, the aim is to invert the public map P by finding a

sequence of change of basis matrices. P is decomposed into a series

of linear transformations which are recovered step by step which

significantly reduces the security level.

Scenario 2 (Central Map) It assumes that a coefficient of the

secret quadratic central map F has been faulted. By signing ran-

domly chosen messages with the faulty F ′ and verifying the sig-

natures with the correct public key P, partial information about

the secret linear transformation matrix S can be recovered using

𝛿 = S ◦ (F ′ − F) ◦ T , where T is another secret linear transfor-

mation matrix. As (F ′ − F) is sparse, S can be partially recovered.

At least𝑚 − 1 faults are required to recover some part of the secret

key matrix S, where𝑚 is the number of equations in the system.

Both [23] and [30] have an assumption that the attack can induce

faults in either S, F or T and provided the success probabilities of

hitting the central map F . Kramer et al. have additionally assumed

a stronger attacker who can directly attack F or even specific coef-

ficients of F to avoid unwanted scenarios. Kramer et al. [30] refute

a claim made earlier by Hashimoto et al. [23] and claim that UOV

is immune to the fault attack on the central map. It is because the

attack is recovering part of S and not T , which is not present in

the UOV scheme.

Scenario 3 (Fixed Vinegar) This scenario assumes that the at-

tacker is able to fix part of randomly chosen vinegar variables from

(𝑥𝑣−𝑢+1, . . . , 𝑥𝑣), where 𝑢 is the number of vinegar variables fixed

out of total 𝑣 vinegar variables during multiple signature compu-

tation sessions. After that, message/signature pairs are generated

and utilized to recover the secrets. 𝑛 − 𝑢 + 1 pairs are needed to

recover part of T . As the attack recovers partial information about

T , it is applicable to both the UOV and Rainbow schemes but still

not sufficient to recover the secret key.

Shim et al. [40] have recently presented an algebraic fault analy-

sis attack on the UOV and Rainbow schemes. They have assumed a

similar scenario of fixed (reused) vinegar but they have two more

scenarios as well: revealed and set to zero vinegar. They are also

assuming physical faults and there are no details on how the faults

are injected. Based upon the number of faulty vinegar values, they

give the complexities for the attacks. For UOV, 59 Bytes of faulty

vinegar are needed for full key recovery. They also provide the

results for LUOV which are the only fault attack results so far on

LUOV scheme. Due to the large parameter sizes, the results are

not very promising to obtain a practical attack to target real life

deployments. Assuming 171 Bytes and 169 Bytes of faulty vinegar

values for LUOV-8-63-256 and LUOV-8-49-242, the complexities

drop from 2181 and 2192 to 2127 and 2109, respectively.

The authors have not demonstrated the fault attack. In practice,

fixing a large contiguous portion of vinegar values by physical fault

injection or Rowhammer is very hard to achieve if at all possible.

Our attack scenario is different from those presented in exist-

ing works [5, 14, 23, 30]. We are inducing faults in the last stage

of the signing algorithm in the linear transformation T of LUOV

scheme. We have actually verified the assumption, i.e., we imple-

mented an attack that induces bit flips in T . Note that the attack

does not have any control in the position of the bit flips as within T
as assumed by our attack scenario. Also, we have the ability to de-

tect if the bit flip was in T or not. We have practically demonstrated

this model by inducing the bit flips using the Rowhammer attack

and not just assuming the faults as in previous research. To the

best of our knowledge, this is the first work which actually induces

bit flips (faults) through software in post-quantum cryptographic

schemes. The goal here is to make use of the faulty signatures to

track back to the flipped bits and leak the secret bits of T . We do

not need any correct and faulty signature pairs. Rather we are able

to correct the faulty signature by modifying the public signature

values and verifying the modified signatures using signature ver-

ification mechanism as an oracle. Some recovered bits from this

bit-tracing attack are used to decrease the complexity of the solu-

tion of Multivariate Quadratic (MQ) system to a practically solvable

smaller MQ and Multivariate Linear (ML) systems by using a divide

and conquer attack to recover the rest of the private key bits. We

call this hybrid attack asQuantumHammer.

2 BACKGROUND

2.1 Rowhammer Attack

The Rowhammer attack is a software-induced hardware-fault attack

discovered in 2014 by Kim et al. [27]. Data is stored in the form

of bits in the DRAMs in memory cells, composed of capacitors

and transistors. A charged capacitor represents a binary one and

a discharged capacitor a binary zero or vice versa according to

the convention. There is a threshold to decide the value of the bit

according to the voltage level. These cells are placed very close to

each other, generally 64K cells in a row. As capacitors leak charge

over time, they need to be refreshed after a certain time period,

typically after every 64 ms. But if a DRAM row is activated rapidly,

it can affect the neighboring rows due to induction and refresh rate

of 64 ms might not be enough to maintain the state of the capacitor.

This phenomena causes the voltage levels to cross the threshold

which results in bit flips.

As, the DRAM is shared between different processes or virtual

machines, this bit flipping can lead to serious consequences. To

perform a successful Rowhammer attack from an attacker process

to a victim process sharing the same DRAM, the victim has to

be located at one of the vulnerable DRAM rows identified by the

attacker. Therefore, the attacker first identifies the rows vulnerable

to Rowhammer and then free them from the process. Next step is

to either wait for the victim to get that memory space assigned by

the OS or force the victim to be placed at these rows. There are

various techniques in the literature to achieve this, i.e. spraying

[22, 39, 46], grooming [43] and memory-waylaying [21, 31, 47]. The

attack works because the bit flips are highly reproducible, which

means once the attacker has identified a list of bad cells in the

DRAM, she can flip the values of the same cells causing a bit flip

in the victim process. Previous research shows that Rowhammer

Session 4A: Post-Quantum Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

1073

attack is applicable in cloud scenarios [10] and heterogeneous FPGA-

CPU platforms[45]. It can be launched remotely over the network

[32, 42]. Rowhammer is even applicable on ECC chips [11] and

DDR4 memories with Target Row Refresh (TRR) mitigations [18].

2.2 Oil and Vinegar Schemes

Consider a system of𝑚 Multivariate Quadratic (MQ) polynomials

with 𝑛 variables 𝑥1, . . . , 𝑥𝑛

𝑝𝑘 (𝑥1, . . . , 𝑥𝑛) =
𝑛∑
𝑖=1

𝑛∑
𝑗=𝑖

𝑝𝑘𝑖 𝑗 · 𝑥𝑖𝑥 𝑗 +
𝑛∑
𝑖=1

𝑝𝑘𝑖 · 𝑥𝑖 + 𝑝𝑘0 (1)

Note that, since we are using boolean equations, we reserved the

exponent for use as an index.

Solving the MQ system is conjectured hard for sufficiently large

𝑚 and 𝑛. The MQ challenge by Yasuda et al. [48] gives a way to

gauge the difficulty of solving real-life MQ instances with moderate

size instances. Amultivariate signature schememay be build around

the MQ system: the coefficients represent the public key P, the

system is solved for the hash of the message, the variable values

that satisfy the equation (the solution to the MQ system) represents

the signature. It is hard to solve this system and find a signature

for a desired message unless we have a trapdoor P = S ◦ F ◦ T ,

where S and T are the secret invertible linear transformations and

F is the secret quadratic map having a special structure given as

𝑓 𝑘 (𝑥1, . . . , 𝑥𝑛) =
𝑣∑

𝑖=1

𝑛∑
𝑗=𝑖

𝛼𝑘𝑖 𝑗 · 𝑥𝑖𝑥 𝑗 +
𝑛∑
𝑖=1

𝛽𝑘𝑖 · 𝑥𝑖 + 𝛾𝑘 (2)

Here, 𝑛 variables 𝑥1, . . . , 𝑥𝑛 are divided into two parts, 𝑥1, . . . , 𝑥𝑣 as
the vinegar variables and 𝑥𝑣+1, . . . , 𝑥𝑛 as the𝑚 oil variables where

𝑛 = 𝑣 +𝑚. The parameters 𝛼𝑘𝑖 𝑗 , 𝛽
𝑘
𝑖 and 𝛾𝑘 are chosen randomly

from a finite field F where 𝑘 ranges from 1 to𝑚. The specialty of

this structure is that there is no quadratic term with multiplication

of two oil variables. So, if vinegar variables are chosen randomly

and inserted into the system, it collapses to a linear system which

can be easily solved for the remaining oil variables using Gaussian

elimination. Note that, oil variables are public whereas vinegars are

kept secret. The structure of F is then hidden using a secret linear

transformation T . The detailed explanation of the LUOV signature

schemes which utilize this structure is given in Section 2.3.

The first Oil and Vinegar scheme was proposed by Patarin [35]

in 1997 which was broken by Kipnis and Shamir [29] in 1998. The

modified version of the scheme named UOV was then proposed by

Kipnis et al. [28] in 1999. The main difference was to unbalance the

number of oil and vinegar variables by increasing the number of

vinegar variables to render the attack ineffective.

2.3 LUOV

The public keys of UOV are prohibitively large to prevent wide-

scale deployment. This motivated another proposal named LUOV

by Beullens et al. [2]. LUOV was submitted to NIST for the PQC

standardization process and is currently competing in Round 2. One

of the main innovation of LUOV is to reduce the large key sizes

in UOV in the way that keys are generated and stored. Instead of

storing and transferring large public keys every time, LUOV makes

use of the idea that generating the keys whenever needed using a

sponge type hash function and using a private seed for the private

key and public seed and additional 𝑄2 ∈ F𝑚×𝑚 (𝑚+1)/2
2 matrix for

the public key. Here we give a brief description of the LUOV scheme.

A detailed description and supporting documentation can be found

in [3].

2.3.1 Key Generation. process is depicted in Figure 1. Briefly,

𝑝𝑟𝑖𝑣𝑎𝑡𝑒_𝑠𝑒𝑒𝑑 is hashed by a sponge type hash function H generat-

ing 𝑝𝑢𝑏𝑙𝑖𝑐_𝑠𝑒𝑒𝑑 and 𝑣 ×𝑚 private binary secret linear transforma-

tion matrix T . Another hash function G generates public parame-

ters 𝐶 ∈ F𝑚2 , 𝐿 ∈ F𝑚×𝑛
2 and 𝑄1 ∈ F𝑚×𝑣 (𝑣+1)/2+𝑣𝑚

2 by hashing the

𝑝𝑢𝑏𝑙𝑖𝑐_𝑠𝑒𝑒𝑑 . A 𝑣×𝑣 upper triangular matrix 𝑃𝑘1 and 𝑣×𝑚 matrix 𝑃𝑘2
are generated by 𝑓 𝑖𝑛𝑑𝑃𝑘1 and 𝑓 𝑖𝑛𝑑𝑃𝑘2 algorithms respectively using

𝑄1 and an integer counter 𝑘 . The details of the algorithms can be

found in [3]. In this work, we do not need the details of generation

of 𝑃𝑘1 and 𝑃𝑘2 , hence, we will consider 𝑃𝑘1 and 𝑃𝑘2 as given fixed

random binary matrices. 𝑃𝑘1 and 𝑃𝑘2 are given as:

𝑃𝑘1 =

�������
𝑎𝑘1,1 𝑎𝑘1,2 · · · 𝑎𝑘1,𝑣
0 𝑎𝑘2,2 · · · 𝑎𝑘2,𝑣
...

...
. . .

...

0 0 · · · 𝑎𝑘𝑣,𝑣

�������𝑣,𝑣
, 𝑃𝑘2 =

�������
𝑏𝑘1,1 𝑏𝑘1,2 · · · 𝑏𝑘1,𝑚
𝑏𝑘2,1 𝑏𝑘2,2 · · · 𝑏𝑘2,𝑚
...

...
. . .

...

𝑏𝑘𝑣,1 𝑏𝑘𝑣,2 · · · 𝑏𝑘𝑣,𝑚

�������𝑣,𝑚
Intermediate𝑚 ×𝑚 matrix 𝑃𝑘3 is generated by the formula 𝑃𝑘3 =

−𝑇𝑇 𝑃𝑘1𝑇 +𝑇𝑇 𝑃𝑘2 where 𝑘 = 1, . . . ,𝑚. Therefore, (𝑖, 𝑗)𝑡ℎ element of

𝑃𝑘3 is

𝑝𝑘3 (𝑖, 𝑗) =
𝑣∑

𝛼=1

𝑡𝛼,𝑗

𝛼∑
𝑙=1

𝑡𝑙,𝑖𝑎𝑙,𝛼 +
𝑣∑

𝛾=1

𝑡𝛾,𝑖𝑏𝛾,𝑗 for 𝑖, 𝑗 ∈ {1, · · · ,𝑚}. (3)

𝑚×𝑚 �(𝑚+1)
2 binary public key matrix𝑄2 is generated by Equation 4.

It is important to emphasize that 𝑃𝑘3 constitutes the 𝑘𝑡ℎ row of 𝑄2.

𝑄2(𝑘,𝛽𝑖,𝑗) =

{
𝑝𝑘3 (𝑖, 𝑗) , 𝑖 = 𝑗

𝑝𝑘3 (𝑖, 𝑗) ⊕ 𝑝𝑘3 (𝑗, 𝑖) , 𝑖 < 𝑗
(4)

where 𝛽𝑖, 𝑗 = (𝑖 − 1)𝑚 + 𝑗 −
∑𝑖−1
𝛼=0 𝛼 , 𝑖, 𝑗, 𝑘 ∈ {1, · · · ,𝑚} and 𝛽𝑖, 𝑗 =

1, . . . ,𝑚(𝑚 + 1)/2.
For instance the k𝑡ℎ row of 𝑄2 is of the following form:

(𝑝𝑘3 (1, 1), 𝑝
𝑘
3 (1, 2) ⊕ 𝑝𝑘3 (2, 1), 𝑝

𝑘
3 (1, 3) ⊕ 𝑝𝑘3 (3, 1), · · · , 𝑝

𝑘
3 (2, 2),

𝑝𝑘3 (2, 3) ⊕ 𝑝𝑘3 (3, 2), · · · , 𝑝
𝑘
3 (3, 3), · · · , 𝑝

𝑘
3 (𝑚,𝑚)).

Key generation algorithm outputs 𝑝𝑟𝑖𝑣𝑎𝑡𝑒_𝑠𝑒𝑒𝑑 as the private key

and 𝑝𝑢𝑏𝑙𝑖𝑐_𝑠𝑒𝑒𝑑 and𝑄2 as the public key. Public map P needed for

signature verification is the concatenation of 𝐶 , 𝐿, 𝑄1 and 𝑄2.

2.3.2 Signature Generation. primitive of LUOV is shown in Fig-

ure 2 and explained in Algorithm 1 which is divided into four parts,

Parameter Generation, Augmented Matrix Generation, Gaussian

Elimination and Generation of the Signature for the sake of sim-

plicity. It is important to note that 𝑜 is publicly available in the

signature. Therefore, it is known to the adversary.

2.3.3 Signature Verification. The verifier generates𝐶 , 𝐿 and𝑄1

from the 𝑝𝑢𝑏𝑙𝑖𝑐_𝑠𝑒𝑒𝑑 using the hash function G. These parts are
then combined with the publicly available 𝑄2 to form the public

map P. Similar to the signing algorithm, the message 𝑀 and the

Session 4A: Post-Quantum Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

1074

Figure 1: LUOV public and private key generation processes.

Figure 2: Signature generation algorithm explained in four steps.

Algorithm 1 LUOV Signature Generation

Input: 𝑝𝑟𝑖𝑣𝑎𝑡𝑒_𝑠𝑒𝑒𝑑 , Message𝑀
Output: Signature (𝑆 | |𝑠𝑎𝑙𝑡)

1: Parameter Generation: Binary linear transformation T and

𝑝𝑢𝑏𝑙𝑖𝑐_𝑠𝑒𝑒𝑑 are generated by the hash of random 𝑝𝑟𝑖𝑣𝑎𝑡𝑒_𝑠𝑒𝑒𝑑 .
Then, the hash of 𝑝𝑢𝑏𝑙𝑖𝑐_𝑠𝑒𝑒𝑑 outputs𝐶 , 𝐿 and𝑄1. Concatena-

tion of message𝑀 and a random 𝑠𝑎𝑙𝑡 hashed byH produces

message ℎ to be signed.

2: Augmented Matrix Generation: Insert randomly chosen

vinegar variables 𝑣 into the MQ system F (𝑠 ′) = ℎ which col-

lapses to a linear system. The augmented matrix generation

algorithm is explained in 9.

3: Gaussian Elimination: Linear system can be easily solved

by Gaussian elimination which gives oil variables 𝑜 . Note that,
oil variables depend on ℎ and 𝑣 since the other parameters are

generated by the same 𝑝𝑟𝑖𝑣𝑎𝑡𝑒_𝑠𝑒𝑒𝑑 .
4: Generation of the Signature: Signature 𝑆 is the concatena-

tion of 𝑠 = T · 𝑜 + 𝑣 , 𝑜 and 𝑠𝑎𝑙𝑡 .
return (𝑠 | |𝑜 | |𝑠𝑎𝑙𝑡)

𝑠𝑎𝑙𝑡 are concatenated, then hashed using H to form the digest ℎ. If
P(𝑠) = ℎ, then the signature is verified, otherwise rejected.

3 A NOVEL BIT-TRACING ATTACK ON LUOV

In this section we outline a novel fault injection attack on LUOV.

The attack succeeds in efficiently recovering secret key bits from

faulty signatures whereas faults may be injected through software

only Rowhammer attack. The attack consists of three main phases,

pre-processing, online and post-processing phase.

The pre-processing phase which includes templating, needs to be

carried out on the same machine on which victim will be running.

The purpose of this phase is to collect the physical addresses of

the memory locations susceptible to Rowhammer. The victim does

not need to be present or running in the pre-processing phase. The

victim can then be placed at those addresses in the online phase

when the victim process starts running. In the online phase the

victim is first forced to be placed at the target addresses and then

the Rowhammer attack induces bit flips in a particular area of the

victim while the victim is carrying out the signing operations. This

causes the victim to generate faulty signatures which are public

and collected by the attacker. After collecting a number of faulty

signatures, our novel bit tracing algorithm is carried out in the post-

processing phase which can be done offline on any other machine

or cluster.

The DRAM modules installed in the system are susceptible to

Rowhammer attack. The attacker and victim processes are co-

located on the same DRAM chip. The attacker can induce bit flips in

the linear transformation T of LUOV scheme and is able to collect

the faulty signatures. The attacker has no control or knowledge

over the position of the bit flips within T and the T matrix is huge

e.g. 11,229 bits for LUOV-7-57-197 [44]. Also, the attacker does not

know the value of the flipped bit. The target of the attacker is to

trace back to the position of the flipped bit as well as to recover the

value of the bit by just using the faulty signatures. The attacker has

no knowledge of the correct signatures and can only use the public

parameters to perform the attack. Moreover, the attacker is not

using huge pages for contiguous memory. Also, she does not have

any knowledge of the DRAM mappings which convert physical ad-

dresses to DRAM ranks, banks, rows and columns. The bit-tracing

is summarized in Figure 3 and then each step is explained in detail

along-with results.

3.1 Pre-processing Phase (Templating)

The pre-processing (templating) phase of the attack is carried out

on the machine where the attacker and the victim are co-located,

sharing the same DRAM module. The victim does not need to be

present or running in this phase. As double-sided Rowhammer

requires contiguous chunk of physical memory, we allocate a 256

MBytes buffer and look for an 8 MBytes of contiguous memory

using Spoiler [24]. After that, row conflicts are found to identify the

virtual addresses mapped to the same DRAM bank. This is achieved

using a side channel since the data coming from the same bank

will take longer as compared to the data coming from the other

Session 4A: Post-Quantum Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

1075

Figure 3: Phases of novel bit-tracing attack on LUOV

Figure 4: Row conflicts for the pages from the detected con-

tiguous memory. The higher timings indicate that the pages

are mapped to the same DRAM bank which are the target

for the Rowhammer attack.

banks. As the data from the row buffer needs to be copied back

to the original row before the data from another row within the

same bank is loaded into the row buffer, it creates additional delay.

The measurements are shown in Figure 4 and a threshold value of

380 cycles is set in our experiments. This threshold value may vary

from one machine to another.

Figure 5: Number of bit flips increases with the increase in

number of hammers. The experiment is repeated 30 times

for each number of hammers on an 8 MBytes contiguous

chunk of memory and the results are then averaged out.

Once we find the virtual addresses mapped to the same DRAM

bank, we start the process of double-sided Rowhammer to find

the DRAM rows suitable for Rowhammer. We found 125 rows in

8 MBytes of contiguous memory which are mapped to the same

bank. Our results indicate that the rows in the DRAM are ordered

sequentially if the targeted memory is contiguous. These rows are

then taken 3 at a time with aggressor rows on the sides and the

Figure 6: Double-sided Rowhammer with different data pat-

terns. If the attacker rows are filled with all zeros, the bit

flips occur in 1 −→ 0 direction and if the attacker rows are

filled with all ones, the bits are flipped from 0 −→ 1. This

strategy helps to recover the values of the bit positions of T
traced by the bit-tracing attack.

victim row in the middle and aggressor rows are accessed (ham-

mered) repeatedly to get flips in the victim row. The number of bit

flips found within this contiguous chunk can be seen in Figure 5

against the number of hammers. It is observed that the number

of bit flips increase with the number of hammers. To find the sus-

ceptible memory locations in the pre-processing phase we set a

value for number of hammers as 106. The other observation is that

there is not much difference between the number of 1 −→ 0 flips

and 0 −→ 1 flips. To achieve bidirectional flips, we fill the aggressor

rows with all zeros and the victim row with all ones for 1 −→ 0 flips

and aggressor rows with all ones and the victim with all zeros for

0 −→ 1 flips as explained in Figure 6.

The final step of the pre-processing phase is to free the vulnerable

memory pages from the attacker process so that the victim can be

placed at that location for the online attack. We do this by using

𝑚𝑢𝑛𝑚𝑎𝑝 instruction for every 8 KBytes row. As the bit flips are

highly reproducible, Rowhammer will flip the same bits again but

in the victim process in the online phase.

The experiments are carried out on a Haswell system with DDR3

memory, running Ubuntu OS. 17,129 vulnerable physical addresses

Session 4A: Post-Quantum Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

1076

are found in 5.7 hours. These experiments are done repeatedly

using a script as 8 MBytes of contiguous memory is not enough

for gathering these many addresses. So, 256 MBytes of memory

is allocated again and again out of which 8 MBytes of contiguous

chunk is detected. Each chunk is then checked for all possible bit

flips. A big single chunk of contiguous memory is hard to find in a

live system running various processes.

3.2 Online Phase (Rowhammer attack)

The pre-processing phase gives a list of vulnerable physical ad-

dresses and the goal of the online phase is to first place the target

linear transformation T of LUOV scheme at one of those physical

addresses and then do the double-sided rowhammer again to get

bit flips in T . For experimental purposes, we achieve this by keep

allocating memory pages for the T with in the victim process until

it either gets in one of the target addresses or one page next to a

target address. This is because one DRAM row comprises 8 KBytes

having two 4 KBytes pages and the size of the T matrix is less

than a 4 KBytes page. For LUOV-7-57-197, the size of the linear

transformation matrix T is (57 × 197)/8 = 1, 404 Bytes. Hence, if
T gets in either of the two pages of the target row, we can start

doing the Rowhammer attack. This process is time consuming as a

large number of memory pages are allocated until T is mapped to

the desired target address.

The placement of victim can also be achieved by using other

techniques present in the literature like spraying [22, 39, 46], groom-

ing [43] and memory-waylaying [21, 31, 47]. Figure 7 shows the

number of T bits flipped against time. The number of bit flips do

not increase linearly with time as we start getting the same bit

flips over and over again. Out of 25,335 bit flips, only 8,902 were

unique in 16 hours of the online phase. We can see that in the first

hour we get 1,334 bit flips, little less than a double in two hours

and after that the bit flips are getting repeated more often. Still, we

are able to recover approximately 80% of the T bits in 16 hours.

Figure 8 indicates the number of bit flips per column of T which

will be used byQuantumHammer in Section 4. The working of the

attack is verified when the victim and attacker process are running

independently in different terminals but due to the system crashes,

memory constraints, disk errors and synchronization problems,

the attacker and the victim process are combined as we needed to

run the experiments for l6 hours continuously. For example, in a

2GB memory in which only 25% memory is available in a running

system, two separate processes start taking the swap partition. This

makes the system slow and unresponsive.

3.3 Post-processing Phase

The post-processing phase takes the faulty signatures collected

in the online phase and is able to recover the key bits of T . We

consider it a weakness of the LUOV scheme because the faulty

public signatures should not lead back to the secret key bits of T .

In the LUOV scheme, if T is recovered, the secret central map F
can be easily computed using the public map P, as P = F ◦ T .

Thus, recovering T is enough to break the scheme and forging any

signature. The bit-tracing algorithm can be executed offline on any

other system or cluster independently.

In the last stage of LUOV, there is a linear transformation T
which gives the signature as the output. The intuition behind the

bit-tracing attack is to flip bits in T and observe the effect on

the signature values. Once we get a faulty signature, the signature

verification algorithm is utilized as an oracle to correct the signature

by iteratively modifying the faulty signature. When the correct

signature is found and the verification test is passed, bit-tracing

algorithm mathematically tracks back to the flipped bit and is able

to get information about the position of the flipped bit. By filling

the attacker rows with all ones and the victim row with all zeros,

we can tell that the flipped bit was a zero or vice versa.

We target the last part of the signature generation algorithm of

LUOV which is a linear transformation 𝑠𝑣×1 = T𝑣×𝑚 × 𝑜𝑚×1 ⊕ 𝑣𝑣×1
or in the matrix form as Equation 5.⎡⎢⎢⎢⎢⎢⎣

𝑠1
...
𝑠𝑣

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
𝑡11 . . . 𝑡1𝑚
...

. . .
...

𝑡𝑣1 . . . 𝑡𝑣𝑚

⎤⎥⎥⎥⎥⎥⎦ ×
⎡⎢⎢⎢⎢⎢⎣
𝑜1
...
𝑜𝑚

⎤⎥⎥⎥⎥⎥⎦ ⊕
⎡⎢⎢⎢⎢⎢⎣
𝑣1
...
𝑣𝑣

⎤⎥⎥⎥⎥⎥⎦ (5)

Our bit-tracing algorithm for LUOV is given in 2 which takes 𝑣 ×
𝑚 signature verifications to trace 1 bit of T for 1 bit flip. The inputs

to the algorithm are all public parameters: 1) the faulty signature

𝑆 which we get after flipping the bit using Rowhammer attack, 2)

the message𝑀 , 3) public map P. The algorithm finds the correct

signature by replacing each element of 𝑠 with the XOR of itself and

each element of the oil variables. On successful verification, the

indexes of the bit flip (𝑟, 𝑐) in T are returned which indicates the

bit flip position in T .

Algorithm 2 Bit-tracing algorithm for LUOV - Offline

1: procedure Tracebit(𝑆, 𝑠𝑎𝑙𝑡)
Input: (𝑆, 𝑠𝑎𝑙𝑡) ⊲ Faulty signature

𝑀 - Message , P - Public map

Output: Returns (𝑟, 𝑐) ⊲ Recovered bit flip position in T
2: ℎ ←−H(𝑀 | |0𝑥00| |𝑠𝑎𝑙𝑡)
3: for 𝑟 from 1 to v do

4: for 𝑐 from 1 to m do

5: 𝑆 [𝑟] ←− 𝑆 [𝑟] ⊕ 𝑆 [𝑐 + 𝑣]
6: if 𝑃 (𝑆) ≠ ℎ then

7: 𝑆 [𝑟] ←− 𝑆 [𝑟] ⊕ 𝑆 [𝑐 + 𝑣]
8: else

9: return 𝑟, 𝑐
10: break

11: end if

12: end for

13: end for

14: end procedure

If there is a bit flip somewhere in T , say at index (𝑟, 𝑐), multipli-

cation of 𝑟𝑡ℎ row of T and 𝑜 results in a difference in 𝑠 which is 𝑜𝑐
at the term 𝑠𝑐 . As the 𝑜 and 𝑠 are public, we can try all potential

differences which are the elements of 𝑜 XORed with all elements

of the 𝑠 to check which one of the oil variable caused the error

due to a bit flip in T . We achieve this by replacing each element

of 𝑠 with its XOR of all elements of 𝑜 one by one and pass it to the

signature verification oracle. Once, the signature gets verified, we

Session 4A: Post-Quantum Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

1077

1 Hour
1334 bits

10 20 30 40 50

20

40

60

80

100

120

140

160

180

R
ow

s
of

 T
19

7
57

2 Hours
2511 bits

10 20 30 40 50

4 Hours
4323 bits

10 20 30 40 50
Columns of T

197 57

8 Hours
6737 bits

10 20 30 40 50

16 Hours
8902 bits

10 20 30 40 50

Figure 7: Online phase of Rowhammer attack. The plot depicts the bit flips in the T matrix in the form of pixels, where white

pixels indicate the flipped bits. Approximately 80% of the key bits are flipped in 16 hours.

10 20 30 40 50
Column number of T

197 57

50

100

150

B
its

 r
ec

ov
er

ed
 p

er
 c

ol
 o

f T
19

7
57 16h

8h
4h
2h
1h

Figure 8: Number of bits recovered per column of T in 16

hours of online phase.

get the indexes of the flipped bit in T , which are (𝑟, 𝑐). The value
of the bit can be recovered by knowing the direction of the bit flip.

A 0 −→ 1 flip means that the key bit was originally 0 and a 1 −→ 0

bit flip means that the key bit was 1. The amount of time needed

for this offline post processing bit-tracing algorithm is shown in

Table 1 for all variants of LUOV AVX2 optimized implementations.

For 2-bit scenario, Algorithm 2 can be modified to recover 2 bits

of T if 𝑣 ×𝑚 verifications fails to correct the signature. In this

scenario, there are two cases. First one is that 2 bit flips are in the

different rows of T which requires us to take all combinations of

elements of 𝑠 , 2 at a time which is
(𝑣
2

)
. For each combination, we

need𝑚2 verifications by XORing both elements of the combination

with all elements of 𝑜 . The first scenario hence needs 𝑚2 ×
(𝑣
2

)
verifications. For 2 bit flips in the same row, the error is just in one

element of 𝑠 . For each element of 𝑠 , we need to XOR all combinations

of 𝑜 , 2 at a time with the element of 𝑠 , until we find the correct

signature. This scenario requires 𝑣 ×
(𝑚
2

)
verifications. In total, we

need 𝑣𝑚 +𝑚2
(𝑣
2

)
+ 𝑣

(𝑚
2

)
signature verifications for 1 bit and 2 bit

scenarios combined. If there are multiple bit flips in T in the online

phase, they can be controlled by changing the data patterns in the

aggressor rows and turning on and off certain bit flips. We have

successfully tested this method via an independent experiment. But

found that it increases the duration of the online phase. It was more

efficient to just ignore the rare cases of more than 2 bit flips.

Table 1: Post computation times for bit-tracing attack, 2 on

LUOV. This computation is done offline and can easily be

parallelized and distributed. The measurements are taken

on a single machine with a Skylake Intel Core i5-6440HQ

CPU@2.6GHz processor. Note that these timings are for 𝑣 ×
𝑚 verifications which is the worst case scenario. In practice,

the bits are traced in fewer iterations depending upon the

position of the bit flip in T .

Implementation LUOV Variant 1-bit Tracing

Offline(Sec)

AVX2 luov-7-57-197-chacha 1.58

luov-7-57-197-keccak 11.44

luov-7-83-283-chacha 10.46

luov-7-83-283-keccak 58.22

luov-7-110-374-chacha 35.19

luov-7-110-374-keccak 239.34

AVX2 luov-7-57-197-chacha 0.36

(precompute) luov-7-57-197-keccak 0.36

luov-7-83-283-chacha 1.64

luov-7-83-283-keccak 1.63

luov-7-110-374-chacha 4.98

luov-7-110-374-keccak 4.99

Session 4A: Post-Quantum Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

1078

3.4 Performance

Table 1 summarizes the time it takes to perform the post-processing

time, i.e. the bit-tracing step. The computation is performed offline

and can easily be parallelized since all this step does is to search for

the fault location using the faulty signature. Enabled by Rowham-

mer, the bit-tracing attack manages to effectively recover bits of

T , the secret key matrix. Assuming single faults, each recovered

secret key bit requires a successful Rowhammer fault injection,

which takes significant amount of time, i.e. we get about 23 flips per

minute on our target platform in the first hour, while the flipping

performance degrades with time, see Figure 5. Remember that for

LUOV-7-57-197 we have 11,229 key bits to recover. Recovering the

entire signature key bit-by-bit would take more than 16 hours of

live observation which is unrealistic.

Alternatively, if we try to reduce the complexity of the LUOV

MQ equation system to enable SAT solving then the best strategy

would be to target specific rows of T using Rowhammer. Using

each fully recovered row, we can recover a vinegar variable. As

the original oil and vinegar scheme with equal number of oil and

vinegar variables already was shown to be breakable by Patarin,

we need to eliminate 𝑣 −𝑚 variables which means 𝑣 −𝑚 rows of

T need to be recovered using Rowhammer attack. This approach

too is costly.

Rather than trying to recover the entire key or to eliminate

vinegar variables until the security collapses, we introduce a novel

attack, i.e.,QuantumHammer as described in the following section,

that uses the bit-tracing attack as an oracle.

4 QUANTUMHAMMER

We presentQuantumHammer attack that significantly reduces the

complexity to the LUOV MQ system by splitting it into smaller

MQ problems. This is achieved by using the bit-tracing attack as

an oracle to recover a small number of specifically chosen key bits.

Overall attack complexity is drastically reduced compared to an

attack that only uses bit-tracing. Next we delve into the details of

the LUOV construction. Specifically we analyze the key generation

process to obtain a simpler formulation.

4.1 Divide-and-Conquer Attack

Let𝑀𝑄 (𝑣,𝑚) and𝑀𝐿(𝑣,𝑚) represent systems of𝑚 quadratic and

𝑚 linear equations of 𝑣 unknowns, respectively. Our aim is to attack

key generation part of LUOV explained in Section 2.3.1 and recover

boolean private linear transformation matrix T . The public parame-

ter𝑄2 is generated from the intermediate𝑚×𝑚 the boolean matrix

𝑃𝑘3 by Equation 4. 𝑃𝑘3 is formulated in terms of 𝑃𝑘1 , 𝑃
𝑘
2 and T where

𝑃𝑘1 and 𝑃𝑘2 are publicly re-generatable from public parameter 𝑄1.

Therefore, for a direct attack, we need to solve a𝑀𝑄 (𝑣 ·𝑚, 𝑚
3+𝑚2

2)
in which equations are from Equation 4 and unknowns are the

elements of T . For the NIST Round 2 submission LUOV-7-57-197,

with parameters𝑚 = 57 and 𝑣 = 197 solving the overall quadratic

system appears infeasible unless there is a major breakthrough.

Instead of trying to attack the 𝑚𝑣-bit secret key matrix T as

a whole, or recovering some part of T by bit-tracing attack and

applying exhaustive search to the rest, we gain a more powerful

attack, QuantumHammer, by exploiting the relation between the

public matrices 𝑃𝑘1 , 𝑃
𝑘
2 , 𝑄2, where 𝑘 from 1 to𝑚 and private linear

transformation matrix T (remember the LUOV key generation

process in Figure 1).

We start by making some observations on the structure of 𝑄2.

4.2 Observations on the structure of 𝑄2

Even though 𝑄2 yields a large𝑀𝑄 (𝑣 ·𝑚, 𝑚
3+𝑚2

2) system, one can

divide𝑄2 column by column and consider it as a set of combination

of discrete, smaller MQ systems in terms of columns of T , i.e., set

of𝑀𝑄 (𝑣,𝑚) and𝑀𝑄 (2𝑣,𝑚) systems by Equation 4 and Equation 3.

Assuming bit-tracing attack recovers 𝑥 bits from a column of T ,

it is possible to reduce the related systems into one of𝑀𝑄 (𝑣 − 𝑥,𝑚),
𝑀𝐿(𝑣 − 𝑥,𝑚) and𝑀𝐿(𝑣,𝑚) systems. These equations have certain

structure that we wish to exploit to recover the entire T , column

by column. The following definitions and observations will lead us

to divide and conquer attack:

(1) DefineA𝑖 as the set of𝑚 equations of 𝑣 variables,𝑀𝑄 (𝑣,𝑚)
where equations are 𝑄2𝑘,𝛽𝑖,𝑖

= 𝑝𝑘3 (𝑖, 𝑖) for 𝑘 from 1 to𝑚 and

variables are the 𝑖𝑡ℎ column of T , i.e., 𝑡1𝑖 , · · · , 𝑡𝑣𝑖 .
(2) Suppose 𝑥 elements of 𝑖𝑡ℎ column of T are known/recovered.

Define A𝑖 (𝑥) as a reduced system of A𝑖 by inserting the 𝑥
recovered bits into A𝑖 . Note that, inserting 𝑥 variables into

A𝑖 reduces the system to𝑀𝑄 (𝑣 − 𝑥,𝑚) from𝑀𝑄 (𝑣,𝑚).
(3) DefineB𝑖, 𝑗 as the set of𝑚 equations of 2𝑣 variables,𝑀𝑄 (2𝑣,𝑚)

where the equations are 𝑄2(𝑘,𝛽𝑖,𝑗) = 𝑝𝑘3 (𝑖, 𝑗) ⊕ 𝑝𝑘3 (𝑗, 𝑖) for 𝑘
from 1 to𝑚 and variables are the 𝑖𝑡ℎ and 𝑗𝑡ℎ columns of T ,

i.e., 𝑡1𝑖 , · · · , 𝑡𝑣𝑖 , 𝑡1𝑗 , · · · , 𝑡𝑣 𝑗 .
(4) Suppose 𝑖𝑡ℎ column of T , i.e. 𝑡1𝑖 , · · · , 𝑡𝑣𝑖 , is known. Inserting

these variables into B𝑖, 𝑗 reduces the system from quadratic

𝑀𝑄 (2𝑣,𝑚) system to a linear 𝑀𝐿(𝑣,𝑚) system, where the

unknowns are 𝑡1𝑗 , · · · , 𝑡𝑣 𝑗 . We denote the insertion of the 𝑖𝑡ℎ

column of T into B𝑖, 𝑗 by B𝑖, 𝑗 (𝑡𝑖 , 0). Note that, this reduces
the hard problem 𝑀𝑄 (2𝑣,𝑚) into underdetermined linear

𝑀𝐿(𝑣,𝑚) system.

(5) Suppose 𝑥 elements of the 𝑗𝑡ℎ column of T and the entire 𝑖𝑡ℎ

column ofT are known. Inserting these known variables into

B𝑖, 𝑗 reduces the system from 𝑀𝑄 (2𝑣,𝑚) to 𝑀𝐿(𝑣 − 𝑥,𝑚).
The new system is denoted by B𝑖, 𝑗 (𝑡𝑖 , 𝑥). If 𝑥 ≥ 𝑣 −𝑚 then

the system reduces to an overdetermined linear system from

an underdetermined one. Therefore, the new system has a

unique solution and is efficiently solvable.

4.3 A Practical Divide and Conquer Attack

We are going to use bit-tracing attack as an oracle to recover some

bits of some column in matrix T . Informally, QuantumHammer

proceeds as follows:

4.3.1 Bit-tracing (Section 3): Suppose 𝑥 bits in some column of

T is enough to reduce𝑀𝑄 (𝑣,𝑚) system into a solvable𝑀𝑄 (𝑣 − 𝑥,𝑚)
system. When 𝑥 bits are recovered via bit-tracing in some column,

we stop bit-tracing and recover the bits as explained in Section 3.

Apply bit-tracing attack, and recover bits of T until the highest

number of recovered bits from a column is 𝑣 −𝑚. Pick the high-

est
⌈ 𝑣
𝑚

⌉
columns. Assume the highest number of recovered bits

are 𝑥1, 𝑥2, 𝑥3 and 𝑥4 bits in 𝛼1, 𝛼2, 𝛼3 and 𝛼4
𝑡ℎ columns of T ,

Session 4A: Post-Quantum Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

1079

respectively. Note that, bit-tracing recovers additional bits from

different columns of T . But, having
⌈ 𝑣
𝑚

⌉
columns of T is enough to

reduce the MQ systems into ML systems and can efficiently solve

it. Therefore, we do not need to use the remaining bits recovered

by bit-tracing in different columns of T .

Algorithm 3 Quadratic Steps

1: procedure QuadSteps((𝛼1, 𝑥1),· · · ,(𝛼𝜅 , 𝑥𝜅))
Input: High recovered columns from Bit-tracing

Output: (𝑡𝛼𝑖 , · · · , 𝑡𝛼𝜅) ⊲ entire columns of input vectors

2: A𝛼1 (𝑥1) ← 𝑀𝑄_𝐺𝑒𝑛(𝛼1, 𝑥1) ⊲ 5 in Appx

3: 𝑡𝛼1 ← 𝐸𝑞𝑛_𝑆𝑜𝑙𝑣𝑒𝑟 (A𝛼1 (𝑥1), ∅) ⊲ 7 in Appx

4: for 𝑖 from 2 to 𝜅 =
⌈ 𝑣
𝑚

⌉
do

5: A𝛼𝑖 (𝑥𝑖) ← 𝑀𝑄_𝐺𝑒𝑛(𝛼𝑖 , 𝑥𝑖). ⊲ Quadratic Step
6: for 𝑗 from 1 to i-1 do

7: B𝛼𝑖 ,𝛼 𝑗 (𝑥𝑖 , 𝑡 𝑗) ← 𝑀𝐿_𝐺𝑒𝑛((𝛼𝑖 , 𝑥𝑖), (𝛼 𝑗 , 𝑡 𝑗))
⊲ 6 in Appx

8: end for

9: 𝑡𝑖 ← 𝐸𝑞𝑛_𝑆𝑜𝑙𝑣𝑒𝑟 (A𝛼𝑖 (𝑥𝑖),
⋃𝑖−1

𝑗=1 B𝛼𝑖 ,𝛼 𝑗 (𝑥𝑖 , 𝑡 𝑗))
10: end for

11: end procedure

4.3.2 Quadratic Steps (Algorithm 3):

(1) Consider A𝛼1 , more specifically, consider the elements of

𝛽𝛼1,𝛼1 = (𝛼1 − 1)𝑚 + 𝛼1 (𝛼1+1)
2

𝑡ℎ column of 𝑄2 which are

𝑝𝑘3 (𝛼1, 𝛼1) terms of 𝑃𝑘3 for 𝑘 from 1 to𝑚 and 𝛼1 is the highest
column of T . Inserting 𝑥1 recovered bits into the system

A𝛼1 reduces the𝑀𝑄 (𝑣,𝑚) system into𝑀𝑄 (𝑣 − 𝑥1,𝑚). We

recover the remaining 𝑣 − 𝑥1 elements of 𝛼1
𝑡ℎ column T

which are 𝑡1𝛼1 , · · · , 𝑡𝑣𝛼1 .

(2) Insert recovered 𝛼1
𝑡ℎ column of T into B𝛼1,𝛼2 and 𝑥2 recov-

ered bits of 𝛼2
𝑡ℎ column of T into the systems B𝛼1,𝛼2 and

A𝛼2 reducing the systems into B𝛼1,𝛼2 (𝑡𝛼1,𝑥2) and A𝛼2 (𝑥2),
respectively. Thus, the system reduces to practically solv-

able𝑀𝑄 (𝑣 − 𝑥2,𝑚)
⋃
𝑀𝐿(𝑣 − 𝑥2,𝑚). The solution of the re-

duced system gives the full 𝛼2
𝑛𝑑 column of T which are

𝑡1𝛼2 , · · · , 𝑡𝑣𝛼2 . Note that, even though solving𝑀𝑄 (𝑣 − 𝑥2,𝑚)
is harder than solving𝑀𝑄 (𝑣 − 𝑥1,𝑚), there are𝑚 additional

linear equations from 𝑀𝐿(𝑣 − 𝑥2,𝑚) which decrease the

number of unknowns from 𝑣 − 𝑥2 to 𝑣 − 𝑥2 −𝑚. Therefore,

𝑀𝑄 (𝑣 − 𝑥2,𝑚)
⋃
𝑀𝐿(𝑣 − 𝑥2,𝑚) is a much easier system to

solve than𝑀𝑄 (𝑣 − 𝑥1,𝑚).
(3) Apply the same strategy to 𝛼3

𝑡ℎ column of T , i.e., insert 𝛼1
and 𝛼2

𝑡ℎ columns of T which are recovered in the first two

steps, into the systems B𝛼1,𝛼3 , B𝛼2,𝛼3 and A𝛼3 . The com-

plexity reduces to B𝛼1,𝛼3 (𝑡1, 𝑥3)
⋃

B𝛼2,𝛼3 (𝑡2, 𝑥3)
⋃

A𝛼3 (𝑥3).
Thus, the system reduces to𝑀𝐿(𝑣 − 𝑥3, 2𝑚)

⋃
𝑀𝑄 (𝑣 − 𝑥3,𝑚)

which has the solution of 𝑥𝑡ℎ3 unknowns from the 𝛼3 column

which are 𝑡1𝛼3 , · · · , 𝑡𝑣𝛼3 . Note that, the solution of the system

is equivalent to the solution of 𝑀𝑄 (𝑣 − 𝑥3 − 2𝑚,𝑚) which
is much easier than the previous steps.

(4) The same strategy can be applied to recover 𝛼4
𝑡ℎ column of

T by using previously recovered columns of T in addition

to recovered 𝑥4 bits of the 𝛼4
𝑡ℎ column in bit-tracing attack.

Inserting the known elements will reduce the complexity to

𝑀𝐿(𝑣 − 𝑥4, 3𝑚)
⋃
𝑀𝑄 (𝑣 − 𝑥4,𝑚). This is a solvable system

since it is equivalent to 𝑀𝑄 (𝑣 − 𝑥4 − 3𝑚,𝑚). The solution
gives us 𝛼4

𝑡ℎ column elements 𝑡1𝛼3 , · · · , 𝑡𝑣𝛼3 .

After
⌈ 𝑣
𝑚

⌉
steps,

⌈ 𝑣
𝑚

⌉
recovered columns of T are enough to

reduce the smaller MQ systems of remaining columns into overde-

terminedML systems. In the following steps, we are going to explain

how one can reduce any small MQ system to a ML if
⌈ 𝑣
𝑚

⌉
columns

are recovered.

Algorithm 4 Linear Steps

1: procedure LinearSteps((𝛼1, 𝑡𝛼1),· · · ,(𝛼𝜅 , 𝑡𝛼𝜅))
Input: Recovered Columns

Output: (𝑡1, · · · , 𝑡𝑚) ⊲ columns of T
2: for 𝑖 from 1 to𝑚 do ⊲ except {𝛼1, · · · , 𝛼𝜅 }
3: for 𝑗 from 1 to 𝜅 do

4: B𝑖,𝛼 𝑗 (∅, 𝑡𝛼 𝑗) ← 𝑀𝐿_𝐺𝑒𝑛((𝑖, ∅), (𝛼 𝑗 , 𝑡𝛼 𝑗))
⊲ 𝑀𝐿(𝑣,𝑚)

5: end for

6: 𝑡𝑖 ← 𝐸𝑞𝑛_𝑆𝑜𝑙𝑣𝑒𝑟 (∅,
⋃𝜅

𝑗=1 B𝑖,𝛼 𝑗 (0, 𝑡𝛼 𝑗)) ⊲ 𝑀𝐿(𝑣, 𝜅 ·𝑚)
7: end for

8: return 𝑡𝑖
9: end procedure

4.3.3 Linear Steps (Algorithm 4): Suppose there are
⌈ 𝑣
𝑚

⌉
recov-

ered columns of T from the quadratic steps. Inserting the bits of

recovered columns into the related systems will give us the follow-

ing reduced ML system:

� 𝑣
𝑚
⋃
𝑖=1

B𝛼𝑖 ,𝛽 (𝑡𝑖 , 0)

where 𝛼𝑖 ’s are the column numbers of recovered columns of T
and 𝛽 is the column number of attacked column of T . This gives

us an overdetermined𝑀𝐿(𝑣,
⌈ 𝑣
𝑚

⌉
·𝑚) system which can be solved

efficiently.

Note that, by the linear steps, we can recover the rest of T columns

one by one in𝑚 −
⌈ 𝑣
𝑚

⌉
steps.

5 EXPERIMENTAL RESULTS

Table 2: Exhaustive search timing for is different sizes for

𝑀𝑄 (𝑛, 𝑛) taken on Nvidia GTX 1080Ti GPU.

𝑛 =𝑚 Time 𝑛 =𝑚 Time 𝑛 =𝑚 Time

40 2.7s 52 1h 32m 55 6h 15m

43 12s 53 3h 3m 56 24h 45m

49 11m 33s 54 3h 6m 57 49h 30m

Bit-tracing:

We have attacked the constant-time AVX2 optimized implementa-

tion of LUOV-7-57-197 [44] on a Haswell system equipped with

Intel Core i7-4770 CPU @ 3.40GHz, 2 GBytes DDR3 DRAM, model

Samsung (M378B5773DH0-CH9). Pre-processing (templating) step

Session 4A: Post-Quantum Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

1080

is performed in 5.7 hours to find 17,129 physical addresses vulnera-

ble to Rowhammer. After that, 16 hours of online phase is carried

out in which the victim is running and performing signing opera-

tions. Using bit-tracing attack, we recover 4,116 bits with 3 hours

and 49 minutes of online observation. The faulty signatures are

processed offline on a separate machine to recover the key bits 2.

Note that the attack recovers up to 140 bits in any column of T
which is enough for a successful QuantumHammer attack. The

distribution of the bits in the 57 columns of T is given in Figure 9.

Some columns of T have been located in DRAM buffers that are

more flippy than others.

Figure 9: Bit-tracing attack recovers up to 140 key bits per

column of T in less than 4 hours of Rowhammer on a 2

GBytes DDR3 Samsung DRAM (M378B5773DH0-CH9).

Quadratic Steps:

In preparation forQuantumHammer, 𝑝𝑘3 (𝑖, 𝑗) were generated by

the Equation 3 using the coefficients from 𝑃𝑘1 and 𝑃𝑘2 . MQ systems

are generated by Equation 4 using 𝑝𝑘3 (𝑖, 𝑗) equations. To solve the

generated system of equations, we focused on
⌈ 𝑣
𝑚

⌉
=
⌈
197
57

⌉
= 4

columns with the highest number of recovered bits: columns 5, 23,

7 and 21 with 140, 135, 133 and 131 recovered bits, respectively. In

every step of quadratic and linear steps, we recover a column of T .

Experimental results of quadratic steps are given in Table 3.

It is important to note that, in the first step, we recover the 5𝑡ℎ

column of T , by solving a𝑀𝑄 (57, 57) system reduced from the un-

derdetermined𝑀𝑄 (197, 57) thanks to 140 recovered bits obtained

by the bit-tracing attack. Without it, it would not be possible to

recover the rest of the 5𝑡ℎ column. The system is solved by ex-

haustive search in roughly 49 hours on i7 Intel CPU with Nvidia

GTX 1080 Ti GPU. In Table 2 exhaustive search timing for different

sizes of 𝑀𝑄 (𝑛, 𝑛) is given. We used the GPU implementation of

[7] compiled using the Nvidia CUDA 10.0 framework. The offline

exhaustive search can be trivially sped up by employing multiple

GPUs since the search is fully parallelizable.

In the second step, we targeted 23𝑟𝑑 column with the 135 bits

recovered bits from bit-tracing. With these 135 bits, the system

starts out as𝑀𝑄 (62, 57). Next, we insert the values obtained from

the 5𝑡ℎ column to reduce the complexity to 𝑀𝑄 (5, 57). We can

instantly solve this system via exhaustive search. At this point, by

inserting the recovered bits in the first two steps, we reduced the

remaining equations into (over-defined) linear systems only.

2The source code for QuantumHammer is made available at http://github.com/
VernamLab/QuantumHammer.

Linear Steps:

In the quadratic steps, we recovered 4 columns of T . Inserting these

values into remaining equations will give us an under determined

𝑀𝐿(197, 57) system. We end up with 228 linear equations with 197

unknowns which can be solved via Gaussian elimination. Even

though we can generate more linear equations by using more bits

of T previously recovered by bit-tracing, we do not need any extra

equations to solve the system. In 53 steps, all the remaining columns

of T are recovered as summarized in Table 4.

6 COUNTERMEASURES

The effectiveness of QuantumHammer requires us to consider

practical countermeasures at various levels:

Preventing Rowhammer: The most effective solution to prevent

any Rowhammer fault-injection attack is to implement stronger

isolation, such as using dedicated instances for any sensitive pro-

cesses. If isolation is not possible, an effective alternative approach

to reduce the impact of Rowhammer is increasing the DRAM row

refresh rate. DDR3 and DDR4 refresh each row at least every 64 ms.

That said many systems permit the refresh rates at 32 or 16 ms for

better memory stability.

Online Detection of Rowhammer:Onemay also seek to employ

active countermeasures for online detection of Rowhammer. For

this, Hardware Performance Counters (HPCs) can be used to moni-

tor counters like cache hits and cache misses to detect Rowhammer.

Suppressing Faulty Signatures: Another way to counter faults

in the signature schemes is to verify the signatures at sender side

before sending it but that will involve additional processing. A

faster approach can be to repeat the final linear transformation

stage of the signing operation with an independently generated T
and check if the signatures are identical. Clearly, in this case one

must ensure that the checking mechanism itself does not become a

target itself.

7 DISCUSSION

The first algebraic attack targeting UOV type schemes which does

not require any physical access is Reconciliation attack introduced

by Ding et al. [14]. The attack aims to invert the public map. De-

composing the public map P into the multiplication of a series

of specific linear transformations allows the attacker to recover

every transformation one-by-one by exhaustive search algorithms

such as F4/F5 or FXL. The result is a purely algebraic attack that

significantly reduces the assumed security margin of LUOV.

In the Divide-and-Conquer Attack, we follow a similar approach

in the sense that we exploit one of the innovations of LUOV, i.e. the

structure of the public key 𝑄2. Being empowered by Rowhammer

and the bit-tracing attack, we take the attack further into full recov-

ery of all key bits. This is achieved by converting the MQ system

into smaller under-determined MQ systems which are in the same

form as the original MQ system. Instead of decomposing the matrix,

we regroup the equations into a discrete set of variables. Without

the amplification of the fault attack, it would not be possible to

solve the smaller MQ systems since they are underdetermined. In

this sense, our overall QuantumHammerattack represent a novel

approach.

Session 4A: Post-Quantum Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

1081

Table 3: Quadratic steps in our experimental QuantumHammer on LUOV-7-57-197. In every step, table lists the targeted

column of T , number of recovered bits during bit-tracing, size of ML system obtained after inserting previously recovered

columns, complexity of the solution for the linear part, number of linear equations and unknowns, parameters for the qua-

dratic part, and the complexity of the overall system after using ML to reduce the unknowns in quadratic part.

Step Target

Col

Num.

of

Rec.

bits

Linear Part Quadratic Part

Overall

Complexity
Insrtd

Col
Equation

System
Complexity

ML System
Equation

System
Complexity

MQ System

Linear

Eqns

Unk Quad

Eqns

Unk

1 5 140 - - - - - A5 (140) 𝑀𝑄 (57, 57) 57 57 𝑀𝑄 (57, 57)
2 23 135 5 B5,23 (197, 135) 𝑀𝐿(62, 57) 57 62 A23 (135) 𝑀𝑄 (62, 57) 5 62 𝑀𝑄 (5, 57)

3 7 133
5 B5,7 (197, 133) 𝑀𝐿(64, 57)

114 64 A7 (133) 𝑀𝑄 (64, 57) 57 64 𝑀𝐿(64, 114)
23 B23,7 (197, 133) 𝑀𝐿(64, 57)

4 21 131

5 B5,21 (197, 131) 𝑀𝐿(66, 57)
171 66 A21 (131) 𝑀𝑄 (66, 57) 57 66 𝑀𝐿(66, 171)23 B23,21 (197, 131) 𝑀𝐿(66, 57)

7 B7,21 (197, 131) 𝑀𝐿(66, 57)

Table 4: Linear steps in our experimentalQuantumHammer on LUOV-7-57-197. In every step, table lists the targeted column

of T , inserted columns used to generate ML system, and resultant equation systems, the size of the generatedML systems, and

the number of equations and unknowns in the overall linear system and overall complexity are given.

Step

Nmbr

Target

Col

Linear Part
Overall

Complexity
Inserted

Col

Equation

System

Equivalent

System

ML System

Linear Equations Unknowns

5 1

5 B5,1 (197, 0) 𝑀𝐿(197, 57)
228 197

𝑀𝐿(197, 228)23 B23,1 (197, 0) 𝑀𝐿(197, 57)
7 B7,1 (197, 0) 𝑀𝐿(197, 57)
21 B21,1 (197, 0) 𝑀𝐿(197, 57)

...
...

...
...

...

57 57

5 B5,57 (197, 0) 𝑀𝐿(197, 57)
228 197

𝑀𝐿(197, 228)23 B23,57 (197, 0) 𝑀𝐿(197, 57)
7 B7,57 (197, 0) 𝑀𝐿(197, 57)
21 B21,57 (197, 0) 𝑀𝐿(197, 57)

Preventing Algebraic Collapse: What enables QuantumHam-

mer is that the MQ equations use a small subset of the key bits in

the way the key generation primitive is defined for LUOV. Hence,

recovering a small fraction of the key bits via Rowhammer and

the bit-tracing attack was sufficient to collapse the MQ system to

smaller size tractable MQ systems. In many scenarios, a small frac-

tion of the key bits may be recovered using side-channel attacks.

Hence this attack poses a serious threat to real-life deployments.

To prevent such collapse it would be prudent to check the resulting

MQ system underlying the security of the scheme at design time

under the assumption that any fixed size subset of the key bits are

compromised.

8 CONCLUSION

Rowhammer attack can lead to serious consequences by flipping

bits in other processes and leaking key information. Post-quantum

schemes are expected to replace the existing public-key schemes in

near future. This research shows that both hardware and crypto-

graphic security are of utmost importance for cryptosystems. LUOV

signature scheme, currently in round two of NIST’s PQC standard-

ization process is based on the well known oil and vinegar scheme

which withstood over two decades of cryptanalysis. We have ana-

lyzed the scheme both mathematically and implementation wise

and found weaknesses in both areas. The QuantumHammerattack

combines both weaknesses to launch a successful attack recovering

the full secret key of the scheme. There is a need to evaluate the

hardware and software implementations of the cryptosystems in

combination with the mathematical evaluation.

ACKNOWLEDGMENTS

We thank our anonymous reviewers for their insightful comments

for improving the quality of this paper. This work is supported

by U.S. Department of State, Bureau of Educational and Cultural

Affair’s Fulbright Program and by the National Science Foundation

under grant CNS-1814406.

Session 4A: Post-Quantum Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

1082

REFERENCES
[1] Gorjan Alagic, Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper,

Quynh Dang, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, et al. 2019. Sta-
tus report on the first round of the NIST post-quantum cryptography standardization
process. US Department of Commerce, NIST.

[2] Ward Beullens and Bart Preneel. 2017. Field lifting for smaller UOV public keys.
In International Conference on Cryptology in India. Springer, 227–246.

[3] Ward Beullens, Alan Szepieniec, Frederik Vercauteren, and Bart Preneel. 2017.
LUOV: Signature scheme proposal for NIST PQC project. (2017).

[4] Nina Bindel, Johannes Buchmann, and Juliane Krämer. 2016. Lattice-based
signature schemes and their sensitivity to fault attacks. In 2016 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC). IEEE, 63–77.

[5] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. 1997. On the Importance
of Checking Cryptographic Protocols for Faults. In Advances in Cryptology —
EUROCRYPT ’97, Walter Fumy (Ed.). Springer, 37–51.

[6] Jonathan Bootle, Claire Delaplace, Thomas Espitau, Pierre-Alain Fouque, and
Mehdi Tibouchi. 2018. LWE without modular reduction and improved side-
channel attacks against BLISS. In International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 494–524.

[7] Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou, Ruben
Niederhagen, Adi Shamir, and Bo-Yin Yang. 2010. Fast Exhaustive Search for
Polynomial Systems in F2. In Cryptographic Hardware and Embedded Systems,
CHES 2010, Stefan Mangard and François-Xavier Standaert (Eds.). Springer, 203–
218.

[8] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom. 2016.
Flush, Gauss, and Reload–a cache attack on the BLISS lattice-based signature
scheme. In Cryptographic Hardware and Embedded Systems. Springer, 323–345.

[9] Leon Groot Bruinderink and Peter Pessl. 2018. Differential fault attacks on
deterministic lattice signatures. IACR Transactions on Cryptographic Hardware
and Embedded Systems (2018), 21–43.

[10] Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu, Alec
Wolman, and Onur Mutlu. 2020. Are We Susceptible to Rowhammer? An End-to-
End Methodology for Cloud Providers. arXiv:2003.04498 [cs.CR]

[11] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos. 2019. Exploit-
ing correcting codes: On the effectiveness of ecc memory against rowhammer
attacks. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 55–71.

[12] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Ver-
bauwhede. 2019. Timing attacks on Error Correcting Codes in Post-Quantum
Secure Schemes. IACR Cryptology ePrint Archive 2019 (2019), 292.

[13] Jintai Ding, Joshua Deaton, Kurt Schmidt, Vishakha, and Zheng Zhang. 2019.
Cryptanalysis of The Lifted Unbalanced Oil Vinegar Signature Scheme. Cryptol-
ogy ePrint Archive, Report 2019/1490. https://eprint.iacr.org/2019/1490.

[14] Jintai Ding, Bo-Yin Yang, Chia-Hsin Owen Chen, Ming-Shing Chen, and Chen-
Mou Cheng. 2008. New Differential-Algebraic Attacks and Reparametrization of
Rainbow. In Applied Cryptography and Network Security. Springer, 242–257.

[15] Jintai Ding, Zheng Zhang, Joshua Deaton, Kurt Schmidt, and F Vishakha. 2019.
New attacks on lifted unbalanced oil vinegar. In The 2nd NIST PQC Standardization
Conference.

[16] T. Espitau, P. Fouque, B. Gérard, and M. Tibouchi. 2018. Loop-Abort Faults
on Lattice-Based Signature Schemes and Key Exchange Protocols. IEEE Trans.
Comput. 67, 11 (2018), 1535–1549.

[17] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi. 2017.
Side-channel attacks on BLISS lattice-based signatures: Exploiting branch tracing
against strongswan and electromagnetic emanations in microcontrollers. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 1857–1874.

[18] P. Frigo, E. Vannacc, H. Hassan, V. der Veen, O. Mutlu, C. Giuffrida, H. Bos, and
K. Razavi. 2020. TRRespass: Exploiting the Many Sides of Target Row Refresh. In
2020 IEEE Symposium on Security and Privacy (SP). 747–762.

[19] Aymeric Genêt, Matthias J Kannwischer, Hervé Pelletier, and Andrew McLauch-
lan. 2018. Practical Fault Injection Attacks on SPHINCS. IACR Cryptology ePrint
Archive 2018 (2018), 674.

[20] Lov K Grover. 1996. A fast quantum mechanical algorithm for database search.
arXiv preprint quant-ph/9605043 (1996).

[21] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas Juffinger, Sioli
O’Connell, Wolfgang Schoechl, and Yuval Yarom. 2018. Another flip in the wall
of Rowhammer defenses. In 2018 IEEE Symposium on Security and Privacy (S&P).
245–261.

[22] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016. Rowhammer. js:
A remote software-induced fault attack in javascript. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
300–321.

[23] Yasufumi Hashimoto, Tsuyoshi Takagi, and Kouichi Sakurai. 2011. General Fault
Attacks on Multivariate Public Key Cryptosystems. In Post-Quantum Cryptogra-
phy, Bo-Yin Yang (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–18.

[24] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk Gulmezoglu,
Thomas Eisenbarth, and Berk Sunar. 2019. SPOILER: Speculative Load Hazards

Boost Rowhammer and Cache Attacks. In 28th USENIX Security Symposium
(USENIX Security 19). 621–637.

[25] Angshuman Karmakar, Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren,
and Ingrid Verbauwhede. 2018. Constant-time discrete gaussian sampling. IEEE
Trans. Comput. 67, 11 (2018), 1561–1571.

[26] Angshuman Karmakar, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Ver-
bauwhede. 2019. Pushing the speed limit of constant-time discrete Gaussian
sampling. A case study on the Falcon signature scheme. In Annual Design Au-
tomation Conference. ACM, 88.

[27] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping Bits in Memory
Without Accessing Them: An Experimental Study of DRAM Disturbance Errors
(ISCA ’14). 361–372.

[28] Aviad Kipnis, Jacques Patarin, and Louis Goubin. 1999. Unbalanced oil and vinegar
signature schemes. In International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 206–222.

[29] Aviad Kipnis and Adi Shamir. 1998. Cryptanalysis of the oil and vinegar signature
scheme. In Annual International Cryptology Conference. Springer, 257–266.

[30] Juliane Krämer and Mirjam Loiero. 2019. Fault Attacks on UOV and Rainbow.
In Constructive Side-Channel Analysis and Secure Design, Ilia Polian and Marc
Stöttinger (Eds.). Springer International Publishing, Cham, 193–214.

[31] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. 2020. RAMBleed:
Reading Bits in MemoryWithout Accessing Them. In IEEE Symposium on Security
and Privacy (S&P).

[32] Moritz Lipp, Misiker Tadesse Aga, Michael Schwarz, Daniel Gruss, Clémentine
Maurice, Lukas Raab, and Lukas Lamster. 2018. Nethammer: Inducing rowham-
mer faults through network requests. arXiv preprint arXiv:1805.04956 (2018).

[33] NIST. 2017. Post-Quantum Cryptography Standardization. https:
//csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-
cryptography-standardization.

[34] Aesun Park, Kyung-Ah Shim, Namhun Koo, and Dong-Guk Han. 2018. Side-
Channel Attacks on Post-Quantum Signature Schemes based on Multivariate
Quadratic Equations - Rainbow and UOV -. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2018 (2018), 500–523.

[35] Jacques Patarin. 1997. The oil and vinegar signature scheme. In Dagstuhl Work-
shop on Cryptography September, 1997.

[36] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. 2017. To BLISS-B or not
to be: Attacking strongSwan’s Implementation of Post-Quantum Signatures. In
Computer and Communications Security. ACM, 1843–1855.

[37] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopadhyay,
and Shivam Bhasin. 2018. Side-channel Assisted Existential Forgery Attack on
Dilithium-A NIST PQC candidate. IACR Cryptology ePrint Archive (2018), 821.

[38] Prasanna Ravi, Debapriya Basu Roy, Shivam Bhasin, Anupam Chattopadhyay,
and Debdeep Mukhopadhyay. 2019. Number “Not Used” Once-Practical Fault
Attack on pqm4 Implementations of NIST Candidates. In International Workshop
on Constructive Side-Channel Analysis and Secure Design. Springer, 232–250.

[39] Mark Seaborn and Thomas Dullien. 2015. Exploiting the DRAM rowhammer bug
to gain kernel privileges. Black Hat 15 (2015).

[40] K. Shim and N. Koo. 2020. Algebraic Fault Analysis of UOV and Rainbow with the
Leakage of Random Vinegar Values. IEEE Transactions on Information Forensics
and Security (2020), 1–1.

[41] Peter W Shor. 1999. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM review 41, 2 (1999), 303–332.

[42] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos, Cristiano Giuf-
frida, Herbert Bos, and Kaveh Razavi. 2018. Throwhammer: Rowhammer attacks
over the network and defenses. In 2018 USENIX Annual Technical Conference 18.
213–226.

[43] Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss,
Clementine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cris-
tiano Giuffrida. 2016. Drammer: Deterministic rowhammer attacks on mobile
platforms. In Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security. ACM, 1675–1689.

[44] Beullens Ward, Preneel Bart, Szepieniec Alan, and Vercauteren Fréderik. 2020.
LUOV - MQ signature scheme. https://www.esat.kuleuven.be/cosic/pqcrypto/
luov/.

[45] Zane Weissman, Thore Tiemann, Daniel Moghimi, Evan Custodio, Thomas Eisen-
barth, and Berk Sunar. 2019. JackHammer: Efficient Rowhammer on Heteroge-
neous FPGA-CPU Platforms. arXiv:1912.11523 [cs.CR]

[46] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. 2016. One
bit flips, one cloud flops: Cross-vm row hammer attacks and privilege escalation.
In 25th USENIX Security Symposium 16. 19–35.

[47] Lai Xu, Rongwei Yu, Lina Wang, and Weijie Liu. 2019. Memway: in-
memorywaylaying acceleration for practical rowhammer attacks against binaries.
Tsinghua Science and Technology 24, 5 (2019), 535–545.

[48] Takanori Yasuda, Xavier Dahan, Yun-Ju Huang, Tsuyoshi Takagi, and Kouichi
Sakurai. 2015. MQ Challenge: Hardness Evaluation of Solving Multivariate
Quadratic Problems. IACR Cryptology ePrint Archive 2015 (2015), 275.

Session 4A: Post-Quantum Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

1083

[49] Raymond K Zhao, Ron Steinfeld, and Amin Sakzad. 2018. FACCT: FAst, Compact,
and Constant-Time Discrete Gaussian Sampler over Integers. IACR Cryptology
ePrint Archive 2018 (2018), 1234.

A DIVIDE-AND-CONQUER ATTACK

Algorithm 5 MQ Generator

1: procedure MQ_Gen(𝑖, 𝑥)
𝑖: column# in T
𝑥 : known elements in 𝑖𝑡ℎ column of T
Output: A𝑖 (𝑥)

2: 𝐴𝑖 ← 𝐺𝑒𝑛𝑀𝑄 (𝑖) ⊲ use Equation 3 for 𝑖 = 𝑗
3: 𝐴𝑖 (𝑥) ← 𝐼𝑛𝑠𝑒𝑟𝑡𝑉𝑒𝑐 (𝐴𝑖 , 𝑥) ⊲ Section 4.2,item 2

4: return 𝐴𝑖 (𝑥)
5: end procedure

Algorithm 6 ML Generator

1: procedure ML_Gen((𝑖, 𝑥),(𝑗, 𝑦))
𝑖, 𝑗 : column# in T ,

𝑥 : known elements in the 𝑥𝑡ℎ column of T
𝑦: known elements in the 𝑦𝑡ℎ column of T
Output: B𝑖, 𝑗 (𝑥,𝑦)

2: 𝐵𝑖, 𝑗 ← 𝐸𝑞𝑛𝐺𝑒𝑛(𝑖, 𝑗) ⊲ Section 4.2,item 3

3: 𝐵𝑖, 𝑗 (𝑥,𝑦) ← 𝐼𝑛𝑠𝑒𝑟𝑡𝑉𝑒𝑐 (𝐵𝑖, 𝑗 , 𝑥,𝑦) ⊲ Section 4.2,item 5

4: return B𝑖, 𝑗 (𝑥,𝑦)
5: end procedure

Algorithm 7 Equation Solver

1: procedure Eqn_Solver(A𝑖 (𝑥),
⋃𝑖−1

𝑗=1 B𝑖, 𝑗 (𝑥,𝑦 𝑗))
Output: 𝑡 𝑗 or fail

2: if 𝑣 − 𝑥 ≤ 𝑚 then

Solve A𝑖 (𝑥) ⊲ ∼ 𝑀𝑄 (𝑣 − 𝑥,𝑚)
3: else if 𝑣 − 𝑥 − (𝑖 − 1)𝑚 ≤ 0 then

Solve
⋃𝑖−1

𝑗=1 B𝑖, 𝑗 (𝑥,𝑦 𝑗) ⊲ ∼ 𝑀𝑄 ((𝑖 − 1)𝑚, 𝑣 − 𝑥)
4: else if 0 ≤ 𝑣 − 𝑥 − (𝑖 − 1)𝑚 ≤ 𝑚 then

Solve A𝑖 (𝑥) ∪
⋃𝑖−1

𝑗=1 B𝑖, 𝑗 (𝑥,𝑦 𝑗) ⊲ ∼ 𝑀𝑄 (𝑣 − 𝑥 −𝑚,𝑚)
5: else

6: return fail ⊲ Not a solvable system
7: end if

8: return 𝑡 𝑗
9: end procedure

Algorithm 8 Coefficient Matrix Generator

1: procedure Matrix_Gen(𝑄1)

Output: 𝑃3
𝑘
, 𝑄2

2: 𝑃𝑘1 ← 𝑓 𝑖𝑛𝑑𝑃𝑘1(𝑄1, 𝑘) ⊲ [3]

3: 𝑃𝑘2 ← 𝑓 𝑖𝑛𝑑𝑃𝑘2(𝑄1, 𝑘) ⊲ [3]

4: 𝑃𝑘3 ← 𝐺𝑒𝑛𝑃𝑘3(𝑃𝑘1, 𝑃𝑘2, 𝑘) ⊲ ∼ 𝑀𝑄 (𝑣 − 𝑥, 𝑣 − 𝑥)
5: 𝑄2 ← 𝐺𝑒𝑛𝑄2(𝑃𝑘3) ⊲ Equation 4

6: return 𝑃3
𝑘
, 𝑄2

7: end procedure

B LUOV - BUILD AUGMENTED MATRIX

Algorithm 9 LUOV - Build Augmented Matrix

1: procedure BuildAugmented(𝐶, 𝐿,𝑄1,T , ℎ, 𝑣)
Output: 𝐿𝐻𝑆 | |𝑅𝐻𝑆 = (𝐴| |𝑏)

2: 𝑅𝐻𝑆 ←− ℎ −𝐶 − 𝐿𝑠 (𝑣 | |0)𝑇

3: 𝐿𝐻𝑆 ←− 𝐿

(
−𝑇
1𝑚

)
4: for 𝑘 from 1 to𝑚 do

5: 𝑃𝑘1 ←− 𝑓 𝑖𝑛𝑑𝑃𝐾1(𝑘,𝑄1)
6: 𝑃𝑘2 ←− 𝑓 𝑖𝑛𝑑𝑃𝐾2(𝑘,𝑄1)
7: 𝑅𝐻𝑆 [𝑘] ←− 𝑅𝐻𝑆 [𝑘] − 𝑣𝑡𝑃𝑘,1𝑣

8: 𝐹𝑘,2 ←− (𝑃𝑘,1 + 𝑃𝑇𝑘,1)T + 𝑃𝑘,2
9: 𝐿𝐻𝑆 [𝑘] ←− 𝐿𝐻𝑆 [𝑘] + 𝑣𝐹𝑘,2
10: end for

11: return 𝐿𝐻𝑆 | |𝑅𝐻𝑆
12: end procedure

Session 4A: Post-Quantum Cryptography CCS '20, November 9–13, 2020, Virtual Event, USA

1084

