2183 Technology

MIDDLE SCHOOL STUDENTS’ DEVELOPMENT OF AN UNDERSTANDING OF THE

CONCEPT OF FUNCTION
Michael S Meagher Jennifer Lovett Allison McCulloch
Brooklyn College - CUNY Middle Tennessee State University UNC Charlotte
mmeagher@brooklyn.cuny.edu Jennifer.Lovett@mtsu.edu amccull 1 @uncc.edu

Middle school students (n=144) worked with an applet specially designed to introduce the concept of
function without using algebraic representations. The purpose of the study was to examine whether
the applet would help students to understand function as a relationship between a set of inputs and a
set of outputs and to begin to develop a definition of function based on that relationship. Results
indicate that, by focusing on consistency of the outputs the students, at a rate of approximately 80%,
are able to distinguish functions from non-functions. Also, students showed some promise in
recognising constant functions as functions, a known area of common misconceptions.
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Introduction

The concept of function is considered to be one of the most important underlying and unifying
concepts of mathematics (e.g., Leinhardt, Zaslavsky, & Stein, 1990; Thompson & Carlson, 2017).
Students have experiences with functions, or function behaviour, from the very earliest grades
usually through pattern exploration. Study of functions continues up to and through high school with
a formal treatment of functions as arbitrary mappings between sets. Indeed, in the Common Core
State Standards for Mathematics function is given its own domain in grades 9-12 (Common Core
State Standards Initiative, 2010).

Much of the lack of depth of knowledge of the concept can be attributed to the privileging of
algebraic representations (function as algebraic rule) or graphical representations (function as graph
that passes the vertical line test) and a consequent lack of focus on the general relationship (see e.g.
Best & Bikner-Ahasbahs, 2012; Breidenbach et al., 1992; Carlson, 1998; Thompson, 1994). What
might a group of students who have never encountered the concept of function learn by encountering
it in a novel representation? Can they learn to think of a function as a relationship between inputs and
outputs with some rules about the outputs rather than something that is defined by an algebraic rule?
These are the questions that guided the current study.

Related Literature

Prior to secondary school, opportunities for study of functions are limited in scope (Best & Bikner-
Ahasbahs, 2012; Carlson & Ochrtman, 2005; Vinner & Dreyfus, 1989) and focus mainly on pattern
recognition and study of covarying quantities, most often related to an underlying linear structure
(Blanton et al., 2015; Stephens et al. 2017, Ellis, 2011). For example, in Blanton et al. (2015) 6th
grade students are given the tasks “People and Ears: The relationship between the number of people
and the total number of ears on the people (assuming each person has two ears)” (p.520) to study the
function type y = x + x and “Age Difference: If Janice is 2 years younger than Keisha, the
relationship between Keisha’s age and Janice’s age (Carraher et al., 2006).” (p. 521) to study the
function type y = x + 2. In other words, the functional relationships typically encountered in
elementary and middle school years are designed to prepare the (mathematical) ground for studying
linear relationships (y = mx, y = x + b, y = mx + b) i.e. the privileging of algebraic representations
begins early in the study of functions. Leinhardt et al. (1990), in a meta-study of research on
function, and Mesa (2004), in a study of 24 middle grades textbooks from 15 countries, note the
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difficulty for students in apprehending the modern, abstract definition of function depending, as it
does, on the mapping of one set of elements to another emphasising the difference between function
and relation (many-to-one acceptable, one-to-many not acceptable); whereas, the work on function in
early grades builds on the intuitive notion of a 1-1 correspondence and the historical development of
function rested on covarying quantities.

Even in secondary school functions are typically introduced as very limited classes such as linear
and quadratic, with attendant graphs and tables, with the result that students regularly consider
functions to be mathematics objects solely defined by an algebraic formula (e.g., Best & Bikner-
Ahasbahs, 2012; Breidenbach et al., 1992; Carlson, 1998) and have difficulty identifying constant
functions as functions (Bakar & Tall, 1991; Carlson, 1998; Rasmussen, 2000). Instruction and
curricular materials often emphasize procedures and algebraic manipulations when studying
functions and research shows that students then have difficulty in understanding different
representations and different contexts for functions (Carlson & Oehrtman, 2005; Cooney et al.,
2010). At the heart of many student difficulties is a shallow understanding of the definition (Ayalon
et al., 2017; Panaoura, et al., 2017). Students who have an algebraic view of function and who use
procedural techniques to identify functions and non-functions struggle to comprehend a general
mapping between sets (Carlson, 1998; Thompson, 1994).

Exposure to, and facility with, various representations of functions, i.e “flexible use of functions . . .
within and between all kinds of representations and also between different functions” (Best &
Bikner-Ahasbahs, 2012, p. 877), has been shown to be a critical component of a rich understanding
of function (Best & Bikner-Ahasbahs, 2012; Dubinsky & Wilson, 2013; Martinez-Plandi & Tigueros
Galsman, 2012). Furthermore, researchers have found promising results when using novel contexts
and non-standard representations of functions such as dynagraphs, arrow diagrams, and directed
graphs (Dubinsky & Wilson, 2013; Sinclair, Healy & Sales, 2009). The purpose of this study is to
examine the effect of a specially designed applet on middle school students’ ability to develop an
understanding of the concept of function.

Methods
Context

Previous research (Meagher et al., 2019) has shown the promise of a vending machine
representation as a “cognitive root” (Tall, McGowen, & DeMarois, 2000) for the study of functions.
Thus, we designed an applet, Introduction to Function, (https://tinyurl.com/y2dramsb) as a
mechanism for learners who have never encountered the concept of mathematical function and,
therefore, do not associate the concept with any particular representation, to learn the basic elements
of function. The goal was for the students to learn that a function is a relationship between of a set
inputs that are matched with a set of outputs in a consistent and, therefore, predictable manner.

The Introduction to Function task is a GeoGebra book that consists of seven pages and has an
accompanying worksheet. On the first two pages are two vending machines each of which consists of
four buttons (Red Cola, Diet Blue, Silver Mist, and Green Dew). When a button is clicked it
produces none, one, or more than one of the four different colored cans (red, blue, silver, and green),
which may or may not correspond to the color of the button pressed (see Figure 1). The students are
told that the first machine on each page is an example of something called a function, and the other is
not a function, with their task being to identify what is the difference between the behaviour of the
machines that makes one a function and the other not.
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This machine is a function.

Machine A
| Rod Coia | Silver Mist
[ Oiet 8o |  Groan Dew
Take Can |
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This machine is NOT a function.

Machine B
Siver Mist

Take Can

U

Don't forget to click Take Can each time.

Figure 1: Screenshot of Introduction to Function

The machines on the first two pages work as follows:

This One is a Function

This One is Not a Function

A Red — Red B Red — Red
Blue — Blue Blue — Blue
Silver — Silver Silver — Random
Green — Green Green — Green
This One is a Function This One is Not a Function
c Red — Blue D Red — Red
Blue — Red Blue — Random

Silver — Silver
Green — Green

Silver — Silver
Green — Green

Note that Machines B and D are not functions because one of the buttons, when clicked, will
produce a random can (i.e. not always the same result). Note also that in Machine C the colour of the
output can does not correspond to the input button pressed, but that the non-matching can is
consistently produced. After the first two pages there was a whole group discussion in which students

Figure 2: Machines A — D

discussed the first two pages, with the goal of consolidating their ideas.

The next four pages of the GeoGebra book consist of pairs of machines with the students being told
that one of each pair is a function In each case there is a random element in the non-function. The
machines work as follows:

Which One is a Function?
E | Red Cola —red F | Red Cola —silver
2 Diet Blue — blue Diet Blue — green
:?n Silver Mist — silver Silver Mist — red
Green Dew — random color Green Dew — blue
Which One is a Fi ion?
G | Red Cola — random color H | Red Cola— blue
5 Diet Blue — random color Diet Blue — silver
5 Silver Mist — random color Silver Mist — green
P Green Dew — random color Green Dew — red
Which One is a Function?
1 | Red Cola — 2 silver cans J | Red Cola —red
T, Diet Blue — green Diet Blue — blue & random color
ﬂ%n Silver Mist — red Silver Mist — silver
Green Dew — blue Green Dew — green
Which One is a Function?
- K | Red Cola — pair of random color L | Red Cola — green
© Diet Blue — blue Diet Blue — green
2 Silver Mist — silver Silver Mist — green
Green Dew — green Green Dew — green

Figure 3: Machines E - L
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On the worksheet, students are asked to note whether each machine is a function or not a function
and how they know. After they complete these pages students are given the prompt: “Using the terms
‘input’ and ‘output’ write a definition for function based on your exploration of the machines.”

Participants

The Introduction to Function applet was used in fifteen seventh grade classrooms. These
classrooms were across two different states (one Northeastern state and one Southeastern state) and
five different teachers for a total of 144 students who engaged with the task. These students engaged
with the applet towards the end of their seventh grade year and had not yet learned about the
definition of function or function notation.

Data collection and analysis

Students worked in pairs (N = 72) to engage with the applet on a laptop that screen captured their
work. Data collected were their worksheets, which include their definitions, screen recordings, and
audio recordings. For this study our analysis focused on the students’ worksheets. All data was coded
by three researchers. Any disagreements were discussed until any discrepancies were resolved.

For the definitions we coded for use of the terms input/output, attention to output, and focus
(Author et al., 2019). In terms of input/output, each definition was read for use of those terms in the
definition for example, “M49 M62: No matter what input the output is the same” and “M117_M118:
A function is when you get the same output.” In terms of focus, each definition was coded regarding
whether the definition indicated a function was a relationship (or mapping), an object, or neither. We
referred to this set of codes as focus, as they indicated how the students “saw” function. If the
definition indicated that the function relates to the input and output then the definition was coded as a
relationship. For example, “VM_MO91 M96 The word function may mean when you input
something, even though you may not get what you asked for, you will only get one type of it.” The
code “object” was used when the definition referred to a function as something, such as the button, or
the machine.

Finally, definitions were coded according to whether or not they attended to output. In order for a
definition to be coded as attending to output, the definition needed to refer to an output having a
pattern, or being the same or consistent. For example, “VM_M54 MS59: Function is when you put in
the input and the output will never change / will always be the same.”

Analysis of the student worksheets proceeded along two dimensions: classification of whether the
pairs of students correctly identified the machines E through L as functions and the students’
justifications for their classifications. For the pairs of machines E&F, G&H, 1&J, K&L, since
students were told one was a function and one was not, it was possible to simply count the
classification. Of course, the percentages should mirror each other i.e. the number of “corrects” for
machine E should match the number of “incorrects” for machine F.

The students’ written justifications for their machine classifications were open coded using a
constant comparative method to look for themes (Creswell, 2014). The final codes for students’
justifications are shown in Figure 4. Justification codes were not mutually exclusive, as a justification
could have been coded based on inconsistency as well as using the context of the vending machines.
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Code Description
Justification based on Students” justifications use phrases indicating an attention to the
inconsistency of output inconsistency of the outputs. Examples include: “different

"o LI

colors”, “random”, “it changes”.

Justification based on Students” justifications use phrases indicating an attention to the
consistency of output consistency of the outputs. Examples include: “consistent™,

“constant”, “pattern”.

Justification uses the Students’ justifications describe the relationships between inputs
context of the machine and outputs using the vending machine context. Examples
include: “because it always gives the wrong drink™, “it gives
random colored cans”

Justification unclear There is not enough detail in the students’ written response to
classify their justification.

Figure 4: Justification codes

Results

Identification of the Machines.

The first element of analysis was to tally whether the participants were able to correctly identify
which of the machines E-L are functions. Recall that participants worked through machine pairs
A&B and C&D being told that A is a function and B is not a function and that C is a function and D
is not a function, and that the concept established was that the machine should behave consistently
even if the colour of the output can does not match the colour of the button pressed. Students
classification of the machines is shown in Table 1.

Machines Non-function reason % Correct
E&F Machine E: Green Dew has random output 81.3
G&H Machine G: all outputs are random 95.8
[&] Machine J: Diet Blue output is Blue & random 86.1
K&L Machine K: Red Cola output is 2 random cans 80.7

Figure 5: Participants’ correct identification of functions

At a first level of analysis this shows that, broadly speaking, the pairs of students were able to
correctly identify which machines were functions. The percentage of correctly identified functions
for the first four pairs of machines was at least 80% and ranged from 80.7% to 95.8%.

It is interesting to note that for the pairs E&F, 1&J and K&L the correct percentage is very similar
(between 80% and 86%). The exception is the machine G&H pairing which has a much higher
percentage of students identifying it correctly. This can be explained as follows: the primary
identifying factor for a machine not being a function was the random behaviour of one of the buttons.
However, one has to press a button often enough to be able to identify the behaviour as random. In
the case of Machine G, all four buttons give random output and, therefore, the threshold to identify
random behaviour is lower. Furthermore, Machine G comes first and, therefore, students can very
quickly identify Machine G as not a function and not concern themselves too much with Machine H.
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Looking more closely at the incorrect answers for the first four pairs of machines we see that it is
often the same pairs of students getting incorrect answers. 10 of the 14 (71.4%) pairs of students who
made a misidentification of the E&F pair misidentified at least one other machine, with 5 pairs
misidentifying all of the first four sets of machines except the G&H pairing. Furthermore, of the 22
pairs of students that misidentified at least one machine, only seven of the 22 (31.8%) had their first
wrong answer after the first pair of machines E&F and six of those seven misidentified just one of
the pairs E&F, G&H, [&]J and K&L.

The result for Machine L with 80.0% of participants identifying it as a function is a potentially
significant result since researchers have shown that students exhibit difficulties identifying constant
functions as functions (e.g. Carlson, 1998; Rasmussen, 2000). However, it may be that many students
identified Machine K (output from Red Soda is two random cans) as not a function and concluded
that Machine L must be a function.

Characterizing Students’ Justification of Functions and non-Functions.

To better understand the ways in which students were making sense of the machines, we analyzed
their justification for whether or not each machine was a function or non-function (see Figure 5).
Those that were determined to be functions were justified based on consistency of the input/output
relationship and those determined to be non-functions were described as such based on the
inconsistency of this relationship. One notable exception to this is the 11 students that used the
language of inconsistency to justify their choices for Machine F (Red Cola — silver, Diet Blue —
green, Silver Mist — red, Green Dew — blue). All 11 of the students that described this as
inconsistent, also determined the Machine was not a function. We see that these students could not
overcome the cognitive dissonance of a machine giving them a different colour output can from the
input button pressed, even if it did so consistently. For example, one student (M90) described
Machine E (R—r, B—b, S—s, G— random) as “more consistent” than Machine F (R—s, B—g,
S—r, G—b) which “randomizes things.” The very next pair of Machines in the applet had a similar
design (Machine H: R—b, B—s, S—g, G— 1), and only one student determined this to be a non-
function using the reasoning of inconsistency. This suggests that the students refined their meaning
for such a justification to be aligned with situations in which a single output results in different
outputs. Examples of students’ justifications based on inconsistency are shown in Figure 7 below.

Machine Justiﬁcatipn based on Justi_ﬁcatio_n based on | Justification unclear
consistency inconsistency
E 5 54 13
F 45 11 . 17
G 2 68 2
H 62 1 ' 8
I 54 6 12
] 2 59 9
K 4 54 11
L 58 1 10
M 38 2 15
N 34 1 14

Figure 5: Characterizations of students’ justifications for each machine
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Figure 7: Examples of justifications based on attention to inconsistency of outputs

As is evident in the Machine F example above, the students’ justifications provide insight to their
misidentification of both functions and non-functions. For example, looking at the 13 pairs of
students that misidentified Machine K (R—random pair) as a function it is evident that they either
did not test the machine enough to see the random outputs that occurred when clicking Red Cola
(e.g., “every color is functional, red produces 2 greens”), or they decided that since the rest of the
buttons were consistent it was “close enough”. For example, one pair wrote “mostly consistent” and
another wrote “3 of the 4 function correctly.” Furthermore, the inability to accept machines giving a
different output from the button pressed, even if it does so consistently, persisted for a number of
pairs. For example, Pair M17 & M20 said of machine J (R—r, B—b & random, S—s, G—g “The
Blue one gives two but the others work.”

It is notable that 80% of the student pairs used the language of the machine context in their
justifications (see Figure 8 for examples). This suggests that having a realistic context in which to
both think about and test their conjectures proved to be helpful in explaining their thinking.
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Figure 8: Examples of justifications that use the context of a vending machine

Definitions

One of the 72 pairs of students did not complete a definition on their worksheet. The remaining 71
definitions were coded using the codebook. In terms of the use of input/output 62 out of 71 (87.3%)
definitions used the word input and 65 out of 73 (89.0%) definitions used the term output. Of course,
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the participants were asked to use these terms and, therefore, the result is not entirely surprising.
Nevertheless, the result is promising in terms of establishing sets of inputs and outputs as a central
aspect of the definition of function.

Perhaps the most interesting aspect of the activity was to examine the extent to which the
participants would pay due attention to the outputs from the machines. Analysis of the definitions
shows that 45/71 (61.6%) of the participants did pay attention to the output with definitions such as
“When you input something, the output always will stay the same.” However, 14/71 (19.7%) of
participants, while paying attention to the output made an incorrect statement such as “Your input is
your output and does not change.”

In terms of focus, none of the participants described a relationship between inputs and outputs
explicitly as a mapping between sets, and most definitions (43/71 (60.6%)) were coded as “neither
object or relationship.” A large number of participants’ definitions (27/71 (38.0%)) were coded as
“object” since they made explicit reference to the vending machine or the buttons of the machine. For
example, “Whenever you input into the vending machine, you know the output which makes it
reliable.”

Conclusion

The purpose of this study was to explore whether seventh grade students who had not encountered
the term function could use a specially designed applet to develop an understanding of a function as a
relationship between inputs and outputs with some restrictions on the outputs. The non-standard
representation of the Introduction to Function applet served to introduce the concept of function
without algebraic representations. With the focus on the consistency, or otherwise, of the outputs the
participants were able to correctly distinguish between functions and non-functions at least 80% of
time. Some limitations of the study may be that the results were overdetermined by the discussion
after the first two pairs of machines and that the participants might be seen to be simply playing a
pattern recognition “game” with the rule “random bad, not random good.” Therefore, more study
would be needed to establish if the basic concept learned here transfers effectively to further study of
function. However, even within this study, more than 60% used some appropriate language to
describe the nature of the output in their definitions of function. In addition, contrary to a well-known
misconception, participants may be able to recognise a constant function as a function.
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