
ConNOC: A practical timing channel attack on

network-on-chip hardware in a multicore processor

Usman Ali and Omer Khan
University of Connecticut, Storrs CT USA

{usman.ali, khan}@uconn.edu

Abstract—Shared hardware resources in today’s
microprocessors have emerged as a target for adver-
saries to leak secret information via timing-based
software side channels. This paper characterizes
such attacks on the non-persistent network-on-chip
(NoC) hardware, and demonstrates its practicality
on a real multicore machine. State-of-the-art 4-core
baseline setup shows an average of less than 2-cycle
latency variation due to contention at the NoC
hardware resources. This noisy and unpredictable
timing channel achieves ≥18% accuracy when the
attacker is assumed to have no replay capability.
However, in the presence of a high number of
replays, accuracy improves significantly but slows
down the speed of the attack. ConNOC proposes a
novel attack setup that better exploits interference
at NoC hardware to make it less noisy and more
predictable. It demonstrates ≥7-cycle latency vari-
ation under no replay capability. The evaluation
of covert communication and information leakage
attacks shows 100% accuracy using five replays to
leak information. This translates to 2 mbps (mega
bits per second) attack throughput on the Tilera
TileGx72 multicore processor executing at 1GHz.

I. Introduction

In today’s highly virtualized systems, adversaries
are actively using co-located software on commer-
cial processors to leak secret information through
timing-based software side-channel attacks (sSCA).
Timing-based sSCA leaks information with the help of
contention-induced timing variations in the chip-level
shared hardware resources. Google recently published
their proof-of-concept code showing the practicality
of Spectre exploits within modern web browsers on
real processor hardware [1]. The shared hardware
side-channels are broadly categorized as persistent
and non-persistent. The persistent channels constitute
resources that hold information for a larger time
interval, e.g., caches, TLBs, or even main memory. On
the contrary, non-persistent channels hold information

in shared hardware for a shorter time interval, e.g.,
execution units or network-on-chip routers and wires.
These vulnerabilities have motivated the development
of a plethora of mitigation schemes for persistent
channels [2], [3], [4]. Consequently, adversaries are now
more inclined to target non-persistent channels for
timing-based sSCA attacks.

The non-persistent channels are not easy to exploit
and require a sophisticated setup due to their shorter
time for holding data [5], [6]. It has been shown
in literature that non-persistent channels have low
latency variations of about 2–10 cycles, as compared
to 10s or even 100s of cycles for persistent channels
[7], [8]. Another limitation of non-persistent channels
is their high noise levels. Thus, an attack must rely
on replay capabilities to confidently leak information
[9]. Due to these limitations, a realistic attack on non-
persistent channels requires evaluation under realistic
constraints on a real machine. Existing strategies [6],
[10] unfortunately do not consider these challenges with
the attack setup, and focus on mitigation techniques
based on spatial and/or temporal isolation principles.
In order to design an e�cient mitigation scheme for
a non-persistent timing-based sSCA, the adversarial
attack capabilities need further investigation.

This paper focuses on timing-based sSCA that
exploits network-on-chip non-persistent hardware chan-
nels in a real multicore machine setup. An attack sce-
nario [6] (baseline attack) is proposed in the literature
that consists of two independent applications, where
their code and data are spatially distributed across
4-cores in a multicore. These cores are interconnected
using the NoC hardware routers and wires. Simulated
evaluation using a cycle-level network simulator shows
that these applications observe timing variations due
to interference at the NoC hardware. The timing
variations depend on the contention level, whereby
when the NoC hardware is under contention, it leads
to an additional latency delay as compared to the no-

contention scenario. Based on these timing variations,
followup research proposes mitigation strategies for
NoC hardware [10], [2]. However, it is unclear if
the prior literature correctly characterizes this non-
persistent hardware side-channel. Can timing varia-
tions in this setup correctly capture the adversarial
attack on a real machine? How can one manage the
high noise challenge in this channel and ensure high
accuracy to conduct an attack at high performance?
Moreover, no prior work has demonstrated the use of
NoC hardware channel to conduct real attacks, i.e.,
covert communication and information leakage. The
covert-communication attack allows two unauthorized
malicious applications to communicate based on timing
variations in shared hardware channels [11]. Whereas,
in an information leakage attack, an adversary infers
secret from a secure application (e.g., AES or RSA
crypto-system private keys) based on timing variation
patterns [11].

We revisit the baseline attack on NoC hardware
and characterize its timing variations on a real Tilera
TileGx72 multicore processor. Our evaluation shows
that the baseline attack’s placement of code and data
observes an average of 1.58-cycle latency variation
due to contention at the NoC hardware. This leads
to an unreliable attack setup with ≥18% accuracy
for inferring a secret bit of information. However,
accuracy increases when the adversary possesses replay
capability, where each bit leakage step is repeated to
increase the latency under contention. The baseline
setup is shown to require 55 replays to leak a bit with
≥100% accuracy.

ConNOC proposes a novel method for code and data
placement of victim and adversarial applications that
e�ciently exploits the NoC hardware side-channel. The
proposed setup maximizes the number and probability
of activating the contended NoC hardware resources,
and results in an average of ≥7.3-cycle latency varia-
tion without replay. The statistical mean of contention
and no-contention cases is used as a threshold to
di�erentiate the high-noise timing variations at the
NoC hardware with ≥62% accuracy, a 3.4◊ improve-
ment over the baseline setup. Moreover, a heuristic
is developed that uses replay capability to infer each
secret bit of information with high accuracy, yet high
speed. The e�cacy is measured using accuracy (true
positive rate) and rate (minimum number of replays)
metrics. The proposed 3-core setup is demonstrated for
covert communication and information leakage attacks
with 100% accuracy using 5 replays, as compared to

55 in the baseline setup. This translates to 2 mbps

compared to baseline 180 kbps attack throughput,
which is an 11◊ speedup for the proposed attacks
on the target multicore processor executing at 1GHz.

II. Related Work

Persistent hardware side-channels are an easy target
for an adversarial software to leak secret information
in today’s microprocessors [1]. For example, Bern-
stein et al. [12] exploit timing variations in on-chip
caches to leak AES private key. Osvic et al. [8]
propose prime+probe, whereas Yarom et al. [7] propose
flush+reload attack that targets cache variations to
leak secret keys of AES and RSA crypto-systems. In
cache attacks [7], the adversary observes up to 80-cycle
variations between cache-hit and cache-miss scenarios.
This allows the attacker to build a highly reliable
sSCA. Researchers have also targeted other persistent
hardware channels, for example TLBs [13], branch
target bu�ers [14] [15], and main memory DRAM rows
[16]. With the emergence of mitigation mechanisms be-
ing deployed in commercial processors, non-persistent
channels are an emerging target for attackers. Recent
work [5] [17] successfully exploits execution engine to
bypass security policies and leaks secret information.
Moreover, in the context of multicore processors, the
on-chip network hardware has been shown as another
non-persistent hardware side-channel [6].

Suh et al. [6] proposed an attack setup that consists
of two applications, X and Y that are spatially dis-
tributed across 4-cores in a multicore setting. The cores
are interconnected using the NoC hardware. Figure 1-a
shows the two applications executing on cores 0 and 1
respectively. The application X accesses its data from
core 3’s last-level shared cache slice, while application
Y from core 2. In a cache coherent shared memory
system, these data accesses are performed at the cache
line granularity. However, the network bandwidth is
limited to a fixed flit size, whereby a cache line is split
into multiple flits and moved between an application’s
code and data locations using the NoC hardware.
It has been shown that while these applications are
isolated processes at the software level, they share NoC
hardware, thus creating a side-channel for information
leakage. One application creates contention at the
NoC hardware that results in observable latency
variations as compared to no-contention case for the
other application. This latency variation is exploited
to create timing-based sSCA. However, prior work
falls short of characterizing attacks on a real machine

(a)

(b)

XApp YApp XDataYData

Core 0 Core 1 Core 2 Core 3

Core 0 Core 1 Core 2 Core 3

Fig. 1. (a) Layout for a 4-core baseline attack scenario with
three points of contention. (b) Sources of contention in NoC
hardware: switch, link, and host-interface.

to confirm the practicality of the proposed setup [6].
Instead, research e�orts have focused on mitigation
strategies based on this potential NoC attack setup
[10]. Without a clear understanding of the adversarial
capabilities, it is unrealistic to assume the e�cacy of
the prior mitigation schemes for this non-persistent
channel.

III. Motivation

This work characterize the baseline setup proposed
by Suh et al. [6] on a real multicore processor, Tilera Ti-

leGx72. The NoC hardware in the evaluated processor
consists of queues, switches and wires. We identify
three sources of contention that result in timing
variations, i.e., switch, link, and host-interface. The
switch establishes a connection between the incoming
input bridges to create a channel for communication.
Once the connection is established, the switch becomes
unavailable for other bridges. If there is any data on
non-connected bridges, it is stored in attached bu�ers.
This non-availability of switch causes contention delay.
The links are wires that connect NoC hardware with
adjacent cores. At any given point, these wires can
be occupied by a single data transfer, while the other
application’s data must await its turn in the core’s
bu�er. Data multiplexing at links is another source
of contention delay. A host-interface connects core
resources (i.e., execution units and caches) with the
switch. Again, the wires interconnecting the incoming
and outgoing tra�c at the host-interface are a source
of contention. As shown in Figure 1-b, the 4-core
setup has many highlighted points of contention that
are open for an adversary to create a reliable attack.
However, the data requests and replies from the two
applications must co-locate on one or more of these

0

2000

4000

6000

8000

10000

12000

14000

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80
Latency (cycles)

N
o.

 o
f s

am
pl

es
(o

ut
 o

f 1
00

k)

Under Contention
No Contention Baseline (4-core)

mean
(contention)

62.98
cycles

mean (no
contention)

64.56
cycles

mean
difference

1.58
cycles

Average
std. dev.

4.65
cycles

Fig. 2. The latency histogram distribution for the 4-core baseline
setup with statistical mean and standard deviation data for no-
contention and contention scenarios.

hardware resources to create latency variations. The
objective is to maximize the number of contented
resources, as well the probability of co-location at
runtime. It is clear from Figure 1-a that the baseline
attack setup [6] only activates three points of NoC
hardware contention. Since both adversarial and victim
application’s data accesses must align on one or more
of these sources, the probability of success is limited,
as discussed next.

A. Low Timing Variations in Baseline Setup

The non-persistent NoC hardware channel holds
data for a much shorter time. For example, a data
item (flit) traversing over an un-contended NoC reaches
its destination in 1-2 cycles per hop. The baseline
setup (Figure 1-a) shows data movement paths in
the presence or absence of the victim application Y.
The victim application Y accesses its data from core
2 periodically. A well synchronized contended NoC
causes a delay in data access latency. As shown in Fig-
ure 2, when application Y is inactive (no contention),
the adversarial application’s data access request takes
62.98 cycles on average. However, when application
Y is actively making data access requests to core 2
(contention points activated on NoC hardware), the
adversary’s each data access now takes 64.56 cycles on
average. This leads to a ≥1.58-cycle timing variation
that the adversarial application X must exploit to
construct an sSCA attack. However, this low timing
variation is unpredictable as observed by the high
standard deviation of access latencies in Figure 2.
The low latency and highly variable timing variations
exacerbate the detection capabilities to conduct a
successful attack.

B. High Noise and Low Accuracy in Baseline Setup

The co-located concurrent applications introduce
unwanted interference (or noise) on the NoC hardware
channel, further limiting the success of the adversarial

(a)

(b)
XApp

YApp XDataYData

Core 0 Core 1 Core 2

Core 0 Core 1 Core 2 Core 3

YApp
XApp

XDataYData

(c)

YApp

XApp

XDataYData

Core 0 Core 1

Fig. 3. Proposed ConNOC setups: (a) 4 node placement of data
& code, (b) 3 node data & code placement, and (c) 2 node data
& code placement.

application. For the baseline setup, Figure 2 shows the
latency histogram under contention and no contention
scenarios. In the absence of contention, the latency
varies from 50 to 80 cycles with a mean of 62.98
cycles. However, when the victim application creates
contention, the latency still ranges from 50 to 80 cycles,
but the mean shifts to 64.56 cycles. For both scenarios,
the standard deviation is observed in excess of 4 cycles,
which shows high overlap between the two scenarios.
In order to confidently di�erentiate between the no-
contention and contention cases, an adversary must rely
on replay capability [9], i.e., repetition of contention
or no contention to remove noise. Our real machine
evaluation shows that for the baseline attack, true
positive rate is ≥18% without the replay capability
and ≥100% when the replay capability is utilized 55
times. This makes the baseline setup adequate to create
a practical attack, but at slow speed. Therefore, the
main objective of this work is to develop an attack
setup that utilizes the NoC hardware side-channel to
create predictable, and e�cient sSCA attacks.

IV. ConNOC

The baseline attack on the NoC hardware side-
channel is primarily limited by the placement of code
and data for the adversarial and victim applications
in a multicore setting. As observed in Figure 1-a,
the setup severely limits the number of potential
contended hardware resources. Moreover, the success
of the attack depends on the probability of aligning

contented data accesses on one or more of these sources.
ConNOC proposes a novel data placement scheme
that maximizes the number of contention points, as
well as the probability of success to activate them at
runtime. The key idea is to activate multiple core’s
NoC routers concurrently in such a way that at any
given time instance, the flits from each cache line access
occupy as many switches, adjacent core links, and host-
interface links as possible. Moreover, the cache line
accesses from two applications are setup to traverse
in opposite directions to maximize the probability of
contending the NoC hardware resources. This is done
by placing the code and data for each application
on the extreme ends of the multiple cores setup in a
multicore. An important factor is the number of cores
that actively participate in the attack setup. When
the number of cores in small, the number of potential
contention points are constrained while the probability
of activating them is high. On the other hand, when
the number of cores is large (potentially each flit of
a cache line occupying a core), the setup utilizes a
much larger number of contention points. However,
the probability of activating contention on multiple
NoC resources decreases. This leads to a tradeo� that
must be characterized and quantified to configure the
setup with the right number of cores.

A. Code and Data Placement Setup

ConNOC is a data and code placement strategy
that aims to maximize the number of NoC hardware
contention points. The maximum occupancy of a path
from an application’s data access point of view is the
number of flits per access. For example, if the processor
implements 64-bytes cache line and 8-bytes (64-bits)
flit size, the maximum number of cores occupied by
a single path is 8 cores. In this scenario, ConNOC
utilizes 8-cores where the code and data placement are
done on the extreme points of the interconnected cores.
The adversarial and victim application aims to execute
two concurrent paths in opposite directions to create
contention in the various NoC hardware resources. The
objective of this paper is to demonstrate the feasibility
of sSCA attacks, thus the evaluation is conducted on 2-
to 8-core setups. To convey key tradeo�s in the setups
under ConNOC, Figure 3 shows the proposed 4-core,
3-core, and 2-core setups.

Figure 3-a shows the 4-core placement of code and
data. An application X (adversary) is pinned on core
0, where data of application X is pinned on core 3’s
last level shared cache slice. Application Y is pinned

on core 3, whereas its data is pinned on core 0. This
placement activates switches of all four cores, three
links interconnecting the four cores, and the two host-
interface links on cores 0 and 3. The flits of data
accesses originating from the two applications can
contend on one or more of these contention points
at any given time instance, creating a timing side-
channel. ConNOC’s 4-core setup activates 3◊ more
contention points as compared to the baseline setup
from Figure 1-a. Therefore, depending on the number
and probability of activated contention points, this
setup is expected to improve both statistical mean
di�erence, as well as the standard deviation. Although
not shown in Figure 3, five or higher core count
setups introduce more contention points. However, the
probability of activating one or more of the contention
points decreases. This potentially leads to higher
variability in access latencies under the contention
case, thus leading to a degradation in statistical mean
di�erence and an increase in standard deviation.

To improve the probability of activating contention
points, ConNOC’s strategy is to reduce the number of
cores involved in the setup. Figure 3-b shows the 3-core
placement of code and data using the same strategy as
described for the 4-core setup. This placement activates
switches of three cores, two links interconnecting the
cores, and the two host-interface links on cores 0 and 2.
Although the number of contention points is reduced
compared to the 4-core setup, the benefits arise from
increasing the probability of the flits activating one
or more of the contention points. Consequently, the
3-core setup is expected to improve both statistical
mean di�erence and standard deviation over the 4-
core setup. At the extreme end, only two cores are
utilized to create the ConNOC setup, as shown in
Figure 3-c. Although this 2-core setup maximizes the
probability of activating contention points by the two
applications, it’s e�cacy is limited by the number of
exploitable contention points. This setup is expected
to improve the standard deviation as compared to the
3- and 4-core setups. However, the statistical mean
di�erence is lower due to its limitations on the number
of contention points.

B. Information Leakage Heuristic

One of the challenges of timing-based sSCA on non-
persistent channels is high noise. ConNOC proposes
a heuristic that e�ciently di�erentiates no-contention
and contention scenarios to overcome this challenge.
A threshold acts as a boundary value between the

two scenarios, resulting in a clear identification of con-
tention and no contention cases. From the adversarial
application view point, all latency values that are equal
or less than the threshold are considered no-contention,
while greater than threshold are considered contention
cases. However, in the presence of high noise in this non-
persistent channel, a single access is insu�cient to infer
these cases with high confidence. ConNOC proposes to
replay each bit-leakage (contention and no contention)
scenario multiple times, where each access is repeated
multiple times, and the aggregate latency variations
are used as a timing-channel. For example, if the
adversarial application replays a data access n times,
the latency measurement is aggregated by n times.
Consequently, the mean di�erence increases between
the two scenarios, which reduces noise between the no-
contention and contentions scenarios. The objective is
to reduce n while achieving near 100% accuracy of bit-
leakage. Accuracy is defined as the true positive rate,
which is quantified as the percentage of classifications
that result in correct inference of the contention and
no contention using the heuristic’s threshold.

The selection of the threshold value is an important
factor in the heuristic. ConNOC utilizes a learning
phase where statistically significant number of samples
are collected for both no-contention and contention
cases. The mean latency value that di�erentiates both
distributions with associated number of replays is
consequently used to set the threshold value.

C. Practical Attacks

Timing-based sSCA are classified into two categories,
i.e., covert-communication and information-leakage
attacks. In covert-communication attacks, a trusted but
malicious application with access to secure data leaks
secrets to another application. The leaked data is later
exfiltrated to malicious actors. In information-leakage
attacks, an adversarial application infers secrets from
a non-compromised trusted application. For example
a trusted application like AES or RSA with private
keys is the target for an adversary. Practical attacks
require a shared synchronization structure (i.e., global
cycle counter) to achieve maximum accuracy.

1) Threat Model: This work assumes a common
threat model for timing-based sSCA [7]. An adversary
executes an application with user-level privileges, and
possesses the capability to co-locate and place code
and data across di�erent cores in a multicore processor
setting. Modern processors allow user-level programs
to control code placement and data for higher per-

formance in parallel applications. The adversary also
has replay capability that allows repeating operations
multiple times. The operating system (OS) controls
the executions of instructions, creates checkpoints, and
replay instructions for consistency purposes. The threat
model considers the OS as a malicious entity, and
requires a compromised OS for an information-leakage
attack. However, the covert-communication attack
works without a malicious OS since both application
collude to conduct this attack.

2) Covert communication attack: Two independent
applications, X and Y exploit the ConNOC setup to
communicate covertly. The 3-core setup from Figure
3-b is used to explain the covert-communication attack.
Applications X and Y act as receiver and transmitter
respectively. Figure 4 shows the pseudo-code of a
covert-communication attack. To transmit a secret bit
1, the transmitter waits for synchronization event (i.e.,
a fixed time quanta), and makes num of replays number
of memory accesses that result in contention at the NoC
hardware. On the other hand, to transmit secret bit 0,
the transmitter remains idle and makes no accesses for
the given time quanta. Similarly, the receiver waits for
the synchronization event, and makes num of replays

accesses to memory, and measures their aggregate
latency. The receiver uses the ConNOC replay-based
heuristic to infer the secret bit from this timing
information. For example, if the measured latency is
equal to or less than the set threshold, it infers a secret
bit 0. Otherwise, if the measured latency is greater
than the threshold value, the receiver infers a secret
bit 1. This process is repeated to transmit a stream of
secret information between the two applications.

// transmitter pseudo code

wait_sync_tick()
for every bit:

if (bit == 1):
for (num of replays):

function1()
else if (bit == 0):

do_nothing()

// receiver pseudo code

wait_sync_tick()
for every bit:

timer_start()
for (num of replays):

function1()
stop_timer()
if (time > threshold):

bit = 1
else

bit = 0

Fig. 4. Covert-Communication attack pseudo-code.

3) Information leakage attack: An adversarial ap-
plication exploits the ConNOC setup to leak secret
information from a secure application. For information

leakage attack, a scenario is modeled where a secure
application operates on a secret key. Figure 5 shows
the pseudo-code for the information leakage attack.
Again, the 3-core setup from Figure 3-b is used for
this attack. A secure application Y consists of a
function that makes memory accesses based on a secret
bit value. For example, if the secret bit value is 1,
function1 is called followed by function2. Whereas,
if the secret bit value is 0, only function1 is called.
RSA square and multiple algorithm is an example that
performs such function sequences based on the secret
key [7]. An adversary application X executes and makes
timing measurements for periodic memory accesses. For
example, if the measured latency is greater than the
threshold, it implies function1 is executed. Whereas, if
measured latency is less than or equal to the threshold,
it implies function2. An execution of function1 followed
by function2 is inferred as secret bit 1, where detection
of function1 followed by function1 is inferred as secret
bit 0. Note that in this attack, the malicious OS is
assumed to control synchronization and replays for the
secure application.

// secure pseudo code

wait_sync_tick ()
function(secret_bit):

if (secret_bit == 1):
for (num of replays):

function1 ()
function2 ()

else if (secret_bit == 0):
function1 ()

// adversary pseudo code

wait_sync_tick ()
for every secret_bit:

start_timer ()
for (num of replays):

read_data()
stop_timer ()
if (time > threshold):

current_bit = 1
else

current_bit = 0
if (last_bit == 1 && current_bit = 0):

secret_bit = 1
else if (last_bit == 1 && current_bit = 1):

secret_bit = 0

Fig. 5. The pseudo-code for information leakage attack using
secret data-dependent functions.

V. Methodology

The Tilera® Tile-Gx72™ multicore processor is
used for evaluation [18]. It is a tiled architecture with
72 independent tiles, and Network-on-Chip hardware
comprises of 5 independent 2-D mesh networks (called
iMesh™ [18]) with X-Y routing. Each tile consists of a
64-bit multi-issue in-order core, 32KB private level-1
(L1) data and instruction caches, and a shared level-2
(L2) cache of 256KB (LLC capacity of 18MB). The
cache line size is 64 bytes, while the NoC flit size is
8 bytes (64 bits). iMesh comprises five independent

networks, i.e., cache coherence tra�c (TDN), memory
controller tra�c (MDN), static network (STN), I/O
dynamic network (IDN), and user dynamic network
(UDN). Moreover, it consists of four on-chip 72-bit
ECC-protected DDR memory controllers to access o�-
chip memory. The system is booted with GNU/Linux
operating system with kernel version 3.10.55-MDE-

4.3.2.182362. Tile-Gx72™ API library, Tilera Multi-
core Components (TMC) is used to manage network
tra�c and tile resources.

The cache coherent TDN NoC hardware of iMesh is
used in this paper. We use the baseline 4-core setup to
explain the attack methodology. To measure the timing
variations of TDN, the GNU/Linux command numactl

pins the code for application X to tile 0. The TMC
library allocates a memory page (4KB data structure)
using tmc alloc set home() on tile 3 (i.e., the data
structure uses tile 3’s L2 cache slice as it’s home loca-
tion). The TMC library call tmc alloc set caching()

is used to disable local caching for tile 0. Whenever
application X on tile 0 fetches data from main memory
(i.e., read a variable int x), the data is moved to tile
3’s shared L2 cache, and after that to tile 0’s register
file (local caching on tile 0 is disabled). The TMC
library function get cycle count() fetches the cycle
counter value. The time is measured in four steps.
(1) Initially, application X on tile 0 reads data (int

x) that is brought on-chip from main memory and
placed on tile 3’s shared L2 cache. (2) Read the time
counter value using get cycle count() and store into
a temporary variable. (3) Application X on tile 0 reads
int x again. The data (a cache line, 64 bytes) moves
from tile 3 shared L2 cache, but only the requested
word is stored in the register file of tile 0. (4) Fetch
time counter value, and subtract from the earliest
time counter value to measure the timing latency. This
latency includes time to fetch data from tile 3’s L2
cache and its traversal over the TDN NoC hardware
of the iMesh network towards tile 0.

In the no-contention scenario, only application X
executes in the system. However, in the case of the
contention scenario, the code for another application
Y is pinned on tile 1, whereas its data structure
is allocated to tile 2 using the appropriate TMC
library calls. While keeping the measurement data
size the same (i.e., a single cache line), application
Y makes concurrent access from tile 1 to tile 2, thus
creating opportunities for contention in the shared
NoC hardware resources. In the case of replay enabled
attack, both applications make n repeated accesses

under both no-contention and contention scenarios to
create aggregated latency measurements. Here n is the
number of replays for an sSCA attack.

VI. Evaluation

The baseline and ConNOC setups are evaluated
with and without replay capability for their latency
variations, as well as the true positive rate metric.
The covert-channel and information-leakage attacks
are demonstrated using ConNOC 3-core placement on
Tilera TileGX-72.

A. Evaluation without replay capability

This section evaluates ConNOC placement using
2-core, 3-core, 4-core, and 5-core setups. The appli-
cation X on core 0 makes a variable read access
(that translates to cache line access at the hardware
level), and measures the latency with and without
contention on NoC hardware. Under no-contention
scenario, only application X executes. However, for
contention scenario, application Y makes continuous
read accesses to its data placed on core 0. This occupies
the NoC hardware resources, and application X ob-
serves contention latencies. This process is repeated for
100,000 samples for both contention and no-contention
scenarios.

Figure 6-(a) shows the results for the 5-core setup,
where a large number of contention sources are possible
but the probability of activating one or more of
these sources is low. The mean latency di�erence is
2.76 cycles with standard deviation of 4.45 cycles.
Compared to the baseline setup (cf. Figure 2), the
latency di�erence is 75% higher that helps create less
overlap in the latency distributions. Consequently, as
shown in Figure 7, the true positive rate of the 5-core
setup improves to ≥55%, as compared to ≥18% for
the baseline setup.

The 4-core setup, shown in Figure 6-(b) reduces
the number of sources of contention, but increases the
probability of contention. This improves the mean
latency di�erence to 5.18 cycles with a standard
deviation of 5.21 cycles. This trend is further improved
in 3-core setup (Figure 6-(c)), where mean latency
di�erence is 7.3 cycles with a standard deviation of
3.73 cycles. As a result, the 4-core setup improves the
true positive rate to ≥62%, while the 3-core system
gives the best result at ≥65%.

For the 2-core setup, although the probability of
contention increases, the setup exposes a lower number
of sources for contention. Therefore, as shown in Figure

0
2000
4000

6000
8000

10000
12000

14000
16000

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80
Latency (cycles)

N
o.

 o
f s

am
pl

es
(o

ut
 o

f 1
00

k)

Contention
No Contention ConNOC: 5-core

mean
(contention)

62.84
cycles

mean (no
contention)

65.6
cycles

mean
difference

2.76
cycles

Average
std. dev.

4.45
cycles

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80
Latency (cycles)

N
o.

 o
f s

am
pl

es
(o

ut
 o

f 1
00

k)

Contention
No Contention ConNOC: 3-core

mean
(contention)

59.29
cycles

mean (no
contention)

66.59
cycles

mean
difference

7.3
cycles

Average
std. dev.

3.73
cycles 0

2000

4000

6000

8000

10000

12000

14000

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80
Latency (cycles)

N
o.

 o
f s

am
pl

es
(o

ut
 o

f 1
00

k)

Contention
No Contention ConNOC: 2-core

mean
(contention)

59.46
cycles

mean (no
contention)

64.46
cycles

mean
difference

4.61
cycles

Average
std. dev.

3.87
cycles

0

2000

4000

6000

8000

10000

12000

14000

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80
Latency (cycles)

N
o.

 o
f s

am
pl

es
(o

ut
 o

f 1
00

k)

Contention
No Contention ConNOC: 4-core

mean
(contention)

62.98
cycles

mean (no
contention)

68.16
cycles

mean
difference

5.18
cycles

Average
std. dev.

5.21
cycles

(a) ConNOC: 5-core setup (b) ConNOC: 4-core setup

(c) ConNOC: 3-core setup (d) ConNOC: 2-core setup

Fig. 6. The latency histogram distributions for 5-core, 4-core, 3-core, and 2-core ConNOC setups under no-contention and
contention scenarios.

Tr
ue

 P
os

iti
ve

 R
at

e
(%

ag
e)

Placement strategy

0
10
20
30
40
50
60
70
80
90
100

Baseline 2-core 3-core 4-core 5-core 6-core 7-core 8-core

Baseline vs ConNOC

Fig. 7. True positive rate comparisons for 4-core baseline
placement versus ConNOC setups without replay.

6-(d), the mean latency di�erence drops to 4.61 with
a standard deviation of 3.87 cycles. Consequently, this
setup does not perform as well as the 3-core setup, and
its true positive rate drops back to ≥62%. Since the
3-core ConNOC setup performs best under no replay,
it is used as the default setup.

B. Evaluation with replay capability

We observe that all setups are inadequate for
practical attacks without the replay capability. Replay
allows an adversary to repeat each operation of a
given application, thus enlarging the aggregate latency
di�erence between no-contention and contention sce-
narios. The evaluation is performed using n replay
rates, where n ranges from 2 to 100. Each replay
consists of reading a data variable n times from the core
hosting the L2 cache for the data, and measurement of
aggregated latency is recorded. For example, if n = 2,

a word is read twice. This operation is repeated for
both applications X and Y with contention, and for
application X in the case of no contention.

Figure 8 represents latency histograms for various
replay rates for the 3-core ConNOC setup. As expected,
Figure 8-No-Replay shows a high overlap between
latencies for contention and no-contention scenarios
that justifies the ≥65% true positive rate for this
setup. However, with replay the distributions start to
shift away from each other. At 2 replays, considerable
overlap persists, while at 5 and higher number of
replays, no overlap is observed. Therefore, ConNOC
uses 5 replays as its default since it delivers ≥100%
true positive rate.

Figure 9 summarizes the true positive rates as a func-
tion of replay capability for the baseline and various
ConNOC setups. The baseline shows a true positive
rate of ≥100% at 55 replays, which translates to a
throughput rate of ≥180 kbps. The 3-core ConNOC
setup delivers 100% accuracy at just 5 replays that
translates to a throughput rate of 2 mbps. This is an
11◊ improvement compared to the baseline setup. The
2-core and 4-core ConNOC setups are able to achieve
100% accuracy at 6 and 7 replays respectively. The
number of required replays is observed to increase with
5-core and higher ConNOC setups. However, they all
outperform the baseline setup.

C. Covert-communication attack demonstration

This section evaluates covert communication attack
using 3-core ConNOC setup with 5 replays, and a

0

200

400

600

800

1000

1200

1400

1600

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

No Replay

Latency (cycles)

N
o.

 o
f s

am
pl

es
(o

ut
 o

f 1
0k

)

Contention
No Contention

0

200

400

600

800

1000

1200

1400

1600

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

2 Replay

Latency (100+cycles)

N
o.

 o
f s

am
pl

es
(o

ut
 o

f 1
0k

)

Contention
No Contention

0

500

1000

1500

2000

2500

3000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

4 Replay

Latency (200+cycles)

N
o.

 o
f s

am
pl

es
(o

ut
 o

f 1
0k

)

Contention
No Contention

0

200

400

600

800

1000

1200

1400

1600

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

8 Replay

Latency (500+cycles)

N
o.

 o
f s

am
pl

es
(o

ut
 o

f 1
0k

)

Contention
No Contention

0
200
400
600
800

1000
1200
1400
1600
1800

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

16 Replay

Latency (1050+cycles)

N
o.

 o
f s

am
pl

es
(o

ut
 o

f 1
0k

)

Contention
No Contention

0

500

1000

1500

2000

2500

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

5 Replay

Latency (450+cycles)

N
o.

 o
f s

am
pl

es
(o

ut
 o

f 1
0k

)

Contention
No Contention

Fig. 8. Aggregate e�ect of no replay, 2, 4, 5, 8, and 16 replays in 3-core ConNOC setup.

Tr
ue

 P
os

iti
ve

 R
at

e
(%

ag
e)

No. of Replay

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Baseline vs ConNOC
Baseline ConNOC:2-core ConNOC:3-core ConNOC:4-core
ConNOC:5-core ConNOC:6-core ConNOC:7-core ConNOC:8-core

Fig. 9. True positive rate comparisons for 4-core baseline setup
versus ConNOC setups.

460
480
500
520
540
560

t
t+
1

t+
2

t+
3

t+
4

t+
5

t+
6

t+
7

t+
8

t+
9

t+
10

t+
11

t+
12

t+
13

t+
14

t+
15

t+
16

t+
17

t+
18

t+
19

t+
20

t+
21

t+
22

t+
23

t+
24

t+
25

t+
26

t+
27R
ec

ei
ve

r l
at

en
cy

(c

yc
le

s)

Time

0

1

t
t+
1

t+
2

t+
3

t+
4

t+
5

t+
6

t+
7

t+
8

t+
9

t+
10

t+
11

t+
12

t+
13

t+
14

t+
15

t+
16

t+
17

t+
18

t+
19

t+
20

t+
21

t+
22

t+
23

t+
24

t+
25

t+
26

t+
27

Tr
an

sm
itt

er
(B

it0
 /

Bi
t1

)

threshold

Fig. 10. A covert-communication of 28 bits of data using 3-core
ConNOC setup, 5 replays, and the threshold of 522 cycles.

threshold of 522 cycles. In this demonstration, the
objective of the transmitter application is to transmit
28 bits to the receiver application covertly. For a

span of t cycles of time, the transmitter application
creates contention on NoC hardware to transmit bit
1. To transmit bit 0, the adversary stays idle for t

cycles. Figure 10 shows that a bit 1 is transmitted at
t = 0, where receiver observes a latency of 540 cycles.
Similarly, at t+2, the transmitter application stays idle.
Thus, the receiver application measures the latency
of 504 cycles. Using the threshold value of 522 cycles,
the receiver application infers all secret bits with 100%
accuracy. This covert-communication channel attack
achieves a peak throughput of 2 mbps.

D. Information leakage attack demonstration

This section evaluates information leakage attack
using 3-core ConNOC setup with 5 replays, and a
threshold of 522 cycles. This attack is modeled after the
RSA crypto-system square and multiple algorithm to
demonstrate the use case of ConNOC. An adversarial
application X monitors contention level at shared NoC
hardware. The secure RSA-like application accesses
two functions, function1 and function2 based on an
18-bit secret key. The function1 causes high contention,
while the function2 causes low contention at the NoC
hardware. The sequencing of the two functions reveal
secret bit 0 or 1. For example, if the secure application
transmits secret bit 0, it only calls function1. Whereas,
for secret bit 1, it performs function1 followed by
function2. In the case of secret bit 1, a high contention
followed by low contention is observed by the receiver
application.

Figure 11 presents a demonstration of attack on a
time scale. An adversarial application infers secret key
value based on the pattern of contention observations.

460
480
500
520
540
560

t
t+
1

t+
2

t+
3

t+
4

t+
5

t+
6

t+
7

t+
8

t+
9

t+
10

t+
11

t+
12

t+
13

t+
14

t+
15

t+
16

t+
17

t+
18

t+
19

t+
20

t+
21

t+
22

t+
23

t+
24

t+
25

t+
26

t+
27Ad

ve
rs

ar
y

la
te

nc
y

(c
yc

le
s)

Time

1 0 1 1 1 0 0 1 0 0 0 1 1 1 0 1 0 1
Inferred

secret key

thresholdfunction1(secret) function2(secret)
Information leakage attack

Fig. 11. Information leakage of 18 secret bits using 3-core
ConNOC setup, 5 replays, and the threshold of 522 cycles.

A high contention at t = 0, followed by low contention
at t + 1 indicates that function1 is accessed followed
by function2. The receiver classifies this as secret bit 1.
In contrast, a high contention level at t + 2 followed by
another high contention at t + 3 is classified as secret
bit 0. This pattern is repeated to retrieve all 18 bits
of secret with 100% accuracy at 2 mbps speed.

VII. Discussion on mitigation schemes

Prior works almost exclusively rely on isolation-
based mitigation schemes based on spatial or temporal
partitioning of NoC hardware to remove interference.
For example, for temporal partitioning, the NoC
operates between applications (or domains) in time
slices. Thus, a packet waits at each hop until the
NoC allows forwarding packets from its domain. Both
spatial and temporal partitioning schemes are e�ective
at mitigating NoC interference. However, they su�er
significant performance overheads because hardware
resource allocation is not adjusted dynamically to
match the demands of each domain.

Suh et al. [6] proposed a one-way leakage protection-
based scheme for NoC, called reversed priority with
static limits (RPSL). RPSL assigns a HIGH priority to
non-secure applications with static limits on resources,
and LOW priority to secure applications. This scheme
prevents non-secure applications from observing the
contention at NoC hardware due to always HIGH
priority. The main drawback of this approach is that
it depends on assigning priorities to the co-located
applications, which may not be possible in practice.
Another mitigation strategy that builds on temporal
partitioning idea relies on two-way protection using
surf scheduling paradigm [10]. This scheme is shown to
improve performance over the baseline time-division

multiplexing approach. Recent secure processor archi-
tectures propose a spatiotemporal approach to protect
against timing-based attacks [2]. Although existing
mitigation schemes are su�cient to provide security
guarantee for ConNOC, their performance impact must
be evaluated.

Other obfuscation-based mitigation schemes exist
for persistent channels, like [3]. However there is no
existing secure obfuscation-based scheme for NoC
hardware attacks. We plan to explore this mitigation
approach for ConNOC as our future work.

VIII. Conclusion

This paper characterizes timing-based sSCA on a
real Tilera TileGx72 multicore processor that exploits
NoC hardware, a non-persistent, low timing variation
and high noise side-channel. We implement a state-of-
the-art 4-core baseline attack that places adversarial
application across distributed cores, and shows that
this placement has ≥18% true positive rate which is
inadequate for a realistic attack. A novel code and
data placement strategy called ConNOC is proposed,
which better exploits NoC hardware for timing-based
sSCA and shows true positive rate for ≥65%. A replay-
based heuristic improves ConNOC accuracy to ≥100%
with only five replays, whereas the baseline setup
requires 55 replays for high accuracy. This translates
to a 2 mbps throughput, whereas the baseline setup is
limited to 180 kbps throughput. ConNOC shows 11◊
improvement on a real processor when compared to
baseline. We also demonstrate covert communication
and information leakage attacks with 100% accuracy
based on the ConNOC strategy.

IX. Acknowledgments

This research was supported by the National Science
Foundation under Grants No. CNS-1929261 and CNS-
1916756.

References

[1] S. Röttger and A. Janc, “A spectre proof-of-concept for a
spectre-proof web,” Mar 2021.

[2] H. Omar and O. Khan, “Ironhide: A secure multicore
that e�ciently mitigates microarchitecture state attacks
for interactive applications,” in 2020 IEEE International
Symposium on High Performance Computer Architecture
(HPCA), pp. 111–122, Feb 2020.

[3] M. K. Qureshi, “Ceaser: Mitigating conflict-based cache
attacks via encrypted-address and remapping,” in 2018
51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 775–787, 2018.

[4] F. Liu and R. B. Lee, “Random fill cache architecture,” in
2014 47th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 203–215, 2014.

[5] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,
M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting
speculative execution,” in 2019 IEEE Symposium on
Security and Privacy (SP), pp. 1–19, 2019.

[6] Y. Wang and G. E. Suh, “E�cient timing channel pro-
tection for on-chip networks,” in 2012 IEEE/ACM Sixth
International Symposium on Networks-on-Chip, pp. 142–
151, 2012.

[7] Y. Yarom and K. Falkner, “Flush+reload: A high reso-
lution, low noise, l3 cache side-channel attack,” in 23rd
USENIX Security Symposium (USENIX Security 14), (San
Diego, CA), pp. 719–732, USENIX Association, Aug. 2014.

[8] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: The case of aes,” in Topics in Cryptology
– CT-RSA 2006 (D. Pointcheval, ed.), (Berlin, Heidelberg),
pp. 1–20, Springer Berlin Heidelberg, 2006.

[9] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Tor-
rellas, and C. W. Fletcher, “Microscope: Enabling microar-
chitectural replay attacks,” IEEE Micro, vol. 40, no. 3,
pp. 91–98, 2020.

[10] H. Wassel, Y. Gao, J. Oberg, T. Hu�mire, R. Kastner,
F. Chong, and T. Sherwood, “Surfnoc: a low latency and
provably non-interfering approach to secure networks-on-
chip,” in ISCA, 2013.

[11] J. Szefer, “Survey of Microarchitectural Side and Covert
Channels, Attacks, and Defenses,” Journal of Hardware
and Systems Security, vol. 3, no. 3, pp. 219–234, 2019.

[12] D. J. Bernstein, “Cache-timing attacks on aes,” 2005.
[13] B. Gras, K. Razavi, H. Bos, and C. Giu�rida, “Translation

leak-aside bu�er: Defeating cache side-channel protections
with TLB attacks,” in 27th USENIX Security Symposium
(USENIX Security 18), (Baltimore, MD), pp. 955–972,
USENIX Association, Aug. 2018.

[14] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh,
“Jump over aslr: Attacking branch predictors to bypass aslr,”
in 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp. 1–13, 2016.

[15] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and
M. Peinado, “Inferring fine-grained control flow inside
sgx enclaves with branch shadowing,” SEC’17, (USA),
p. 557–574, USENIX Association, 2017.

[16] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and
S. Mangard, “DRAMA: Exploiting DRAM addressing
for cross-cpu attacks,” in 25th USENIX Security Sympo-
sium (USENIX Security 16), (Austin, TX), pp. 565–581,
USENIX Association, Aug. 2016.

[17] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg, “Meltdown: Reading kernel
memory from user space,” in 27th USENIX Security Sympo-
sium (USENIX Security 18), (Baltimore, MD), pp. 973–990,
USENIX Association, Aug. 2018.

[18] D. Wentzla�, P. Gri�n, H. Ho�mann, L. Bao, B. Edwards,
C. Ramey, M. Mattina, C.-C. Miao, J. F. Brown III, and
A. Agarwal, “On-chip interconnection architecture of the
tile processor,” IEEE Micro, vol. 27, p. 15–31, Sept. 2007.

