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Abstract—PCIe connected peripheral devices are in-
creasingly deployed in distributed embedded systems.
For example, a GPU accelerator connected with a
host CPU via PCIe interconnect brings massive per-
formance improvement for artificial intelligence appli-
cations. These peripheral devices benefit from shared
memory of the host CPU for performance gains, but
sharing the host CPU resources brings security chal-
lenges. The shared PCIe interconnect hardware of the
host CPU can be exploited to create a timing-based
information leakage side-channel between multiple con-
nected peripheral devices that are isolated at the soft-
ware level. This paper proposes an attack setup that
consists of GPU and FPGA peripheral devices access-
ing their data from the host CPU main memory. Both
covert-communication and information leakage attacks
are demonstrated at a throughput rate of 13.02 kbps.
A temporal isolation based mitigation scheme is pro-
posed that utilizes time-division multiplexing between
the peripheral devices to mitigate the attacks. The
paper primarily focuses on demonstrating the security
context of the proposed attack and mitigation.

Index Terms—PCIe interconnect, timing side-
channel attack, distributed embedded system.

I. Introduction
Today’s exponential increase in computational demand

is pushing innovation in distributed embedded systems.
Figure 1 shows a distributed embedded system that consists
of a host CPU and a set of peripheral devices (i.e., GPU,
FPGA, and NIC) attached over PCI-Express (PCI-e)
interconnect hardware. The host CPU manages system
applications and o�oads data for critical computations to
the attached peripheral devices for robust execution. For
example, an AI accelerator by Google [1] connected over
PCI-e interconnect hardware results in 30◊ performance
improvement compared to processing on host CPU alone.
The CPU’s interconnect hardware allows peripheral devices
to directly access memory (i.e., using RDMA or direct cache
access using Intel’s DDIO technology), resulting in huge
performance improvements. However, sharing interconnect
hardware infrastructure brings new security challenges.

Peripheral devices share host CPU resources, including
caches, main memory, and interconnect hardware (i.e.,
PCI-e root complex and memory controller). These shared
resources are broadly categorized as persistent hardware
channels and non-persistent hardware channels. Persistent
hardware channels are such channels that store information
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Fig. 1: Distributed embedded system with host CPU and
attached peripheral devices.

for a long time or till eviction (i.e., cache and main
memories). Contrary, non-persistent hardware channels do
not store information for a long time (i.e., execution units
and interconnect hardware). This sharing of hardware re-
sources enables a malicious code running on the peripheral
device to create performance degradation [2], and timing-
based side-channel attacks (SCAs) [3]. Timing-based SCAs
are categorized into covert-communication attacks and
information leakage attacks. Covert communication attacks
enable communication channels between two otherwise
unauthorized devices [4]. The information leakage attacks
allow a malicious device to extract secrets from another
connected peripheral device (i.e., extraction of algorithm
secret weights from a machine learning application) [5]. The
persistent hardware channels are well studied in secure
CPU context [6] [7]. However, non-persistent channels
(i.e., interconnect hardware) remains as an unprotected
hardware side-channel [8].

Prior work shows that the attackers can target CPU’s
shared caches [9], and peripheral device shared memory
[10] to leak secrets from attached peripheral devices. For
example, researchers in [10] are able to demonstrate a covert
channel between two clients on NIC devices that exploits
the shared memory of a NIC (i.e., a peripheral device) using
RDMA technology. Whereas attackers in [9] demonstrate
a covert channel attack and key monitoring attack over
two attached NIC devices that exploit shared caches of
host CPU (i.e., Intel DDIO). A plethora of research on
mitigation schemes [6] [7] [11] for persistent channels is
pushing adversaries to explore non-persistent hardware
channels for timing-based attacks. The memory controllers,
a component of interconnect hardware, are exploited in the



context of a single CPU [12], but never explored before in
the context of peripheral devices in distributed embedded
systems.

This paper focuses on timing-based SCA that targets non-
persistent hardware channels, i.e., the shared interconnect
hardware in distributed embedded systems. We propose
an attack setup that consists of two attached peripheral
devices, i.e., a GPU and FPGA connected to a host
CPU via PCI-e interconnect hardware. These devices are
independent of each other and do not allow sharing of
software within each other. The proposed attack exploits
the fact that these otherwise virtually isolated peripheral
devices share interconnect hardware. This sharing of non-
persistent hardware channel create interference in timing
variations among these devices. These timing variations
are exploited to create timing-based SCAs. To prove the
e�cacy of attack setup, we demonstrate practical covert-
communication and information leakage attacks. Both
attacks are demonstrated with a throughput of 13.02 kbps
(kilo bits per second).

A practical approach to remove interference to mitigate
these attacks is spatial isolation of peripheral devices. For
example, only a single peripheral device is allowed to
be attached to the host CPU. This approach eliminates
SCAs but substantially decreases host CPU capabilities
(i.e., only a single peripheral device is allowed). This
work proposes a time-division multiplexing (TDM) based
mitigation scheme to eliminate timing SCAs. The temporal
isolation-based scheme allocates a fixed time slice to each
attached peripheral device. This scheme allows multiple
devices to connect to the host CPU while eliminating SCAs.
The mitigation scheme is implemented on the proposed
system setup to demonstrate the successful elimination of
the security attacks on shared hardware. This paper leaves
the study of performance implications of the mitigation
scheme as future work.

II. Related Work
Timing-based SCA is widely used to exploit underlying

shared hardware resources to leak sensitive information.
Prior work [13] [14] [8] [12] shows that researchers are
able to demonstrate covert-channel capabilities and sen-
sitive information leakage with the help of timing-based
SCAs. Shared caches [13] [14], TLBs [15], and memory
controllers [12] are exploited within context of single CPU
in literature. Recently researchers in [10] demonstrated
how a malicious peripheral device (i.e., NIC) that shares
the SRAM hardware of NIC card is able to leak secrets
from co-located peripheral devices with the help of RDMA
capability. Similarly, another recent work [9] target shared
last-level caches (LLC) of host CPU and leak secrets from
a co-located peripheral device with the help of the DDIO
technology. For the first time, this paper exploits inter-
connect hardware, a shared non-persistent hardware side-
channel, in the context of peripheral devices in distributed
embedded systems.

There is a plethora of research on mitigation of such
attacks that exploit shared persistent channel resources
(i.e., caches and main memories) in host CPUs. For example,
researchers in [11] propose obfuscation-based schemes to
eliminate timing di�erences. Another way to obfuscate
is to encrypt the addressing information. Although both
approaches introduce high entropy and increase the cost
of attack, a motivated attacker can still leak secrets [16].
Contrarily, researchers in [17] [7] [6] propose isolation based
schemes. They argue that a practical way to remove the
threat of these attacks is to eliminate interference. This
paper builds on an isolation-based scheme and proposes
time-division multiplexing for interconnected hardware in
the host CPU to mitigate timing-based SCAs.

III. PCIe Interconnect Attack & Mitigation
This attack is based on the fact that PCIe interconnect

hardware is a limited resource (i.e., the limited bandwidth
of 16 GB/s per lane), and sharing of a limited resource
among high bandwidth peripheral devices (i.e., an NVIDIA
GT 1030 GPU bandwidth demand is 48.06 GB/s) results
in resource contention on PCIe interconnect hardware.
This contention a�ects the latency and performance of
peripheral devices to perform data-related operations via
PCIe. For example, we have empirically observed that a
single FPGA device attached to a host CPU using PCIe
hardware takes 111 µseconds to read 1KB data from the
host CPU main memory. However, when two devices (an
FPGA and a GPU) are connected to the host CPU, the
contention on PCIe hardware causes the FPGA data to
read time to increase to 125 µseconds. A timing-based SCA
can exploit this timing di�erence to infer or exfiltrate secret
data. Such SCAs are not limited to the FPGA and GPU
devices and can be generalized to any PCIe interconnect
host and connected peripheral devices.

A. Threat Model
This attack assumes that one or more PCIe connected

devices are malicious and are forbidden to communicate
with other attached PCIe devices. The malicious PCIe
device consists of a counter/timer to measure data move-
ment timings and access to host CPU counters/flags for
synchronization purposes.

B. Attack Setup
Figure 2 shows our proposed attack setup, where a GPU

(transmitter) and an FPGA (receiver) are connected to a
host CPU over PCIe interconnect hardware. FPGA and
GPU are allocated spatially isolated memory regions in
the host CPU, and both devices are virtually isolated. The
GPU is connected to memory module 1, while the FPGA is
connected to memory module 4 of the host CPU. With the
help of DMA, the host CPU allows peripheral devices to
make direct access to the allocated memory regions within
the designated memory module. The program on FPGA
accesses data from its allocated memory in the host system
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Fig. 2: Logical block diagram of attack setup with a CPU
and PCIe connected GPU and FPGA.

and measures the time for each memory read. Similarly,
the GPU is programmed to make memory accesses to its
allocated memory regions. Although the allocated memory
is spatially isolated within the physically isolated memory
modules, the host CPU hardware PCIe root complex,
System Agent, and Memory Controllers (referred to as PCIe
interconnect hardware) are shared. The peripheral devices
exploit the shared PCIe interconnect hardware to violate
isolation and communicate with each other. For example,
the GPU creates contention at PCIe interconnect hardware
for t time duration, where FPGA takes a measurement
during that t time. The FPGA infers bit 1 if it detects
an increase in the latency to read its own data from the
memory module. Contrarily, if there is no contention, the
FPGA infers a bit 0. A repetition of this procedure is
used to transmit a stream of data using this timing-based
side-channel.

C. Anatomy of Attack
The proposed attack consists of a host CPU system,

a receiver device, and a transmitter device, as shown in
Figure 2. The host system consists of processing cores,
memory modules, and PCIe interconnect hardware. The
transmitter GPU generates nreplays number of memory
read requests, resulting in contention at PCIe interconnect
hardware. It sits idle in case of a no contention scenario. The
receiver FPGA takes nreplays measurements of data to
access its allocated memory from the CPU’s main memory.
The FPGA infers that either PCIe interconnect hardware
is under contention or without contention based on a
threshold latency value. If the latency value is below the
threshold value, the FPGA infers it as a no contention.
Whereas if latency read is larger than the threshold, the
FPGA considers PCIe interconnect under contention. This
template of contention detection at PCIe interconnect
hardware is used to develop practical attacks, i.e., covert
communication and information-leakage attacks.

// transmitter (i.e., GPU) code

warmup_pcie(bit);
set_sync_bit();

while(sync == 1) {
if (bit==1){

// generate contention at host
for(loop < replay_rate){

read_data_TLP(@host_address);
}

}else if(bit==0){
//do nothing;

}
}

// receiver (i.e., FPGA) code

while(sync == 1) {
t_start = timer();

for(loop < replay_rate){
access_data_TLP (@host_address)

}
t_diff = timer() - t_start;

if (t_diff > threshold){ // infer secret = 1
secret_bit = 1; 

}else{// infer secret = 0
secret_bit = 0;

}
}

Fig. 3: The pseudo-code for the PCIe interconnect attack
template.

Figure 3 shows a pseudo-code for the attack template.
The transmitter code (i.e., GPU) warms up the PCIe
interconnect for its intended bit transmission. Once PCIe
interconnected is ready for attack, it sets a global syn-
chronization flag1. When the synchronization sync flag is
set, the transmitter creates contention based on a replay
rate or remains idle. On the other side, the receiver (i.e.,
FPGA) waits for the synchronization sync flag to be set
and sets up a timer for timing measurement. It then makes
its memory access(es) based on the prescribed replay rate,
waits until the data is read, and stops the timer. After
taking a measurement, the receiver compares with a pre-
defined threshold and infers contention (secret bit 1) or no
contention (secret bit 0).

The threshold is computed o�ine for a given setup
using a statistically significant number of samples with
and without contention. The average value of the mean
of contention and no-contention distributions is used as
a threshold. The PCIe interconnect hardware is shared
within multiple devices that induce noise for the attack
devices. To overcome this challenge, a replay-based (or
repetition) scheme is utilized. The replay is the repetition
of transmission and receiving data blocks. For example, a
repeated data block three times may result in considerable
improvement in correct detection of contention and no
contention compared to single data access.

1) Covert-communication attack: Covert-communication
attack allows otherwise isolated devices to exfiltrate data
from a high-security device to a low-security device. In this
attack, the GPU is a malicious transmitter, and the FPGA
is a malicious receiver. To transmit a secret bit 1, the GPU
makes nreplays read accesses to the host memory, which
results in contention. Whereas to transmit a secret bit 0,
the GPU stays idle and does nothing. The FGPA makes
repeated accesses of data blocks from its memory regions
in the host CPU at i intervals and measures the time of
data block reads. Later based on a threshold, FPGA infers
secret bit 1 or secret bit 0. This process is repeated to leaks
a stream of secret data.

1Another way to achieve synchronization is to use the host CPU
cycle counter or independent timers available within peripheral
devices, and triggering transmission and receiving at specific times.



2) Information-leakage attack: To demonstrate informa-
tion leakage attack, this work model a function that process
on secret key (RSA square and multiple algorithms is an
example of such function) and leaks secret key with the
help of timing variations in PCIe interconnect hardware.
The GPU is a secure device that processes the function
with a secret key. This function consists of function1 and
function2. The execution of function1 results in contention
at PCIe interconnect hardware, as this function involves
data transmission. On the contrary, execution of function2
results in no contention. If the secret key bit value is 0,
function2 is executed, whereas if the value of the secret
key bit is 1, function1 is executed. Note that the secret
being leaked here is the decision variables used to execute
function1 only or function2 only. For example, a secret key
of 1 will results in a pattern of high contention, whereas if a
secret key bit is 0, that results in a pattern of low contention
only. This process is repeated to leak the complete secret
key.

D. Proposed Mitigation
This paper proposes a time-division multiplexing (TDM)

based mitigation scheme for the proposed attacks. The
attacks emerge from the latency variations on PCIe inter-
connect hardware. The demand-based resource allocation
of PCIe interconnect hardware results in the contention
that enables a malicious device to leak secrets. This
demand-based allocation allows a device to occupy all
resources, whereas another device is forced to wait for
the PCIe interconnect hardware resources. We propose
temporal slicing of PCIe interconnect resources, irrespective
of demand. For example, if two devices are attached to
the host CPU and the allocated time is t µseconds to
each device in a repeated pattern. Only a single device
is allowed to utilize PCIe interconnect resources during
its allocated time slice. This scheme eliminates the timing
variations due to the serialization of device activity. Figure
4 shows a timing diagram for the proposed mitigation
scheme. For example, in the first slice of t, only GPU can
make its requests. The following temporal slice is allocated
to the FGPA, where GPU sits idle. This scheme may
result in performance degradation but eliminates the attack.
This paper shows the security aspect of this mitigation
scheme, and the selection of appropriate time for slice and
performance impact on real applications is left as future
work.

IV. Methodology
This work is implemented on a host CPU Intel Core i7

- 4709 with four 4GB DRAM modules and Ubuntu 20.04
LTS operating system. The NVIDIA GeForce 1030GT with
2GB on-card memory is attached to the onboard PCIe
lane. Whereas the Xilinx development board VCU118 with
Virtex ®UltraScale+TM FPGA, and 4GB memory module
is attached to the host CPU using PCIe hub. The FPGA
is programmed with a Xilinx IP DMA subsystem for PCI

GPU
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Fig. 4: Timing diagram for TDM based mitigation scheme.

express and accessed using the XDMA driver provided
by Xilinx for performance monitoring and debugging.
The GPU is programmed with OpenCL library and uses
clEnqueueReadBu�er() API calls to make read accesses
from the host CPU memory.

To evaluate the accuracy and reliability of proposed
attacks, this work uses True Positive (TP) rate and
Discrimination Index (DI) as metrics. The TP rate is the
correct identification of the contention, and no contention
case at PCIe interconnect hardware. For example, if the
transmitter device creates contention, the receiver is able
to identify it as a contention case correctly. The TP rate
is calculated as:

TP = dc + dn

tc + tn
(1)

Where dc is correct detection of contention case, and dn

is the correct detection of no contention case. The tc is a
total transmitted sample of contention, and tn is a total
transmitted sample of no contention.

The DI is a statistical tool that quantifies the di�erence
between two independent distributions. It is calculated
based on the statistical mean of each distribution and the
variance of each distribution. The DI is calculated as:

DI = µc + µn
‡2

c + ‡2
n

(2)

Where µc is the statistical mean of contention distri-
bution, and µn is the statistical mean of no contention
distribution. The ‡2

c and ‡2
n are the variance of contention

and no contention case, respectively.
This work uses a throughput-based metric to evaluate

the speed of an attack. The speed is the maximum number
of bits transferred over PCIe interconnect SCA in a second
using covert-communication or information-leakage attack.
The speed metric is represented with bits per second, or
bps.

V. Evaluation
We have evaluated our attack setup for five configura-

tions of data blocks size in bytes (i.e., n=64, 128, 256, 512,
and 1024 bytes) with a replay rate in the range of 1 to 9.



To achieve statistical significance, experiments are repeated
for one million samples. Each sample consists of data read
of n size for a given replay rate. For example, a data block
n = 64B and replay rate of 2, the FPGA makes two 64B
data accesses and measures their access time, leading to
2 million memory accesses. Concurrently, the GPU makes
the equivalent number of memory accesses to the host CPU
memory to create contention.

Figure 5 plots the latency distribution of 1 million
samples each for contention and no contention cases with
n = 64B and replay rate of 1. The plot shows that the time
to read a data block size increases by about 2 µseconds
under contention. The distribution is also quantified based
on TP rate and DI metrics. Using a threshold value of
15.1974µs, the results show a true positive rate of 92.9%
and a 0.4 DI value. Figure 6 plots the distribution for a
similar experiment with data black size n = 1KB. Using a
threshold value of 118µs, the TP rate for this configuration
increases to 96.5%, where the DI improves to 1.6.
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Fig. 5: Latency distribution for 1 million accesses with
block size of 64B size, and 1 replay rate.
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Fig. 6: Latency distribution for 1 million accesses with
block size of 1KB size, and 1 replay rate.

An increase in data block size from 64 bytes to 1K bytes
(16x increase in size) results in a 3.8% improvement in TP
rate and 4◊ improvement in DI value. Figure 7 plots the

TP rate for the five data block size configurations with the
replay rate changing from 1 to 9. Although the e�cacy
of the attack is improved, the increased data size results
in a decrease in attack speed. Figure 8 shows a speed
plot for the di�erent configurations. The results show that
a data block n = 64B with a replay rate of 7 exhibits
approximately similar TP rate 96% when compared to n =
1KB with replay rate of 1. But, n = 64B, replayrate = 7
configuration shows 2.28◊ higher speed when compared to
the n = 1KB, replayrate = 1.
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A. Attacks
Practical attacks are evaluated with the speed metric.

These attacks use a data block size of n = 64B, and
replayrate = 5. A stream of 30 bits is transmitted for
a covert-communication attack using the transmitter (i.e.,
GPU). The receiver makes five accesses of 64B data
blocks and measures their commutative time for each bit
transmission. Based on the average threshold of 75µs, the
receiver infers latency as a bit 0 or a bit 1. This process is
repeated multiple times for the stream. Figure 9 represents
a time view, where all 30 bits are recovered with a TP rate
of ≥95% with a speed rate of 13.02 kilo bps.
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Fig. 9: A time view plot of 30 bits transmission using
cover-communication attack.
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Fig. 10: A time view plot of information leakage attack.

For the information leakage attack, the RSA square
and multiple algorithms are modeled. A secret key value
is processed using the secure function, where a case of
contention is created for secret bit 1 and no contention
case for secret bit 0. Figure 10 shows a temporal flow
diagram for the attack. The x-axis shows time varying
view of function executions, where the y-axis shows latency.
The dotted line indicates the latency threshold used for
timing variations. The attack recovers the 30 bits with a
TP rate of ≥95% using n = 64B, andreplayrate = 5 with
a speed of 13.02 kilo bps.

B. Mitigation
The proposed TDM mitigation scheme is evaluated

with a t value of 100µs, where each device is temporally
assigned 100µs time slots serially to perform operations.
Figure 11 shows two latency distributions of one million
samples for the contention and no contention scenarios. The
distribution shows a negligible latency variation between
the two cases. The TP rate metric shows a value of 55.5%
and a DI value of 0.01. The TP rate of 55.5% indicates that
the receiver fails to correctly identify the transmitted bit
as it approaches the statistical probability of 0.5. Whereas
the DI value of 0.01 shows a high overlap between the

two distributions. These results show that the attack is
mitigated.
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Fig. 11: Timing variations under the proposed temporal
isolation scheme.

VI. Conclusion
This paper proposes a timing-based side-channel attack

setup that targets the shared PCIe interconnect hardware
in distributed embedded systems. The attack setup consists
of a host CPU with PCIe attached devices (GPU, FPGA).
This paper proved that such a setup could be used to
conduct practical covert communication and information
leakage attacks. The results show covert communication
and information leakage attacks with a speed of 13.02
kilobps and ≥95% TP rate. A time-division multiplexing-
based scheme is used to mitigate the attacks. The future
works aim to evaluate the performance implication of the
mitigation scheme for security-critical applications.
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