
Seeds of SEED: Characterizing Enclave-level Parallelism in
Secure Multicore Processors

Brandon D’Agostino and Omer Khan
{bdag, khan}@uconn.edu

University of Connecticut, Storrs, CT USA

Abstract—Secure processor technologies incorporating some form of
enclave-based isolation are being deployed in remote cloud computing
environments. However, commercial enclave-based systems, such as Intel
SGX, incur performance penalties due to architectural limitations arising
from enclave interactions with the operating system (OS), encryption
and attestation checks for data accesses to main memory, and limitations
on the enclave memory size. Enclave software development frameworks
like Graphene-SGX aim to improve these limitations with performance
enhancements such as exitless calling that offset the latency of expensive
enclave interactions with the OS. However, to the best of our knowledge,
prior works have not presented a thorough characterization of enclave
performance in the presence of increased enclave-level parallelism. In
this paper, we characterize how enclave overheads trade off exploitable
parallelism on an Intel SGX-enabled multicore CPU for a set of
parallelized workloads. We develop a microbenchmark to study the effects
of threading as a function of application characteristics, such as the
intensity of memory operations and system calls to the OS. We extend
our characterization to realistic parallelized enclave workloads from the
database and web server domains. We find that application performance
scaling with threading is tightly correlated to system call and memory-
bound activities in applications. The real world applications stress these
constraints, while the underlying system calling implementations deliver
competing performance at different thread counts.

I. INTRODUCTION

The proliferation of cloud computing services has provided a com-
pelling alternative to costly on-site computing [1]. However, cloud
computing gives rise to the problem of securely executing software
on remote computing resources owned and operated by an untrusted
third-party [2]. To combat this challenge, processors with enhanced
security features are being increasingly deployed in cloud comput-
ing environments. AMD Secure Encrypted Virtualization (SEV) [3]
provides virtual machine memory encryption that protects against
co-resident virtual machines, compromised system software, and
adversaries with physical memory access. ARM TrustZone [4] allows
trusted applications and system software to securely operate alongside
untrusted applications and system software by providing hardware-
enforced parallel execution environments called worlds. Intel Soft-
ware Guard Extensions (SGX) [2] allows application developers to
create secure application environments called enclaves that reside
in a region of encrypted memory, are protected from privileged
system software, and can be remotely attested by trusted remote
clients. SGX enclaves require the smallest Trusted Code Base (TCB)
compared to AMD SEV and ARM TrustZone, which encompass an
entire virtual machine instance and secure OS respectively. Moreover,
SGX provides additional security features such as remote attestation
and integrity verification for enclave applications. Consequently, the
enclave abstraction popularized by SGX has become a staple of
secure processor technologies [5], and thus processors incorporating
some form of enclave-based execution have remained prevalent in
both academia [6]–[8] and industry [9].

Enclave-based systems improve application security but introduce
performance challenges due to overheads intrinsic to their architec-
tural implementation. For example, SGX and similar systems incur

overheads from (i) page swapping due to Enclave Page Cache (EPC)
size limitations [10], [11], (ii) memory encryption, decryption, and
integrity checks on each enclave memory access [12], [13], and (iii)
context switching between secure enclave and insecure software due
to state purging and security checks [11]–[13]. Prior works have
characterized these overheads, and researchers have also developed
open-source frameworks (such as Graphene-SGX) to efficiently port
applications to SGX [14]. Hasan et al. [13] show that executing
applications under Graphene-SGX results in performance comparable
to a manual port. Overheads due to memory encryption and EPC size
are hardware limitations that are addressed at the application level
by writing enclave software that avoids expensive memory accesses
[12], [13] and page swapping [10], [11]. HotCalls [12] and Eleos [11]
address the context switching limitations and introduce a switchless,
or exitless, system calling mechanism that uses an asynchronous
requester-responder calling mechanism to avoid expensive enclave
enters and exits while upholding SGX’s isolation guarantees between
the untrusted OS and secure enclave. Consequently, exitless calling
has been added as an optional feature to the official Intel SGX
SDK [15] and the popular Graphene-SGX [14] library OS. However,
exitless calling requires additional responder threads and a polling
mechanism, which introduce its own set of challenges.

Notably absent from the literature is a dedicated study of the effects
of parallelism on enclave performance in representative parallel
workloads. This is surprising given the highly parallel nature of
the processors and applications typically deployed in cloud com-
puting environments where both security and parallel performance
is critical. Thus, the objective of this paper is to characterize how
well-known enclave overheads behave in the presence of increased
enclave parallelism. Particular emphasis is made to study the tradeoffs
between synchronous exit-based and asynchronous exitless calling,
as well as the effects of memory operation intensity on exploitable
parallelism. The goal of this paper is to identify both performance
scaling opportunities and limitations on parallel secure processors.

We develop a microbenchmark to systematically study known
enclave overheads as a function of increased threading. We eval-
uate this microbenchmark with exit-based and exitless Graphene-
SGX for compute and memory-bound configurations while varying
the intensity of system call activity on a real Intel SGX-capable
machine with hyper-threaded cores. The characterization reveals that
enclave parallelism is limited by memory encryption and system
call processing overheads. Exit-based calling involves less threads
than exitless, thus scales to relatively higher thread counts. These
insights extend to realistic parallelized workloads from the in-memory
database Memcached, and two web servers, Apache and Nginx.

A key finding reveals that both exit-based and exitless setups are
capable of achieving similar performance at their optimal thread
counts. Finally, we conclude by seeding the development of methods
that make optimal configuration decisions for parallel enclave work-
loads in existing and emerging secure processors as a promising area

1



of future research.

II. BACKGROUND

A. Intel SGX
This section describes the original implementation of SGX known

as SGX1. Recently, some Intel processors have included SGX2, an
incremental improvement over SGX1 that enables dynamic memory
management within enclaves. As SGX2 is largely unchanged from
SGX1, we do not further delineate between the two. In addition, no
official list of hardware supporting SGX2 is available [16] as of this
writing, which makes acquiring such hardware troublesome.

Starting with the sixth generation “Skylake” microarchitecture,
several processor offerings from Intel have included Software Guard
Extensions (SGX), a set of security-related extensions to the x86
instruction set that allows application developers to create secure ex-
ecution environments—called enclaves—that protect security-critical
application components from compromised or malicious system
software (such as the OS, hypervisor, etc.). A single application may
create several enclaves, each of which execute temporally on the
system with user-level privileges in the virtual address space of the
calling application.

Enclave code and data pages are stored in the Enclave Page Cache
(EPC), a region of main memory located in Processor Reserved
Memory (PRM) that is inaccessible by any software regardless of
privilege level. The EPC size is limited by the size of the PRM,
which is 128 MB on the latest SGX-enabled systems. If an enclave’s
size exceeds that of the EPC, its pages are securely swapped out
to main memory by the SGX driver. As this process invokes the
OS and involves additional hardware security checks, EPC page
swapping is expensive [10], [11]. The EPC is encrypted and integrity
checked by the on-chip Memory Encryption Engine (MEE) [17], and
is only decrypted when brought into the CPU core. In other words,
enclave code and data never leave the processor chip unencrypted.
Consequently, memory loads and stores between the last-level cache
(LLC) and EPC incur a 20–30% performance overhead over non-
enclave memory operations [12].

An enclave is initialized by using special CPU instructions that
set up enclave control structures and copy application code and data
pages into the EPC. After initialization, the enclave is sealed so that
no new memory pages can be added, and trusted CPU hardware
generates a signed measurement hash that is used by a trusted remote
client to authenticate the enclave’s contents.

Special CPU instructions are also used to control context switches
between the secure enclave and insecure OS, as explained in [2]. Con-
text switches between the enclave and OS occur (i) at the beginning
and end of enclave execution, (ii) during hardware interrupts, and
(iii) when the enclave requires functionality outside of the enclave,
as with external library or operating system calls. In the latter case, an
enclave may call into the insecure environment by using synchronous,
exit-based calling or asynchronous, exitless calling. Both exit-based
and exitless calling are supported by the official Intel SGX SDK
[15] as well as some other SGX application frameworks such as
Graphene-SGX [14].

1) Exit-based (Synchronous) Calling: The EENTER instruction
is used by untrusted application components to perform an enclave
call (ecall) that makes a secure context switch into trusted enclave
code. Conversely, the EEXIT instruction is used within an enclave
to make an outside call (ocall), or to return control back to the
untrusted application. Ecalls make several hardware security checks,
flush the TLBs, and switch the processor core into enclave mode
before transferring control to a predefined entry point within the

enclave. Similarly, ocalls save the current enclave state, flush the
core pipeline and TLBs, and switch the processor core out of
enclave mode before returning control to the untrusted application.
Consequently, ecalls/ocalls incur additional performance overheads,
and have been shown to be 83–113x slower than typical OS system
calls [12]. Although exit-based calling is expensive, it is necessary
to guarantee isolation between secure enclaves and the untrusted OS
during synchronous execution.

2) Exitless (Asynchronous) Calling: Prior works [11], [12] have
proposed an alternative exitless calling model that mitigates the
ecall/ocall overheads in the exit-based model without violating
isolation guarantees between the secure enclave and OS. This is
accomplished by introducing an asynchronous requester-responder
calling mechanism between secure enclave requester threads and
untrusted OS responder threads that communicate over a shared
unencrypted memory buffer. Because these threads do not explicitly
invoke each other, the enclave and OS threads are decoupled, and the
enclave’s isolation guarantees are upheld.

As described in [12], an enclave requester thread makes a system
call request to a responder thread outside the enclave over a shared
unencrypted memory buffer that is synchronized using a spinlock.
The requester loads system call information into the shared buffer
and sets a flag that indicates a pending request. After the requester
issues a request, it continuously polls the shared buffer to check if
the request has been processed, and if so, copies the results into the
enclave and continues execution. Asynchronously, a responder thread
continuously polls the shared buffer for pending requests and, once
received, processes them by invoking the OS. The responder then
copies the result of the system call into the shared buffer and sets a
flag indicating the request has been processed. In the case of multiple
enclave threads, a thread pool containing a responder thread for each
enclave requester thread is utilized [11].

Exitless calling avoids the standard exit-based calling overheads
at the expense of requiring additional responder threads to service
enclave call requests. Tian et al. [15] show that exitless calls only
improve performance over standard exit-based calling if the requested
function is short and called frequently.

B. SGX Application Frameworks

Enclave-based systems present a developmental challenge in how
to best adapt existing applications to take advantage of enclave
security. The traditional approach of doing this on Intel SGX systems
is by manually refactoring an application into insecure and secure
enclave components. However, SGX levies additional restrictions on
enclave code for security reasons, such as disallowing system calls
and dynamic memory allocation inside of an enclave. Consequently,
prior works [13], [14], [18] have argued that modifying any non-
trivial application to circumnavigate the restrictions imposed by SGX
requires a significant amount of development time and effort.

An alternative approach that involves much less development
effort is that of using an application framework, such as SCONE
[10], Graphene-SGX [14], or Occlum [19], that allow executing
applications entirely within an enclave with very little, if any,
modifications to the application. SCONE provides secure in-enclave
Docker containers and a standard C library implementation that can
be linked against containerized applications to transparently handle
system calls. Other frameworks, such as Graphene-SGX and Occlum,
bring a library OS into the enclave so that most system calls can
be handled without incurring expensive ecalls/ocalls. In situations
where an application cannot avoid interacting with the host OS (such
as with file or network IO), the library OS transparently invokes the

2



ocall to the OS on behalf of the calling application. Library OS-based
application frameworks do not require modification or recompilation
of the target application, and thus require less porting effort. Despite
this, Hasan et al. [13] show that executing applications under a library
OS (Graphene-SGX) results in performance comparable to a manual
port.

Graphene-SGX and Occlum are two popular library OS application
frameworks, with the former being more mature and supporting
exitless calling as well as more application functionality. Therefore,
we pick Graphene-SGX as our baseline framework for evaluation
in this paper. Moreover, Graphene-SGX provides an improved im-
plementation of exitless calling that utilizes a scheduling algorithm
that quiesces responder threads if they have not received requests for
some time. This reduces the overhead of additional responder threads
at the expense of increased response latency when a request arrives
while a responder thread is sleeping.

III. EFFECTS OF PARALLELISM ON ENCLAVE PERFORMANCE

The objective of this paper is to characterize the effects of paral-
lelism on enclave performance in representative parallel workloads,
and to identify performance scaling opportunities and limitations on
parallel secure processors. To recap, the overheads in current enclave-
based systems such as Intel SGX are mainly due to (i) EPC size
limitations, (ii) memory encryption, decryption, and integrity checks
on enclave memory accesses, and (iii) ecalls/ocalls from system call
requests originating from within the enclave. How then are these
overheads expected to behave when enclave parallelism is increased?

In the case of paging overheads related to EPC size, the total
memory size of a given workload remains relatively unchanged
with additional enclave threads. However, additional enclave threads
imply more concurrent memory accesses that stress the LLC whose
performance is impacted by the centralized MEE engine. On one
hand, more concurrent long latency memory accesses provide more
opportunities to hide long latency stalls with hardware-level paral-
lelism. On the other hand, single thread performance is reduced due
to more long latency stalls per thread.

With exit-based calling, enclave threads interact with the untrusted
OS using the explicit exit-based ecall/ocall mechanism. Increasing
the number of threads in this case results in performance scal-
ing similar to that of non-SGX applications, although thread-level
performance is limited by serialization effects of expensive secure
context switches between the enclave threads and the OS. However,
performance scaling with exitless calling is less straight forward
to reason about. Exitless calling provides better single-threaded
performance by eschewing the explicit ecall/ocall overheads, but
additional responder threads limit the performance scaling available
to enclave application threads. Furthermore, in cases where responder
threads have gone to sleep due to insufficient requests, periodically
waking up these threads incurs additional thread invocation overheads
as well as longer request response latencies. Therefore, it is helpful
to separately consider exitless calling for compute and memory-
bound workloads. In compute-bound workloads, enclave threads have
a higher probability of requesting a system call in any given time
interval. Consequently, the responder threads are constantly saturated
with work and thus never go to sleep. Moreover, responder threads
incur fewer polling overheads because state information correspond-
ing to the exitless implementation (such as the request queue and
synchronization variables) has higher cache locality. In memory-
bound workloads that stress the LLC, enclave threads have a lower
probability of requesting a system call in any given time interval due
to higher latency memory accesses. Consequently, responder threads

have a higher probability of going to sleep because of insufficient
requests, which results in additional thread invocation overheads and
longer request response latencies. Moreover, because the LLC is
saturated by the workload, exitless state information must be reloaded
on every responder thread poll which incurs additional overhead.

The following sections outline the methodology to quantify the
aforementioned tradeoffs in representative parallel applications, and
present the characterization on a real SGX-enabled hyper-threaded
Intel machine.

IV. EVALUATION METHODOLOGY

The evaluation is performed on an Intel Core i7-6700K (4 physical
cores, 8 logical cores at 4 GHz) machine with 24 GB, 2133 MHz

DDR4 memory. The CPU provides an 8 MB shared last-level cache
(LLC), and SGX1 support with 128 MB PRM. The system uses
Ubuntu 18.04 with kernel version 5.4.111, and SGX driver version
2.11. The exact version of Graphene-SGX used can be found at [20].

All evaluations are performed using Graphene without SGX [21],
Graphene-SGX with exit-based calling, and Graphene-SGX with
exitless calling. SGX applications must pre-declare the maximum
number of application threads, so every application is allowed to
spawn up to 32 threads. For exitless calling configurations, the
responder thread pool size is set to the maximum number of enclave
application threads to ensure an optimal one-to-one mapping between
enclave (requester) and responder threads.

A. Parallelized Enclave Microbenchmark

To systemically study parallel performance as a function of en-
clave threading, we develop a microbenchmark that measures the
throughput and latency of a memory copy operation for a configurable
workload size, number of worker threads, number of copy iterations,
and level of system call activity. By adjusting the size of the
workload, we vary the amount of stress on the LLC. The memory
copy operation is split evenly between a configurable number of
worker threads so that N worker threads copy a non-overlapping
M/N section of the workload buffer per thread, where M is the
configured workload size. System call activity is controlled such that
each worker thread makes A system calls every B copy iterations,
where A and B are configurable parameters. Both total and per-thread
throughput and latency are measured as the performance metrics.

We first evaluate the microbenchmark for various workload sizes
with a single thread and no system calling activity to determine
compute-bound and memory-bound workload sizes. We then evaluate
a 2 MB compute-bound configuration that fits entirely within the
LLC, and an 8 MB memory-bound configuration that stresses the
limits of the machine’s 8 MB LLC. For each configuration, we
evaluate both light system calling activity where no system calls
are made during the benchmark, and heavy system calling activity
where 2 system calls are made after every copy iteration. For
each configuration, we evaluate 1 to 8 worker threads that make
10,000 copy iterations each. We also measure LLC Misses Per Kilo
Instruction (MPKI) for each configuration to quantify the amount of
stress on the LLC.

B. In-Memory Database Workload

Memcached is a multi-threaded in-memory key-value store that
is widely deployed as a caching layer between web servers and
databases. A comprehensive study of Memcached workloads can be
found in [22]. Memcached performance is measured by the number
of server operations per second. Memcached is evaluated using the
memtier benchmark tool developed by Redis Labs [23]. It uses the

3



Fig. 1: Single-threaded microbenchmark performance for various
workload sizes. Workloads smaller than the 8 MB LLC are compute-
bound whereas larger workloads are memory-bound. Memory-bound
SGX performance suffers due to memory encryption and decryption
overheads.

same benchmark configuration as described in [12] with the exception
that we use 4 concurrent memtier benchmark client threads and vary
the number of Memcached server threads. In summary, a total of
4,000,000 2 KB requests from 4 concurrent clients are issued. The
MPKI of the Memcached server threads and the total number of
ecalls/ocalls for SGX configurations are also measuured.

C. Web Server Workloads

Apache [24] and Nginx [25] are both high-performance web
servers, and are therefore evaluated in the same manner. Web server
performance is measured by the number of requests served per second
and the latency of each request as reported by Apache Benchmark
[26]. The number of web server threads are varied while the number
of Apache Benchmark client threads are fixed. Apache and Nginx
serve 2 and 4 clients respectively, which result in the best overall
performance for each application. In contrast to Memcached, a single
client thread cannot dispatch requests concurrently, and a single web
server thread can only serve one request at a time. The benchmark is
configured to make a total of 10,000 requests for a 10 KB webpage
filled with random static data. Like the Memcached evaluation, we
also measure MPKI of the server threads and the total number of
ecalls/ocalls for SGX configurations.

V. EVALUATION

A. Microbenchmark

1) Workload Size Sweep: We first evaluate a single thread with no
system calling activity for various workload sizes to determine which
workloads are compute-bound and which are memory-bound. Figure
1 depicts a significant performance drop under all configurations
for workloads greater than or equal to the machine’s 8 MB LLC.
Consequently, 2 MB and 8 MB are used respectively as the compute-
bound and memory bound workload sizes. Memory-bound work-
loads under both SGX configurations experience further performance
degradation due to SGX’s memory encryption/decryption overheads.
As workloads larger than the 128 MB EPC perform even worse due
to excessive page swapping, we do not consider any workloads of
this size for the remaining evaluations.

2) Compute-bound Workload: The 2 MB compute-bound work-
load fits entirely within the 8 MB LLC, and a negligible MPKI of
less than 0.002 is observed for all thread counts. As the workload
fits entirely within the 128 MB EPC, no page swapping performance
limitations are observed.

In the light system calling configuration (Figure 2a), consistent
performance across all environments is observed for all threading

configurations. In this case, main memory accesses are virtually non-
existent under all environments, so neither the exit-based nor exit-
less SGX configurations suffer from memory encryption/decryption
overheads. No system calls are made, so exit-based SGX threads
do not incur expensive ecall/ocall costs, which allows exit-based
SGX performance to match that of the non-SGX baseline. The
responder threads in exitless SGX quickly go to sleep due to a lack
of system call activity, which avoids the additional threading and
polling overheads incurred by exitless calling. Consequently, exitless
SGX performance is also able to match the non-SGX baseline. The
expected performance scaling under all environments is observed
up to 4 worker threads. Beyond 4 threads, performance is mostly
unchanged due to limited latency hiding opportunities for the hyper-
threaded cores under the compute-bound configuration.

In the heavy system calling configuration (Figure 2b), memory ac-
cesses remain unchanged from the light system calling configuration.
However, exit-based SGX performance is significantly worse than
the baseline in all threading configurations because the high number
of system calls incur expensive ecall/ocall overheads. Moreover, the
performance gap between exit-based SGX and the baseline widens
with increasing thread count because the number of system calls
increases with the number of threads. Despite this, the baseline and
exit-based SGX observe the same thread scaling trend up to 4 threads
as observed in the light system calling configuration. Exitless SGX is
able to completely overcome the ecall/ocall overheads and match the
performance of the baseline up to 3 enclave threads. This is because
the available hyper-threaded cores are able to sufficiently handle the
additional exitless responder threading and polling overheads. Beyond
3 enclave threads, the combined total of requester and responder
threads encroaches upon the threading capability of the machine.
Consequently, the additional exitless threading overheads cannot be
mitigated by the hyper-threaded cores, and the performance gap
between exitless SGX and the baseline widens. Overall performance
scaling past 4 enclave threads in exit-based, and past 3 for exitless,
is mostly unchanged from that observed in the light system calling
configuration.

3) Memory-bound Workload: The 8 MB memory-bound workload
stresses the 8 MB LLC, and MPKI measurements up to 0.443 are
observed.

In the light system calling configuration (Figure 2c), both exit-
based and exitless SGX perform significantly worse compared to
the baseline due to longer latency cache misses under SGX because
of memory encryption/decryption and security checking overheads.
Otherwise, exit-based and exitless SGX achieve similar performance
trends for the same reasons described in the equivalent 2 MB configu-
ration. Interestingly, all environments observe performance scaling up
to 6 enclave threads. This is primarily because higher latency memory
accesses due to more cache misses across all environments provide
opportunities for latency hiding by the hyper-threaded cores. Beyond
these, no new insights from the equivalent 2 MB configuration are
observed.

In the heavy system calling configuration (Figure 2d), both exit-
based and exitless SGX performance suffers due to the previously
described effects of increased LLC misses. However, exit-based
SGX performance degrades further due to the increased ecall/ocall
overheads. Unlike the 2 MB workload, the exitless SGX performance
is no longer able to match the baseline. This is because the longer
memory access latencies imply a higher probability that responder
threads will fall asleep more often, and thus incur additional thread
invocation costs and increased response latencies. This is especially
evident with 1–3 threads where these additional costs bring exitless

4



(a) Compute-bound workload with light system calling activity. (b) Compute-bound workload with heavy system calling activity.

(c) Memory-bound workload with light system calling activity. (d) Memory-bound workload with heavy system calling activity.

Fig. 2: Microbenchmark memory throughput performance for compute and memory-bound workloads. The number of worker threads and
level of system calling is varied for each workload.

Fig. 3: Memcached performance measured in operations per second
for a variable number of server threads. 4 clients are served concur-
rently.

performance below that of exit-based SGX. Moreover, because the
LLC is stressed, exitless thread state information is not always cached
and needs to be fetched on each responder thread poll. This explains
why exit-based and exitless SGX performance are mostly equivalent
even when responder threads are sufficiently saturated with requests.

B. Memcached
We evaluate Memcached for a variable number of server threads

that serve 4 concurrent clients (Figure 3). For all configurations,
the number of ecalls/ocalls measured for exit-based SGX is around
10,000,000, indicating heavy system calling activity. MPKI never
exceeds 0.115, indicating a workload that is lightly memory-bound.
As the workload fits entirely within the EPC, page swapping exerts
no influence on performance.

At 1 server thread, exit-based SGX performance is significantly
worse compared to the baseline due to high ecall/ocall overheads. On
the other hand, exitless SGX is able to completely overcome these
overheads and match baseline performance. Moreover, responder
threads are sufficiently saturated and do not incur a performance
overhead. This aligns with the compute-bound, heavy system call
activity microbenchmark evaluation.

At 2 server threads, exit-based SGX performance scales in line
with our compute-bound, heavy system call activity microbenchmark
results, but otherwise still performs significantly worse than the
baseline due to high ecall/ocall overheads. Exitless SGX continues
to mitigate ecall/ocall overheads and performs much better than
exit-based SGX, but is now unable to match baseline performance.
This is because the total number of threads in this configuration (8)
encroaches upon the total core count of the machine and the hyper-
threaded cores cannot completely overcome the additional exitless
threading and polling overheads.

At 3 server threads, exit-based SGX performance continues to
scale, but exitless SGX performance is now significantly worse than
the baseline and comparable to exit-based SGX. This is because
the total number of threads (10) exceed the total number of hyper-
threaded processor cores and thus the hardware is overwhelmed by
the additional threading and polling overheads.

At 4 server threads, exit-based SGX performance continues to scale
as before, but exitless SGX performance degrades to the point that it
matches exit-based SGX.

At 5 server theads, exit-based SGX continues to scale and reaches
peak performance whereas exitless SGX performance continues to
degrade. Crucially, the performance of exit-based SGX is now com-
parable to the peak performance of exitless SGX observed at 2 server
threads. This is a key insight: under the right threading configuration,
both exit-based and exitless SGX configurations achieve similar
performance for the Memcached workload.

Beyond 5 threads, performance of both exit-based and exitless
SGX continues to degrade, but exit-based SGX maintains a sizable
advantage over exitless SGX.

These observations indicate that as the total number of threads
approach the total core count of the machine, exitless calling becomes
less beneficial due to additional threading and polling overheads.
However, exit-based SGX continues to show performance scaling
with increased server threads.

5



(a) Apache (b) Nginx

Fig. 4: Web server performance measured in requests per second. The number of server threads for each application are varied, but the
number of clients is fixed at 2 and 4 for Apache and Nginx respectively.

C. Apache and Nginx
As Apache and Nginx are both web servers, we evaluate them

together. These workloads consider a variable number of web server
threads that serve a fixed number of client threads, as described in the
methodology. The number of ecall/ocalls in Apache and Nginx peak
at 600,000 and 400,000 respectively. Consequently, both applications
exhibit moderately high system call activity, albeit not to the same
extent as Memcached. Moreover, the peak MPKI observed is 0.9
and 1.2 for Apache and Nginx respectively, indicating memory-
bound behavior. As both workloads fit entirely within the EPC, page
swapping exerts no influence on performance.

For all Apache configurations (Figure 4a), performance scaling
is observed up to 2 server threads. In contrast to the Memcached
workload, client threads do not dispatch requests concurrently, so
peak performance for all configurations is achieved when the number
of server thread matches the number of client threads (2 for Apache).
Consequently, no performance scaling beyond 2 server threads is
observed. Neither exit-based nor exitless SGX is able to match the
performance of the baseline. Crucially, memory overheads dominate
in both SGX configurations and neither approach offers a clear
advantage over the other. Interestingly, the presence of additional
responder threads under exitless SGX does not seem to further impact
performance, even at higher thread counts. This is likely because
the additional threading and polling overheads under exitless SGX
are relatively small compared to the memory encryption/decryption
overheads.

For the Nginx workload (Figure 4b), neither exit-based nor exitless
SGX is able to match the performance of the baseline for the
same reasons as described for the Apache workload. Both exit-
based and exitless SGX see performance scaling up to 3 server
threads. Moreover, peak performance for both SGX configurations
is achieved at this server thread count, with exitless maintaining a
sizable advantage over exit-based. Beyond 3 server threads, exit-based
SGX performance remains about constant. At 4 and 5 server threads,
exitless SGX performance degrades to match that of exit-based, and
falls below exit-based for the remaining server thread configurations.
In contrast to Apache, the additional threading and polling overheads
incurred by exitless SGX become more severe as total thread count
approaches the machine’s core count. In this regard, Nginx’s behavior
under SGX is more similar to that of Memcached.

VI. SEEDING ENCLAVE-LEVEL PARALLELISM AND CONCLUSION

In summary, enclave overheads interact in complex ways in the
presence of increased enclave parallelism, which makes reasoning
about real parallel workload performance difficult. Crucially, we
identify that both exit-based and exitless calling scale with increased

enclave parallelism, but in divergent ways that make deciding whether
to use one over the other highly dependent on application threading
behavior and machine capabilities. Overall, we observe that exit-
based and exitless calling can perform about the same if each
is configured properly, however exitless calling generally performs
better than exit-based calling at lower thread counts whereas the
opposite is true for higher thread counts.

On the back of this characterization, we identify the development
of methods that make optimal configuration decisions for enclave
applications based on known performance tradeoffs as a promising
area of future research for both existing and emerging state-of-
the-art secure processors. Specifically, our characterization reveals
an opportunity for application-aware configuration or scheduling
mechanisms that consider the degree to which enclave application
threads (i) interact with the OS and (ii) are compute or memory-
bound.

ACKNOWLEDGEMENTS

This research was supported by the National Science Founda-
tion under Grants No. CNS-1929261 and CNS-1950600. Brandon
D’Agostino was also supported by the U.S. Department of Education
GAANN Fellowship. The authors wish to acknowledge Jared Nye
who contributed to this research during his Research Experiences for
Undergraduates (REU) at the University of Connecticut.

REFERENCES

[1] D. C. Chou, “Cloud Computing: A Value Creation Model,” Computer
Standards & Interfaces, vol. 38, pp. 72–77, Feb. 2015.

[2] V. Costan and S. Devadas, “Intel SGX Explained.” [Online]. Available:
https://eprint.iacr.org/2016/086

[3] D. Kaplan, J. Powell, and T. Woller, “AMD Memory Encryption.”
[4] T. Alves and D. Felton, “TrustZone: Integrated Hardware and Software

Security-Enabling Trusted Computing in Embedded Systems.”
[5] V. Costan, I. Lebedev, and S. Devadas, “Secure Processors Part

I: Background, Taxonomy for Secure Enclaves and Intel SGX
Architecture,” vol. 11, no. 1, pp. 1–248. [Online]. Available:
http://www.nowpublishers.com/article/Details/EDA-051

[6] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal
Hardware Extensions for Strong Software Isolation,” pp.
857–874. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/costan

[7] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, Arvind, and
S. Devadas, “MI6: Secure Enclaves in a Speculative Out-of-Order
Processor,” vol. 1812, p. arXiv:1812.09822. [Online]. Available:
http://adsabs.harvard.edu/abs/2018arXiv181209822B

[8] H. Omar and O. Khan, “IRONHIDE: A Secure Multicore that Efficiently
Mitigates Microarchitecture State Attacks for Interactive Applications,”
in 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 111–122.

6



[9] R. Boivie and P. Williams, “SecureBlue++: CPU Support for Secure
Executables.” [Online]. Available: https://dominoweb.draco.res.ibm.com/
BE73A643EFE8274B85257B51006760C0.html

[10] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer, “SCONE
Secure Linux Containers with Intel SGX,” pp. 689–703. [Online].
Available: https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/arnautov

[11] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos:
ExitLess OS Services for SGX Enclaves,” in Proceedings of the
Twelfth European Conference on Computer Systems, ser. EuroSys
’17. Association for Computing Machinery, pp. 238–253. [Online].
Available: http://doi.org/10.1145/3064176.3064219

[12] O. Weisse, V. Bertacco, and T. Austin, “Regaining Lost Cycles with
HotCalls: A Fast Interface for SGX Secure Enclaves,” in Proceedings
of the 44th Annual International Symposium on Computer Architecture,
ser. ISCA ’17. Association for Computing Machinery, pp. 81–93.
[Online]. Available: http://doi.org/10.1145/3079856.3080208

[13] A. Hasan, R. Riley, and D. Ponomarev, “Port or Shim? Stress Testing
Application Performance on Intel SGX,” in 2020 IEEE International
Symposium on Workload Characterization (IISWC), pp. 123–133.

[14] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: a practical
library OS for unmodified applications on SGX,” in Proceedings of the
2017 USENIX Conference on Usenix Annual Technical Conference, ser.
USENIX ATC ’17. USENIX Association, pp. 645–658.

[15] H. Tian, Q. Zhang, S. Yan, A. Rudnitsky, L. Shacham, R. Yariv,
and N. Milshten, “Switchless Calls Made Practical in Intel SGX,”
in Proceedings of the 3rd Workshop on System Software for Trusted
Execution, ser. SysTEX ’18. Association for Computing Machinery, pp.
22–27. [Online]. Available: https://doi.org/10.1145/3268935.3268942

[16] Which platforms support intel software guard extensions...
[Online]. Available: https://www.intel.com/content/www/us/en/support/

articles/000058764/software/intel-security-products.html
[17] S. Gueron, “A Memory Encryption Engine Suitable for General Purpose

Processors.” [Online]. Available: http://eprint.iacr.org/2016/204
[18] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P.-L. Aublin,

F. Kelbert, T. Reiher, D. Goltzsche, D. Eyers, R. Kapitza, C. Fetzer,
and P. Pietzuch, “Glamdring: Automatic Application Partitioning for
Intel SGX,” pp. 285–298. [Online]. Available: https://www.usenix.org/
conference/atc17/technical-sessions/presentation/lind

[19] Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia, and S. Yan,
“Occlum: Secure and efficient multitasking inside a single enclave of
intel SGX,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’20. Association for Computing Machinery, pp.
955–970. [Online]. Available: http://doi.org/10.1145/3373376.3378469

[20] graphene (commit 75962a8). oscarlab. [Online]. Available: https:
//github.com/oscarlab/graphene/

[21] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A.
Kalodner, V. Kulkarni, D. Oliveira, and D. E. Porter, “Cooperation and
security isolation of library OSes for multi-process applications,” in
Proceedings of the Ninth European Conference on Computer Systems,
ser. EuroSys ’14. Association for Computing Machinery, pp. 1–14.
[Online]. Available: http://doi.org/10.1145/2592798.2592812

[22] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” vol. 40, no. 1, pp.
53–64. [Online]. Available: http://doi.org/10.1145/2318857.2254766

[23] memtier benchmark. Redis Labs. [Online]. Available: https://github.
com/RedisLabs/memtier benchmark

[24] Apache HTTP Server Project. Apache Software Foundation. [Online].
Available: https://httpd.apache.org/

[25] nginx. Nginx, Inc. [Online]. Available: https://nginx.org
[26] Apache Benchmark. Apache Software Foundation. [Online]. Available:
https://httpd.apache.org/docs/2.4/programs/ab.html

7


