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Abstract

Conventional variational autoencoders fail in
modeling correlations between data points
due to their use of factorized priors. Amor-
tized Gaussian process inference through GP-
VAEs has led to significant improvements
in this regard, but is still inhibited by the
intrinsic complexity of exact GP inference.
We improve the scalability of these meth-
ods through principled sparse inference ap-
proaches. We propose a new scalable GP-
VAE model that outperforms existing ap-
proaches in terms of runtime and memory
footprint, is easy to implement, and allows
for joint end-to-end optimization of all com-
ponents.

1 Introduction

Variational autoencoders (VAEs) are among the most
widely used models in representation learning and gen-
erative modeling (Kingma and Welling, 2013, 2019;
Rezende et al., 2014). As VAEs typically use factor-
ized priors, they fall short when modeling correlations
between different data points. However, more expres-
sive priors that capture correlations enable useful ap-
plications. Casale et al. (2018), for instance, showed
that by modeling prior correlations between the data,
one could generate a digit’s rotated image based on
rotations of the same digit at different angles.

Gaussian process VAEs (GP-VAEs) have been de-
signed to overcome this shortcoming (Casale et al.,
2018). These models introduce a Gaussian process
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(GP) prior over the latent variables that correlates
the latent variables through a kernel function. While
GP-VAEs have outperformed standard VAEs on many
tasks (Casale et al., 2018; Fortuin et al., 2020; Pearce,
2020), combining the GPs and VAEs brings along fun-
damental computational challenges. On the one hand,
neural networks reveal their full power in conjunction
with large datasets, making mini-batching a practical
necessity. GPs, on the other hand, are traditionally
restricted to medium-scale datasets due to their un-
favorable scaling. In GP-VAEs, these contradictory
demands must be reconciled, preferably by reducing
the O(N3) complexity of GP inference, where N is
the number of data points.

Despite recent attempts to improve the scalability of
GP-VAE models by using specifically designed ker-
nels and inference methods (Casale et al., 2018; For-
tuin et al., 2020), a generic way to scale these mod-
els, regardless of data type or kernel choice, has re-
mained elusive. This limits current GP-VAE imple-
mentations to small-scale datasets. In this work, we in-
troduce the first generically scalable method for train-
ing GP-VAEs based on inducing points. We thereby
improve the computational complexity from O(N3) to
O(bm2 + m3), where m is the number of inducing
points and b is the batch size.

We show that applying the well-known inducing point
approaches (Hensman et al., 2013; Titsias, 2009) to
GP-VAEs is a non-trivial task: existing sparse GP ap-
proaches cannot be used off-the-shelf within GP-VAE
models as they either necessitate having the entire
dataset in the memory or do not lend themselves to
being amortized. To address this issue, we propose a
simple hybrid sparse GP method that is amenable to
both mini-batching and amortization.

We make the following contributions:

• We propose the first scalable GP-VAE framework
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based on sparse GP inference (Sec. 3). In con-
trast to existing methods, our model is agnostic
to the kernel choice, makes no assumption on the
structure of the data at hand and allows for joint
optimization of all model components.

• We provide theoretical motivations for the pro-
posed method and introduce a hybrid sparse
GP model that accommodates a crucial demand
of GP-VAEs for simultaneous amortization and
batching.

• We show empirically that the proposed approxi-
mation scheme maintains a high accuracy while
being much more scalable and efficient (Sec. 4).
Importantly from a practitioner’s point of view,
our model is easy to implement as it requires no
special modification of the training procedure.

2 Related Work

Sparse Gaussian processes. There has been a
long line of work on sparse Gaussian process approx-
imations, dating back to Snelson and Ghahramani
(2006), Quiñonero-Candela and Rasmussen (2005),
and others. Most of these sparse methods rely on
a summarizing set of points referred to as inducing

points and mainly differ in the exact way of selecting
those. Variational learning of inducing points was first
considered in Titsias (2009) and was shown to lead
to significant performance gains. Instead of optimiz-
ing an approximate marginal GP likelihood as done in
non-variational sparse models, a lower bound on the
exact GP marginal likelihood is derived and used as
a training objective. Another approach relevant for
our work is the stochastic variational approach from
Hensman et al. (2013), where the authors proposed a
sparse model that can, in addition to reducing the GP
complexity, also be trained in mini-batches, enabling
the use of GP models on (extremely) large datasets.

Improving VAEs. Extending the expressiveness
and representational power of VAEs can be roughly
divided into two (orthogonal) approaches. The first
one focuses on increasing the flexibility of the approxi-
mate posterior (Rezende and Mohamed, 2015; Kingma
et al., 2016), while the second one consists of imposing
a richer prior distribution on the latent space. Var-
ious extensions to the standard Gaussian prior have
been proposed, including a Gaussian mixture prior
(Dilokthanakul et al., 2016; Kopf et al., 2019), hier-
archical structured priors (Johnson et al., 2016; Deng
et al., 2017), and a von Mises-Fisher distribution prior
(Davidson et al., 2018). GP-VAE models are part of
this second group and, contrary to other work on ex-
tending VAE priors, aim to relax the iid assumption

between data points. Moreover, GP-VAEs are also re-
lated to approaches that aim to learn more structured
and interpretable representations of the data by incor-
porating auxiliary information, such as time or view-
points (Sohn et al., 2015; Lin et al., 2018; Johnson
et al., 2016).

Gaussian process VAEs. As mentioned above, the
most related approaches to our work are the GP-VAE
models of Casale et al. (2018) and Pearce (2020). How-
ever, neither of these are scalable for generic kernel
choices and data types. The model from Pearce (2020)
relies on exact GP inference, while Casale et al. (2018)
exploit a (partially) linear structure of their GP kernel
and use a Taylor approximation of the ELBO to get
around computational challenges. Another GP-VAE
model is proposed in Fortuin et al. (2020) where it
is used for multivariate time series imputation. Their
model is indeed scalable (even in linear time complex-
ity), but it works exclusively on time series data since
it exploits the Markov assumption. Additionally, it
does not support a joint optimization of GP parame-
ters, but assumes a fixed GP kernel.

3 Scalable SVGP-VAE

This work’s main contribution is the sparsification of
the GP-VAE using the sparse GP approaches men-
tioned above. To this end, two separate variational
approximation problems have to be solved jointly: an
outer amortized inference procedure from the high-
dimensional space to the latent space, and the inner
sparse variational inference scheme on the GP. To mo-
tivate our proposed solution, we begin by pointing out
the problems that arise when näıvely combining the
two objectives.

3.1 Problem setting and notation

In this work, we consider high-dimensional data Y =
[y1, . . . ,yN ]⊤ ∈ R

N×K . Each data point has a cor-
responding low-dimensional auxiliary data entry, sum-
marized as X = [x1, . . . ,xN ]⊤ ∈ XN ,X ⊆ R

D. For
example, yi could be a video frame and xi the corre-
sponding time stamp. Our goal is to train a model
for (1) generating Y conditioned on X and (2) infer-
ing an interpretable and disentangled low-dimensional
representations.

To this end, we adopt a latent GP approach, sum-
marized below. First, we need to model a prior dis-
tribution over the collection of latent variables Z =
[z1, . . . , zN ]T ∈ R

N×L, each latent variable zi living in
an L-dimensional latent space. To model their joint
distribution, we assume L independent latent func-
tions f1, . . . , fL ∼ GP (0, kθ) with kernel parameters
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θ that result in Z when being evaluated on X. More
precisely, zi = [f1(xi), . . . , f

L(xi)]. By construction,
the lth latent channel of all latent variables zl1:N ∈ R

N

(the lth column of Z) has a correlated Gaussian prior
with covariance KNN = kθ(X,X). Setting KNN = I
recovers the fully factorized prior commonly used in
standard VAEs.

As in regular VAEs, each zi ∈ R
L is then “decoded” to

parameterize the distribution over observations yi =
µψ(zi) + εi where µψ : RL → R

K is a network with
parameters ψ and εi ∼ N (0, σ2

y IK). Mathematically,
the full generative model is given by

pθ(Z|X) =

L
∏

l=1

N (zl1:N |0,KNN ),

pψ(Y|Z) =
N
∏

i=1

pψ(yi|zi) =
N
∏

i=1

N (yi|µψ(zi), σ
2
y IK).

The joint distribution is pψ,θ(Y,Z|X) =
pψ(Y|Z)pθ(Z|X). The true posterior for the latent
variables pψ,θ(Z|Y,X) = pψ,θ(Y,Z|X)/pψ,θ(Y|X) is
intractable due to the denominator which requires
integrating over Z. Hence, approximate inference
methods are required to infer the unobserved Z given
the observed X and Y.

3.2 Amortized variational inference

Amortization in the typical VAE architecture uses a
second (inference) network from the high-dimensional
data yi to the mean and variance of a fully fac-
torized Gaussian distribution over zi ∈ R

L (Zhang
et al., 2018). We denote it as q̃φ(zi|yi) =
N (zi|µφ(yi), diag(σ

2
φ(yi))) and it has network param-

eters φ. In Casale et al. (2018), this Gaussian distri-
bution is used directly to approximate the posterior,
pψ,θ(Z|Y) ≈

∏

i q̃φ(zi|yi). While this approach mir-
rors classical VAE design, the approximate posterior
for a latent variable zi only depends on yi and ig-
nores xi. This is in stark contrast to traditional Gaus-
sian processes where latent function values f(x) are
informed by all y values according to the similarity of
the corresponding x values.

Building on this model, Pearce (2020) instead pro-
posed to use the inference network q̃φ(zi|yi) to replace
only the intractable likelihood pψ(yi|zi) in the poste-
rior. By combining q̃φ with tractable terms, the ap-
proximate posterior could be explicitly normalized as

q(Z|Y,X, φ, θ) :=
L
∏

l=1

∏N

i=1 q̃φ(z
l
i|yi) pθ(z

l
1:N |X)

Zlφ,θ(Y,X)
, (1)

where the normalizing constant Zlφ,θ(Y,X) can be
computed analytically. Noting the symmetry of the

Gaussian distribution, N (z|µ, σ) = N (µ|z, σ), the ap-
proximate posterior for channel l is mathematically
equivalent to the (exact) GP posterior in the tra-
ditional GP regression with inputs X and outputs
ỹl := µlφ(Y) with heteroscedastic noise σ̃l := σlφ(Y).
We therefore refer to each {X, ỹl, σ̃l} as the latent

dataset for the lth channel. Each normalizing constant
of Equation 1 is also the GP marginal likelihood of the
lth latent dataset. The parameters {ψ, φ, θ} are learnt
by maximizing the evidence lower bound (ELBO) in
the Pearce model,

LP (ψ, φ, θ) =
N
∑

i=1

Eq(zi|·)

[

log pψ(yi|zi)− log q̃φ(zi|yi)

]

+

L
∑

l=1

logZlφ,θ(Y,X). (2)

The first term is the difference between the true like-
lihood and inference network approximate likelihood,
while the second term is the sum over GP marginal
likelihoods of each latent dataset.

One subtle, yet important, characteristic of the vari-
ational approximation from Pearce (2020) is that it
gives rise to the ELBO LP (·) that contains the GP
posterior. Note that this is in contrast to Casale et al.
(2018) and Fortuin et al. (2020), where the GP prior is
part of the ELBO. As we will show in Section 3.3, the
ELBO that contains the GP posterior naturally lends
itself to ”sparsification” through the use of sparse GP
posterior approximations.

The computational challenges of LP (·) are twofold.
Firstly, for the latent GP regression, an inverse and
a log-determinant of the kernel matrix KNN ∈ R

N×N

must be computed, resulting in O(N3) time complex-
ity. Secondly, the ELBO does not decompose as a
sum over data points, so the entire dataset {X,Y} is
needed for one evaluation of LP (·).

Given the latent dataset, at first glance, we may simply
apply sparse GP regression techniques instead of tra-
ditional regression. We next look at two widely used
methods (Titsias (2009) and Hensman et al. (2013))
and highlight their drawbacks for this task. We then
propose a new hybrid approach solving these issues.

3.3 Latent Sparse GP Regression

To simplify the notation, we focus on a single chan-
nel and suppress l, resulting in ỹ and σ̃, logZθ,φ(·)
and f . Given an (amortized latent) regression dataset
X, ỹ, σ̃, sparse Gaussian process methods assume that
there exists a set of m ≪ N inducing points with
inputs U = [u1, . . . ,um] ∈ Xm and outputs fm :=
f(U) ∼ N (f(U)|µ,A) that summarize the regression
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dataset. U, µ, A are parameters to be learnt. Given a
(test) set of r new inputs Xr, the sparse approximate
(predictive) distribution over outputs fr = f(Xr) is

qS(fr|Xr,U,µ,A, θ) =

N
(

fr|KrmK−1
mmµ, Krr −KrmK−1

mmKmr

+KrmK−1
mmAK−1

mmKmr

)

, (3)

where kernel matrices are Kmm = kθ(U,U), Krr =
kθ(Xr,Xr), and Kmr = K⊤

rm = kθ(U,Xr). By intro-
ducing inducing points, the cost of learning the model
is reduced from O(N3) in logZφ,θ(·) to O(Nm2) in a
modified objective.

We next describe two of the most popular ways to learn
the variational parameters U, µ, A that are based on
a second inner variational approximation for the Gaus-
sian process regression that lower bounds logZφ,θ(·).
For this second inner variational inference, we aim to
learn a cheap qS(·) (Equation 3) that closely approxi-
mates the expensive q(·) (Equation 1).

Titsias (2009). Let z = zl1:N , then the pa-
rameters U, µ, A may be learnt by minimizing
KL

(

qS(z |·) || q(z |·)
)

, or equivalently by maximiz-
ing a lower bound to the marginal likelihood of
the latent dataset logZlφ,θ(·). Let Σ := Kmm +

KmNdiag(σ̃−2)KNm , then the optimal µ and A may
be found analytically:

µT = KmmΣ−1KmNdiag(σ̃−2)ỹ, (4)

AT = KmmΣ−1Kmm, (5)

where KmN = kθ(U,X). Plugging µT and AT back
into the appropriate evidence lower bound yields the
final lower bound for learning U in the Titsias model

LT (U, φ, θ) = (6)

logN
(

ỹ|0, KNmK−1
mmKmN + diag(σ̃2)

)

−
1

2
Tr

(

diag(σ̃−2) (KNN −KNmK−1
mmKmN )

)

.

Note that the bound is a function of ỹ and σ̃ which
depend on the inference network with parameters φ
and the kernel matrices which depend upon θ hence
we make these arguments explicit. In the full GP-VAE
ELBO LP (·), substituting qS(·), LT (·) in place of q(·),
logZφ,θ(·) yields a sparse GP-VAE ELBO that can
be readily used to reduce computational complexity of
existing GP-VAE methods for a generic dataset and
an arbitrary GP kernel function.1

However, observe from Equations 4, 5 and 6 that the
entire dataset {X,Y} enters through KNN and ỹ, σ̃

1As an aside, this sparse GP-VAE ELBOmay also be de-
rived in the standard way using KL

(

qS(Z|·)||pψ,θ(Z|Y,X)
)

,
see Appendix B.4.

respectively. Therefore, this ELBO is not amenable to
mini-batching and has large memory requirements.

Hensman et al. (2013). In order to make varia-
tional sparse GP regression amenable to mini-batching,
Hensman et al. (2013) proposed an ELBO that lower
bounds LT and, more importantly, decomposes as a
sum of terms over data points. Adopting our notation
with explicit parameters, the Hensman ELBO is given
by

LH(U,µ,A, φ, θ) = −KL
(

qS(fm|·) || pθ(fm|·)
)

+

N
∑

i=1

{

logN
(

ỹi|kiK
−1
mmµ, σ̃−2

i

)

−

1

2σ̃2
i

(k̃ii + Tr(A Λi))

}

. (7)

Above, ki is the i-th row of KNm, Λi =
K−1
mmkik

⊤
i K

−1
mm and k̃ii is the i-th diagonal element

of the matrix KNN −KNmK−1
mmKmN . Due to the de-

composition over data points, the gradients ∇LH(·) in
stochastic or mini-batch gradient descent are unbiased
and only the data in the current batch are needed in
memory for the gradient updates. Consequently, with
batch size b the GP complexity is further reduced to
O(bm2 + m3). Note that for µ = µT ,A = AT and
b = N , LH(·) recovers LT (·) (Hensman et al., 2013).

While this method may seem to meet our requirements,
it has a fatal drawback. Firstly, it is not amortized
as µ and A are not functions of the observed data
{X, Y} but instead need to be optimized once for each
dataset. Secondly, as a consequence, in the full GP-
VAE ELBO LP (·), substituting qS(·), LH(·) in place
of q(·), logZφ,θ(·) and simplifying yields the following
expression

LPH(U, ψ, θ,µ1:L,A1:L) = (8)

N
∑

i=1

EqS

[

log pψ(yi|zi)

]

−
L
∑

l=1

KL
(

qlS(fm|·) || plθ(fm|·)
)

where qlS(fm|·) = N (fm|µl,Al).

Note that the ELBO above is not a function of the in-
ference network parameters φ (for the full derivation,
we refer to Appendix B.1). The sparse approximate
posterior is parameterized by U,µ,A, θ which are all
treated as free parameters to be optimized, that is,
they are not functions of the latent dataset or the in-
ference network. Maximizing the full GP-VAE ELBO
is equivalent to minimizing the KL divergence from
the approximate to the true posterior and neither of
these depend upon the latent dataset or the inference
network. Therefore, using the Hensman sparse GP
within an amortized GP-VAE model causes the ELBO
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to be independent of the inference network parameters.
Hence, this method also cannot be used as-is to amor-
tize the sparse GP-VAE with mini-batches.

3.4 The best of both ELBOs

Recall our goal to make GP-VAE models amenable to
large datasets. This requires avoiding the large mem-
ory requirements and being able to amortize inference.
To alleviate these problems, Casale et al. (2018) pro-
pose to use a Taylor approximation of the GP prior
term in their ELBO. However, this significantly in-
creases implementation complexity and gives rise to
potential risks in ignoring curvature. We take a differ-
ent approach utilising sparse GPs. We desire a model
that can scale to large datasets, like Hensman et al.
(2013), while also being able to directly compute vari-
ational parameters from the latent regression dataset,
like Titsias (2009). To this end, we take a mini-batch
of the data, Xb ⊂ X, Yb ⊂ Y, and with the network
q̃φ(·) create a mini-batch of the latent dataset Xb, ỹb,
σ̃b. Following Titsias (2009), with Equations 4 and 5
for the optimal µT and AT , we analytically compute
stochastic estimates for each latent channel l given by

Σl
b := Kmm +

N

b
Kmb diag(σ̃

−2
b )Kbm,

µlb :=
N

b
Kmm

(

Σl
b

)−1
Kmb diag(σ̃

−2
b ) ỹlb,

Al
b := Kmm

(

Σl
b

)−1
Kmm. (9)

where Kmb = kθ(U,Xb) ∈ R
m×b. For a full deriva-

tion of these estimators, see Appendix B.2. All these
estimators are consistent, so they converge to the true
values for b→ N . However, while Σl

b is an unbiased es-

timator for Σl, the same does not hold for µlb and Al
b.

We investigate the magnitude of the bias in Appendix
C.4 finding that it is generally small in practice. We
believe this result to be in line with sparse Gaussian
process approximations that assume the whole dataset
may be summarized by a set of inducing points. Al-
ternatively, this may be interpreted as assuming that
the dataset contains redundancy, that is, that we have
more than enough data to learn the latent function.
In such a case, (cheaply) learning an average of latent
functions of multiple mini-batches would closely ap-
proximate (expensively) learning one latent function
using the full dataset.

µlb and Al
b parameterize the approximate posterior

qS(·) which is, therefore, a direct function of the data
Xb, Yb and hence it is an amortized approximate pos-
terior. By taking a mini-batch of data, one may as-
sume that we may also compute LT (·) of the mini-
batch latent dataset. However, note that such an LT (·)
is a lower bound for logZφ,θ(·) of the mini-batch la-
tent dataset, not a lower bound for the full latent

dataset. Instead, we use µlb and Al
b along with U

and θ to compute the GP evidence lower bound of
Hensman et al. (2013) given in Equation 7, which is
also suitable to mini-batching and lower bounds the
marginal likelihood of the full latent dataset. Finally,
the evidence lower bound of our Sparse (Variational)
Gaussian Process Variational Autoencoder, for a sin-
gle mini-batch Xb,Yb, is thus

LSV GP−V AE

(

U, ψ, φ, θ) :=

b
∑

i=1

EqS

[

log pψ(yi|zi)− log q̃φ(zi|yi)

]

+
b

N

L
∑

l=1

LlH(U, φ, θ, µlb, A
l
b), (10)

where each LlH(·) is computed using the mini-batch of
the latent dataset Xb, ỹ

l
b, σ̃

l
b. By naturally combining

well known approaches, we arrive at a sparse GP-VAE
that is both amortized and can be trained using mini-
batches. The VAE parameters φ, ψ, inducing points
U, and the GP kernel θ can all be optimized jointly in
an end-to-end fashion as we show in the next section.

Also note that during training, µ1
b , ...,µ

L
b and

A1
b , ...,A

L
b are computed from a mini-batch Xb, Yb.

However at test time, given a new dataset, all avail-
able data X, Y may be used to compute the µ1, ..,µL

and A1, ...,AL. The Gaussian process structure places
no theoretical restriction upon the number of observa-
tions that are incorporated into the approximate pos-
terior parameters, any amount of data can be pooled
simply according to the kernel operations. In contrast,
neural networks typically assume fixed input and out-
put sizes and pooling data in a principled way requires
much more attention.

While we have treated the auxiliary data X as ob-
served throughout this section, our model can also
be used when X is not given (or is only partly ob-
served). In such cases, we make use of the Gaussian
Process Latent Variable Model (GP-LVM) introduced
by Lawrence (2004) to learn the missing part ofX, sim-
ilar to what is done in Casale et al. (2018). In SVGP-
VAE, (missing parts of) X can be learned jointly with
the rest of the model parameters.

4 Experiments

We compared our proposed model with existing ap-
proaches measuring both performance and scalabil-
ity on some simple synthetic data and large high-
dimensional benchmark datasets. Implementation de-
tails can be found in Appendix A and additional ex-
periments in Appendix C. The implementation of our
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