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Design concept evaluation is a key process in the new product development process with a
significant impact on the product’s success and total cost over its life cycle. This paper is
motivated by two limitations of the state-of-the-art in concept evaluation: (1) the amount
and diversity of user feedback and insights utilized by existing concept evaluation
methods such as quality function deployment are limited. (2) Subjective concept evaluation
methods require significant manual effort which in turn may limit the number of concepts
considered for evaluation. A deep multimodal design evaluation (DMDE) model is
proposed in this paper to bridge these gaps by providing designers with an accurate and
scalable prediction of new concepts’ overall and attribute-level desirability based on
large-scale user reviews on existing designs. The attribute-level sentiment intensities of
users are first extracted and aggregated from online reviews. A multimodal deep regression
model is then developed to predict the overall and attribute-level sentiment values based on
the features extracted from orthographic product images via a fine-tuned ResNet-50 model
and from product descriptions via a fine-tuned bidirectional encoder representations from
transformer model and aggregated using a novel self-attention-based fusion model. The
DMDE model adds a data-driven, user-centered loop within the concept development
process to better inform the concept evaluation process. Numerical experiments on a
large dataset from an online footwear store indicate a promising performance by the
DMDE model with 0.001 MSE loss and over 99.1% accuracy. [DOI: 10.1115/1.4052366]

Keywords: design automation, new product development, design evaluation, image
processing, natural language processing, deep regression

1 Introduction
Innovative design processes in early-stage product development

typically involve generating and evaluating numerous alternative
concepts through a variety of methods and heuristics [1]. This is
a crucial requirement for a successful design process for several
reasons, such as increasing the quantity of generated concepts—fol-
lowing Osborn’s rules for brainstorming [2]—to inspire the design-
er’s exploration and creativity [3–5], preventing the designer’s
fixation on a few ideas by exposing her to various concepts [6–8],
and enhancing the quality of design by incorporating more creative
ideas and concepts in the ideation and prototyping processes [9–11].
Evidence suggests that early-stage concept generation contributes to
only about 8% of product development costs. In comparison, the
decisions made during this phase can determine up to 70% of the
total cost over the entire product life cycle [12]. Nevertheless,
although generating a large number of novel concepts is necessary
for successful innovative design in new product development pro-
cesses [13,14], it is not sufficient without rigorous evaluation
against a set of performance metrics that reflect users’ needs.
Evaluating concepts is often difficult due to imprecise, incom-

plete, or subjective data [15]. As such, much research has been
undertaken to develop methods to better inform the evaluation
and ultimate selection of promising design concepts [16–18].
Design concept evaluation—a process in which the design team
evaluates alternative design concepts and refines/narrows down a

set of concepts based on their anticipated success—is therefore an
essential step to take once a multitude of design concepts is gener-
ated [19]. Various normative decision-making tools and methods
have been proposed in the literature for design concept evaluation.
Examples include concept selection [16], concept screening [20],
pairwise comparison charts [21], concept scoring matrices [22],
multiattribute utility analysis [23], decision matrices [24], utility
function analysis [25], fuzzy sets [26], and analytic hierarchy
process (AHP) [27]. Fuzzy sets and AHP are proven effective for
strategic [28] and multi-criteria [29] decision-making in design
concept evaluation processes. A systematic decision process via
the fuzzy sets method was presented in Ref. [30] for identifying
and choosing the best design concept based on expert knowledge
combined with optimization-based methodology. Integrated fuzzy
sets with genetic algorithms and neural networks were proposed
in Ref. [18] for obtaining an optimal concept from a group of satis-
factory concepts. Furthermore, an AHP-based method combined
with fuzzy set theory was presented in Ref. [24] for evaluating
the alternatives of conceptual design through a score-ranking mech-
anism. In a related study [31], an analytic network process, a more
generic form of AHP, was used to determine the most satisfactory
conceptual design by considering the variety of interactions and
dependencies between higher and lower level elements. A different
evaluation process based on fuzzy reasoning and neural networks
was discussed in Ref. [32] for evaluating design concepts based
on a set of user requirements. A detailed review of the
state-of-the-art in design concept evaluation is provided in Sec. 2.
Systematic and technology-focused methodologies for evaluat-

ing concepts and informing their selection have been a fertile and
impactful area of research in design methods and tools for over
two decades. However, irrespective of the systematic methodology
used, a significant factor in developing and evaluating concepts is
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the users’ insights [33]. Eliciting insights from users in the upfront
of the development process has been long established as a best prac-
tice in new product development [34–37]. Multi-criteria decision-
making (MCDM) methods that integrate user feedback into
concept evaluation and selection include quality function deploy-
ment (QFD) [38] and experiments using data envelopment analysis
[39]. Without proper user validation, establishing design prototypes
and allocating resources to those potential products may lead to
excessive costs in later stages due to revisions or potential failures
[40].
This paper is motivated by a lack of rigorous data-driven methods

for user-centered evaluation of design concepts, which can better
inform the design team’s concept evaluation and selection
process. The state-of-the-art in design concept evaluation predomi-
nantly relies on the judgment and expertise of the design team—
either through subjective concept rating and selection [41–43] or
using the aforementioned rule-based quantitative methods (e.g.,
fuzzy sets, AHP). Yet, user needs and opinions are proven to play
a critical role in successful concept evaluation and selection [19].
The growing popularity of online reviews on e-commerce platforms
as a medium for users to express their sentiments and feedback
about their experience with previous products provides an unprece-
dented opportunity to rethink design concept evaluation and
actively engage users in the creative design process. For a new
product to be a success, it must resonate with the needs and
desires of large and diverse populations of users. Thus, there is a
need for devising new methods that capture user sentiments and
feedback on a large scale and leverage that information to project
the success of new designs from the perspectives of potential
users. This, in turn, would augment the ability of designers to
make informed judgments and decisions during concept evaluation
processes. This process has the potential to increase the quality,
quantity, and diversity of user feedback versus traditional
methods such as interviews, focus groups, and surveys, which are
often used to inform MCDMmethods such as QFD [44]. Tradition-
ally, customer sentiments have been integrated into the new product
development process in a sequential fashion before the concept
development process begins or after concepts have been developed
[45,46].
This paper develops and validates a deep multimodal design eval-

uation (DMDE) model that learns the complex relationships
between the visual and functional characteristics of past designs
and the attribute-level sentiments of users on a large scale and uti-
lizes the learned patterns to measure the expected desirability of
design concepts and their constituent attributes. DMDE draws on
the existing literature on data-driven sentiment analysis from
online reviews (e.g., Refs. [47–51]) for incorporating large-scale
user feedback in concept evaluation. The proposed process allows
the development of an iterative cycle where design concepts and
user feedback are automated and integrated in parallel with the

concept development process, thereby providing the design team
with more data to better assess and select valuable concepts.
From the perspective of the concept development process, the
DMDE method adds a data-driven user-centered loop during the
user insight and ideation process, which allows for more expansive
user sentiments to be integrated within the design process and pre-
sented during concept evaluation. The DMDE loop added to the
concept development process is shown in Fig. 1.
An overview of the DMDEmodel is shown in Fig. 2. The DMDE

model processes the orthographic views of existing products using a
state-of-the-art deep neural network-based model, ResNet-50 [52],
which is pretrained on Image-Net [53] and fine-tuned on the col-
lected product dataset. The DMDE model also processes textual
product descriptions using a state-of-the-art deep language model,
bidirectional encoder representations from transformer (BERT)
[54], which is fine-tuned on a large product description dataset.
To integrate these two modalities (i.e., image and text), a self-
attention mechanism is developed and tested, which is proven to
outperform baseline multimodal fusion architectures in jointly
learning representations from multiple modalities. Comprehensive
experiments are conducted on a large-scale dataset scraped from a
major online footwear store to evaluate the effectiveness of the
DMDE model in predicting the desirability of a concept using its
orthographic renderings and textual descriptions (see, e.g.,
Fig. 3). Comparative analyses are performed on the training loss
and regression accuracy of the DMDE model against two single
modality deep neural networks and three multimodal fusion archi-
tectures, which indicate superior performance by a wide margin
in terms of both mean squared loss and prediction accuracy rate
(PAR). In sum, the main contributions of this paper are as follows:

(1) This paper tackles the challenging problem of user-centered
design concept evaluation by devising a novel data-driven
model that accurately predicts user sentiments and feedback
for a new design concept based only upon its orthographic
images and a brief description of characteristics (e.g.,
Fig. 3). The authors believe this model to be instrumental
in providing better user data for the design team during the
concept evaluation process.

(2) This paper proposes a novel multimodal deep regression
architecture based on a self-attention mechanism that seam-
lessly integrates two different modalities in an end-to-end
fashion to learn representations from both visual and
textual features simultaneously.

(3) This paper conducts comprehensive experiments on a
large-scale, real dataset to demonstrate the feasibility and
performance of the proposed multimodal architecture com-
pared to two sets of baselines: (a) single modality deep
neural networks for image processing networks and natural
language processing networks on a deep regression task

Fig. 1 The application of the DMDE model in the concept development process
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and (b) three state-of-the-art multimodal fusion methods. To
the authors’ knowledge, this is the first work that examines
multimodal deep neural network architectures on a
complex regression problem.

It must be noted, however, that the DMDE model is limited in its
current form as it is most relevant to incremental innovations or
improvements to existing products in the market. This model has
a limited ability to predict more radical innovations in which the
user has limited or no knowledge. Radical innovation is more
related to technology-push innovation, in which a market is partially
developed or not fully developed at all [55]. To address this limita-
tion, we plan to investigate concept development and evaluation

approaches using more latent needs and behavioral-based
approaches, which are not tied explicitly to attributes or features
that are common among a base of users.
The remainder of this paper is organized as follows. Section 2

provides a detailed overview of related work and topics in design
concept evaluation as well as in multimodal network architectures
and models. Section 3 discusses the details of the proposed
DMDE model. Section 4 presents the experimental results, analy-
ses, and performance evaluation. Finally, Sec. 5 provides conclud-
ing remarks and directions for future research.

2 Related Work
This section presents a detailed review of the related work on

various design concept evaluation approaches and multimodal net-
works. Readers familiar with these topics may skip this section.

2.1 Design Concept Evaluation. Efficient evaluation of
design concepts is a key requirement to facilitate new product
development by ensuring design creativity and quality and prevent-
ing potential failures in later stages of the product development
cycle [56,57]. Various evaluation approaches have been proposed
and investigated in the design literature. AHP [58] was illustrated
as a decision support model to aid designers in selecting new
product ideas to pursue by helping identify the relationship
between various design concepts in the evaluation process. AHP
was adopted by Ayag [27] to select the best concept to satisfy the
expectations of both the company and its customers. With the aid
of the consultative AHP for computing the concept weighting
values, the technique for order preference by similarity to an ideal
solution [59] was integrated and proposed to assist designers in
determining the optimal conceptual alternatives for further detailed
development. By integrating perception-based concept evaluation
and target costing of complex and large-scale systems, a system
design methodology [60] decomposes a system into modules and
evaluates each module concept with its target requirements and
cost. A generalized purchase modeling approach [61] that considers
generic factors such as anticipated market demand for the design,
designers’ preferences, and uncertainty in achieving predicted
design attribute levels under different usage conditions and situa-
tions was proposed to develop a user-based expected utility metric.

Fig. 2 Overview of the proposed DMDE model

Fig. 3 Example of input data for the proposed DMDE model:
orthographic product images (top) and textual product descrip-
tions (bottom) used for predicting the overall and attribute-level
user ratings
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To make the evaluation decisions more effective and to avoid the
vagueness and uncertainty of experts’ subjective judgments in con-
ventional ways, various fuzzy set-based decision-making methods
and algorithms have been proposed in the literature. Ayağ [62]
employed a fuzzy AHP to reduce candidate concepts and exploited
simulation analysis to improve the concept evaluation and selection.
Further research [31,63] was conducted on the analytical network
process (ANP), a more general form of AHP, to address the
problem of accommodating the dependencies between higher and
lower level elements. Fuzzy logic has also been proposed in con-
junction with ANP to evaluate a set of conceptual design alterna-
tives. The fuzzy-weighted average [64] method was developed to
calculate desirability levels in engineering design evaluation,
which suggests a new method of measuring design candidates by
computing an aggregate fuzzy set [65]. A systematic decision
process via the fuzzy set method [30] was also proposed in the lit-
erature to identify and choose the best design concept based upon
expert knowledge and experience combined with optimization-
based methodologies. Fuzzy analysis-based multi-criteria group
decision-making methods [25,38] have also been employed for
evaluating the performance of design alternatives, where all
design alternatives are ranked and then selected according to the
multiplied evaluation scores of concepts along with their weights.
To improve the evaluation process based on the fuzzy set

method, interval arithmetic, rough sets, ranking design alternatives,
and new methods were developed and integrated with other
methods. An interval-based method [66] was proposed to effec-
tively address uncertain and incomplete data and information in
various instances of product design evaluation. Owing to the
strength of rough sets in handling vagueness, a gray relation analy-
sis integrated multi-criteria decision-making method [67] was pro-
posed to evaluate design concepts to improve the effectiveness
and objectivity of the design concept evaluation process. Other
rough sets-based methods [68–70] were also developed to reduce
evaluation bias in the pairwise comparison process in criteria
weighting or rule mining. Integrated fuzzy sets [18] with genetic
algorithms and neural networks were developed to identify the
optimal concepts from a group of satisfactory concepts. Many
experts apply methods of evaluating design concepts by ranking
design alternatives in a qualitative fashion, such as multiattribute
utility theory [71,72], preference ranking organization method for
enrichment evaluations [73,74], and technique for order preference
by similarity to an ideal solution [75,76].

2.2 Data-Driven Evaluation Methods. The approaches
described above are based on subjective, insufficient, and ambigu-
ous information for design concept evaluation [77]. Most informa-
tion used in existing design concept evaluation practices comes
from the subjective judgments of experts, which may be biased,
vague, or even inconsistent. Therefore, data-driven methods have
been proposed in the literature to achieve more reliable, quantitative
evaluation results. For example, support vector machine (SVM)
[78] has been proposed for predicting the design concept perfor-
mance. SVM-based approaches [79,80] were introduced to
develop a model that predicts the users’ affective responses for
product form design with satisfactory predictive performance.
Other studies [80,81] have also reported comparable promising
evaluation results. In addition, neural network-based models
[82,83] have been recently proposed for design concept evaluation.
Non-parametric models exploiting artificial neural networks [84]
can predict software reliability based on a single and unified modal-
ity (e.g., fault history data) without any assumptions.
An automatic process [85] was recently proposed to extract the

subjective knowledge of users and represent it using a fuzzy ontol-
ogy, where the inherent user information is stored as a knowledge
database and can be easily accessed by others. User preferences
are then extracted for group decision-making. Various group
decision-making methods [86–89] have been introduced in the lit-
erature to deal with heterogeneous information in a dynamic

environment and measure the consistency of preferences provided
by experts. Fuzzy morphological matrix-based systematic decision-
making approaches [90,91] have also been studied for validating
conceptual product design by employing the knowledge and prefer-
ences of designers and users with subjective uncertainties in func-
tion solution principles to evaluate design concepts quantitatively.
In recent years, radicality computing formulas [92] have been pro-
posed to regress through a statistical analysis of known design cases
for additive manufacturing. According to their degree of radicality
at the very beginning of the new product development process, the
approach can rank potentially radical ideas. A new metric for eval-
uating creativity [41] was developed utilizing adjective selection
and semantic similarity to minimize the designers’ biases during
the evaluating process. In light of these works that improve the effi-
ciency and effectiveness of design concept evaluation, this paper
proposes a novel data-driven method for design concept evaluation.
To the authors’ knowledge, no prior work has addressed the
problem of multimodal design concept evaluation based upon hun-
dreds of past designs as well as large-scale user sentiments and feed-
back extracted from myriad reviews available on e-commerce and
social media platforms.

2.3 Multimodal Networks. In new product development,
image processing-based and natural language processing-based
approaches for need finding and design ideation have been well-
studied independently in recent years. For example, image process-
ing allows for the use of generative adversarial networks (GANs) to
edit design concepts (e.g., apparel) at the attribute level automati-
cally [93,94]. Convolutional neural network (CNN)-based architec-
tures have also been utilized to predict the future desirability of
styles discovered from fashion images in an unsupervised manner
[95]. Furthermore, BERTs-based approaches have been adopted
in recent years to extract information about the needs of users
from online reviews [96,97]. However, these approaches base
their evaluations on only a single modality (e.g., product image,
review), which may naturally exclude other aspects of the design
concept or product that are not represented by that single modality.
In the design concept evaluation processes specifically, multimodal
methods can provide more comprehensive and accurate information
about the expected performance of a concept based on various
metrics.
Recent research in machine learning has reported promising

results in combining textual and visual data to learn multiple
levels of representations through hierarchy network architectures.
A deep CNN model [98] was trained to detect words in images,
compose words into sentences, and map them onto the image fea-
tures. A generative model-based method [99] was developed to gen-
erate natural sentences describing an image in an end-to-end manner
using an encoder–decoder architecture. A deep learning-based
text-to-image generation method [100] was proposed which uses
the long short-term memory (LSTM) architecture for iterative
handwriting-based control of image generation. Another study
[101] employs deep learning methods to extract audio and visual
features for noise removal in speech recognition. A recurrent
CNN method [102] was also proposed to capture contextual infor-
mation and extract features of images for text classification without
human-designed features. Another work [103] proposed a joint
feature learning approach that combines image features and text
embeddings to classify document images. Similarly, Yang et al.
[104] developed a fully CNN model for extracting semantic struc-
tures from document images, and Xu et al. [105] proposed an archi-
tecture that jointly learns text and layout in a single framework for
document classification.
These multimodality methods mainly project language and image

features into a shared representation and infer a single-modal
feature from another feature, like inferring image features from a
linguistic feature. However, this approach is most likely to cause
information loss inevitably during the feature projection process.
To avoid this issue, the model proposed in this paper addresses
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such problems by capturing the single modality features (i.e.,
textual product descriptions and orthographic images) indepen-
dently and then integrating them in an optimized fusion. Further-
more, it is observed that a large body of past research has
leveraged multiple modalities to solve classification problems
[106–109], while the multimodal deep learning architecture pro-
posed in this paper solves a regression task; i.e., predicting the
overall and attribute-level ratings of a design concept based on
past user sentiments and feedback.

3 Methodology
This section presents the proposed DMDE model (Fig. 2). This

paper builds on an attribute-level analysis approach for generating
user-centered ratings for products based on online reviews
without loss of generality, as described next. First, a sentiment anal-
ysis method is discussed, which is utilized to quantify the attribute-
level sentiment intensity of users for each product based on online
reviews. Next, the deep neural network architectures for image pro-
cessing and natural language processing are discussed indepen-
dently, followed by a description of the multimodal fusion
method to integrate image and text features and relative perfor-
mance metrics used to validate the models. Finally, it is worth
noting that the DMDE model is domain-agnostic and can be gener-
alized to any type of end-user product so long as the following data
are available: product images, textual descriptions of product fea-
tures, and overall and/or attribute-level ratings of the product.
This paper builds on an attribute-level analysis approach for gener-
ating user-centered ratings for products based on online reviews, as
described next.

3.1 Attribute-Level Sentiment Analysis. A given product
typically receives tens, hundreds, or even thousands of user
reviews presented in the form of unstructured natural language on
an e-commerce platform. To inform the design process based on
users’ sentiments and feedback, advanced computational methods
are required to translate large-scale, unstructured natural language
data into valuable design knowledge and insights. In this paper,
the first step of the proposed methodology is to process individual
reviews to extract the attribute-level sentiment intensity of the
users (i.e., the positivity or negativity of their emotions) associated
with different attributes of the product. To this end, the analysis of
sentiment expressions (ASEs) approach presented in Ref. [96] is
adopted to measure the attribute-level sentiment intensity of users
in four steps:

Step 1: A product attribute lexicon is created based on existing
online product catalogs and attribute dictionaries.2 In the
case of footwear, for example, various synonyms of the
main attributes collected from 10,000 reviews of our
scraped dataset of footwear are selected as a total of 500 attri-
bute words and grouped into 23 main attributes (e.g., color,
energy return, permeability, weight, stability, durability).
Then, the attribute lexicon of the products is used to
extract product attributes from user reviews.

Step 2: The descriptions of the attributes are then tracked using
natural language toolkit post tagger, which translates
phrases or sentences into part-of-speech tags. Then the syn-
tactic context of each sentence is derived. For example, a
review sentence “I love the classic style” is chopped and
translated into multiple pieces (“I,” “PRP”), (“love,”
“VBP”), (“the,” “DT”), (“classic,” “JJ”), (“style,” “NN”).

Step 3: A sentiment lexicon is built on an enhanced
state-of-the-art sentiment lexicon [51], which includes man-
ually picked sentiment words from a dictionary with a voca-
bulary size of over 6000 words. In this paper, the sentiment
lexicon is adapted by enriching it with domain-specific

sentiment expressions related to the target product (e.g.,
footwear).

Step 4: Word embedding, a language modeling method that
transfers words into high-dimensional vectors, is conducted
to encode each word into a unique real vector so the com-
puter can comprehend and operate on them. Word2Vec
[110], one of the prominent pretrained models for word
embedding, is utilized in this paper to learn word associa-
tions from a large corpus of text and translate each distinct
word into a particular list of number vectors. Its simplicity
drove the choice of Word2Vec for embedding; however,
future studies may utilize more advanced context-aware
embedding methods such as BERT [54].

Step 5: The ASE approach utilizes the product attribute and senti-
ment lexicons and word embeddings to identify and map sen-
timent expressions to the differentiated product attributes.
The sentiment expressions of users are then converted into
sentiment intensity values in [−1, 1] using SenticNet, with
−1 and 1 representing extremely negative sentiment and
extremely positive sentiment, respectively.

The extracted attribute groups along with the user sentiment
intensity values extracted from the ASE approach are then utilized
as labels for the training data, as described in Sec. 4.

3.2 Image Processing. Images are an essential part of a design
concept, representing the visual aspects of a conceptual design. The
image features must be processed and extracted to estimate the
expected user-centered desirability of a concept based on its ortho-
graphic renderings. Deep convolutional neural networks (CNNs)
have led to a series of breakthroughs in image classification. The
deep CNN-based model ResNet-50 [52] is a neural network used
as a backbone for many computer vision tasks and has the strong
ability to learn rich feature representations from a wide range of
images. In this paper, Image-Net [53] pretrained ResNet-50
model is fine-tuned based on the scraped product image dataset to
extract visual features from orthographic images.
To train the model, six orthographic images of each product serve

as inputs of the network. The sentiment intensity values of users on
ten product attributes “Traction,” “Shape,” “Heel,” “Cushion,”
“Color,” “Fit,”“Impact absorption,” “Durability,” “Permeability,”
and “Stability,” as well as on the overall rating are served as
labels of training data in [−1, 1]. Images from the dataset are first
resized to a batch of 224 × 244 × 3 RGB images to fit the
network. The ResNet-50 model consists of four stage residual
blocks, each with a convolution and identity block. Each convolu-
tion block has three convolution, batch normalization, and ReLU
layers, and each identity block also has 1 Conv 1 × 1 and a batch
normalization layer to downsample the features. Finally, an
average pool and a fully connected layer followed by a tanh func-
tion transfer features to the desired dimensional vector X1 ∈ Rd1

at the end of the architecture. The ResNet-50 model has over 23
million trainable parameters in total. The main benefit of using
such a deep network is that it can represent complex functions
and learn features at many different levels of abstraction, from
edges (at the lower layers) to very complex features (at the deeper
layers) to better understand the dependency between the ortho-
graphic images of the design concepts (inputs) and the user senti-
ment intensity values (outputs).

3.3 Natural Language Processing. Online product catalogs
typically comprise brief textual descriptions of the product features
(e.g., Fig. 3). To identify the relationship between the technical
descriptions of the products and the sentiment intensity of the
users, BERTs [54] are utilized to train deep bidirectional represen-
tations from unlabeled text. BERT is the encoder stack of the trans-
former architecture [111]. A transformer architecture is an encoder–
decoder network that uses self-attention on the encoder side and
attention on the decoder side. In the proposed DMDE model, a2https://github.com/hanyidaxia/NER_BERT
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pretrained BERT by Wolf et al. [112] is adapted to learn and extract
useful information from descriptive sentences in product descrip-
tions and transform the textual content into a feature vector.
The pretrained BERT is applied on a regression task, estimating

the relationship between inputs and multiple independent variables.
The inputs are sentences describing the product and the multiple
independent variables are sentiment intensity values in [−1, 1]
associated with ten product attributes and the overall product
rating. In the training process, most hyperparameters remain the
same as the original BERT training. The BERT model size is L=
12, H= 768, and A= 12, where L, H, and A denote the number of
layers, a hidden layer of size, and the number of self-attention
heads, respectively. The model fits the input sequence and delivers
the labels of text within the sequence as an output, where the
sequence of inputs starts from [CLS] containing special embeddings
and finish with the token [SEP] at the end of the sequence. The
model performs tokenization by splitting the input text into a 128
sequence list of tokens. The input embeddings are then passed to
the attention-based bidirectional transformer. The fully connected
layer is revised at the end of the BERT model to ensure the
desired dimension of the output feature X2 ∈ Rd2 and followed by
a tanh function to predict the labels (i.e., the sentiment intensity
values).

3.4 Multimodal Architecture. The image processing model
and the natural language processing model extract and represent
the features from images and text, respectively, in an independent
fashion. Each model has the capability to map the single modality
feature (i.e., orthographic product images or textual product
descriptions) into the extracted overall and attribute-level product
ratings in [−1, 1]. Therefore, to model the connection between
the orthographic images and descriptive language as input and the
extracted overall and attribute-level product ratings as output, the
DMDE model is enhanced with a novel fusion model to integrate
the features associated with different modalities. The goal of this
paper, however, is to evaluate a design concept based on both
visual and textual information for more accurate and comprehensive
evaluation. This section first describes two baseline multimodal
fusion methods, followed by a novel self-attention-based multi-
modal fusion model with demonstrated improved performance
(see Sec. 4) for integrating visual features from the ResNet-50
model and textual features from the BERT model for design
concept evaluation.

3.4.1 Naïve Fusion. This approach integrates vectorized fea-
tures from different information modes through naïve concatena-
tion. The obtained image features X1 ∈ Rd1 and text features
X2 ∈ Rd2 with their original dimensions are integrated. The gener-
ated multimodal features Xm are given by

Xm = X1 ⊕ X2, Xm ∈ Rd1+d2 (1)

where ⊕ represents the concatenation operator of vectors.

3.4.2 Weighted Fusion. The linear weighted combination pro-
vides more flexibility for networks to assemble textual and visual
representations. This approach integrates the multimodal features
as follows:

Xm = w1 × X1 ⊕ w2 × X2, Xm ∈ Rd1+d2 (2)

where ⊕ is the vector concatenate operator, and w1 and w2 denote
the weighting parameters of image features and text features,
respectively. The weighted parameters are tuned over the entire
training process of the DMDE model.

3.4.3 Self-Attention Fusion. The attention mechanism is a
powerful and widely used approach to integrate multiple modalities
[113]. In this paper, a novel self-attention-based module inspired by
Vaswani et al. [111] is developed to capture the representation and
connection across the complementary information of multimodal

features. Figure 4 illustrates the generation process of the multi-
modal self-attention features. Naïve concatenation features Xm =
X1 ⊕ X2 are initiated as the input of the self-attention-based
module, and then the inputs Xm are projected onto a set of sub-
spaces: query Q, key K, and value pair V. The multimodal self-
attentive features S are formulated as

S = softmax
QK⊤��

d
√

( )
V

S = S1, S2, . . . , Sn[ ] ∈ Rdi×n

(3)

where Q=Wq × S; K=Wk× S; V=Wv× S;Wq,Wk, andWk are three
learned parameter matrices within the self-attention-based module;
and d is the dimension of q, k. A softmax function is used to ensure
attentions across each visual and textual cell.

3.4.4 Multimodal Fusion Process. The orthographic product
images and textual product descriptions are used as inputs for the
DMDE model (Fig. 2). The text features and image features are
extracted simultaneously by the fine-tuned ResNet-50 model and
BERT model, respectively. Once the two modality features are
identified, they are integrated using the multimodal fusion layer
constructed by the multimodal fusion methods described above.
To ensure that the concatenated features have the desired dimen-
sion, a fully connected layer is added as follows to generate the
final output:

Y
′
=W

′T
× S + b (4)

where b is a bias vector andW′ is the weight matrix. The entire pro-
cedure can be trained on the product images and descriptions
scraped from an e-commerce platform to optimize the performance
metrics described next.

3.5 Performance Metrics. The training procedure of the
DMDE model is conducted using a loss function based on mean
squared error (MSE). MSE is calculated as the mean or average
of the squared differences between predicted and expected target
values in a dataset, presented as

MSE =
1
n

∑n
i=1

Yi − Ŷi
( )2

(5)

where Yi is the expected value in the dataset and Ŷi is the predicted
value. The MSE loss can reflect the actual situation of regression
error and evaluate the performance of the proposed multimodal
networks.
To further investigate the effectiveness of the DMDE models in

integrating the multimodality information and predicting the overall
and attribute-level desirability of the design concepts, a PARmetric,
inspired by the field accuracy rate [114], is utilized. PAR counts the

Fig. 4 Overview of the self-attention-based fusion module pro-
cedure. Xm denotes naıv̈e concatenation features X1 ⊕ X2 and
⊗ denotes matrix multiplication.
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number of exact matches between ground-truth and predicted
results as follows:

PAR =
#|Yi − Ŷi| < η

N
(6)

where #|Yi − Ŷi| is the number of products with an absolute value of
the ground-truth and the predicted values below a threshold η, and N
is the total number of products. η is set to 0.1 based on empirical
knowledge; however, the sensitivity of PAR results to this value
is analyzed in Sec. 4.4.
The MSE loss metric represents the squared difference between

the predicted and actual performance ratings of products. Thus, a
smaller loss represents the ability of the model to correctly map
the images and textual descriptions of a product to its overall and
attribute-level desirability. PAR is another metric that measures
the rate of product performance predictions that fall within a pre-
specified acceptable threshold. These metrics can help gauge the
accuracy of the DMDE model and other baseline models in predict-
ing the overall and attribute-level desirability of a new concept.

4 Experiments and Results
In this section, the dataset and implementation details of the pro-

posed DMDE model are first described, followed by an explanatory
analysis of the results of multimodal networks and the comparison
with single-modal networks to demonstrate the accuracy and effec-
tiveness of DMDE in predicting the expected desirability of design
concepts and their attributes.

4.1 Dataset and Implementation Details. To test and validate
the performance of the proposed multimodal networks in the eval-
uation of the newly designed concepts, a large-scale dataset was
scraped from a major online footwear store to conduct numerical
experiments. In the dataset, each product has four types of informa-
tion: six orthographic images, one numerical rating score, a list of
textual product descriptions, and real textual customer reviews
from an e-commerce platform, where images and feature descrip-
tion are the inputs to the model and the numerical rating score
and sentiment intensity values from customer reviews are the
outputs. A total number of 8706 images and 113,391 reviews for
1452 identified shoes were collected from an online retail store.
One example from the dataset is shown in Fig. 3. The experiments
are conducted with k-fold [115], with k= 10, to randomly split the
dataset into the train, validate and test sets with the ratio of 7 : 1 : 2.
All experimental results are conducted five times and reported as
mean ± std to alleviate the randomness effect. All neural networks
are trained on PyTorch [116]. Adam [117] optimizer with β= (0.9,
0.999) and learning rate= 0.01 is used to train the model parameters
and save the model with the best loss in the validation dataset. To
avoid overfitting, a dropout layer is added to the self-attention
fusion model with the dropout rate of Pdrop= 0.1. The DMDE
model was trained over 40 epochs. The training time cost per
epoch was 5–7min, which added up to 3–4 h.

4.2 Data Processing. The proposed DMDE model is designed
to predict the overall and attribute-level desirability of a product
regarding the frequently mentioned attributes. The dataset provides
a large-scale product image and description with labels of rating
score and customer reviews. However, textual customer reviews
are required to be represented as readable information for networks.
Therefore, 113,391 reviews for 1452 identified shoes are analyzed
by the natural language processing approach ASE (Sec. 3.1) and
ten frequently mentioned product attributes were selected: “Trac-
tion,” “Shape,” “Heel,” “Cushion,” “Color,” “Fit,” “Impact Absorp-
tion,” “Durability,” “Permeability,” and “Stability.” Nevertheless,
the attribute list can be expanded beyond the above list pending
the availability of a sufficiently large number of examples for train-
ing the data-driven models. The sufficiency of attribute-specific data

for training the neural networks is judged based on empirical
knowledge. The sentiment expressions of users for each attribute
were also extracted using the ASE method and converted into
numerical values ranging from −1 to 1, representing both the polar-
ity and intensity of user sentiments. Table 1 shows an example of
the sentiment analysis of one product analyzed based on multiple
user reviews, where positive/negative values represent the
positivity/negativity of user sentiments. The closer the value to
the endpoints of [−1, 1], the higher the sentiment intensity. The
ten identified attribute values and the overall rating serve as labels
in the training process of the deep regression model.

4.3 Results and Analyses. To test and validate the perfor-
mance of the proposed DMDEmodel for design concept evaluation,
an ablation study was conducted to examine two unique aspects of
the DMDE model: the self-attention-based fusion model and multi-
modal regression. First, the performance of the proposed
self-attention-based fusion model is compared to the baseline
models, naïve fusion and weighted fusion. Next, two single modal-
ity models (i.e., image-based and text-based) are used as two base-
lines and compared with the DMDE model. Finally, partial testing
samples are presented to further demonstrate the effectiveness of the
proposed DMDE model.

4.3.1 Multimodal Fusion Evaluation. The experiments on the
three fusion models for integrating image and text modalities are
shown in the last three rows of Table 2. Mean squared error
(MSE) and PAR are used to measure and compare the performance
of the three fusion models. Results show that naïve concatenation
provides the DMDE model with the training loss of 0.0016, valida-
tion loss of 0.0019, and testing loss of 0.0020, while weighted con-
catenation achieves a lower loss at about 0.0013. However, the
self-attention-based fusion model significantly outperforms both
the naïve fusion model and the weighted fusion model by reducing
the loss by 30–50%. The low loss values for training, validation,
and testing indicate that the self-attention-based fusion module is
capable to integrate and extract features from multiple modalities
with very few errors.
The results of the experiments also indicate that the

self-attention-based fusion model outperforms both the naïve
fusion model and the weighted fusion model with the highest
PAR of 99.14% and 99.10% in predicting the overall rating and
the attribute-level rating, respectively. Additionally, the statistical
p-values corresponding to a t-test on PAR are computed to demon-
strate the significance of the difference between the multimodal
models in Table 2 at the significance level of 0.05. The p-value is
calculated as 0.03 for the self-attention fusion model versus the
naïve fusion model, and the p-value associated with the comparison
between the self-attention fusion model and the weighted fusion
model is 0.02. These results of this statistical hypothesis testing
indicate that the self-attention fusion model significantly outper-
form the other multimodal models in terms of PAR. To sum up,
out of the three proposed models for integrating textual descriptions

Table 1 Example of extracted attribute-level sentiment polarity
and intensity from user reviews on a footwear product

Attributes Sentiment value

Traction −0.051
Shape 0.376
Heel 0.479
Cushion 0.449
Color 0.188
Fit 0.227
Impact absorption 0.302
Durability 0.356
Permeability −0.326
Stability 0.202
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and orthographic image features, the self-attention-based fusion
method is proven to yield the best performance with the lowest
MSE loss and the highest PAR for the DMDE model.
The limitation of naiv̈e and weighted fusion for the DMDEmodel

stems from the fact that the feature extraction modules for different
modalities hardly interact with each other, which in turn limits their
semantic relatedness and inevitably leads to information loss. Using
the self-attention-based fusion method, the dependencies between
the features of different modalities are not restricted by the
in-between distance between them, unlike the naïve and weighted
fusion methods which concatenate multimodal features. Consider
a simple hypothetical example with image features [a1, a2] and
text features [a3, a4]. Using the naïve and weighted fusion
methods, the combined features will be [a1, a2, a3, a4] and [w1

a1, w2 a2, w3 a3, w4 a4], respectively, where w denotes weight.
The self-attention method, however, will combine these modalities
as depicted in Fig. 5. The self-attention mechanism learns the rela-
tionships between the modalities using three query, key, and value
matrices. Query and key construct the relationships, while value
summarizes an output which comprises the relationships among
all elements. The self-attention mechanism allows the inputs to
interact with each other (i.e., “self”) and determine what to pay
more attention to (i.e., “attention”). The outputs are aggregates of
these interactions and attention scores. Therefore, self-attention
offers a larger and more optimal parameter space. Self-attention
allows for identifying the latent relationships between visual fea-
tures, semantic features, and product ratings. The proposed

DMDE model with a self-attention mechanism has a promising
ability to effectively capture essential features by combining the
orthographic images and descriptions of products in predicting
their overall and attribute-level ratings and desirability.

4.3.2 Single Modality Versus Multiple Modalities. The
self-attention-based DMDE model was shown to deliver superior
performance in solving the design concepts rating regression task.
To further demonstrate the effectiveness of incorporating multiple
modalities in the regression process as opposed to a single modality,
this section presents the results of comparisons between the pro-
posed self-attention-based DMDEmodel and single modality-based
regression networks (i.e., image or text only) as baselines (Table 2).
First, single modality regression experiments with images were

conducted using the ResNet-50 model. Given the orthographic
images of products as input, the deep regression network predicts
the overall and attribute-level ratings. As shown in Table 2, the
image-only regression model achieves MSE loss values ranging
from 0.0345 to 0.0408, with about a 30% higher margin than the
self-attention-based model. The PAR of the image-only regression
model is 76.54% for overall ratings, over 20% lower than the PAR
of the DMDE model with self-attention-based fusion. The PAR of
this model for attribute-level ratings is even lower, at 46.76%,
almost half of the PAR of the DMDE model. Second, single modal-
ity regression experiments with textual descriptions were conducted
using the BERT model. Results shown in Table 2 indicate that the
text-only regression model outperforms the image-only regression

Table 2 Comparison of the proposed DMDE model with baselines on MSE loss and PAR

Evaluated models MSE loss PAR (%)

Modality Model Train Validate Test Overall rating Attribute rating

Single modality Image model (ResNet-50) 0.0345± 0.015 0.0368± 0.0018 0.0408± 0.0022 76.54± 5.1 46.76± 4.5
Text model (BERT) 0.0025± 0.007 0.0025± 0.008 0.0025± 0.0011 91.43± 2.6 95.46± 1.2

Multiple modalities Naïve fusion 0.0016± 0.0003 0.0019± 0.0003 0.0020± 0.0004 98.27± 1.4 96.44± 1.1
Weighted fusion 0.0013± 0.0002 0.0013± 0.0002 0.0014± 0.0005 98.87± 1.2 98.46± 0.9
Self-attention fusion 0.0010± 0.0002 0.0010± 0.0003 0.0010± 0.0004 99.14± 0.8 99.10± 0.6

Note: Columns (1–2) are the five models including DMDE and baselines; columns (3–5) are MSE loss values for training, validating, and testing the models,
respectively; columns (6–7) are the PAR of the models for overall rating and attribute-level rating of concepts, respectively.

Fig. 5 Example of the self-attention mechanism: the fusion of image features [a1, a2] and text
features [a3, a4]. qi=wqa

i, ki=wka
i, vi=wv a

i, ai,j = qi∗k/
��
d

√
, bi =

∑
j �αi,jvj, where q is query, k is

key, v is value pair, wq, wk, wv are the target to train in a layer, d is the dimension of q, k.
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model, with the MSE loss of 0.0025 and PAR of 91.43% (overall)
and 95.46% (attribute level), which was anticipated because textual
descriptions naturally contain more information about the product
than images. However, the results of the DMDE model are still
far better than the text-only regression model, which points to the
importance of incorporating multiple modalities in the regression
task for more accurate and representative results.
It is observed that the image-only regression model has the capa-

bility to predict the overall rating with higher PAR than the
attribute-level ratings. On the contrary, the text-only regression
model performs better in predicting attribute-level ratings than the
overall rating. Two speculations can be drawn from these observa-
tions. First, only three out of the ten attributes can be rated based on
the visual aspects of footwear (i.e., shape, heel, color). The remain-
der of the attributes cannot be judged only based on the ortho-
graphic images of the footwear, even by a human. That may be
one of the reasons behind the poor performance of the image-only
regression model in predicting the attribute-level ratings. Although
its performance in predicting the overall rating is significantly
better, it is still much worse than the text-only regression model
and the DMDE model due to the same reason. Second, the text-only
regression model demonstrates the opposite behavior with signifi-
cantly improved attribute-level rating PAR. This may be partly
due to the nature of the textual product description data (see
Fig. 3) which contain structure information about different attri-
butes of the footwear. Nevertheless, the multiple-modality models
are shown to outperform both models by leveraging and integrating
their features.
The experimental results demonstrate that the proposed deep

multimodal networks for design concept evaluation enable
state-of-the-art performance in predicting the expected overall and
attribute-level ratings of products with low error and over 99.10%
accuracy. Thus, the DMDE model creates an unprecedented oppor-
tunity for designers to accurately predict the expected success of
their design concepts from the perspective of their end users,
based only on their orthographic image renderings and standard
textual descriptions.

4.4 Sensitivity to Prediction Accuracy Rate Threshold (η).
In the PAR formula (Eq. 6), the threshold η was initially set to
0.1 based on empirical knowledge. To test the sensitivity of the pre-
diction performance to the value of η, the experiments with the two
single modality models and the three multimodality models were
conducted using different values of η as shown in Table 3. The per-
formances of the five models with respect to PAR were compared
based on three values for η: 0.1, 0.075, 0.05, and 0.01. Results of
the ablation study indicate that the single modality models are
more sensitive to the threshold value η than the multimodality
models. Specifically, reducing η from 0.1 to 0.05, the PAR of the
image-only model and the text-only model decreases by 10% and
6.7%, respectively. Yet, the same change in the value of η results
in a 4.9% reduction in the PAR of the naïve fusion model, a
4.5% reduction in the PAR of the weighted fusion model, and
only a 1.2% reduction in the PAR of the proposed self-attention
fusion model.

This ablation study shows that multimodality models outperform
single modality models in preserving the robustness of the predict-
ing accuracy; specifically, the PAR of the self-attention fusion
model is the least sensitive to η because of good performance in
learning the relationship among large datasets.The self-attention
mechanism achieves construct relationships and extracts informa-
tion by constructing the relationships, summarizing all relations
within inputs, and concludes an output that contains relations
among input vector elements via the three subspaces and optimal
parameters. The self-attention allows the image features and
textual features of the input to interact with each other and find
out the high correspondence between them, which explains the
strong ability of the model to obtain latent representation. There-
fore, self-attention ensures a better fit to the deep multimodal eval-
uating procedure for product design than other models. The larger η
provides higher accuracy of the model’s testing performance and
η = 0.1 allows self-attention fusion model a 99.14% accuracy
which is the rationale of parameter setting for PAR metric.

4.5 Ablation Study on Multimodal Inputs. For training the
DMDE model, six orthographic images of the product along with
standard textual descriptions of product features serve as input.
Once the model is trained, it must be able to evaluate the overall
and attribute-level desirability of a new concept given its ortho-
graphic renderings and textual description data. This section pre-
sents the results of an ablation study on the input data after the
DMDE model has been fully trained. The experiments are con-
ducted to demonstrate the performance of the DMDE model
during a test with different subsets of input data: a combination
of two, four, or six images with full-text description or half-text
description. Full-text description means the description of product
features collected in the dataset is completely served as input.
In the dataset, the product descriptions are itemized in several
lists. To conduct the comparison, half of the lists that contain infor-
mative texts of product features are randomly selected to use as
input of the model. The subsets of images are chosen randomly
as well. Table 4 presents the results of the ablation study in terms
of PAR for the overall rating with η= 0.1. It is observed that half-
text descriptions with six images achieve 2.32% and 9.53%
higher PAR than half-text description with four images and two
images, respectively. In contrast, the full-text description with six
images leads to 1.53% and 0.31% improvement in PAR when com-
pared to full-text description with four images and two images,

Table 3 Comparison of PAR for overall rating with different η

Evaluated models PAR (%) for overall rating

Modality Model η= 0.1 η= 0.075 η= 0.05

Single modality Image model (ResNet-50) 76.54 73.71 68.54
Text model (BERT) 91.43 90.68 85.23

Multiple modalities Naïve fusion 98.27 97.09 93.41
Weighted fusion 98.87 97.26 94.41
Self-attention fusion 99.14 98.34 97.91

Table 4 Comparison of testing PAR with subsets of inputs

PAR (%) for overall rating

Evaluated models
Model

Testing subsets
Number of images

Half-text
description

Full-text
description

DMDE model 2 86.61 97.65
4 92.71 98.83
6 94.86 99.14

Journal of Mechanical Design FEBRUARY 2022, Vol. 144 / 021403-9

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/144/2/021403/6760201/m
d_144_2_021403.pdf by N

ortheastern U
niversity Libraries user on 24 Septem

ber 2021



respectively. These findings indicate that the proposed DMDE
model can guarantee a high accuracy of predicting the desirability
of a new concept on any given number of images when full
textual descriptions are provided. Furthermore, providing full-text
descriptions can increase PAR by 12.75%, 6.6%, and 4.51% com-
pared to half-text description, when two, four, and six images are
available, respectively. Accordingly, the DMDE model appears to
be significantly sensitive to the quality of textual descriptions, as
the model performance considerably degrades when only half-text
descriptions are provided. When full-text description is provided,
however, the prediction accuracy value remains significantly high
even with a small number of images (e.g., 97.65% with only two
images). It is therefore concluded that once the DMDE model is
trained, it can be used for evaluating new concepts even with a
small number of images per concept, although a higher number of
images is shown to result in higher accuracy and smaller MSE loss
(see Table 2). However, it is highly recommended to provide suffi-
cient descriptions of product features as inputs to obtain better pre-
diction results from the DMDE model.

5 Conclusions and Future Research Directions
A novel neural network-based DMDE model was developed in

this paper, which allows for accurate prediction of the overall and
attribute-level desirability of a concept with respect to concerning
large-scale user sentiments and feedback on past designs. A case
study on a large-scale dataset scraped from an online footwear
store was conducted to test and validate the performance of the
DMDE model in terms of MSE error and PAR. Ablation studies
on two unique aspects of the DMDE model indicated superior per-
formance in terms of both MSE error and PAR when (1) multiple
modalities are incorporated in the regression task and (2) the
modalities are integrated using the proposed self-attention-based
fusion mechanism. To construct a multimodal network, the
single image processing model and natural language processing
model are built independently based on state-of-the-art pretrained
models ResNet-50 and BERT, respectively. The main goal of the
fine-tuned ResNet-50 and BERT models is to extract useful fea-
tures from orthographic product images and textual product
descriptions, respectively. The self-attention method was then
applied to integrate the textual and visual features and capture
the dependency between multiple modalities to predict product
rating labels accurately. The proposed model can serve as an intel-
ligent guidance tool for new product designers to predict how their
concepts will perform from end users’ perspectives regarding both
overall and attribute-level desirability. Specifically, a design team
can simply feed the photorealistic renderings and technical
description of a new concept (e.g., a pair of sneakers; see
Fig. 3) into the DMDE model to accurately predict its overall
and attribute-level desirability based on large-scale user feedback
on previous designs.
Another important direction for future research in this area is to

couple the proposed DMDE model with generative design algo-
rithms for automated design concept generation. Deep generative
models have been recently adopted for design automation [118–
120] to improve designers’ performance through co-creation with
AI. Specifically, GANs [121] have shown tremendous success in
a variety of generative design tasks, from topology optimization
[118] to material design [122] and shape parametrization [119]. In
line with Osborn’s rules for brainstorming [2], these generative
models have proven effective in increasing the quantity of ideas
at the designer’s disposal to inspire her exploration and avoid
investing too heavily in few ideas. Current approaches for assessing
the quality of GAN-generated samples are limited to manual assess-
ment and the use of various convergence criteria and distance
metrics for comparing real and generated images in the feature
space. Some recent studies have proposed using physics-based
simulators for performance assessment of generative design with
respect to form and function [119]; however, those mechanisms

are domain-specific and applicable to a limited set of functional
attributes (e.g., aerodynamic performance). The proposed DMDE
model can potentially bridge this knowledge gap by serving as a
disruptive tool for accurate, data-driven evaluation of
GAN-generated design concepts.
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