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This paper aims at advancing the fundamental understanding of the affordances of Augmented Reality (AR) as a
workplace-based learning and training technology in supporting manual or semi-automated manufacturing tasks
that involve both complex manipulation and reasoning. Between-subject laboratory experiments involving 20
participants are conducted on a real-life electro-mechanical assembly task to investigate the impacts of various
modes of information delivery through AR compared to traditional training methods on task efficiency, number
of errors, learning, independence, and cognitive load. The AR application is developed in Unity and deployed on
HoloLens 2 headsets. Interviews with experts from industry and academia are also conducted to create new
insights into the affordances of AR as a training versus assistive tool for manufacturing workers, as well as the
need for intelligent mechanisms that enable adaptive and personalized interactions between workers and AR.
The findings indicate that despite comparable performance between the AR and control groups in terms of task
completion time, learning curve, and independence from instructions, AR dramatically decreases the number of
errors compared to traditional instruction, which is sustained after the AR support is removed. Several insights
drawn from the experiments and expert interviews are discussed to inform the design of future AR technologies
for both training and assisting incumbent and future manufacturing workers on complex manipulation and

reasoning tasks.

1. Introduction

The future of manufacturing workforce faces a “perfect storm” of
challenges: A shortage of skilled workers due to workforce aging and
retirement, shifting skill requirements due to the introduction of Al,
automation, and other advanced technologies, and a lack of under-
standing and appeal of manufacturing jobs among younger cohorts.
Despite shedding nearly 5 million workers between 2000 and 2016 [1],
most manufacturing companies have predicted that the demand for
workers will remain the same or even increase over the next few years
[2] as the COVID-19 pandemic has exposed the need to produce more
goods domestically [3]. At the same time, manufacturers anticipate that
few of the remaining jobs will be easily automated in the near future.
Instead, technology is now being used to complement human work and
upskill workers [4]. Yet, nearly 26% of manufacturing workers in the
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United States are 55 and older [5], and manufacturers have cited diffi-
culties in finding skilled workers to fill jobs for the past decade [6].
Consequently, 2.4 million manufacturing jobs are anticipated to be left
unfilled by 2030 with a projected cost of $2.5 trillion to the U.S.
manufacturing GDP [7].

The increasing adoption of new technologies is also likely to present
a potential mismatch as manufacturers will increasingly demand that
incumbent workers develop the ability to work with new technology on
the job while also raising skill requirements for new entry level workers
[8]. The skills gap in manufacturing is driven by the need for complex,
career-spanning expertise in areas such as assembly, maintenance, and
inspection [9]. Augmented Reality (AR) has been recently adopted as a
novel experiential training technology for faster training and upskilling
of manufacturing workers on complex tasks with the potential to reduce
new hire training time by 50% [10]. An early adopter of AR for wire
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assembly of aircrafts, Boeing reported a 25% reduction in cycle time and
anear-zero error rate [11]. Studies by the European projects STARMATE
[12,13] and SKILLS [14-16], and by companies such as Honeywell [17],
Porsche [18], and Mercedes-Benz [19] also reported up to 50%
improvement in production time with over 80% reduction in error rates
using AR. Subsequent studies proved the effectiveness of AR technology
in improving task performance and training time on various
manufacturing tasks such as assembly [20-22], maintenance [23,24],
and inspection [25-27].

The state-of-the-art in industrial AR is predominantly focused on AR
content creation and authoring solutions [23,28-32], improving object
tracking and registration [21,33,34], studying the effectiveness of
various modes of AR (e.g, head-mounted, hand-held, projector, haptic)
[20,26,35,36], and studying the applications of AR for remote assistance
[37] (see Section 2 for details). Yet, several fundamental questions
remain in regard to the best modes of task information delivery through
AR, task-specific effectiveness of AR versus traditional assistance/
training mediums, and the potentials and pitfalls of turning AR tech-
nology into an intelligent assistive tool for industrial workers. This paper
aims at advancing the fundamental understanding of the affordances of
AR as a disruptive workplace-based learning and training technology to
support future and incumbent manufacturing workers in performing
manual or semi-automated tasks that involve both complex manipula-
tion and reasoning. Specifically, the paper contributes new insights into
three fundamental questions:

11. What is the most effective way of delivering various task information
to the worker? What are their impacts on their efficiency, number of
errors, learning, independence, and cognitive load? These questions
aim at exploring the effectiveness of different modes of task in-
formation delivery through AR (e.g., text, images, 3D animations,
expert capture videos), and how they impact the ability of
workers to complete the task faster and fewer errors, and the
transition from novice to expert. Insights about the usability and
limitations of different modes of AR information can be infor-
mative for designing and prototyping user-centered AR applica-
tions that best meet the needs of workers.

21. What are the affordances of AR as a training tool prior to task per-
formance versus as an assistive tool during task performance? This
question is motivated by the importance of delineating training
applications where AR support is removed after a while from
assistive applications where AR hardware and apps are used as
permanent tools on demand. It is argued that the decision be-
tween these two applications depends upon the worker choice
complexity [38], the novelty of components, procedures, and
functional attributes associated with a given task [39], and the
expected complexity of the reasoning and decision-making ele-
ments of the task. Identifying the right application is a key pre-
requisite for informing the design of industrial AR technologies
and facilitating industry adoption.

31. How can future AR technologies transition from passive delivery of
task information to intelligent and proactive teaming with the worker?
One-size-fits-all delivery of task information via AR must be
replaced with an intelligent system that dynamically scaffolds
instructions to the subject matters that individual workers need
information on. Previous research underscores the necessity of
devising scaffolding mechanisms that align AR instructions with
the learner’s attention and cognitive processes to help them
construct knowledge [40-42]. It is therefore critical to under-
stand the nature of the scaffolding that AR affords, and how to
design it in the most effective way for the ongoing success of
individual workers through intelligent worker-AR teaming.

This paper presents the results of a case study along with industry
research to advance the fundamental understanding of Q1-Q3 and
proposes several research directions for future design and development

Advanced Engineering Informatics 50 (2021) 101410

of AR technologies for workplace-based learning in manufacturing.
Section 2 provides details of the design of the laboratory experiments
and expert interviews in detail. Section 3 presents the experimental re-
sults and analyses. Informed by the experiments and expert interviews,
Section 4 discusses several research challenges and directions associated
with Q1-Q3.

2. Related work

Several comprehensive review articles have been published in recent
years discussing the state-of-the-art, trends, and challenges of industrial
AR research practice. Wang et al. [43] provide a comprehensive review
of AR-based assembly systems, their technical features, characteristics,
and industrial applications. They categorize the applications of AR in
assembly into assembly training, assembly design and planning, and
assembly guidance, and identify four research challenges and future
trends in this area: tracking and registration, collaborative/shared AR
interfaces, 3D workspace scene capture, and context-aware knowledge
representation. Fernandez del Amo et al. [44] and Palmarini et al. [45]
conduct systematic reviews of scientific articles on industrial AR for
maintenance with emphasis on application areas, maintenance opera-
tions, AR hardware, development platform, holographic visualization
methods, tracking, and authoring solutions. Their findings point to the
methods for content creation/authoring, context-aware content adap-
tation, and the analysis of user interactions with AR as the main areas of
research in industrial AR with special reference to maintenance appli-
cations. Masood and Egger [46] and Egger and Masood [47] present a
detailed review on the state of AR research in Industry 4.0 and intelli-
gent manufacturing, and summarize the research challenges in three
categories of technology (e.g., tracking/registration, authoring, UI, er-
gonomics, processing speed), organization (e.g., user acceptance, pri-
vacy, cost), and environment (e.g., industry standards for AR,
employment protection, external support).

This work is motivated by three fundamental questions that remain
at least partially unanswered by the extant industrial AR literature
summarized in [43-47]. The first question seeks to understand the
impact of various modes of task information delivery via AR on the skill
acquisition of industrial workers. Q1: What is the most effective way of
delivering various task information to the worker? What are their impacts on
their efficiency, number of errors, learning, independence, and cognitive
load? Several studies have addressed this issue from a variety of per-
spectives, some of which are discussed here as examples. Vanneste et al.
[20] compare the effects of verbal, paper-based, and AR instructions on
the performance of assembly workers in terms of productivity, quality,
stress, help-seeking behavior, perceived task complexity, effort, and
frustration. A field study on AR-assisted assembly by Koumaditis et al.
[48] indicates improvements in physical and temporal demands, effort,
and task completion time. A comparative study between paper-based
and head-mounted AR instructions by Werrlich et al. [49] reports sig-
nificant improvements in error rates along with longer task completion
times in assembly tasks using AR. Smith et al. [50] study the effects of a
mobile AR fault diagnosis app on the performance of novices compared
to a group of experts with no AR support, and report significantly better
performance by AR-supported novices in terms of task time, accuracy,
and cognitive load. Polvi et al. [26] compare the effects of an AR app
versus pictures on inspection task performance and report significant
improvements by AR in task completion time, error rate, gaze shifts, and
cognitive load. Knowledge gap: The effectiveness of different modes of AR
information delivery and their measured impact on various task per-
formance metrics on a real-life manufacturing task remain to be
explored.

The second question posed by the authors strives to advance the
understanding of the affordances of AR technology as a preliminary
training tool versus a permanent assistive tool. Q2: What are the affor-
dances of AR as a training tool prior to task performance versus as an as-
sistive tool during task performance? This question is motivated by the
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limitations of current AR software and hardware technology, which may
hinder the use of AR as a permanent assistive tool. This issue has been
explored by a number of recent studies on the usability, acceptability,
and organizational challenges of industrial AR. Danielson et al. [36]
perform field interviews to understand the operators’ perspectives and
acceptance of AR as an assistive tool for engine assembly and report a
generally positive sentiment about AR by most industrial workers.
Masood and Egger [51] conduct a field experiment to investigate the
organizational and technological challenges of industrial AR for as-
sembly training, specifically hardware/software limitations, user
acceptance, ergonomics, usability, cost, and integration into shop floor
processes. Results of their experiments and surveys point to a lack of
sufficient research on organizational issues, especially on user accep-
tance and integration. Werrlich et al. [52] study the impact of a quiz
mode in AR where the user must successfully complete part selection
quizzes in addition to AR training prior to task performance. Their
findings show a 79% reduction in the number of errors in new assembly
tasks compared to baseline AR training. Brice et al. [53] study the us-
ability of AR as an assistive tool for industrial maintenance workers and
report a minimal effect on task completion time and high usability of
their custom AR application compared to traditional modes of instruc-
tion. Knowledge gap: It remains unclear under what conditions AR can be
most effective as an assistive tool versus a training tool, and how to
systematically identify and overcome barriers to industry adoption.

The final question aims to create new insights on the potential for AR
coupled with other spatial computing methods to enable effective
human-technology teaming in industrial settings. Q3: How can future AR
technologies transition from passive delivery of task information to intelligent
and proactive teaming with the worker? Several researchers have devel-
oped and tested intelligent context-aware AR apps for a variety of
manufacturing tasks such as assembly, maintenance, and inspection. For
example, Wang et al. [34,54] develop cognition-based interactive AR
assembly guidance systems which leverages advanced tracking and
registration methods for context-aware delivery of task information.
Westerfield et al. [55] integrate an intelligent tutoring system
comprising domain knowledge, student models, and pedagogical models
into AR to provide a personalized learning experience to each individual
learner. Sahu et al. [56] present a comprehensive review of research on
Al-powered AR systems, which is predominantly focused on vision
system calibration, object tracking and detection, pose estimation,
rendering, registration, and virtual object creation in AR. Knowledge
gaps: (1) Learning sciences research underscores the necessity of scaf-
folding and fading mechanisms [57-60] that align with the learner’s
attention and cognitive processes to help them construct knowledge
[40,42]. However, more research is needed on transitioning from one-
size-fits-all instructions with minimal attention to individual worker’s
needs and knowledge towards personalized interactions between
workers and AR systems. A lack of such personalization may lead to
potential unintended consequences, such as overdependence on tech-
nology and stifled innovation, and hinder industry adoption. (2) Extant
methods are mainly concerned with the provision of procedural
knowledge [61] through AR—the knowledge related to performing se-
quences of actions. Yet, this approach may only help workers learn
“how” to perform a given task without effectively learning the “why”
behind work instructions, quality assurance guidelines/specifications,
and informal shop floor knowledge. Only by understanding the deeper
causal relationships behind the procedural instructions can workers
develop the cognitive agility to solve new problems and adapt to new
circumstances. This study aims to provide preliminary insights into
these challenging and potentially transformative research topics in in-
dustrial AR.

3. Materials and methods

Laboratory experiments were conducted in collaboration with a
marine engine manufacturer in Massachusetts to investigate the impacts
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of AR on task performance. Furthermore, interviews were conducted
with experts from industry and academia to create insights into the
affordances of AR as a training versus assistive tool for manufacturing
workers (Q2) as well as the need for intelligent mechanisms that enable
adaptive and personalized interactions between manufacturing workers
and AR (Q3). The research methodology is inspired by [20] and
designed based on the multidisciplinary expertise of the authors and
their experience in experimental design. The study was approved by the
Institutional Review Board of Northeastern University (IRB# 20-06-21).

3.1. Laboratory experiments

Participants. The study participants were 20 engineering students at
Northeastern University, including 11 undergraduate students and 9
graduate students, 6 females and 14 males, 4 freshmen, 3 sophomores, 2
juniors, 5 seniors, 5 masters, and one PhD. All participants had an
average to high level of familiarity with electro-mechanical assembly
using simple tools, and no or minor prior experience with AR. A ques-
tionnaire was provided to the participants in the beginning to collect
their demographics and prior related experiences and use the data to
counterbalance the experimental groups. The participants received a
brief introduction to the assembly tasks and tools prior to the experi-
ments. They were also briefly trained on using HoloLens 2 (AR headsets)
for browsing through the AR app, steps, and different modes of
instructions.

Task and Apparatus. The experiments involved electro-mechanical
assembly of a fuel cell module for marine engines (Fig. 1-a), a repre-
sentative and relatively complex assembly task recommended by the
authors’ industry partners. The subassembly part consists of 26 groups
of components which have to be assembled over 13 steps using standard
tools such as open-ended wrench and Allen socket and rachet. The
components were placed on a numbered grid on the worktable in front
of the participants (Fig. 1-b). Two means of instruction were available:
AR and paper-based instruction. The AR app was developed in Unity
using the Mixed Reality Toolkit. The app includes three modes of
delivering the assembly guides and information to the subjects (Fig. 1-c):
(1) expert capture videos with vocal cues, which were generated by
mounting a GoPro on the forehead of an expert worker and recording
their task performance (Fig. 1-d), (2) textual descriptions of assembly
guides and information for each step (e.g, part numbers, tools, pro-
cedures) along with images of the parts to be assembled in that partic-
ular step, and (3) interactive 3D CAD animations that allow users to
view, rotate, and replay a holographic animation of the assembly step.
The AR hardware used for the experiments were HoloLens 2 headsets.

Procedure. A between-subject experiment design was used where the
participants were divided into two groups (Fig. 2): Group 1 (AR) and
Group 2 (paper). The paper guides include written step-by-step task
instructions (same as the textual instruction on the AR app) along with a
2D CAD drawing with orthographic and exploded views of the part with
component numbers (Fig. 2-c¢). Each participant performed three as-
sembly cycles on separate dates using their designated mode of in-
struction (i.e., AR for Group 1 and paper for Group 2) and then returned
after a few days to perform a final assembly cycle using the opposite
means of instruction (i.e., paper for Group 1 and AR for Group 2). The
reason behind the proposed design of experiments is to measure the
independence of Group 1 from AR as well as the usefulness and
acceptability of AR for Group 2, with the assumption that the first three
rounds of experiments were sufficient for training both groups of par-
ticipants on the assembly task. The experiments were conducted with
two participants in the lab at a time with a partition in-between to avoid
possible COVID-19 transmission. At the end of each round of experi-
ments, both groups of participants filled out a NASA-TLX (Task Load
Index) questionnaire [62], and the participants who used AR also
responded to the following questions:
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Fig. 1. (a) The assembly part CAD model and exploded view. (b) Worktable setup and tools used for assembly. (c) The AR app interface for one assembly step,
including textual descriptions and part images, interactive CAD animation, and expert capture video. (d) Recording expert capture videos.

Fig. 2. (a) Participant using AR-based task information. (b) Participant using paper-based task information. (c) 2D CAD drawings provided to the participants that

used paper-based task information.

@ In a few words, explain your opinion about the use of AR as a training
or assistive tool for manufacturing workers.

@ Tell us about your experience with HoloLens (scale: very low, low,
neutral, high, very high).

- How do you rate the level of comfort/fit of HoloLens?

- How satisfied are you with the job you did?

- How do you rate your knowledge of the process to do it without the
HoloLens?

- How much do you prefer to learn from a person rather than the
HoloLens?

- How distracting or cumbersome do you find HoloLens?

@ How do you rate the impact of different modes of AR instructions on
your ability to learn the assembly task and improve your perfor-
mance? (scale: not at all, very little, somewhat, quite a bit, a great
deal).

- Text and images
- Expert capture videos

- Interactive 3D animations
@ In afew words, explain your opinion about the use of AR as a training
or assistive tool for manufacturing workers.
@ What new, potentially interactive features would you recommend
being incorporated in the AR guides?

In addition to the above questionnaire, the experimenters also
collected the following data from each individual experiment: round of
experiment, mode of guide, time to completion (min), frequency of help-
seeking behavior (i.e., number of questions asked during assembly), the
types of questions asked (if any), number of errors, and the types of
errors made (if any).

Metrics. The following metrics were used to measure the task per-
formance and learning of the study participants.

@ Time to completion: The time needed or taken by the participant to
complete the task. Measurement: Time the assembly cycle.
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@ Number of errors: The number of errors made during each assembly
cycle. Measurement: Count the number of errors per cycle and record
the type of error(s) for further analysis.

@ Help seeking behavior [20]: The number of times help is requested by
the participant per assembly cycle. Measurement: Count the number
of times help is requested per cycle and record the question for
further analysis.

@ Learning curve: The degree of competence to which the acquired as-
sembly skill is retained through the passage of time. Measurement:
Measure the amount of improvement in time-to-completion, number
of errors, and help seeking behavior over time over temporally
separated rounds of experiments on a given task.

@ Independence from AR: The ability of AR-trained workers to accom-
plish the same task without AR, and the impacts of AR on task per-
formance of traditionally trained workers. Measurement: Bring the
participants in after a few days to perform the assembly task with the
opposite means of task information delivery, record and compare
their time-to-completion, number of errors, and help-seeking
behavior against their best recorded performance prior to the gap.

@ Cognitive load: The amount of working memory used to complete the
task following the instructions. Measurement: NASA-TLX
questionnaire.

@ Utility of different AR modes: The usefulness of different modes of AR
information delivery for learning a task. Measurement:
Questionnaire.

Hypotheses. AR significantly improves (H1) time-to-completion,
(H2) number of errors, (H3) help-seeking behavior, (H4) learning
curve, (H5) retention, and (H6) cognitive load of workers compared to
paper-based instructions. Two-sample t-test is utilized to test H1, H2,
H3, and H6, i.e., the statistical significance of the differences between
the means of Groups 1 and 2. Paired t-test is utilized to test H4 and H5, i.
e., to compare the performance of participants to self between rounds
1-2 and rounds 2-3 to measure learning (i.e., H4) and between rounds
3-4 to measure retention (i.e., H5).

3.2. Expert interviews

A group of 10 experts from industry, research institutions, and
community colleges was assembled to discuss the potentials, anticipated
benefits, risks, and barriers to adoption of AR for training and
workplace-based learning. The anonymized roles and affiliations of the
experts are as follows:

Director of a non-profit association of small to medium-sized man-
ufacturers, USA

Dean of science and engineering at a community college, USA

e Scientific advisor at the engineering division of a government
agency, USA

Professor of advanced manufacturing at a community college, USA
Professor of business and management at a major research institute,
USA

Professor of production engineering and automation at a major
research institute, Europe

Professor of practice in advanced manufacturing at a major research
institute, USA

Technology development manager at a major industrial automation
company, Europe

Manufacturing engineer at a major aerospace company, USA
Director at a major digital technologies company, USA

The discussions were guided by four high-level, open-ended ques-
tions: (1) How widespread do you think the adoption of AR technology
in manufacturing will be in the next 5 years? Which firms would be best
suited to adopt such technologies (e.g., size, product type, capital/labor
mix)? What impact might the adoption of AR technologies have on the
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skill requirements for specific job roles in assembly? To what degree can
AR technologies be used to train the future manufacturing workforce?
(2) What are the potential benefits and risks of AR for workplace-based
learning on complex, career-spanning expertise in areas such as as-
sembly and maintenance? Do you see other training techniques/tech-
nology alternatives on the horizon? (3) There is some evidence that
overreliance of workers on AR can cause “brittleness” of knowledge
[63], hinder learning, and deteriorate performance in adapting to novel
situations. In your opinion, what are the impacts of AR on the ability of
workers to learn new tasks in a way that enhances their flexibility in
transferring their knowledge to new situations? (4) How can we inter-
pret, predict, and guide the behavior of AR-supported assembly workers
through adaptive scaffolding of instructions to the expertise level of
individual workers, and immediate AR-based feedback on their actions
and decisions? What are the implications for the design of future AR
technologies?

4. Results

This section presents and analyzes the results of the laboratory ex-
periments followed by a summary of insights drawn from the expert
interviews.

4.1. Task performance

Time-to-Completion. Fig. 3 presents the mean task completion time
for Groups 1 and 2 in the four rounds of experiments. Note that the
groups switched their means of instruction in Round 4, and thus, the
results of Round 4 are analyzed separately later. Results of the two-
sample t-test presented in Table 1 indicate a statistically significant
difference between the mean time-to-completion achieved by partici-
pants in Groups 1 and 2 in Rounds 2 and 3. Note that Round 4 com-
parisons are not included because the means of instruction is swapped in
that round (see Section 3.1). That is, Group 2 (paper) significantly
outperformed Group 1 (AR) in the second and third rounds of experi-
ments in terms of task completion time, even though Group 1 showed a
slightly better performance in Round 1. As a result, hypothesis H1 is
rejected. The authors speculate that the participants in Group 2 (paper)
gradually transitioned from following the task information (i.e., as-
sembly steps, 2D CAD drawing) to relying more on their memory to
complete the task, while Group 1 (AR) still had to browse through the
AR app and attend to the videos, vocal cues, animations, etc. It must be
noted, however, that the performance of Group 1 was slightly affected
by their unfamiliarity with the HoloLens 2 hardware and the AR app
along with some technical issues during the experiments.

Number of Errors. The mean number of errors made by each group
during rounds one through four of experiments is shown in Fig. 3. The
two-sample t-test results presented in Table 2 indicate that Group 2
(paper) made a significantly higher mean number of errors compared to
Group 1 in Round 3 of the experiments (the p-value of Round 2 is also
near a). Note that Round 4 comparisons are not included because the
means of instruction is swapped in that round. That is due to a signifi-
cant reduction in the number of errors made by the participants in Group
1, while the other group maintained an almost steady and relatively
higher number of errors throughout Rounds 1-3. These findings
partially accept hypothesis H2. These findings underscore the significant
impact of spatiotemporal alignment of task information and visual/
vocal cues with experience on the number of errors made during task
performance. Common errors made by participants in each group during
Rounds 1-3 are as follows. Group 1: Incomplete insertion of parts,
incorrect placement of spacers and washers, incorrect orientation/
alignment of parts. Group 2: Incomplete, incorrect, or mixed-up insertion
of parts (e.g., spacers, washers, wires, retainer rings, screws), some parts
left unassembled, incorrect orientation/alignment of parts, incorrect
sequence of installation.

Help-Seeking Behavior. Neither group showed considerable help-
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Fig. 3. Mean time-to-completion (left) and mean number of errors (right) for Groups 1 (AR-enabled) and 2 (paper-based) in Rounds 1-4.

Table 1

Two-sample t-test on mean time-to-completion in Rounds 1-3 (¢ = 0.05).
Statistics Round 1 Round 2 Round 3
Mean (Group 1, Group 2) 35.94, 41.01 22.80, 17.64 17.34, 11.90
df 18 18 18
t-Statistic —0.85 1.90 2.44
p-value 0.20 0.04 0.01

Table 2

Two-sample t-test on the mean numbers of errors (@ = 0.05).
Statistics Round 1 Round 2 Round 3
Mean (Group 1, Group 2) 1.10, 1.60 0.70, 1.60 0.30, 1.90
Df 18 18 18
t-Statistic —0.85 —1.45 —2.50
p-value 0.20 0.08 0.01

seeking behavior. Only two participants from each group requested help
related to AR app, part orientation, and sequence of assembly. The
observed lack of help-seeking behavior is consistent with the observa-
tion of the marine engine manufacturer that workers often tend to
overthink and not reach out for help due to fear of embarrassment or
overconfidence, which may lead to failures down the line. The findings
indicate no relationship between the means of task information delivery
and help-seeking behavior, and therefore, hypothesis H3 is rejected.
Learning Curve. Paired t-test was conducted to study the statistical
significance of the differences between mean time-to-completion and
mean number of errors of each group between Rounds 1 and 2, Rounds 2
and 3, and Rounds 1 and 3. The results shown in Table 3 indicate sig-
nificant reductions in mean time-to-completion between each round for
both groups. Thus, it is concluded that the means of instruction (i.e.,
paper versus AR) does not have any noticeable impact on task comple-
tion time. However, the results of paired t-test on the mean number of
errors presented in Table 4 indicate that although Group 2 made no
improvement in the number of errors made during assembly, Group 1
participants were able to significantly reduce the number of errors

Table 3
Paired t-test on the mean time-to-completion of each group between Rounds 1
and 2, Rounds 2 and 3, and Rounds 1 and 3 (a« = 0.05).

Statistics  Group 1 Group 2

Rounds Rounds Rounds Rounds Rounds Rounds

1-2 2-3 1-3 1-2 2-3 1-3
Mean 35.94, 22.80, 35.94, 41.01, 17.64, 41.01,

22.80 16.39 16.39 17.64 11.90 11.90
Pearson 0.43 0.61 0.46 0.13 0.71 0.35
df 9 9 9 9 9 9
t-Statistic ~ 4.75 3.58 7.75 4.47 5.13 5.95
p-value 0.0005 0.002 1.42E- 0.0008 0.0003 0.0001

05

Table 4
Paired t-test on the mean number of errors by each group between Rounds 1 and
2, Rounds 2 and 3, and Rounds 1 and 3 (¢ = 0.05).

Statistics  Group 1 Group 2

Rounds Rounds Rounds Rounds Rounds Rounds

1-2 2-3 1-3 1-2 2-3 1-3
Mean 1.10, 0.7, 0.3 1.10, 1.60, 1.60, 1.60,

0.70 0.30 1.60 1.90 1.90
Pearson 0.31 -0.31 —-0.30 0.69 0.81 0.74
df 9 9 9 9 9 9
t-Statistic  1.18 1.18 2.06 0 -0.82 -0.71
p-value 0.13 0.13 0.03 0.5 0.22 0.25

between Rounds 1 and 3. Accordingly, it is concluded that not only AR-
based task information delivery leads to fewer errors, but it also helps
workers significantly reduce the number of errors in subsequent rounds
of operation. Thus, hypothesis H4 is accepted. Note that similar to the
results presented in Tables 1 and 2, Round 4 comparisons are not
included in the analysis because the means of instruction is swapped in
that round.

Independence from AR. Results of paired t-test on the mean time-to-
completion of each group in Round 3 and Round 4 indicate two inter-
esting observations (see Table 5): (1) Group 1 participants, who
switched from AR guides in Round 3 to paper guides in Round 4, were
able to complete their task even slightly faster in Round 4 than in Round
3, although the difference between mean completion times is not sta-
tistically significant. Here is a quote from one of the Group 1 participants
after completing Round 4 of the experiments: “It was less cumbersome to
assemble the components without the AR headset on, but the paper drawings
were much harder to interpret. I much prefer the CAD animations; I imagine if
I were to have started first with the paper-based instructions and drawings, it
would have taken me much longer to complete the task initially. I suspect the
only reason it took me around the same time to complete the task with paper-
based instructions is simply because I had assembled the component three
times already.” (2) Group 2, however, demonstrated significantly longer
completion times in Round 4 using AR than in Round 3 using paper,
which is partly attributed to their lack of prior experience with HoloLens
2 and the AR app. Furthermore, results of paired t-test on the mean

Table 5

Paired t-test on mean time-to-completion and number of errors by each group
between Rounds 3 and 4, after switching means of task information delivery
(a = 0.05).

Statistics Mean Time-to-Completion Mean Number of Errors
Group 1 Group 2 Group 1 Group 2

Mean 16.39, 14.91 11.90, 18.03 0.30, 0.30 1.90, 0.40

Pearson 0.80 —0.002 0.38 0.27

df 9 9 9 9

t-Statistic 1.67 -2.14 0 2.50

p-value 0.06 0.03 0.5 0.02
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number of errors made by each group during Rounds 3 and 4 (Table 5)
indicate that: (1) Group 1 maintained their relatively lower mean
number of errors (0.3) in Round 4 even after a few days gap and without
AR support. (2) The mean number of errors made by Group 2 in Round 4
was significantly reduced after switching from paper to AR compared to
Round 3 and Round 2. These findings point to the impacts of AR on
accelerating workers’ learning and competency, its usefulness for
traditionally trained workers (e.g., Group 2) in avoiding more errors
during task performance, and better memory retention than paper-based
instructions which results in a significantly lower number of errors even
after AR support is removed. Hence, hypothesis H5 is accepted.

4.2. Qualitative questionnaires

Results of the NASA-TLX questionnaire shown in Fig. 4 indicate that
both groups experienced almost identical levels of mental demand,
physical demand, temporal demand, perceived performance, effort, and
frustration. Thus, hypothesis H6 is rejected. In general, the assembly
task was perceived not too challenging by the participants, and they
were generally satisfied with their performance.

Fig. 5 shows the participant responses to questions about the impacts
of different modes of AR (i.e., text, 3D animation, and video) on task
performance, their independence from AR, and their experience with
HoloLens 2. The participants had different preferences for the three
modes of AR task information delivery. Some participants found the
combination of text and 3D CAD animation more helpful than the expert
capture videos. Examples of feedback comments by those participants
are:

The text instructions and CAD animation together provided a great deal of
detail about how to complete the current step. Reading the instructions
and visualizing the task through the animation provided clarity on how to
complete the task and what the subassembly should look like afterward.
Although helpful, the video was not completely necessary, and I skipped it
for most of the steps.

Today I turned off the video and relied on the text’s part numbers and the
3D model to complete the assembly. Since I already knew how each part
fit together, the text and 3D model ensured I had the correct part and the
correct orientation respectively. This made the assembly quite easy to
finish.

The video was only helpful in describing what order washers 2 and 3 go
and which way to screw on parts 25. Otherwise, the text and CAD helped
the most.

Being able to rotate and view the CAD model was super helpful during
assembly. It allowed me to easily understand how all the parts fit together.
The other two were useful, but tended to get in the way as I was putting
physical pieces together.

These participants appear to have learned mostly from the spatial
representation of the parts and assembly process through interactive 3D
CAD animations along with textual instructions to ensure correct
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selection, alignment, and insertion of the parts. Some other participants,
however, reported videos with vocal cues in conjunction with textual
instructions as their preferred mode of AR guides. These participants
preferred observing and imitating how an expert performs the task (i.e.,
learning from demonstration) as their primary mechanism to learn the
task:

The CAD animation was somewhat useful, but I preferred the video, as the
instructor assembled the part at about the same speed that I was. Addi-
tionally, there were little comments that helped, which a silent CAD an-
imation didn’t include.

I' mostly watched the video but referred to the CAD model when confused.
Lastly, I checked part numbers with the written instructions.

I tended to listen to the verbal cues from the video, occasionally checking
the text to confirm part numbers, and only once or twice double-checking
with the CAD animation.

The audio instructions from the video were most helpful to me because I
already knew about the part. I had some trouble manipulating the CAD
model, but it was also a helpful aid.

The participants were also asked to rate their independence from the
AR guides. Group 1 participants were initially highly dependent upon
AR. Specifically, 70% of the participants reported high or very high
dependence upon AR. However, they gradually became more indepen-
dent from AR as only 20% of them were highly or very highly dependent
on AR at the end of Round 3. On the other hand, 90% of the participants
from Group 2, who switched from paper to AR in Round 4, stated that
they are highly independent from AR. Yet, as discussed earlier, switch-
ing to AR helped this group significantly reduce the number of errors
made during assembly. Furthermore, most participants found HoloLens
comfortable and easy to use; however, the study participants are all
young and educated engineering students and the manufacturing
workforce may not have the same perception. In fact, one of the main
concerns of our industry partner was that the technology may be
intimidating and difficult to adopt for most of their senior workers.
Moreover, only 10% of the participants expressed a preference to be
trained by a person rather than the AR app. Again, it must be noted that
actual manufacturing workers may have different opinions and
preferences.

The participants were also asked to provide general suggestions for
using AR as a training or assistive tool in manufacturing based on their
experience with AR. Some key suggestions are as follows: (1) text-to-
speech features to read out the textual instructions, and also the use of
voice commands for hands-free interaction with the AR content, (2)
menu-based, non-procedural provision of task information so the user
can call certain instructions on demand, rather than having to go
through a fixed sequence of steps, (3) more interactive and person-
alizable layout design for the AR app so the user can use the layout they
feel most comfortable in, and (4) a help option where the user can get
assistance when something goes wrong or if they have a question about
the task.

NASA-TLX

How insecure, discouraged, stressed, or annoyed wereyou?
How hard did you have to work?

How successful were you in accomplishing the task?

How hurried or rushed was the pace of the task?

How physically demanding was the task?

How mentally demanding was the task?

Paper

(=}

20 40 60 80 100

m HoloLens

Fig. 4. NASA-TLX responses from both groups.
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Impact of Different AR Modes on
Task Performance
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How do you rate your knowledge of
the process to do it without AR?

Animation [ L I Round 4 I
] Round 3 T
Video T
Round 2 | I ||
Text ] [ [ Round 1 I I =
0% 20% 40% 60% 80% 100% 0%  20% 40% 60% 80% 100%
ONot at all O Very little @ Somewhat OVery Low OLow O Neutral
B Quite abit M A great deal B High B Very High
Experience with HoloLens
How distracting or cumbersome do you find HoloLens? [ | [ |
How much do you prefer to learn from a person rather than
the HoloLens? N | .
How satisfied do you feel about the quality of the job you e @ |
did?
How do you rate the level of comfort/fit of HoloLens? [ | . |
0% 20% 40% 60% 80% 100%

OVery Low OLow [ONeutral

EHigh ™ Very High

Fig. 5. Summary of qualitative questionnaire results on preferred AR modes, independence from AR, and experience with HoloLens. Note that the means of in-

struction was swapped between Round 3 and Round 4 (see Section 3.1).

4.3. Expert interviews

Several key insights were drawn from the interviews with 10 experts
from industry, research institutions, and community colleges:

1) AR can potentially be a disruptive assistive technology for

manufacturing tasks that are not rote and require complex reasoning

and decision-making; for example, inspection in regulated industries
such as aerospace.

The acceptability of AR as a “tool” is likely to differ among incum-

bent and future (tech-savvy) workers and different demographics.

The experiments presented in this paper only featured young and

educated engineering students. Current AR technology may not be

well received by more senior workers because the interfaces (e.g.,

hand gestures, manipulation of holograms) are not as intuitive as

they should be for someone with little or no experience with AR or
even with computers.

3) AR can increase the accessibility of manufacturing jobs to workers
with different demographic characteristics (e.g., limited English
proficiency) by allowing for self-guided learning without the need
for physical and real-time interaction with a trainer.

4) AR can create new opportunities for remote learning and assistance

from larger, and possibly more diverse, pools of physically/tempo-

rally distant coworkers. It can also enable remote assistance and
collaboration by allowing the on-site worker to share their experi-

ence with a remote expert and get immediate feedback with 3D vi-

sual cues.

Successful industry adoption of AR will require rigorous justification

through both proof-of-concept and economic cost-benefit analyses. It

is important to educate companies on the potential impacts of AR on
efficiency and productivity, the skills required for building, main-
taining, and updating the content, the costs of software and

2

—~

5

-

hardware, and the acceptability of the technology among both
incumbent and entry-level workforce.

Scalability must be regarded as a key criterion for the ideation and
design of AR technologies. The app developed in this study belongs
to one out of hundreds of different subassemblies made by one
manufacturer. The designs are also updated on a regular basis. The
question then becomes: How do we author AR guides for these
hundreds of different parts in a way that allows on-site engineers
with no background in AR content development to maintain and
update them in line with their regular design updates?

AR can be coupled with digital thread technologies to provide
workers with part, process, and task information such as geometric
dimensions and tolerances (GD&T), 3D annotations, material speci-
fications, and process notes [64,65] in real-time. AR can also
leverage industrial Internet-of-Things (IoT) data to enable access to
real-time machine data in semiautomated tasks such as robotic as-
sembly or CNC machining.

6

(7

7)

It is evident that AR has the potential to transform workplace-based
learning for future workers and thus bridge the labor market mismatch
and enhance the productivity and/or quality of future work. Neverthe-
less, industrial AR is still evolving, and several key challenges associated
with technology development, socioeconomic impacts, and human fac-
tors are yet to be addressed. The following section discusses several
multidisciplinary research topics and questions that need to be
addressed to realize the full potentials of AR as a useful tool for incum-
bent and future manufacturing workers.

5. Discussion

This paper is motivated by the three fundamental questions outlined
in the Introduction section. This section discusses several challenges and
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insights associated with each research question and provides recom-
mendations for future research in each area.

Q1. What is the most effective way of delivering various task information
to the worker? What are their impacts on their efficiency, number of errors,
learning, independence, and cognitive load? The laboratory experiments
highlighted the importance of tailoring AR guides to the unique needs of
individuals, which may drastically vary depending on their personal
preferences and knowledge of the task. Responses to the qualitative
questionnaires indicate that participants may have completely opposite
sentiments about the same affordance of AR. Learning sciences research
underscores the necessity of devising scaffolding mechanisms that align
AR instructions to the learner’s attention and cognitive processes to help
them construct knowledge [40-42]. It is therefore critical to understand
the nature of the scaffolding that AR affords, and how to design it in the
most effective ways for the ongoing success of individual workers.
Future research must therefore focus on transitioning from procedural,
one-size-fits-all delivery of task information through AR to intelligent
AR systems that dynamically scaffold AR guides to the subject matters
that individual workers need training on. New methods are indeed
required to interpret, predict, and guide the behavior of AR-supported
manufacturing workers through adaptive scaffolding of instructions to
the expertise level of individual workers. Results of the laboratory ex-
periments also indicate that most participants developed absolute in-
dependence from AR after two or three assembly cycles, which points to
the effectiveness of AR in improving task competency, and yet its low
utility as an assistive tool for routine tasks such as the fuel cell module
assembly used in the experiments. Hence, it is essential to develop a
formalism of AR use-cases in manufacturing, and clearly differentiate
training use-cases from use-cases where AR is utilized by manufacturing
workers as an assistive tool during operation.

Q2. What are the affordances of AR as a training tool prior to task
performance versus as an assistive tool during task performance? According
to a recent report by MIT [66], the newer wave of automation in
manufacturing is not so much to replace workers but rather to increase
precision, safety, and product quality. Large firms continue to automate
tasks that are “dirty, dull, and dangerous,” but preserve “value-added”
tasks that are the more desirable parts of manufacturing workers’ jobs.
Those kinds of value-added jobs are the jobs that are hard to automate,
either because they require sophisticated and precise manipulation of
physical objects that only a human is capable of (e.g., the fuel cell
module assembly task) or because they require complex reasoning and
decision-making that machines are not capable of, yet. In this context,
AR can be used as a training tool if the task involves relatively complex
manipulation of physical objects but does not require a considerable

2

20 P AR Assistance AR Assistance
o~ 7y

5 %D T (e.g., diagnosis, (e.g., repair, precision
2 % maintenance) inspection)

]

2
Gy

=]

o2

5 .5

5 9 N/A AR Training
= z

E“ A 3 (e.g., palletizing, pack- (e.g., mechanical as-
(3 aging) sembly)
Low High

Complexity of Physical Manipulation

Fig. 6. Applications of AR in manufacturing tasks with different levels of va-
riety and worker choice complexity.
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level of reasoning or decision-making (see Fig. 6). Mechanical assembly
is a good example of such tasks—an assembler typically does not need to
analyze unseen scenarios or make difficult decisions, but to precisely
follow and implement the assembly procedure. In such cases, the worker
may learn and master the task via AR and then perform the task without
the AR support.

If the task involves complex reasoning and decision-making, how-
ever, AR can serve as an effective tool for providing intelligent and
personalized guidance, notifications, and task information, on-demand,
during task performance, regardless of the complexity of physical
manipulation (Fig. 6). Maintenance and inspection are good use-cases
for AR assistants. In precision machining, for example, complex parts
must be recurrently inspected using a wide range of gages under un-
changed conditions. An adept inspector must have an in-depth knowl-
edge of materials, processes, and equipment, and the necessary skills to
continually measure and analyze gage readings and product
manufacturing information to make proper decisions (e.g., offsetting the
machine, reworking, or scraping the part). In such environments, AR
technology can be deployed as an assistive tool to provide personalized
and on-demand performance support to enhance the learning and
adaptability of workers to succeed in complex, dynamic work environ-
ments. Future research must therefore develop intelligent AR systems
that leverage various sources of data streams from industrial IoT and
smart manufacturing equipment, digital thread, and smart AR devices
(e.g., HoloLens) to continuously monitor the status of work and support
worker’s reasoning and decision-making processes through adaptive
and personalized delivery of task information, smart notifications, and
interactive features such as help options, question-answering, or remote
assistance. It is important to note that these claims and the classification
presented in Fig. 6 are based solely on the authors’ knowledge and
judgment.

Q3. How can future AR technologies transition from passive delivery of
task information to intelligent and proactive teaming with the worker? As
discussed earlier, state-of-the-art AR solutions offer limited personalized
interactions between workers and AR, and predominantly provide pro-
cedural, “one-size-fits-all” instructions with minimal attention to the
individual worker’s needs and knowledge. This may lead to potential
unintended consequences such as overdependence on technology and
stifled innovation [14,16,63], and also hinder industry adoption. The
provision of procedural knowledge [61] through AR—the knowledge
related to performing sequences of actions—merely helps workers learn
“how” to perform a given task without effectively learning the “why”
behind work instructions, quality assurance guidelines and specifica-
tions, and informal shop floor knowledge. Only by understanding the
deeper causal relationships behind the procedural instructions can
workers develop the cognitive agility to solve new problems and adapt
to new circumstances, especially in tasks that involve complex reasoning
and decision-making (e.g., inspection, repair). Future research must
explore how AR can intelligently tailor scaffolds to the specific needs of
workers to enhance not only their performance efficiency but their
complex reasoning skills for solving novel problems and adapting to
changing work environments. It is therefore important to devise and
examine new methods at the intersection of Al, AR, and human-machine
interaction to advance the fundamental understanding of how new
sources of multimodal data captured by AR devices, combined with
digital thread, IoT, and cloud-based analytics, can be harnessed to
interpret, predict, and guide the behavior of future manufacturing
workers through intelligent worker-AR teaming. The integration of AR
and digital twin technology [67] can create breakthrough possibilities to
bridge the gap the rich, data-driven insights drawn from digital twins
and the task performance and decisions of workers supported by AR.
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