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A B S T R A C T   

This paper aims at advancing the fundamental understanding of the affordances of Augmented Reality (AR) as a 
workplace-based learning and training technology in supporting manual or semi-automated manufacturing tasks 
that involve both complex manipulation and reasoning. Between-subject laboratory experiments involving 20 
participants are conducted on a real-life electro-mechanical assembly task to investigate the impacts of various 
modes of information delivery through AR compared to traditional training methods on task efficiency, number 
of errors, learning, independence, and cognitive load. The AR application is developed in Unity and deployed on 
HoloLens 2 headsets. Interviews with experts from industry and academia are also conducted to create new 
insights into the affordances of AR as a training versus assistive tool for manufacturing workers, as well as the 
need for intelligent mechanisms that enable adaptive and personalized interactions between workers and AR. 
The findings indicate that despite comparable performance between the AR and control groups in terms of task 
completion time, learning curve, and independence from instructions, AR dramatically decreases the number of 
errors compared to traditional instruction, which is sustained after the AR support is removed. Several insights 
drawn from the experiments and expert interviews are discussed to inform the design of future AR technologies 
for both training and assisting incumbent and future manufacturing workers on complex manipulation and 
reasoning tasks.   

1. Introduction 

The future of manufacturing workforce faces a “perfect storm” of 
challenges: A shortage of skilled workers due to workforce aging and 
retirement, shifting skill requirements due to the introduction of AI, 
automation, and other advanced technologies, and a lack of under
standing and appeal of manufacturing jobs among younger cohorts. 
Despite shedding nearly 5 million workers between 2000 and 2016 [1], 
most manufacturing companies have predicted that the demand for 
workers will remain the same or even increase over the next few years 
[2] as the COVID-19 pandemic has exposed the need to produce more 
goods domestically [3]. At the same time, manufacturers anticipate that 
few of the remaining jobs will be easily automated in the near future. 
Instead, technology is now being used to complement human work and 
upskill workers [4]. Yet, nearly 26% of manufacturing workers in the 

United States are 55 and older [5], and manufacturers have cited diffi
culties in finding skilled workers to fill jobs for the past decade [6]. 
Consequently, 2.4 million manufacturing jobs are anticipated to be left 
unfilled by 2030 with a projected cost of $2.5 trillion to the U.S. 
manufacturing GDP [7]. 

The increasing adoption of new technologies is also likely to present 
a potential mismatch as manufacturers will increasingly demand that 
incumbent workers develop the ability to work with new technology on 
the job while also raising skill requirements for new entry level workers 
[8]. The skills gap in manufacturing is driven by the need for complex, 
career-spanning expertise in areas such as assembly, maintenance, and 
inspection [9]. Augmented Reality (AR) has been recently adopted as a 
novel experiential training technology for faster training and upskilling 
of manufacturing workers on complex tasks with the potential to reduce 
new hire training time by 50% [10]. An early adopter of AR for wire 
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assembly of aircrafts, Boeing reported a 25% reduction in cycle time and 
a near-zero error rate [11]. Studies by the European projects STARMATE 
[12,13] and SKILLS [14–16], and by companies such as Honeywell [17], 
Porsche [18], and Mercedes-Benz [19] also reported up to 50% 
improvement in production time with over 80% reduction in error rates 
using AR. Subsequent studies proved the effectiveness of AR technology 
in improving task performance and training time on various 
manufacturing tasks such as assembly [20–22], maintenance [23,24], 
and inspection [25–27]. 

The state-of-the-art in industrial AR is predominantly focused on AR 
content creation and authoring solutions [23,28–32], improving object 
tracking and registration [21,33,34], studying the effectiveness of 
various modes of AR (e.g., head-mounted, hand-held, projector, haptic) 
[20,26,35,36], and studying the applications of AR for remote assistance 
[37] (see Section 2 for details). Yet, several fundamental questions 
remain in regard to the best modes of task information delivery through 
AR, task-specific effectiveness of AR versus traditional assistance/ 
training mediums, and the potentials and pitfalls of turning AR tech
nology into an intelligent assistive tool for industrial workers. This paper 
aims at advancing the fundamental understanding of the affordances of 
AR as a disruptive workplace-based learning and training technology to 
support future and incumbent manufacturing workers in performing 
manual or semi-automated tasks that involve both complex manipula
tion and reasoning. Specifically, the paper contributes new insights into 
three fundamental questions:  

11. What is the most effective way of delivering various task information 
to the worker? What are their impacts on their efficiency, number of 
errors, learning, independence, and cognitive load? These questions 
aim at exploring the effectiveness of different modes of task in
formation delivery through AR (e.g., text, images, 3D animations, 
expert capture videos), and how they impact the ability of 
workers to complete the task faster and fewer errors, and the 
transition from novice to expert. Insights about the usability and 
limitations of different modes of AR information can be infor
mative for designing and prototyping user-centered AR applica
tions that best meet the needs of workers. 

21. What are the affordances of AR as a training tool prior to task per
formance versus as an assistive tool during task performance? This 
question is motivated by the importance of delineating training 
applications where AR support is removed after a while from 
assistive applications where AR hardware and apps are used as 
permanent tools on demand. It is argued that the decision be
tween these two applications depends upon the worker choice 
complexity [38], the novelty of components, procedures, and 
functional attributes associated with a given task [39], and the 
expected complexity of the reasoning and decision-making ele
ments of the task. Identifying the right application is a key pre
requisite for informing the design of industrial AR technologies 
and facilitating industry adoption.  

31. How can future AR technologies transition from passive delivery of 
task information to intelligent and proactive teaming with the worker? 
One-size-fits-all delivery of task information via AR must be 
replaced with an intelligent system that dynamically scaffolds 
instructions to the subject matters that individual workers need 
information on. Previous research underscores the necessity of 
devising scaffolding mechanisms that align AR instructions with 
the learner’s attention and cognitive processes to help them 
construct knowledge [40–42]. It is therefore critical to under
stand the nature of the scaffolding that AR affords, and how to 
design it in the most effective way for the ongoing success of 
individual workers through intelligent worker-AR teaming. 

This paper presents the results of a case study along with industry 
research to advance the fundamental understanding of Q1-Q3 and 
proposes several research directions for future design and development 

of AR technologies for workplace-based learning in manufacturing. 
Section 2 provides details of the design of the laboratory experiments 
and expert interviews in detail. Section 3 presents the experimental re
sults and analyses. Informed by the experiments and expert interviews, 
Section 4 discusses several research challenges and directions associated 
with Q1-Q3. 

2. Related work 

Several comprehensive review articles have been published in recent 
years discussing the state-of-the-art, trends, and challenges of industrial 
AR research practice. Wang et al. [43] provide a comprehensive review 
of AR-based assembly systems, their technical features, characteristics, 
and industrial applications. They categorize the applications of AR in 
assembly into assembly training, assembly design and planning, and 
assembly guidance, and identify four research challenges and future 
trends in this area: tracking and registration, collaborative/shared AR 
interfaces, 3D workspace scene capture, and context-aware knowledge 
representation. Fernandez del Amo et al. [44] and Palmarini et al. [45] 
conduct systematic reviews of scientific articles on industrial AR for 
maintenance with emphasis on application areas, maintenance opera
tions, AR hardware, development platform, holographic visualization 
methods, tracking, and authoring solutions. Their findings point to the 
methods for content creation/authoring, context-aware content adap
tation, and the analysis of user interactions with AR as the main areas of 
research in industrial AR with special reference to maintenance appli
cations. Masood and Egger [46] and Egger and Masood [47] present a 
detailed review on the state of AR research in Industry 4.0 and intelli
gent manufacturing, and summarize the research challenges in three 
categories of technology (e.g., tracking/registration, authoring, UI, er
gonomics, processing speed), organization (e.g., user acceptance, pri
vacy, cost), and environment (e.g., industry standards for AR, 
employment protection, external support). 

This work is motivated by three fundamental questions that remain 
at least partially unanswered by the extant industrial AR literature 
summarized in [43–47]. The first question seeks to understand the 
impact of various modes of task information delivery via AR on the skill 
acquisition of industrial workers. Q1: What is the most effective way of 
delivering various task information to the worker? What are their impacts on 
their efficiency, number of errors, learning, independence, and cognitive 
load? Several studies have addressed this issue from a variety of per
spectives, some of which are discussed here as examples. Vanneste et al. 
[20] compare the effects of verbal, paper-based, and AR instructions on 
the performance of assembly workers in terms of productivity, quality, 
stress, help-seeking behavior, perceived task complexity, effort, and 
frustration. A field study on AR-assisted assembly by Koumaditis et al. 
[48] indicates improvements in physical and temporal demands, effort, 
and task completion time. A comparative study between paper-based 
and head-mounted AR instructions by Werrlich et al. [49] reports sig
nificant improvements in error rates along with longer task completion 
times in assembly tasks using AR. Smith et al. [50] study the effects of a 
mobile AR fault diagnosis app on the performance of novices compared 
to a group of experts with no AR support, and report significantly better 
performance by AR-supported novices in terms of task time, accuracy, 
and cognitive load. Polvi et al. [26] compare the effects of an AR app 
versus pictures on inspection task performance and report significant 
improvements by AR in task completion time, error rate, gaze shifts, and 
cognitive load. Knowledge gap: The effectiveness of different modes of AR 
information delivery and their measured impact on various task per
formance metrics on a real-life manufacturing task remain to be 
explored. 

The second question posed by the authors strives to advance the 
understanding of the affordances of AR technology as a preliminary 
training tool versus a permanent assistive tool. Q2: What are the affor
dances of AR as a training tool prior to task performance versus as an as
sistive tool during task performance? This question is motivated by the 
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limitations of current AR software and hardware technology, which may 
hinder the use of AR as a permanent assistive tool. This issue has been 
explored by a number of recent studies on the usability, acceptability, 
and organizational challenges of industrial AR. Danielson et al. [36] 
perform field interviews to understand the operators’ perspectives and 
acceptance of AR as an assistive tool for engine assembly and report a 
generally positive sentiment about AR by most industrial workers. 
Masood and Egger [51] conduct a field experiment to investigate the 
organizational and technological challenges of industrial AR for as
sembly training, specifically hardware/software limitations, user 
acceptance, ergonomics, usability, cost, and integration into shop floor 
processes. Results of their experiments and surveys point to a lack of 
sufficient research on organizational issues, especially on user accep
tance and integration. Werrlich et al. [52] study the impact of a quiz 
mode in AR where the user must successfully complete part selection 
quizzes in addition to AR training prior to task performance. Their 
findings show a 79% reduction in the number of errors in new assembly 
tasks compared to baseline AR training. Brice et al. [53] study the us
ability of AR as an assistive tool for industrial maintenance workers and 
report a minimal effect on task completion time and high usability of 
their custom AR application compared to traditional modes of instruc
tion. Knowledge gap: It remains unclear under what conditions AR can be 
most effective as an assistive tool versus a training tool, and how to 
systematically identify and overcome barriers to industry adoption. 

The final question aims to create new insights on the potential for AR 
coupled with other spatial computing methods to enable effective 
human-technology teaming in industrial settings. Q3: How can future AR 
technologies transition from passive delivery of task information to intelligent 
and proactive teaming with the worker? Several researchers have devel
oped and tested intelligent context-aware AR apps for a variety of 
manufacturing tasks such as assembly, maintenance, and inspection. For 
example, Wang et al. [34,54] develop cognition-based interactive AR 
assembly guidance systems which leverages advanced tracking and 
registration methods for context-aware delivery of task information. 
Westerfield et al. [55] integrate an intelligent tutoring system 
comprising domain knowledge, student models, and pedagogical models 
into AR to provide a personalized learning experience to each individual 
learner. Sahu et al. [56] present a comprehensive review of research on 
AI-powered AR systems, which is predominantly focused on vision 
system calibration, object tracking and detection, pose estimation, 
rendering, registration, and virtual object creation in AR. Knowledge 
gaps: (1) Learning sciences research underscores the necessity of scaf
folding and fading mechanisms [57–60] that align with the learner’s 
attention and cognitive processes to help them construct knowledge 
[40,42]. However, more research is needed on transitioning from one- 
size-fits-all instructions with minimal attention to individual worker’s 
needs and knowledge towards personalized interactions between 
workers and AR systems. A lack of such personalization may lead to 
potential unintended consequences, such as overdependence on tech
nology and stifled innovation, and hinder industry adoption. (2) Extant 
methods are mainly concerned with the provision of procedural 
knowledge [61] through AR—the knowledge related to performing se
quences of actions. Yet, this approach may only help workers learn 
“how” to perform a given task without effectively learning the “why” 
behind work instructions, quality assurance guidelines/specifications, 
and informal shop floor knowledge. Only by understanding the deeper 
causal relationships behind the procedural instructions can workers 
develop the cognitive agility to solve new problems and adapt to new 
circumstances. This study aims to provide preliminary insights into 
these challenging and potentially transformative research topics in in
dustrial AR. 

3. Materials and methods 

Laboratory experiments were conducted in collaboration with a 
marine engine manufacturer in Massachusetts to investigate the impacts 

of AR on task performance. Furthermore, interviews were conducted 
with experts from industry and academia to create insights into the 
affordances of AR as a training versus assistive tool for manufacturing 
workers (Q2) as well as the need for intelligent mechanisms that enable 
adaptive and personalized interactions between manufacturing workers 
and AR (Q3). The research methodology is inspired by [20] and 
designed based on the multidisciplinary expertise of the authors and 
their experience in experimental design. The study was approved by the 
Institutional Review Board of Northeastern University (IRB# 20-06-21). 

3.1. Laboratory experiments 

Participants. The study participants were 20 engineering students at 
Northeastern University, including 11 undergraduate students and 9 
graduate students, 6 females and 14 males, 4 freshmen, 3 sophomores, 2 
juniors, 5 seniors, 5 masters, and one PhD. All participants had an 
average to high level of familiarity with electro-mechanical assembly 
using simple tools, and no or minor prior experience with AR. A ques
tionnaire was provided to the participants in the beginning to collect 
their demographics and prior related experiences and use the data to 
counterbalance the experimental groups. The participants received a 
brief introduction to the assembly tasks and tools prior to the experi
ments. They were also briefly trained on using HoloLens 2 (AR headsets) 
for browsing through the AR app, steps, and different modes of 
instructions. 

Task and Apparatus. The experiments involved electro-mechanical 
assembly of a fuel cell module for marine engines (Fig. 1-a), a repre
sentative and relatively complex assembly task recommended by the 
authors’ industry partners. The subassembly part consists of 26 groups 
of components which have to be assembled over 13 steps using standard 
tools such as open-ended wrench and Allen socket and rachet. The 
components were placed on a numbered grid on the worktable in front 
of the participants (Fig. 1-b). Two means of instruction were available: 
AR and paper-based instruction. The AR app was developed in Unity 
using the Mixed Reality Toolkit. The app includes three modes of 
delivering the assembly guides and information to the subjects (Fig. 1-c): 
(1) expert capture videos with vocal cues, which were generated by 
mounting a GoPro on the forehead of an expert worker and recording 
their task performance (Fig. 1-d), (2) textual descriptions of assembly 
guides and information for each step (e.g., part numbers, tools, pro
cedures) along with images of the parts to be assembled in that partic
ular step, and (3) interactive 3D CAD animations that allow users to 
view, rotate, and replay a holographic animation of the assembly step. 
The AR hardware used for the experiments were HoloLens 2 headsets. 

Procedure. A between-subject experiment design was used where the 
participants were divided into two groups (Fig. 2): Group 1 (AR) and 
Group 2 (paper). The paper guides include written step-by-step task 
instructions (same as the textual instruction on the AR app) along with a 
2D CAD drawing with orthographic and exploded views of the part with 
component numbers (Fig. 2-c). Each participant performed three as
sembly cycles on separate dates using their designated mode of in
struction (i.e., AR for Group 1 and paper for Group 2) and then returned 
after a few days to perform a final assembly cycle using the opposite 
means of instruction (i.e., paper for Group 1 and AR for Group 2). The 
reason behind the proposed design of experiments is to measure the 
independence of Group 1 from AR as well as the usefulness and 
acceptability of AR for Group 2, with the assumption that the first three 
rounds of experiments were sufficient for training both groups of par
ticipants on the assembly task. The experiments were conducted with 
two participants in the lab at a time with a partition in-between to avoid 
possible COVID-19 transmission. At the end of each round of experi
ments, both groups of participants filled out a NASA-TLX (Task Load 
Index) questionnaire [62], and the participants who used AR also 
responded to the following questions: 
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● In a few words, explain your opinion about the use of AR as a training 
or assistive tool for manufacturing workers.  

● Tell us about your experience with HoloLens (scale: very low, low, 
neutral, high, very high).  

- How do you rate the level of comfort/fit of HoloLens?  
- How satisfied are you with the job you did?  
- How do you rate your knowledge of the process to do it without the 

HoloLens?  
- How much do you prefer to learn from a person rather than the 

HoloLens?  
- How distracting or cumbersome do you find HoloLens?  

● How do you rate the impact of different modes of AR instructions on 
your ability to learn the assembly task and improve your perfor
mance? (scale: not at all, very little, somewhat, quite a bit, a great 
deal).  

- Text and images  
- Expert capture videos  

- Interactive 3D animations  
● In a few words, explain your opinion about the use of AR as a training 

or assistive tool for manufacturing workers.  
● What new, potentially interactive features would you recommend 

being incorporated in the AR guides? 

In addition to the above questionnaire, the experimenters also 
collected the following data from each individual experiment: round of 
experiment, mode of guide, time to completion (min), frequency of help- 
seeking behavior (i.e., number of questions asked during assembly), the 
types of questions asked (if any), number of errors, and the types of 
errors made (if any). 

Metrics. The following metrics were used to measure the task per
formance and learning of the study participants.  

● Time to completion: The time needed or taken by the participant to 
complete the task. Measurement: Time the assembly cycle. 

Fig. 1. (a) The assembly part CAD model and exploded view. (b) Worktable setup and tools used for assembly. (c) The AR app interface for one assembly step, 
including textual descriptions and part images, interactive CAD animation, and expert capture video. (d) Recording expert capture videos. 

Fig. 2. (a) Participant using AR-based task information. (b) Participant using paper-based task information. (c) 2D CAD drawings provided to the participants that 
used paper-based task information. 
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● Number of errors: The number of errors made during each assembly 
cycle. Measurement: Count the number of errors per cycle and record 
the type of error(s) for further analysis.  

● Help seeking behavior [20]: The number of times help is requested by 
the participant per assembly cycle. Measurement: Count the number 
of times help is requested per cycle and record the question for 
further analysis. 

● Learning curve: The degree of competence to which the acquired as
sembly skill is retained through the passage of time. Measurement: 
Measure the amount of improvement in time-to-completion, number 
of errors, and help seeking behavior over time over temporally 
separated rounds of experiments on a given task. 

● Independence from AR: The ability of AR-trained workers to accom
plish the same task without AR, and the impacts of AR on task per
formance of traditionally trained workers. Measurement: Bring the 
participants in after a few days to perform the assembly task with the 
opposite means of task information delivery, record and compare 
their time-to-completion, number of errors, and help-seeking 
behavior against their best recorded performance prior to the gap.  

● Cognitive load: The amount of working memory used to complete the 
task following the instructions. Measurement: NASA-TLX 
questionnaire.  

● Utility of different AR modes: The usefulness of different modes of AR 
information delivery for learning a task. Measurement: 
Questionnaire. 

Hypotheses. AR significantly improves (H1) time-to-completion, 
(H2) number of errors, (H3) help-seeking behavior, (H4) learning 
curve, (H5) retention, and (H6) cognitive load of workers compared to 
paper-based instructions. Two-sample t-test is utilized to test H1, H2, 
H3, and H6, i.e., the statistical significance of the differences between 
the means of Groups 1 and 2. Paired t-test is utilized to test H4 and H5, i. 
e., to compare the performance of participants to self between rounds 
1–2 and rounds 2–3 to measure learning (i.e., H4) and between rounds 
3–4 to measure retention (i.e., H5). 

3.2. Expert interviews 

A group of 10 experts from industry, research institutions, and 
community colleges was assembled to discuss the potentials, anticipated 
benefits, risks, and barriers to adoption of AR for training and 
workplace-based learning. The anonymized roles and affiliations of the 
experts are as follows: 

• Director of a non-profit association of small to medium-sized man
ufacturers, USA  

• Dean of science and engineering at a community college, USA  
• Scientific advisor at the engineering division of a government 

agency, USA  
• Professor of advanced manufacturing at a community college, USA  
• Professor of business and management at a major research institute, 

USA  
• Professor of production engineering and automation at a major 

research institute, Europe  
• Professor of practice in advanced manufacturing at a major research 

institute, USA  
• Technology development manager at a major industrial automation 

company, Europe  
• Manufacturing engineer at a major aerospace company, USA  
• Director at a major digital technologies company, USA 

The discussions were guided by four high-level, open-ended ques
tions: (1) How widespread do you think the adoption of AR technology 
in manufacturing will be in the next 5 years? Which firms would be best 
suited to adopt such technologies (e.g., size, product type, capital/labor 
mix)? What impact might the adoption of AR technologies have on the 

skill requirements for specific job roles in assembly? To what degree can 
AR technologies be used to train the future manufacturing workforce? 
(2) What are the potential benefits and risks of AR for workplace-based 
learning on complex, career-spanning expertise in areas such as as
sembly and maintenance? Do you see other training techniques/tech
nology alternatives on the horizon? (3) There is some evidence that 
overreliance of workers on AR can cause “brittleness” of knowledge 
[63], hinder learning, and deteriorate performance in adapting to novel 
situations. In your opinion, what are the impacts of AR on the ability of 
workers to learn new tasks in a way that enhances their flexibility in 
transferring their knowledge to new situations? (4) How can we inter
pret, predict, and guide the behavior of AR-supported assembly workers 
through adaptive scaffolding of instructions to the expertise level of 
individual workers, and immediate AR-based feedback on their actions 
and decisions? What are the implications for the design of future AR 
technologies? 

4. Results 

This section presents and analyzes the results of the laboratory ex
periments followed by a summary of insights drawn from the expert 
interviews. 

4.1. Task performance 

Time-to-Completion. Fig. 3 presents the mean task completion time 
for Groups 1 and 2 in the four rounds of experiments. Note that the 
groups switched their means of instruction in Round 4, and thus, the 
results of Round 4 are analyzed separately later. Results of the two- 
sample t-test presented in Table 1 indicate a statistically significant 
difference between the mean time-to-completion achieved by partici
pants in Groups 1 and 2 in Rounds 2 and 3. Note that Round 4 com
parisons are not included because the means of instruction is swapped in 
that round (see Section 3.1). That is, Group 2 (paper) significantly 
outperformed Group 1 (AR) in the second and third rounds of experi
ments in terms of task completion time, even though Group 1 showed a 
slightly better performance in Round 1. As a result, hypothesis H1 is 
rejected. The authors speculate that the participants in Group 2 (paper) 
gradually transitioned from following the task information (i.e., as
sembly steps, 2D CAD drawing) to relying more on their memory to 
complete the task, while Group 1 (AR) still had to browse through the 
AR app and attend to the videos, vocal cues, animations, etc. It must be 
noted, however, that the performance of Group 1 was slightly affected 
by their unfamiliarity with the HoloLens 2 hardware and the AR app 
along with some technical issues during the experiments. 

Number of Errors. The mean number of errors made by each group 
during rounds one through four of experiments is shown in Fig. 3. The 
two-sample t-test results presented in Table 2 indicate that Group 2 
(paper) made a significantly higher mean number of errors compared to 
Group 1 in Round 3 of the experiments (the p-value of Round 2 is also 
near α). Note that Round 4 comparisons are not included because the 
means of instruction is swapped in that round. That is due to a signifi
cant reduction in the number of errors made by the participants in Group 
1, while the other group maintained an almost steady and relatively 
higher number of errors throughout Rounds 1–3. These findings 
partially accept hypothesis H2. These findings underscore the significant 
impact of spatiotemporal alignment of task information and visual/ 
vocal cues with experience on the number of errors made during task 
performance. Common errors made by participants in each group during 
Rounds 1–3 are as follows. Group 1: Incomplete insertion of parts, 
incorrect placement of spacers and washers, incorrect orientation/ 
alignment of parts. Group 2: Incomplete, incorrect, or mixed-up insertion 
of parts (e.g., spacers, washers, wires, retainer rings, screws), some parts 
left unassembled, incorrect orientation/alignment of parts, incorrect 
sequence of installation. 

Help-Seeking Behavior. Neither group showed considerable help- 
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seeking behavior. Only two participants from each group requested help 
related to AR app, part orientation, and sequence of assembly. The 
observed lack of help-seeking behavior is consistent with the observa
tion of the marine engine manufacturer that workers often tend to 
overthink and not reach out for help due to fear of embarrassment or 
overconfidence, which may lead to failures down the line. The findings 
indicate no relationship between the means of task information delivery 
and help-seeking behavior, and therefore, hypothesis H3 is rejected. 

Learning Curve. Paired t-test was conducted to study the statistical 
significance of the differences between mean time-to-completion and 
mean number of errors of each group between Rounds 1 and 2, Rounds 2 
and 3, and Rounds 1 and 3. The results shown in Table 3 indicate sig
nificant reductions in mean time-to-completion between each round for 
both groups. Thus, it is concluded that the means of instruction (i.e., 
paper versus AR) does not have any noticeable impact on task comple
tion time. However, the results of paired t-test on the mean number of 
errors presented in Table 4 indicate that although Group 2 made no 
improvement in the number of errors made during assembly, Group 1 
participants were able to significantly reduce the number of errors 

between Rounds 1 and 3. Accordingly, it is concluded that not only AR- 
based task information delivery leads to fewer errors, but it also helps 
workers significantly reduce the number of errors in subsequent rounds 
of operation. Thus, hypothesis H4 is accepted. Note that similar to the 
results presented in Tables 1 and 2, Round 4 comparisons are not 
included in the analysis because the means of instruction is swapped in 
that round. 

Independence from AR. Results of paired t-test on the mean time-to- 
completion of each group in Round 3 and Round 4 indicate two inter
esting observations (see Table 5): (1) Group 1 participants, who 
switched from AR guides in Round 3 to paper guides in Round 4, were 
able to complete their task even slightly faster in Round 4 than in Round 
3, although the difference between mean completion times is not sta
tistically significant. Here is a quote from one of the Group 1 participants 
after completing Round 4 of the experiments: “It was less cumbersome to 
assemble the components without the AR headset on, but the paper drawings 
were much harder to interpret. I much prefer the CAD animations; I imagine if 
I were to have started first with the paper-based instructions and drawings, it 
would have taken me much longer to complete the task initially. I suspect the 
only reason it took me around the same time to complete the task with paper- 
based instructions is simply because I had assembled the component three 
times already.” (2) Group 2, however, demonstrated significantly longer 
completion times in Round 4 using AR than in Round 3 using paper, 
which is partly attributed to their lack of prior experience with HoloLens 
2 and the AR app. Furthermore, results of paired t-test on the mean 

Fig. 3. Mean time-to-completion (left) and mean number of errors (right) for Groups 1 (AR-enabled) and 2 (paper-based) in Rounds 1–4.  

Table 1 
Two-sample t-test on mean time-to-completion in Rounds 1–3 (α = 0.05).  

Statistics Round 1 Round 2 Round 3 

Mean (Group 1, Group 2) 35.94, 41.01 22.80, 17.64 17.34, 11.90 
df 18 18 18 
t-Statistic  −0.85 1.90 2.44 
p-value  0.20 0.04 0.01  

Table 2 
Two-sample t-test on the mean numbers of errors (α = 0.05).  

Statistics Round 1 Round 2 Round 3 

Mean (Group 1, Group 2) 1.10, 1.60 0.70, 1.60 0.30, 1.90 
Df 18 18 18 
t-Statistic  −0.85 −1.45 −2.50 
p-value  0.20 0.08 0.01  

Table 3 
Paired t-test on the mean time-to-completion of each group between Rounds 1 
and 2, Rounds 2 and 3, and Rounds 1 and 3 (α = 0.05).  

Statistics Group 1 Group 2 

Rounds 
1–2 

Rounds 
2–3 

Rounds 
1–3 

Rounds 
1–2 

Rounds 
2–3 

Rounds 
1–3 

Mean 35.94, 
22.80 

22.80, 
16.39 

35.94, 
16.39 

41.01, 
17.64 

17.64, 
11.90 

41.01, 
11.90 

Pearson 0.43 0.61 0.46 0.13 0.71 0.35 
df 9 9 9 9 9 9 
t-Statistic  4.75 3.58 7.75 4.47 5.13 5.95 
p-value  0.0005 0.002 1.42E- 

05 
0.0008 0.0003 0.0001  

Table 4 
Paired t-test on the mean number of errors by each group between Rounds 1 and 
2, Rounds 2 and 3, and Rounds 1 and 3 (α = 0.05).  

Statistics Group 1 Group 2 

Rounds 
1–2 

Rounds 
2–3 

Rounds 
1–3 

Rounds 
1–2 

Rounds 
2–3 

Rounds 
1–3 

Mean 1.10, 
0.70 

0.7, 0.3 1.10, 
0.30 

1.60, 
1.60 

1.60, 
1.90 

1.60, 
1.90 

Pearson 0.31 −0.31 −0.30 0.69 0.81 0.74 
df 9 9 9 9 9 9 
t-Statistic  1.18 1.18 2.06 0 −0.82 −0.71 
p-value  0.13 0.13 0.03 0.5 0.22 0.25  

Table 5 
Paired t-test on mean time-to-completion and number of errors by each group 
between Rounds 3 and 4, after switching means of task information delivery 
(α = 0.05).  

Statistics Mean Time-to-Completion Mean Number of Errors 

Group 1 Group 2 Group 1 Group 2 

Mean 16.39, 14.91 11.90, 18.03 0.30, 0.30 1.90, 0.40 
Pearson 0.80 −0.002 0.38 0.27 
df 9 9 9 9 
t-Statistic  1.67 −2.14 0 2.50 
p-value  0.06 0.03 0.5 0.02  

M. Moghaddam et al.                                                                                                                                                                                                                          



Advanced Engineering Informatics 50 (2021) 101410

7

number of errors made by each group during Rounds 3 and 4 (Table 5) 
indicate that: (1) Group 1 maintained their relatively lower mean 
number of errors (0.3) in Round 4 even after a few days gap and without 
AR support. (2) The mean number of errors made by Group 2 in Round 4 
was significantly reduced after switching from paper to AR compared to 
Round 3 and Round 2. These findings point to the impacts of AR on 
accelerating workers’ learning and competency, its usefulness for 
traditionally trained workers (e.g., Group 2) in avoiding more errors 
during task performance, and better memory retention than paper-based 
instructions which results in a significantly lower number of errors even 
after AR support is removed. Hence, hypothesis H5 is accepted. 

4.2. Qualitative questionnaires 

Results of the NASA-TLX questionnaire shown in Fig. 4 indicate that 
both groups experienced almost identical levels of mental demand, 
physical demand, temporal demand, perceived performance, effort, and 
frustration. Thus, hypothesis H6 is rejected. In general, the assembly 
task was perceived not too challenging by the participants, and they 
were generally satisfied with their performance. 

Fig. 5 shows the participant responses to questions about the impacts 
of different modes of AR (i.e., text, 3D animation, and video) on task 
performance, their independence from AR, and their experience with 
HoloLens 2. The participants had different preferences for the three 
modes of AR task information delivery. Some participants found the 
combination of text and 3D CAD animation more helpful than the expert 
capture videos. Examples of feedback comments by those participants 
are: 

The text instructions and CAD animation together provided a great deal of 
detail about how to complete the current step. Reading the instructions 
and visualizing the task through the animation provided clarity on how to 
complete the task and what the subassembly should look like afterward. 
Although helpful, the video was not completely necessary, and I skipped it 
for most of the steps. 
Today I turned off the video and relied on the text’s part numbers and the 
3D model to complete the assembly. Since I already knew how each part 
fit together, the text and 3D model ensured I had the correct part and the 
correct orientation respectively. This made the assembly quite easy to 
finish. 
The video was only helpful in describing what order washers 2 and 3 go 
and which way to screw on parts 25. Otherwise, the text and CAD helped 
the most. 
Being able to rotate and view the CAD model was super helpful during 
assembly. It allowed me to easily understand how all the parts fit together. 
The other two were useful, but tended to get in the way as I was putting 
physical pieces together. 

These participants appear to have learned mostly from the spatial 
representation of the parts and assembly process through interactive 3D 
CAD animations along with textual instructions to ensure correct 

selection, alignment, and insertion of the parts. Some other participants, 
however, reported videos with vocal cues in conjunction with textual 
instructions as their preferred mode of AR guides. These participants 
preferred observing and imitating how an expert performs the task (i.e., 
learning from demonstration) as their primary mechanism to learn the 
task: 

The CAD animation was somewhat useful, but I preferred the video, as the 
instructor assembled the part at about the same speed that I was. Addi
tionally, there were little comments that helped, which a silent CAD an
imation didn’t include. 
I mostly watched the video but referred to the CAD model when confused. 
Lastly, I checked part numbers with the written instructions. 
I tended to listen to the verbal cues from the video, occasionally checking 
the text to confirm part numbers, and only once or twice double-checking 
with the CAD animation. 
The audio instructions from the video were most helpful to me because I 
already knew about the part. I had some trouble manipulating the CAD 
model, but it was also a helpful aid. 

The participants were also asked to rate their independence from the 
AR guides. Group 1 participants were initially highly dependent upon 
AR. Specifically, 70% of the participants reported high or very high 
dependence upon AR. However, they gradually became more indepen
dent from AR as only 20% of them were highly or very highly dependent 
on AR at the end of Round 3. On the other hand, 90% of the participants 
from Group 2, who switched from paper to AR in Round 4, stated that 
they are highly independent from AR. Yet, as discussed earlier, switch
ing to AR helped this group significantly reduce the number of errors 
made during assembly. Furthermore, most participants found HoloLens 
comfortable and easy to use; however, the study participants are all 
young and educated engineering students and the manufacturing 
workforce may not have the same perception. In fact, one of the main 
concerns of our industry partner was that the technology may be 
intimidating and difficult to adopt for most of their senior workers. 
Moreover, only 10% of the participants expressed a preference to be 
trained by a person rather than the AR app. Again, it must be noted that 
actual manufacturing workers may have different opinions and 
preferences. 

The participants were also asked to provide general suggestions for 
using AR as a training or assistive tool in manufacturing based on their 
experience with AR. Some key suggestions are as follows: (1) text-to- 
speech features to read out the textual instructions, and also the use of 
voice commands for hands-free interaction with the AR content, (2) 
menu-based, non-procedural provision of task information so the user 
can call certain instructions on demand, rather than having to go 
through a fixed sequence of steps, (3) more interactive and person
alizable layout design for the AR app so the user can use the layout they 
feel most comfortable in, and (4) a help option where the user can get 
assistance when something goes wrong or if they have a question about 
the task. 

Fig. 4. NASA-TLX responses from both groups.  
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4.3. Expert interviews 

Several key insights were drawn from the interviews with 10 experts 
from industry, research institutions, and community colleges:  

1) AR can potentially be a disruptive assistive technology for 
manufacturing tasks that are not rote and require complex reasoning 
and decision-making; for example, inspection in regulated industries 
such as aerospace. 

2) The acceptability of AR as a “tool” is likely to differ among incum
bent and future (tech-savvy) workers and different demographics. 
The experiments presented in this paper only featured young and 
educated engineering students. Current AR technology may not be 
well received by more senior workers because the interfaces (e.g., 
hand gestures, manipulation of holograms) are not as intuitive as 
they should be for someone with little or no experience with AR or 
even with computers.  

3) AR can increase the accessibility of manufacturing jobs to workers 
with different demographic characteristics (e.g., limited English 
proficiency) by allowing for self-guided learning without the need 
for physical and real-time interaction with a trainer.  

4) AR can create new opportunities for remote learning and assistance 
from larger, and possibly more diverse, pools of physically/tempo
rally distant coworkers. It can also enable remote assistance and 
collaboration by allowing the on-site worker to share their experi
ence with a remote expert and get immediate feedback with 3D vi
sual cues.  

5) Successful industry adoption of AR will require rigorous justification 
through both proof-of-concept and economic cost-benefit analyses. It 
is important to educate companies on the potential impacts of AR on 
efficiency and productivity, the skills required for building, main
taining, and updating the content, the costs of software and 

hardware, and the acceptability of the technology among both 
incumbent and entry-level workforce.  

6) Scalability must be regarded as a key criterion for the ideation and 
design of AR technologies. The app developed in this study belongs 
to one out of hundreds of different subassemblies made by one 
manufacturer. The designs are also updated on a regular basis. The 
question then becomes: How do we author AR guides for these 
hundreds of different parts in a way that allows on-site engineers 
with no background in AR content development to maintain and 
update them in line with their regular design updates?  

7) AR can be coupled with digital thread technologies to provide 
workers with part, process, and task information such as geometric 
dimensions and tolerances (GD&T), 3D annotations, material speci
fications, and process notes [64,65] in real-time. AR can also 
leverage industrial Internet-of-Things (IoT) data to enable access to 
real-time machine data in semiautomated tasks such as robotic as
sembly or CNC machining. 

It is evident that AR has the potential to transform workplace-based 
learning for future workers and thus bridge the labor market mismatch 
and enhance the productivity and/or quality of future work. Neverthe
less, industrial AR is still evolving, and several key challenges associated 
with technology development, socioeconomic impacts, and human fac
tors are yet to be addressed. The following section discusses several 
multidisciplinary research topics and questions that need to be 
addressed to realize the full potentials of AR as a useful tool for incum
bent and future manufacturing workers. 

5. Discussion 

This paper is motivated by the three fundamental questions outlined 
in the Introduction section. This section discusses several challenges and 

Fig. 5. Summary of qualitative questionnaire results on preferred AR modes, independence from AR, and experience with HoloLens. Note that the means of in
struction was swapped between Round 3 and Round 4 (see Section 3.1). 
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insights associated with each research question and provides recom
mendations for future research in each area. 

Q1. What is the most effective way of delivering various task information 
to the worker? What are their impacts on their efficiency, number of errors, 
learning, independence, and cognitive load? The laboratory experiments 
highlighted the importance of tailoring AR guides to the unique needs of 
individuals, which may drastically vary depending on their personal 
preferences and knowledge of the task. Responses to the qualitative 
questionnaires indicate that participants may have completely opposite 
sentiments about the same affordance of AR. Learning sciences research 
underscores the necessity of devising scaffolding mechanisms that align 
AR instructions to the learner’s attention and cognitive processes to help 
them construct knowledge [40–42]. It is therefore critical to understand 
the nature of the scaffolding that AR affords, and how to design it in the 
most effective ways for the ongoing success of individual workers. 
Future research must therefore focus on transitioning from procedural, 
one-size-fits-all delivery of task information through AR to intelligent 
AR systems that dynamically scaffold AR guides to the subject matters 
that individual workers need training on. New methods are indeed 
required to interpret, predict, and guide the behavior of AR-supported 
manufacturing workers through adaptive scaffolding of instructions to 
the expertise level of individual workers. Results of the laboratory ex
periments also indicate that most participants developed absolute in
dependence from AR after two or three assembly cycles, which points to 
the effectiveness of AR in improving task competency, and yet its low 
utility as an assistive tool for routine tasks such as the fuel cell module 
assembly used in the experiments. Hence, it is essential to develop a 
formalism of AR use-cases in manufacturing, and clearly differentiate 
training use-cases from use-cases where AR is utilized by manufacturing 
workers as an assistive tool during operation. 

Q2. What are the affordances of AR as a training tool prior to task 
performance versus as an assistive tool during task performance? According 
to a recent report by MIT [66], the newer wave of automation in 
manufacturing is not so much to replace workers but rather to increase 
precision, safety, and product quality. Large firms continue to automate 
tasks that are “dirty, dull, and dangerous,” but preserve “value-added” 
tasks that are the more desirable parts of manufacturing workers’ jobs. 
Those kinds of value-added jobs are the jobs that are hard to automate, 
either because they require sophisticated and precise manipulation of 
physical objects that only a human is capable of (e.g., the fuel cell 
module assembly task) or because they require complex reasoning and 
decision-making that machines are not capable of, yet. In this context, 
AR can be used as a training tool if the task involves relatively complex 
manipulation of physical objects but does not require a considerable 

level of reasoning or decision-making (see Fig. 6). Mechanical assembly 
is a good example of such tasks—an assembler typically does not need to 
analyze unseen scenarios or make difficult decisions, but to precisely 
follow and implement the assembly procedure. In such cases, the worker 
may learn and master the task via AR and then perform the task without 
the AR support. 

If the task involves complex reasoning and decision-making, how
ever, AR can serve as an effective tool for providing intelligent and 
personalized guidance, notifications, and task information, on-demand, 
during task performance, regardless of the complexity of physical 
manipulation (Fig. 6). Maintenance and inspection are good use-cases 
for AR assistants. In precision machining, for example, complex parts 
must be recurrently inspected using a wide range of gages under un
changed conditions. An adept inspector must have an in-depth knowl
edge of materials, processes, and equipment, and the necessary skills to 
continually measure and analyze gage readings and product 
manufacturing information to make proper decisions (e.g., offsetting the 
machine, reworking, or scraping the part). In such environments, AR 
technology can be deployed as an assistive tool to provide personalized 
and on-demand performance support to enhance the learning and 
adaptability of workers to succeed in complex, dynamic work environ
ments. Future research must therefore develop intelligent AR systems 
that leverage various sources of data streams from industrial IoT and 
smart manufacturing equipment, digital thread, and smart AR devices 
(e.g., HoloLens) to continuously monitor the status of work and support 
worker’s reasoning and decision-making processes through adaptive 
and personalized delivery of task information, smart notifications, and 
interactive features such as help options, question-answering, or remote 
assistance. It is important to note that these claims and the classification 
presented in Fig. 6 are based solely on the authors’ knowledge and 
judgment. 

Q3. How can future AR technologies transition from passive delivery of 
task information to intelligent and proactive teaming with the worker? As 
discussed earlier, state-of-the-art AR solutions offer limited personalized 
interactions between workers and AR, and predominantly provide pro
cedural, “one-size-fits-all” instructions with minimal attention to the 
individual worker’s needs and knowledge. This may lead to potential 
unintended consequences such as overdependence on technology and 
stifled innovation [14,16,63], and also hinder industry adoption. The 
provision of procedural knowledge [61] through AR—the knowledge 
related to performing sequences of actions—merely helps workers learn 
“how” to perform a given task without effectively learning the “why” 
behind work instructions, quality assurance guidelines and specifica
tions, and informal shop floor knowledge. Only by understanding the 
deeper causal relationships behind the procedural instructions can 
workers develop the cognitive agility to solve new problems and adapt 
to new circumstances, especially in tasks that involve complex reasoning 
and decision-making (e.g., inspection, repair). Future research must 
explore how AR can intelligently tailor scaffolds to the specific needs of 
workers to enhance not only their performance efficiency but their 
complex reasoning skills for solving novel problems and adapting to 
changing work environments. It is therefore important to devise and 
examine new methods at the intersection of AI, AR, and human–machine 
interaction to advance the fundamental understanding of how new 
sources of multimodal data captured by AR devices, combined with 
digital thread, IoT, and cloud-based analytics, can be harnessed to 
interpret, predict, and guide the behavior of future manufacturing 
workers through intelligent worker-AR teaming. The integration of AR 
and digital twin technology [67] can create breakthrough possibilities to 
bridge the gap the rich, data-driven insights drawn from digital twins 
and the task performance and decisions of workers supported by AR. 
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