
On the Analysis of MUD-Files’ Interactions,
Conflicts, and Configuration Requirements

Before Deployment

Vafa Andalibi1[0000−0003−1517−3185], Eliot Lear2[0000−0003−2724−0293], DongInn
Kim1[0000−0001−6331−1410], and L. Jean Camp1[0000−0001−8731−7884]

1 Indiana University, Bloomington, IN 47408, USA
{vafandal,dikim,ljcamp}@indiana.edu

2 Cisco Systems, Zurich, Switzerland
lear@cisco.com

Abstract. Manufacturer Usage Description (MUD) is an Internet En-
gineering Task Force (IETF) standard designed to protect IoT devices
and networks by creating an out-of-the-box access control list for an IoT
device. Access control list of each device is defined in its MUD-File and
may contain possibly hundreds of access control rules. As a result, read-
ing and validating these files is a challenge; and determining how multiple
IoT devices interact is difficult for the developer and infeasible for the
consumer. To address this we introduce the MUD-Visualizer to provide a
visualization of any number of MUD-Files. MUD-Visualizer is designed
to enable developers to produce correct MUD-Files by providing format
correction, integrating them with other MUD-Files, and identifying con-
flicts through visualization. MUD-Visualizer is scalable and its core task
is to merge and illustrate ACEs for multiple devices; both within and be-
yond the local area network. MUD-Visualizer is made publicly available
and can be found in GitHub.

Keywords: Manufacturer Usage Description · Internet of Things · Net-
work Security · MUD · IoT · Network Microsegmentation · IoT Protec-
tion, IoT Security

1 Introduction

The Internet of Things (IoT) has diffused across the globe and the estimates of
IoT devices in the home range from billions to tens of billions. Yet, security has
lagged [1]. The security of IoT devices is such that they are used to participate
in DDoS attacks [18], are vulnerable to ransomware [46], and enable information
exfiltration from within homes [7]. Media reports of abusive strangers engaging
with families through IoT devices are not uncommon, e.g. [2]. Given the complex-
ity of IoT devices, the lack of technical support, the level of technical expertise
in the home, and the complexity of access control, how can these devices be
managed?

ar
X

iv
:2

10
7.

06
37

2v
1 

 [c
s.C

R
]  

13
 Ju

l 2
02

1



2 Andalibi et al.

Manufacturer Usage Description (MUD) is an Internet Engineering Task
Force (IETF) standard created in response to the requirements for access con-
trol and device isolation for IoT devices [22]. It addresses multiple challenges
regarding IoT security by relying on manufacturers providing an Access Control
List (ACL) that identifies services and addresses for those services. The goal is
to isolate devices; particularly those that cannot be relied upon to provide their
own protection. Unlike more traditional verification approaches, MUD can work
with devices that have highly limited processing power. In addition, rather than
a single entity creating policy, each manufacturer creates the access control that
defines the situation for their own devices. The second goal of the MUD stan-
dard is to provide an identifier so that updates to devices can be implemented
only from authenticated and authorized sources. With such functionality, errors
in device configurations can be mitigated.

We have chosen to focus on MUD because, in addition to being an IETF
standard, MUD is also a core component of the National Institute of Standards
and Technology (NIST) security for IoT Initiatives, particularly the thrust fo-
cused on stopping DDoS [6]. MUD can defend IoT devices in a home from other
compromised ones in the household and on the network, with a specific goal of
blocking the access of compromised devices to command and control channels.

One of the core components of the MUD is the MUD-File which is essentially
an access control statement. The MUD-File enumerates the allowed (or specif-
ically disallowed) services and sources for these services. In the MUD standard,
it is defined as “a file containing YANG-based JSON that describes a Thing
and associated suggested specific network behavior” [22]. MUD-Files could pos-
sibly be long and complex, making their reading, reviewing, and modification a
laborious task if performed manually.

In this paper, we present MUD-Visualizer that addresses this issue. MUD-
Visualizer provides 1) protocol checking to avoid formatting errors in the MUD-
File, 2) optimization of the MUD-File which identifies internal inconsistencies
and inefficiencies, and 3) visualization of the commands in MUD-Files. The first
of these prevents coding errors. The second prevents logic errors. The third
enables manufacturers and sysadmins to review, validate, and modify the MUD-
Files prior deployment. The focus on coding, logic, and contextual errors aligns
with the sources of most vulnerabilities [20].

2 Manufacturer Usage Description (MUD)

Understanding the importance of the MUD-Files requires some understanding
of the MUD standard. For the readers not familiar with the workflow of MUD a
brief summary of MUD workflow and its abstractions is presented in this section.
Those familiar with MUD may want to continue to Section 3.

2.1 Components and Workflow

An implementation of MUD has six main components as presented in Fig. 1:



Analyzing MUD-Files Before Deployment 3
3/15/2019 draw.io

chrome-extension://pebppomjfocnoigkeepgbmcifnnlndla/index.html 1/1

3) MUD-URL

NAD

AAA Server

4) Request
 MUD-File

MUD-Manager
 

Internet
 

MUD File Server

6) MUD-File

5) Request
 MUD-File

7) MUD-File

1) MUD-URL

2) MUD-URL

IoT Devices

8) Configure
 

(Internet Connection)

Fig. 1: MUD workflow in a LAN: the blue dotted line indicates the boundary of
the LAN

1. MUD-File: is a YANG-based JSON file (RFC 7951) created, signed with a
public key signature, and distributed by the manufacturer that describes the
expected network behavior of the device.

2. MUD file server: on which MUD-File is hosted and the location of the file
is embedded as a uniform resource locator called MUD-URI.

3. MUD-URI : This is used to locate and download the MUD-File to the local
network.

4. AAA Server : The Authentication, Authorization, and Accounting (AAA)
server enforces the traffic rules on the devices in the network. This server
can be either an independent server or a built-in component in the Network
Access Device (NAD).



4 Andalibi et al.

5. Network Access Device (NAD): acts as a router in the network and is usually
equipped with an internal Firewall component which is used by the MUD-
Manager via AAA server to control the traffic and enforce rules.

6. MUD-Manager : is the core of MUD architecture and is responsible for re-
ceiving the MUD-URI from the devices, retrieving the MUD-File from the
MUD file server, and communicating the MUD-File rules to the AAA server.

The MUD workflow illustrated in Fig. 1 begins with the IoT device authen-
ticating with X.509 certificate (although DHCP and LLDP are also available as
means of authentication) transmitting the MUD-URI embedded in the device
to the NAD. MUD-Manager will then receive the MUD-URI, validate the signa-
ture, retrieve the MUD-File from the manufacture’s MUD file server and then
enforce the access control rules of the MUD file to the network via AAA server.

2.2 MUD-File ACL Abstractions

The content of and ACLs in the MUD-Files are instantiated as firewall rules
by the MUD-Manager. The ability to implement such rules enables a range of
policies. Based on the MUD specifications, the contents of the MUD-File may
include a range of default policies and defined types. There are seven approaches
to define the behavior and constraints of a device in a MUD instance. These in-
clude constraints or identification of domain names, manufacturers, device class,
device models, and the local context of the device. These extensions to the IETF-
ACL were all addressed in our implementation. Each extension has the potential
to simplify the use of MUD for the manufacturer and adopter. Yet the existence
of all these options also drives the need for MUD-Visualizer.

A useful abstraction for cloud access is the domain-name. Of course, domain
names are a global Internet namespace; which is not always well-suited for a
specific, geographically located IoT device.

A second abstraction that is defined in the MUD specification is that of
the local-networks. With local-networks abstraction, a node will be matched
against the nodes in the same network. This is particularly useful for designs
where there is an IoT hub in the house that is compliant with the local devices.

Another constraining abstraction is that of the manufacturer. In this case,
the Hostname of the target node would match against the authority component,
e.g., domain name, or MUD URL of another node. This constrains the reach of
a device to other devices from particular manufacturers.

Beyond the basic domain name for every IoT device, MUD provides the
indicator of same-manufacturer. In this abstraction, multiple devices, e.g., a
house where its lightbulbs or outlets are from the same creator, can communicate
only with each other. In operational terms, when devices use this extension the
authoritative component will be checked against that of another node.

More than one extension can be used in the same file. Thus there is also
an option that identifies a device requiring contextual configuration. The con-
troller extension identifies the care where the network administrator needs to
assign the target devices to a particular class. This may be particularly useful



Analyzing MUD-Files Before Deployment 5

when a single device embeds multiple services, and access control depends on
these services. For example, a doorbell that offers wireless installation may also
offer remote control for the owner, access to a home security firm, face recog-
nition for local control, real-time video activity monitoring, social interactions
(e.g., sharing moments), caregiving, and other services which impinge delegating
access, network connections, data types, and port numbers.

With my-controller abstraction, the device will leverage its MUD-URL and
will signal the MUD manager to use whatever mapping it has for this MUD URL
to a particular group of hosts that would be used to manage or control this class
of device. This mode requires a local decision-maker in the loop, whether that is
a human or a process. With this option, the node initiates communication with
the MUD-manager with a request that the MUD-Manager assign this node to a
class.

Classes of devices and devices from the same manufacturer may be inade-
quately constraining. The seventh requirement is that model, manufacturer, and
class must all match, defined as model. The potential for conflicts with this set
of seven defined options argues for the importance of the visualizing tool.

3 Motivation

As described above, MUD’s role in enforcing the Principle of Least Privilege
(PoLP) is to limit the devices’ reachability to a bare minimum by leveraging
the manufacturers’ knowledge about their devices. For a given configuration the
ACLs should be validated (if not defined) manually to ensure PoLP, which makes
this process prone to human error [27,42]. Errors in the ACLs defined by the
manufacturer will result in unwanted access control privilege escalation which
poses a security risk to the network.

For instance, consider a MUD-compliant smart slow cooker device that is
only allowed to communicate with the manufacturer server and the manufac-
turer‘s site over the Internet. In addition, the slow cooker comes with a mobile
application that allows controlling its functionality both online (via the Inter-
net) and offline (locally). When used offline, the slow cooker will only use port
1300 for communication. Alice is a sysadmin in an enterprise network with more
than 100 types of MUD-compliant devices. Bob decides to add the smart slow
cooker to the kitchen of the office as a collegial act. A new MUD-File appears in
Alice‘s MUD-Manager. To understand all the possible connections, Alice would
be required to have an encyclopedic awareness of each MUD-File in the network,
and be able to read these files while understanding the interactions.

Given the reality of the enterprise, it is almost impossible to prevent em-
ployees from bringing in personal fitness trackers, slow cookers, rice cookers,
microwaves, or space heaters all of which can be Internet-connected devices.
Because of the number of devices and corresponding ACLs in the network, it’s
arguably beyond human cognition for Alice to identify the possible unnecessary
communication between the slow cooker and the smart bulb which puts the net-
work at risk with only text files [42]. Although there exist other tools which have



6 Andalibi et al.

the potential to identify the connection between the light bulbs and slow cookers
or between the slow cooker and the attacker, MUD-Visualizer is one step ahead
and tries to prevent these before they occur.

Imagine instead Alice has the MUD-Visualizer. When each device is added,
MUD-Visualizer can help her to implement informed threat modeling and flag
unwanted communications. Using MUD-Visualizer Alice could easily identify the
connection and isolate the slow cooker from the internal system by adding an
additional rule.

Beyond the aforementioned example, there are several points made in pre-
vious research studies indicating the importance of different aspects of a tool
like MUD-Visualizer. We mention the most important of such works and corre-
sponding points associated with MUD-Visualizer in the next section.

4 Related Work

In this section, we present related work that fits in one of the following categories:
studies that focus on MUD research and tools, as well as the researches that focus
on the importance of Human Computer Interaction (HCI) in mitigating human
errors in regards to access control. Usable access control is a significant challenge,
where even the relative responsibilities of the platform, the final user, and the
developer are contested, e.g., [36,40].

The tool described here is developed as a complement to the MUD [22]. At the
time of writing this paper, there are four main projects that implement the core
of a MUD instantiation: the Cisco MUD-Manager [44], the Open Source MUD
Manager [47], the MUD implementation of NIST[32], and CableLabs Micronets
[31]. NIST has a special publication that thoroughly describes four different
builds of MUD based on the above-mentioned implementations for mitigating
network-based attacks [6].

Besides the MUD-Manager, Cisco also offers the mudmaker3 which can be
used for creating MUD-Files. We used mudmaker to generate a comprehen-
sive MUD-File for the tests reported in section 7. MUD Pretty Printer [21] is
another tool developed to summarize ACL information on the MUD files. How-
ever, it does not provide any User Interface (UI) or visualization. With regard
to MUD-File modification, Cisco has a recent patent that discusses techniques
for providing secure modification of MUD-Files based on the device applications
[23].

Regarding MUD deployment, there are some studies that focus on the ef-
fectiveness of MUD against DoS and DDoS attacks [14,29,4,38]. Afek et al. [3]
proposed an ISP-level system architecture that enforces the ACL upstream at
the provider network to protect the IoT at scale. Additionally, they extended
their MUD-interoperable architecture to support peer-to-peer protocols.

With regard to combining Software Defined Networking (SDN) and MUD,
the authors in [33] present a scalable implementation of the MUD standard

3 https://www.mudmaker.org



Analyzing MUD-Files Before Deployment 7

on OpenFlow-enabled SDN switches. Hamza et al. in [15] attempted to create
flow rules based on MUD policies so that they can be enforced using SDN.
Matheu et al. [25] employed SDN technique to make MUD model more flexible to
support additional aspects such as data privacy, channel protection, and resource
authorization. In another work, an SDN-based architecture was proposed to
make the process of obtaining and enforcement of MUD policies secure [12].
In a proposed expansion to MUD Matth́ıasso presented generating contracts
and their local evaluation, [26]; this is complimentary to MUD-Visualizer as it
assumes the existence of non-conflicting MUD files.

Some researchers focused on helping the manufacturers in the process of cre-
ating MUD-Files. In [17] Hamza et al. described MUDgee which uses the traffic of
an IoT device to generate a MUD profile for that IoT device. Beyond the MUD-
Files generated from mudmaker, we also performed some dry-run tests with the
profiles provided by MUDgee project4. NIST also has an ongoing open-source
project in their GitHub organization entitled MUD-PD [43] which is similarly
targeted at profiling IoT devices in order to leverage the MUD architecture.

Feraudo et al. in their systematization of knowledge about MUD identified
two challenges with MUD-Files that can be mitigated with the use of the MUD-
Visualizer [9]. The first of these is inconsistent implementations; MUD-Visualizer
can be used on the underlying files to easily determine developer intent, thus
simplifying differences in results. The other is of course consistent generation
of MUD-Files. In another survey paper, Mazhar et al. [28] detailed the role of
the MUD in the IoT ecosystem, including the implementation, its role in IoT
security, and its integration in different security frameworks. They also review
the benefits of MUD to the industrial IoT, telecommunication networks, smart
home, Fog and Edge computing, and mobile application. MUD-Visualizer can
facilitate the deployment of MUD in all of these applications.

In a similar area of research related to configuration verification, Prabhu et
al. [30] presented Plankton which is purposed for network configuration verifi-
cation. In another study, Fogel et al. [10] proposed a high-fidelity declarative
model of low-level network configurations and implemented it as a tool called
Batfish. Fayaz et al. [8] implemented ERA which can be used for bug detection in
reachability policies. With regard to routing, ARC [13] finds the possible impact
of routing protocols on the network’s data plan by abstracting their mechanics.
Beckett et al. in [5] presented Minesweeper which can be used to ensure a wide
range of intended properties, e.g., isolation among nodes, in the network. Unlike
MUD-Visualizer none of these offer visualizations.

The earliest work in optimizing ACL interaction using HCI principles was
by Maxion and Reeder [27]. They examine the Windows XP file-permissions
and found that the visualizer tripled the rate of assigned task completion, and
reduced errors in those completed tasks by up to 94%. This illustrates the im-
portance of visualization and interaction design in access control.

Similar to MUD-Visualizer Vaniea et al. our work is grounded in the recog-
nition of the difficulty of translating policy rules into access control rules [41].

4 https://iotanalytics.unsw.edu.au/mudprofiles



8 Andalibi et al.

We integrated their recommendations into our design, in particular, we integrate
visual feedback while the developer is drafting the MUD-File. SPARKLE [41] fol-
lowed the common visualization process of focusing on a presentation of data in
a table, which is the visualization approach most commonly used. For example,
Reeder et al. [34] developed an interactive matrix visualization, the Expandable
Grid, to enable improved file permissions in Windows XP. This ACL visual-
ization informed the design of MUD-Visualizer particularly in terms of under-
standing challenges to ease of cognition. In comparison, our approach provides
a visualization based on flows more similar to the graph visualization approach
by Kolomeets et al [19]; rather than asking developers to read rows or columns.

Salim et al. took a different view examining access control as a case of
decision-making under uncertainty [37]. They provided a formal method to quan-
tify how much uncertainty is inherent in the Role-Based Access Control (RBAC),
one that illustrates the level of complexity required to provide reliably correct
access in an organization.

Xu and colleagues investigated the role of uncertainty in access control de-
cisions [45]. They implemented qualitative investigations into how systems ad-
ministrators resolve access control conflicts, as these human errors are a known
source of security vulnerabilities. Their fundamental finding was that a lack of
feedback forced administrations into a trail and error mode. MUD-Visualizer
provides real-time visual feedback about changes in access control. This verifies
that a need for a high-level view providing information about access require-
ments and settings in a network. The complexity they documented may be far
greater with the expansion of IoT.

Smetters et al. [39] in their study found that limitations in the UI would lead
to the reluctance to change the access control settings. This finding applies to
MUD deployment as well; it would be simply difficult and time-consuming for
system administrators to manually evaluate the interaction between tens of types
of MUD-File associated with their IoT device. We believe MUD-Visualizer’s UI
is significantly easier to use compared to manual analysis and we are going to
thoroughly evaluate and show this in our future work.

Besides the lack of UI in the manual analysis of MUD-File, the other issue
with manual analysis is processing errors. Liginlal et al. [24] focused on the
importance of the analysis errors. They found that mistakes in the information
processing stage constitute the most cases of human error-related privacy breach
incidents, confirming the importance of MUD-Visualizer in MUD-File interaction
analysis.

Another source of user errors is called goal errors, i.e. the failures of users to
understand what to do. The main source of goal errors is found to be poor in-
formation representation in the interface. A study of highly skilled programmers
found that even these participants struggled with access control [35]. This indi-
cates the importance of information representation of MUD-Visualizer compared
to other text-based tools like MUD Pretty Printer [21].

From another perspective, the issues with conflicts in MUD-Files are com-
parable to the challenges in the SDN flow information base (FLIB). None of the



Analyzing MUD-Files Before Deployment 9

aforementioned studies address the verification of MUD-Files. However, previ-
ous work on SDN verification and human subjects research on access control
informed the design of the MUD-Visualizer.

The only work that attempts to help the IoT manufacturers and adopters
of these devices in process of preparing or deploying MUD profiles is [16]. Their
work focuses on different aspects compared to this study in two ways. First,
similar to [17,43], they focus on automatic generation of MUD profile based on
network traffic. Second, their tool validates the consistency and compatibility of
the generated profiles with organizational policies. Because those project gener-
ate MUD-Files, code-checking is less of a challenge. Conversely since these prod-
ucts create MUD-Files automatically, logic errors can still be embedded. Their
work does not have a visualization or usability component. MUD-Visualizer is a
complement to the projects which automatically generate MUD-Files.

To our knowledge, this is the only product targeted at the developers or
sysadmins seeking to define or validate a MUD-File for a product to be deployed.
MUD-Visualizer is also unique in that it validates interactions and identifies
possible conflicts prior to deployment (for the manufacturer) or at the time of
deployment (for the user).

5 Methods

Recall from Section 2 that the MUD-File of each IoT device typically contains
access controls in the form of a white list. Each list entry contains information
about one or more protocols and often a corresponding identifier, e.g., a domain
name accessible only via SSH. The white list provides the identifier appropriate
for the network layers of the protocol. Entries in this MUD-File list are called
the Access Control Entries (ACEs).

The first task of MUD-Visualizer is to determine how the ACE information
of different devices interact. We call this process ACE Merging. When we merge
a set of ACEs of two devices, it is often possible that duplicates appear in the
final list of merged protocol information. We address this issue by pruning the
protocol stacks that are a subset of more generic protocol stacks. We call this
process ACE Pruning. Both of these procedures are described in the following
subsections.

5.1 ACE Merging

When the abstractions of two devices in the network allows them to communi-
cate, e.g., two devices supporting local network connections, their ACEs should
be inspected and merged accordingly. Of course, it is possible that even with
matching specifications, two devices should only communicate if there is a com-
mon factor between their ACEs. Hence, one of the important tasks of the MUD-
Visualizer (specifically MUD-Network module described in section 6) is to merge
and validate the protocols of ACEs. This task is implemented by moving up the
protocol stack and check whether the source protocol (sender) is a subset of the



10 Andalibi et al.

Algorithm 1 Merging Two Protocol Stacks

1: initialize empty protocols stack PSout

2: procedure MergeProtocolStacks(PSsrc, PSdst)
3: for each layer l in protocol stack do
4: for each protocol Pl in layer l do
5: if Plsrc ⊆ Pldst then
6: PSout ← PSout + Plsrc ∩ Pldst

7: end if
8: end for
9: end for

10: if isFullStack(PSout) then
11: return PSout

12: else
13: return
14: end if
15: end procedure

destination protocol (receiver) in that layer. If so, the intersection of the proto-
cols is added to the resulted protocol stack. This procedure is implemented in
Algorithm 1.

We illustrate an example of this process in Table 1, where simple ACLs for
two devices are presented (two ACEs per device). In this table, an intersection
between the ACEs of these two devices exists. All possible pairs of ACEs from
source and destination devices are checked against one another and the common
factors are saved. The protocol stack in this example contains the Transports
Layer and Network Layer. The first ACE of the first device is [IPv4, UDP, any,

any], representing the network, transport, source port, and destination port re-
spectively. The first ACE of the second device is [any, any, 5000, 400]. By
merging these two ACEs we find out that these two devices can only communi-
cate if the network layer protocol is IPv4, the transport layer protocol is UDP,
and source and destination ports are 5000 and 400, respectively. After a compre-

Table 1: Example of protocol merging between two devices

Network Transport Src Port Dst Port

D
ev

1 IPv4 UDP any any
any TCP 5000 any

D
ev

2 any any 5000 400
IPv6 any any 8080

M
er

g
ed IPv4 UDP 5000 400

IPv6 TCP 5000 8080
any TCP 5000 400



Analyzing MUD-Files Before Deployment 11

Algorithm 2 Building the ACE Tree

1: initialize node as a tree node
2: for each ACE in list of ACEs do
3: initialize node to root

4: Updateacetree(ACE, node, n)
5: end for
6: procedure Updateacetree(ACE, node, n)
7: if node is null then
8: return
9: end if

10: protocols ← GetLayerProtocols(ACE, n)
11: if Count(protocols) ¿ 1 then
12: add a wild-card child Wn to node

13: node ←Wn

14: else
15: add a child Cn to node

16: node ← Cn

17: end if
18: ACE ← ACE[1:]

19: Updateacetree(ACE, node, n-1)
20: end procedure
21: procedure GetLayerProtocols(ACE, n)
22: initialize protocols as an array
23: for each protocol P in ACE do
24: if P in layer then
25: protocols ← protocols + P
26: end if
27: end for
28: return protocols

29: end procedure

hensive matching of all possible combinations of the ACEs from both devices,
the result is three merged protocols. This result is presented in the 3rd row of
Table 1.

5.2 ACE Tree

When merging the protocols of the two MUD-Files that contain many ACEs,
redundant protocols are a likely result. For example, suppose two ACEs are
merged to [IPv4, UDP, 400, 600] and another two ACEs merged to [IPv4,

UDP, any, any]. The result of the second merge in this example is a super-set
of the first protocol, and therefore the first one should be pruned to prevent
redundancy and further confusion.

To implement this efficiently for each IoT device, a tree structure was created
and associated with each communication destination of that device. Each level
of this tree contains information about a layer of the ACE protocol stack. Note
that for each layer in TCP/IP model, one could add more than one level in the



12 Andalibi et al.

Algorithm 3 ACE Pruning

1: initialize L, S,C,AL, AC to null

2: procedure Pruneacetree(PT )
3: for each leaf L in the Protocol Tree PT do
4: for each L’s sibling S in the Protocol Tree PT do
5: if L ⊆ C then
6: Prune(L)
7: continue to the next leaf L
8: end if
9: end for

10: for each L’s cousin C in the Protocol Tree PT do
11: if L ⊆ C then
12: n← 1
13: AL ← nthAncestor(L, n)
14: AC ← nthAncestor(C, n)
15: while AL is not null and AL <> AC do
16: if AL ⊂ AC then
17: Prune(L)
18: continue to the next leaf L
19: end if
20: n← n + 1
21: AL ← nthAncestor(L, n)
22: AC ← nthAncestor(C, n)
23: end while
24: end if
25: end for
26: end for
27: end procedure
28: procedure nthAncestor(Node,n)
29: initialize ANode to null

30: c← 0
31: while c < n do
32: ANode ← Parent(Node)
33: c← c + 1
34: end while
35: return ANode

36: end procedure

tree as we will present in our next example. Moreover, at each level, we have
added a wildcard node in case the communication is allowed through multiple
protocols in that particular layer. The recursive implementation of this procedure
is presented in Algorithm 2.

As an example for Algorithm 2, we present a ACE Tree built from the set
of ACEs presented in the Original row in Table 2. In this example, the protocol
stack has simply two layers: Network Layer and Transport layer. However, as you
can see, we have more than one level in the tree associated with the Transport
layer, i.e. transmission protocols (TCP/UDP) and ports.



Analyzing MUD-Files Before Deployment 13

IPv4 IPv6 any

TCP any UDP TCP any

[80, 43] [90, 120][800, 520][any, any] [800, 520] [400, 480][400, 480]

Destination

UDP UDP

[90, 120]

Fig. 2: The tree structure containing the protocol information for a particular
destination. The first children are the network protocols, the second children are
the transport protocols and the leaves are pairs of source and destination ports.
The nodes colored as dark gray could be removed as a super-set of them already
exists in the tree.

In simple words, for each ACE, the algorithm does as follows: it starts from
the lowest layer (in this case Transport layer), gets the protocols associated with
that layer, and if they are more than one, it adds a wild card to that level of
the tree. The ACE Tree containing the information of ACEs presented in the
Original row of Table 2 is presented in Fig. 2.

Table 2: Result of the root to leaf tree traversal from the trees shown in Fig. 2
(Original) and Fig. 3 (Pruned)

Network Transport Src Port Dst Port

O
ri

g
in

a
l

IPv4 TCP 80 43
IPv4 TCP any any
IPv4 UDP 800 520
IPv4 any 800 520
IPv6 UDP 90 120
any TCP 400 480
any UDP 90 120
any any 400 480

P
ru

n
ed

IPv4 TCP any any
IPv4 any 800 520
any UDP 90 120
any any 400 480



14 Andalibi et al.

Pruning ACE Tree In this section, we describe how the ACE Tree is pruned.
An example is provided for each of the scenarios where all the examples are
based on the ACLs provided in Original row in the Table 2 which are depicted
as a ACE Tree in Fig. 2. Consider the following notations:

– L: denoting one of the leaves of the ACE Tree
– Si: denoting ith sibling of the leaf L
– Ci: denoting ith cousin of the leaf L
– An(L): denoting nth ancestor of the leaf L
– An(Ci): denoting nth ancestor of cousin node Ci

Each leaf node L in the ACE Tree can be pruned if it satisfies one of the
following conditions:

– Consider L has a sibling Si and L ⊂ Si. In this case, L can be pruned with
no futher conditions
Example: Consider the leaf [80,43] and its sibling [any,any]. As can be
seen, [80,43]⊂ [any,any], hence [80,43] can be pruned. Note that the
upwards tree traversal stops without any outcome when either we reach to
the root or when An(L) = An(Ci).

– Consider L has a cousin Ci where L ⊆ Ci and we traverse the tree starting
from both L and Ci simultaneously up towards the root of the tree. L then
could be pruned if at any point during traversal An(L) becomes a sibling of
An(Ci) and An(L) ⊂ An(Ci).
Example: Consider the fifth leaf of the tree (counting from left to right)
[90, 120] and its sixth cousin C6 = [90, 120] which is the seventh leaf
of the tree. As can be seen, [90, 120]⊆[90, 120] indicates that the first
condition holds, i.e. L ⊆ Ci. As we traverse the tree towards the root by
visiting the ancestors of each of the two target nodes, we see that A2(L), i.e.
IPv6 node, is a sibling of A2(Ci), i.e. any node, and IPv6⊂ any indicating
that A2(L) ⊂ A2(Ci). Hence, the fifth leaf [90, 120] could be pruned.
Another example in this case would be the third leaf [800, 520] and its
third cousin C3, i.e. the fourth leaf, [800, 520]. Since [800, 520]⊆[800,
520] and their first ancestors, i.e. parents, are siblings and A1(L) ⊂ A1(C3),
therefore the third leaf [800, 520] can be pruned. We illustrate the pruned
version of ACE Tree of Fig. 2 in Fig. 3.

6 Implementation

We implemented MUD-Visualizer in JavaScript for two main reasons: the preva-
lent visualization libraries and enormous visualization capabilities in JavaScript,
and the possibility of creating both a stand-alone application and a web appli-
cation with minimum changes to the codebase.

The UML diagram of the MUD-Visualizer is presented in Fig. 4. As shown,
the D3 library5 is a vital component to visualizing the MUD-Files in MUD-
Visualizer. The main function of MUD-Visualizer is to provide the appropriate

5 https://d3js.org/



Analyzing MUD-Files Before Deployment 15

IPv4

TCP UDP any

[800, 520] [400, 480]

Destination

any

[90, 120][any, any]

any

Fig. 3: Result of the protocol pruning

data to the D3 library. There are four main internal components of the MUD-
Visualizer: MUD-File processor, visualization data generator, rendering engine,
and standalone extension.

The MUD-File Processor initially parses the MUD-Files and extracts the
data needed for the identification of possible flows. This information includes
the MUD-URL, manufacturer, incoming and outgoing ACE, existence of my-
controller or controller nodes, and associated data defined for the seven optional
fields in Section 2.2. Using this data the connection between the instances of the
MUD-Files are analyzed. This includes whether or not two nodes should connect
and if so, what are the assumptions about the protocols allowed between them.
Note that the rules for each extension in Section 2.2 might be different and are
kept separately for further analysis in the MUD-File Processor component. In
the case of a my-controller node, the required promises [11] are also saved so
that they can be fulfilled by the user later on. Finally, the protocols are stored

MUD-Visualizer

Visualization Data Generator

Drawable-LinksDrawable-Nodes

LinkNode

ACE-PromiseAbstractions

ProtocolProtocol-Set

Rendering
Engine

D3

MUD-Network MUD-file Parser

MUD-file Processor

Electron App UI Web App UI

Standalone
Extension

Fig. 4: UML Diagram of the MUD-Visualizer. The dotted line used for the Elec-
tron UI is merely for the two UIs, i.e. Web and Electron, to be distinguishable.



16 Andalibi et al.

Fig. 5: Screenshot of the UI of the MUD-Visualizer

and merged in a way to minimize the redundant information, as was previously
described in the sub-section entitled ACE Merging. Moreover, further informa-
tion is requested from the user if needed, e.g., the configuration of my-controller
nodes. This step of MUD-Visualizer requires that the developer explicitly rec-
ognize their assumptions about the user or contextual knowledge required for
configuration.

The visualization data generator converts the data extracted from MUD-
Files into structures for the following visualization. These structures include
nodes, links, and direction of the links as well as the corresponding protocols
and rules that are assigned to the MUD-Files. For instance a simple MUD-File
describing an IoT device with a domain-name abstraction that is only allowed
to communicate with a remote server would generate several nodes and links
including the IoT device and the remote server. In contrast, a device that should
only communicate internally might seek to connect to a device that is constrained
to only connect to a manufacturer. The concepts previously described in Methods
section including building the ACE Tree in 5.2 and ACE Tree pruning in 5.2 are
both implemented in the Abstractions module of this component.

The rendering engine is the component that combines all data generated
by the other components and creates the final visualization. This component
has several responsibilities, including interfacing with MUD-File Processor, the
visualization libraries (i.e., D3), and also the Web App UI. If the application is
running as a stand-alone app, it also communicates with the following compo-
nent.

The extension, called Standalone Extension is not used for the MUD-
Visualizer web app. It enables a stand-alone version of the MUD-Visualizer. It
consists of the components above, calls for those components, and the main
script for the Electron UI application.

7 Results

The UI of the MUD-Visualizer is shown in Fig. 5. This screenshot is consistent
for both the stand-alone version and web app version of the tool.

Given that the Electron framework also supports the DevTools, we used
the Chrome Performance Analysis tool available as part of the Devtools for



Analyzing MUD-Files Before Deployment 17

0

3.1

10

31.6

100

316.2

1000

3162.2

0

0.5

1

1.5

2

2.5

3

3.5

M
em

or
y 

[M
B]

]B
M[  )yro

me
M( 01goL

Number of Imported MUD-Files

Memory

0.001

0.01

0.1

1

10

100

1000

0

1

2

3

4

5

6

Ti
m

e 
[s

]

]s
m[ )e

mit( 01goL

Number of Imported MUD-Files

Painting Rendering Scripting Total

Fig. 6: Performance evaluation of MUD-Visualizer for first-time loading as well
as importing 1 to 512 MUD-Files. Left: individual and total runtime for Paint-
ing, Rendering, and Scripting. Right: peak Javascript heap memory usage. Both
charts are presented in logarithmic scale with the primary axis indicating the
logarithmic values and secondary axis indicating actual values in seconds and
MegaBytes respectively. The maximum runtime is for loading 512 MUD-File
which is equal to 526 seconds and the corresponding memory usage is 1754 MB.

benchmarking the web application version of the MUD-Visualizer. We considered
the time spent for Scripting, Rendering, and Painting as well as peak Javascript
heap memory usage. Our experiments were run on a Macbook Pro late 2013
computer with 2.6GHz Quad-Core Intel Core i7, 16GB 1600 MHz DDR3 RAM,
and 2880x1800 pixels of screen space.

The benchmark results are presented in Fig. 6. We evaluated the performance
of MUD-Visualizer when loaded for the first time, i.e. indicated as Loading in
the figure, as well as when we import MUD-Files. The number of MUD-Files
that was used in the benchmark ranged from 1 to 512. To evaluate the scalability
of MUD-Visualizer, we used copies of a relatively heavy MUD-File created by
mudmaker which includes five out of seven implemented abstractions, i.e. all
abstractions except my-controller and model. Please recall that my-controller
requires end-user to manually enter data about their selected point of control.
Had we included my-controller the results would have been dominated by user
response time. Examining user interaction is a component of our future work.
Also, the model abstraction would result in all copies of the sample MUD-File
to communicate with each other in a local network. Therefore, we decided not
to include that to make the benchmarking more rigorous by letting the MUD-
Visualizer process all other abstractions.

Note that in a real-world setting, although the enterprises might have thou-
sands of IoT devices in their networks, the type of devices in their network is
significantly lower than that. For instance, a hospital that has 2k MUD-compliant
smart bulbs in its network will have bulbs of a few brands and types. In this
case, if a hospital system administrator tries to use MUD-Visualizer, they will
not need to load 2k MUD-files but rather a handful of them. In other words,



18 Andalibi et al.

our benchmark shows the scalability of MUD-Visualizer with regard to the type
of MUD-Files not the number of MUD-compliant devices in the network. The
threat model and risk posture of enterprise will determine if new devices should
be manually added, if MUD-Visualizer should interact with automated detection
and identification, or if there should be some combination of these strategies.

The runtime benchmark data in Fig. 6 indicates that the total time gets very
close to scripting time as the number of MUD-Files increases. This is because
for each MUD-File that is newly imported, its relation and interaction with
other MUD-Files with respect to all MUD abstractions should be analyzed and
processed. The maximum loading time is for 512 MUD-Files which is slightly
longer than 10 minutes and the memory that the application needs exceeds
slightly higher than 1754 MB. Be advised that this benchmark is performed
rigorously and even enterprise networks barely have 512 types of MUD-Files
in their network each being as heavy as the one we used in this benchmark.
Moreover, verification of MUD-File using the MUD-Visualizer is not performed
on short intervals and is done only when, for instance, a new device is introduced.

8 Conclusions and Future Work

In this work, we described a tool for visualizing the interaction of MUD-Files
which also explicitly identifies any information required by the use of the con-
troller options. The challenge in visualizing the MUD-files is the way they in-
teract with each other and how the ACL of the devices affects the communi-
cation between them. We presented methods for addressing this challenge and
implemented MUD-Visualizer and made it open-source and publicly available
on GitHub. The main purpose of MUD-Visualizer is to facilitate the review
and validation phase of MUD deployment for developers, engineers, and system
administrators. We also performed a benchmark for runtime and memory con-
sumption of the tool and showed that it can be used on a personal computer to
load hundreds of MUD-File for evaluation.

Our future work includes several phases. First, a user study in which we ex-
amine the practicality of the MUD-Visualizer and the extent to which it can help
the target audience. Second, there are a few points in the tool that we are par-
ticularly interested to improve, including visualizing the controllers’ MUD-File,
support for including network configuration in the visualization, e.g., the IP ad-
dress of IoT devices and the corresponding controllers, DHCP configuration, etc.
Third, we want to test the functionality that facilitates the local modification of
the MUD-Files without creating the opportunity for an attacker to move around
these. Essentially our goal is to allow decreased but not increased connectivity.
Finally, we want to implement the abstraction analysis of MUD-Visualizer in
parallel to improve the performance and scalability even more.



Analyzing MUD-Files Before Deployment 19

Availability

MUD-Visualizer is made publicly available in GitHub at https://github.com/iot-
onboarding/mud-visualizer and can be used both as a stand-alone tool and as a
tool integrated into web apps.

Acknowledgments

This research was supported in part by the National Science Foundation awards
CNS 1565375 and CNS 1814518, as well as the grant #H8230-19-1-0310, Cisco
Research Support, Google Research, and the Comcast Innovation Fund. Any
opinions, findings, and conclusions, or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation, Cisco, Comcast, Google, nor Indiana University.

References

1. State of the IoT 2018: Number of IoT devices now at 7B – Market accelerating.
[Online]. Available on: https://iot-analytics.com/state-of-the-iot-update-
q1-q2-2018-number-of-iot-devices-now-7b (Aug 2018)

2. Ring security camera hacks see homeowners subjected to racial abuse, ransom
demands. [Online]. Available on: https://abcnews.go.com/US/ring-security-
camera-hacks-homeowners-subjected-racial-abuse/story?id=67679790 (Dec
2019)

3. Afek, Y., Bremler-Barr, A., Hay, D., Goldschmidt, R., Shafir, L., Abraham,
G., Shalev, A.: NFV-based IoT Security for Home Networks using MUD. arXiv
preprint arXiv:1911.00253 (2019)

4. Andalibi, V., Kim, D., Camp, L.J.: Throwing MUD into the FOG: Defending IoT
and Fog by expanding MUD to Fog network. In: 2nd {USENIX}Workshop on Hot
Topics in Edge Computing (HotEdge 19) (2019)

5. Beckett, R., Gupta, A., Mahajan, R., Walker, D.: A general approach to network
configuration verification. In: Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. pp. 155–168 (2017)

6. Dodson, D., Polk, W., Souppaya, M., Barker, W., Lear, E., Weis, B., Fashina, Y.,
Grayeli, P., Klosterman, J., Mulugeta, B., et al.: Securing Small Business and Home
Internet of Things (IoT) Devices: Mitigating Network-Based Attacks Using Man-
ufacturer Usage Description (MUD). Tech. rep., National Institute of Standards
and Technology (2019)

7. D’Orazio, C.J., Choo, K.K.R., Yang, L.T.: Data exfiltration from Internet of Things
devices: iOS devices as case studies. IEEE Internet of Things Journal 4(2), 524–535
(2016)

8. Fayaz, S.K., Sharma, T., Fogel, A., Mahajan, R., Millstein, T., Sekar, V., Vargh-
ese, G.: Efficient network reachability analysis using a succinct control plane rep-
resentation. In: 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16). pp. 217–232 (2016)

9. Feraudo, A., Yadav, P., Mortier, R., Bellavista, P., Crowcroft, J.: Sok: Be-
yond iot mud deployments–challenges and future directions. arXiv preprint
arXiv:2004.08003 (2020)

https://github.com/iot-onboarding/mud-visualizer
https://github.com/iot-onboarding/mud-visualizer
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b
https://abcnews.go.com/US/ring-security-camera-hacks-homeowners-subjected-racial-abuse/story?id=67679790
https://abcnews.go.com/US/ring-security-camera-hacks-homeowners-subjected-racial-abuse/story?id=67679790


20 Andalibi et al.

10. Fogel, A., Fung, S., Pedrosa, L., Walraed-Sullivan, M., Govindan, R., Maha-
jan, R., Millstein, T.: A general approach to network configuration analysis. In:
12th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 15). pp. 469–483 (2015)

11. Friedman, D.P., Wise, D.S.: The impact of applicative programming on multipro-
cessing. Indiana University, Computer Science Department (1976)

12. Garćıa, S.N.M., Molina Zarca, A., Hernández-Ramos, J.L., Bernabé, J.B., Gómez,
A.S.: Enforcing Behavioral Profiles through Software-Defined Networks in the In-
dustrial Internet of Things. Applied Sciences 9(21), 4576 (2019)

13. Gember-Jacobson, A., Viswanathan, R., Akella, A., Mahajan, R.: Fast control
plane analysis using an abstract representation. In: Proceedings of the 2016 ACM
SIGCOMM Conference. pp. 300–313 (2016)

14. Hamza, A., Gharakheili, H.H., Benson, T.A., Sivaraman, V.: Detecting volumetric
attacks on IoT devices via SDN-based monitoring of MUD activity. In: Proceedings
of the 2019 ACM Symposium on SDN Research. pp. 36–48 (2019)

15. Hamza, A., Gharakheili, H.H., Sivaraman, V.: Combining MUD policies with SDN
for IoT intrusion detection. In: Proceedings of the 2018 Workshop on IoT Security
and Privacy. pp. 1–7 (2018)

16. Hamza, A., Ranathunga, D., Gharakheili, H.H., Benson, T.A., Roughan, M.,
Sivaraman, V.: Verifying and monitoring IoTs network behavior using MUD pro-
files. arXiv preprint arXiv:1902.02484 (2019)

17. Hamza, A., Ranathunga, D., Gharakheili, H.H., Roughan, M., Sivaraman, V.: Clear
as MUD: generating, validating and applying IoT behavioral profiles. In: Proceed-
ings of the 2018 Workshop on IoT Security and Privacy. pp. 8–14. ACM (2018)

18. Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.: DDoS in the IoT: Mirai and
other botnets. Computer 50(7), 80–84 (2017)

19. Kolomeets, M., Chechulin, A., Kotenko, I., Saenko, I.: Access control visualization
using triangular matrices. In: 2019 27th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP). pp. 348–355 (2019).
https://doi.org/10.1109/EMPDP.2019.8671578

20. Landwehr, C.E., Bull, A.R., McDermott, J.P., Choi, W.S.: A taxonomy of com-
puter program security flaws. ACM Computing Surveys (CSUR) 26(3), 211–254
(1994)

21. Lear, E.: MUD Pretty Printer. [Online]. Available on: https://github.com/iot-
onboarding/mudpp (2020)

22. Lear, E., Droms, R., Romascanu, D.: Manufacturer Usage Description Specifica-
tion. RFC 8520 (Mar 2019). https://doi.org/10.17487/RFC8520, https://rfc-

editor.org/rfc/rfc8520.txt

23. Lear, E., Steck, C.S., Weis, B.: Secure modification of manufacturer usage descrip-
tion files based on device applications (Oct 17 2019), uS Patent App. 15/954,875

24. Liginlal, D., Sim, I., Khansa, L.: How significant is human error as a cause of privacy
breaches? an empirical study and a framework for error management. computers
& security 28(3-4), 215–228 (2009)

25. Matheu, S.N., Robles Enciso, A., Molina Zarca, A., Garcia-Carrillo, D., Hernández-
Ramos, J.L., Bernal Bernabe, J., Skarmeta, A.F.: Security Architecture for Defin-
ing and Enforcing Security Profiles in DLT/SDN-Based IoT Systems. Sensors
20(7), 1882 (2020)

26. Matth́ıasson, G., Giaretta, A., Dragoni, N.: Iot device profiling: From mud files to
s× c contracts. Open Identity Summit 2020 (2020)

https://doi.org/10.1109/EMPDP.2019.8671578
https://github.com/iot-onboarding/mudpp
https://github.com/iot-onboarding/mudpp
https://doi.org/10.17487/RFC8520
https://rfc-editor.org/rfc/rfc8520.txt
https://rfc-editor.org/rfc/rfc8520.txt


Analyzing MUD-Files Before Deployment 21

27. Maxion, R.A., Reeder, R.W.: Improving user-interface dependability through mit-
igation of human error. International Journal of human-computer studies 63(1-2),
25–50 (2005)

28. Mazhar, N., Salleh, R., Zeeshan, M., Hameed, M.M.: Role of device identifica-
tion and manufacturer usage description in iot security: A survey. IEEE Access 9,
41757–41786 (2021)

29. Polk, W., Souppaya, M., Haag, W., Barker, W.: [Project Description] Mitigating
IoT-based Distributed Denial of Service (DDOS). Tech. rep., National Institute of
Standards and Technology (2017)

30. Prabhu, S., Chou, K.Y., Kheradmand, A., Godfrey, B., Caesar, M.: Plankton:
Scalable network configuration verification through model checking pp. 953–967
(2020)

31. Pratt, C.: micronets Manufacturer Usage Description (MUD) tools. [Online]. Avail-
able on: https://github.com/cablelabs/micronets-mud-tools (2019)

32. Ranganathan, M.: Openflow SDN Manufacturer Usage Description (MUD) Server
implementation on OpenDaylight Nitrogen Release. [Online]. Available on: https:
//github.com/usnistgov/nist-mud (2018)

33. Ranganathan, M., Montgomery, D., El Mimouni, O.: Implementing Manufacturer
Usage Descriptions on OpenFlow SDN Switches

34. Reeder, R.W., Bauer, L., Cranor, L.F., Reiter, M.K., Bacon, K., How, K., Strong,
H.: Expandable grids for visualizing and authoring computer security policies. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
pp. 1473–1482 (2008)

35. Reeder, R.W., Maxion, R.A.: User interface dependability through goal-error pre-
vention. In: 2005 International Conference on Dependable Systems and Networks
(DSN’05). pp. 60–69. IEEE (2005)

36. Roesner, F., Kohno, T., Moshchuk, A., Parno, B., Wang, H.J., Cowan, C.: User-
driven access control: Rethinking permission granting in modern operating systems.
In: 2012 IEEE Symposium on Security and Privacy. pp. 224–238. IEEE (2012)

37. Salim, F., Reid, J., Dawson, E., Dulleck, U.: An approach to access control under
uncertainty. In: 2011 Sixth International Conference on Availability, Reliability
and Security. pp. 1–8. IEEE (2011)

38. Schutijser, C.: Towards automated DDoS abuse protection using MUD device pro-
files. Master’s thesis, University of Twente (2018)

39. Smetters, D.K., Good, N.: How users use access control. In: Proceedings of the 5th
Symposium on Usable Privacy and Security. pp. 1–12 (2009)

40. Tahaei, M., Vaniea, K.: “developers are responsible”: What ad networks tell de-
velopers about privacy. In: Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems Extended Abstracts (CHI’21 Extended Abstracts).
pp. 1–12 (2021)

41. Vaniea, K., Karat, C.M., Gross, J.B., Karat, J., Brodie, C.: Evaluating assistance
of natural language policy authoring. In: Proceedings of the 4th symposium on
Usable privacy and security. pp. 65–73 (2008)

42. Wang, M.: Accessible access control: A visualization system for access control pol-
icy management (2019)

43. Watrobski, P.: A tool for characterizing the network behavior of IoT devices. [On-
line]. Available on: https://github.com/usnistgov/MUD-PD (2019)

44. Weis, B.: MUD-Manager Version 3.0. [Online]. Available on: https://github.com/
CiscoDevNet/MUD-Manager (2018)

https://github.com/cablelabs/micronets-mud-tools
https://github.com/usnistgov/nist-mud
https://github.com/usnistgov/nist-mud
https://github.com/usnistgov/MUD-PD
https://github.com/CiscoDevNet/MUD-Manager
https://github.com/CiscoDevNet/MUD-Manager


22 Andalibi et al.

45. Xu, T., Naing, H.M., Lu, L., Zhou, Y.: How do system administrators resolve
access-denied issues in the real world? In: Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems. pp. 348–361 (2017)

46. Yaqoob, I., Ahmed, E., ur Rehman, M.H., Ahmed, A.I.A., Al-garadi, M.A., Imran,
M., Guizani, M.: The rise of ransomware and emerging security challenges in the
Internet of Things. Computer Networks 129, 444–458 (2017)

47. Yeich, K.: osMUD- Open Source MUD Manager. [Online]. Available on: https:

//github.com/osmud/osmud (2019)

https://github.com/osmud/osmud
https://github.com/osmud/osmud

	On the Analysis of MUD-Files' Interactions, Conflicts, and Configuration Requirements Before Deployment

