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Abstract. Monocular estimation of 3d human pose has attracted in-
creased attention with the availability of large ground-truth motion
capture datasets. However, the diversity of training data available is
limited and it is not clear to what extent methods generalize outside
the specific datasets they are trained on. In this work we carry out a
systematic study of the diversity and biases present in specific datasets
and its e↵ect on cross-dataset generalization across a compendium of 5
pose datasets. We specifically focus on systematic di↵erences in the distri-
bution of camera viewpoints relative to a body-centered coordinate frame.
Based on this observation, we propose an auxiliary task of predicting
the camera viewpoint in addition to pose. We find that models trained
to jointly predict viewpoint and pose systematically show significantly
improved cross-dataset generalization.

Keywords: monocular 3d human pose estimation, cross dataset evalua-
tion, dataset bias.

1 Introduction

A large swath of computer vision research increasingly operates in playing field
which is swayed by the quantity and quality of annotated training data available
for a particular task. How well do you know your data? Fig 1 presents a sampling
images from 5 popular datasets used for training models for 3d human pose
estimation (Human3.6M [8], GPA [43], SURREAL [40], 3DPW [15] , 3DHP [19]).
We ask the reader to consider the game of “Name That Dataset” in homage to
Torralba et al. [33]. Can you guess which dataset each image belongs to? More
importantly, if we train a model on the Human3.6M dataset (at Fig 1 left) how
well would you expect it to perform on each of the images depicted?

Each of these datasets were collected using di↵erent mocap systems (VICON,
The Capture, IMU), di↵erent cameras (Kinect, commercial synchronized cameras,
phone), and collected in di↵erent environments (controlled lab environment,
marker-less in the wild environment, or synthetic images) with varying camera
viewpoint and pose distributions (see Fig 3). These datasets contain further
variations in body sizes, camera intrinsic and extrinsic parameters, body and
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Fig. 1: In this paper we consider the problem of dataset bias and cross-dataset
generalization. Can you guess which human pose dataset each image on the right
comes from? If we train a model on H36M data (left) can you predict which
image has the lowest/highest 3D pose prediction error? (answer key below)1

background appearance. Despite the obvious presence of such systematic di↵er-
ences, these variables and their subsequent e↵ect on performance have yet to be
carefully analyzed.

In this paper, we study the generalization of 3d pose models across multiple
datasets and propose an auxiliary prediction task: estimating the relative rota-
tion between camera viewing direction and a body-centered coordinate system
defined by the orientation of the torso. This task serves to significantly improve
cross-dataset generalization. Ground-truth for our proposed camera viewpoint
task can be derived for existing 3D pose datasets without requiring additional
labels. We train o↵-the shelf models [21, 50] which estimate the camera-relative
3d pose, augmented with a viewpoint prediction branch. In our experiments, we
show our approach outperforms the state-of-the-art PoseNet [21] and [50] baseline
by a large margin across 5 di↵erent 3d pose datasets. Perhaps even more startling
is that the addition of this auxiliary task results in significant improvement in
cross-dataset test performance. This simple approach increases robustness of the
model and, to our knowledge, is the first work that systematically confronts the
problem of dataset bias in 3d human pose estimation.

To summarize, our main contributions are:

• We analyze the di↵erences among contemporary 3d human pose estimation
datasets and characterize the distribution and diversity of viewpoint and body-
centered pose.

• We propose the novel use of camera viewpoint prediction as an auxiliary
task that systematically improves model generalization by limiting overfitting

1 Answer key: Metric: MPJPE, the lower the better. 1) GPA: 69.7 mm 2) H36M: 29.2
mm, 3) 3DPW, 71.2 mm, 4) 3DHP 107.7 mm, 5) 3DPW 66.2 mm, 6) SURREAL
83.4 mm, H36M image performs best while 3DHP image performs worst.
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to common viewpoints and can be directly calculated from commonly available
joint coordinate ground-truth.

• We experimentally demonstrate the e↵ectiveness of the viewpoint prediction
branch in improving cross-dataset 3d human pose estimation over two popular
baseline and achieve state-of-the-art performance on five datasets.

2 Related Work

Cross-Dataset Generalization and Evaluation 3d human pose estimation from
monocular imagery has attracted significant attention due to its potential utility
in applications such as motion retargeting [41], gaming, sports analysis, and
health care [16]. Recent methods are typically based on deep neural network
architectures [17, 21, 23, 24, 30, 50] trained on one of a few large scale, publicly
available datasets. Among these are [17, 23, 30] evaluated on H36M, [19, 50] work
on both H36M [8] and 3DHP [19], [15, 34] work on TOTALCAPTURE [34] and
3DPW[15], [43] work on the GPA dataset [43]. [40] works on both SURREAL
[40] and H36M [8] dataset.

Given the powerful capabilities of CNNs to overfit to specific data, we are
inspired to revisit the work of [33], which presented a comparative study of
popular object recognition datasets with the goals of improving dataset collection
and evaluation protocols. Recently, [13] observed characteristic biases present in
commonly used depth estimation datasets and proposed scale invariant training
objectives to enable mixing multiple, otherwise incompatible datasets. [52] intro-
duced the first large-scale, multi-view unbiased hand pose dataset as training set
to improve performance when testing on other dataset. Instead of proposing yet
another dataset or resorting to domain adaptation approaches (see e.g., [42]), we
focus on identifying systematic biases in existing data and identifying generic
methods to prevent overfitting in 3d pose estimation.

Coordinate Frames for 3D Human Pose In typical datasets, gold-standard 3d
pose is collected with motion capture systems [8, 29, 34, 43] and used to define
ground-truth 3D pose relative one or more calibrated RGB camera coordinate
systems [8, 15, 19, 40, 43]. To generate regression targets for use in training and
evaluation, it is typical to predict the relative 3d pose and express the joint
positions relative to a specified root joint such as the pelvis (see e.g.,[21, 30]).
We argue that camera viewpoint is an important component of the experimental
design which is often overlooked and explore using a body-centered coordinate
system which is rotated relative to the camera frame.

This notion of view-point invariant prediction has been explored in the
context of 3D object shape estimation [3, 4, 20, 26, 28, 31, 36, 46] where many
works have predicted shape in either an object-centered or camera-centered
coordinate frame [28, 32, 49]. Closer to our task is the 3d hand pose estimator
of [51] which separately estimated the viewpoint and pose (in canonical hand-
centered coordinates similar to ours) and then combine the two to yield the final
pose in the camera coordinate frame. However, we note that predicting canonical
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pose directly from image features is di�cult for highly articulated objects (indeed
subsequent work on hand pose, e.g. [38], abandoned the canonical frame approach).
Our use of body-centered coordinate frames di↵ers in that we only use them as a
auxiliary training task that improves prediction of camera-centered pose.

3D Human Pose Estimation With the recent development of deep neural networks
(CNNs), there are significant improvements on 3D human pose estimation [5,
17, 23, 44]. Many of them try to tackle in-the-wild images. [50] proposes to add
bone length constraint to generalize their methods to in the wild image. [27]
seeks to pose anchors as classification template and refine the prediction with
further regression loss. [5] propose a a new disentangled hidden space encoding of
explicit 2D and 3D features for monocular 3D human pose estimation that shows
high accuracy and generalizes well to in-the-wild scenes, however, they do not
evaluate its capacity on indoor cross-dataset generalization. To the best of our
knowledge, our work is the first to exploit cross-dataset task not only towards
in-the-wild generalization but also across di↵erent indoor datasets.

Multi-task Training There have has been a wide variety of work in training deep
CNNs to perform multiple tasks, for example: joint detection, classification, and
segmentation [6], joint surface normal, depth, and semantic segmentation [12],
joint face detection, keypoint, head orientation and attributes [25]. Such work
typically focuses on the benefits (accuracy and computation) of jointly training a
single model for two or more related tasks. For example, predicting face viewpoint
has been shown to improve face recognition [47]. Our approach to improving
generalization di↵ers in that we train models to perform two tasks (viewpoint and
body pose) but discard viewpoint predictions at test time and only utilize pose.
In this sense our model is more closely related to work on “deeply-supervised”
nets [14, 45] which trains using losses associated with auxiliary branches that are
not used at test time.

3 Variation in 3D Human Pose Datasets

We begin with a systematic study of the di↵erences and biases across 3d pose
datasets. We selected three well established datasets Human3.6m (H36M), MPI-
inf-3dhp (3DHP), SURREAL, as well as two more recent datasets 3DPW and GPA
for analysis. These are large-scale datasets with a wide variety of characteristics
in terms of capture technology, appearance (in-the-wild,in-the-lab,synthetic) and
content (range of body sizes, poses, viewpoints, clothing, occlusion and human-
scene interaction). In this paper, we focus on characterizing variation in geometric
quantities (pose and viewpoint) which can be readily quantified (compared to,
e.g., lighting and clothing).

We list some essential statistics from 5 datasets in Table 1. For these datasets,
gold-standard 3d pose is collected with motion capture systems [8, 29, 34, 43] and
used to define ground-truth 3D pose relative one or more calibrated RGB camera
coordinate systems [8, 15, 19, 40, 43]. To generate regression targets for use in
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Dataset H36M GPA SURREAL 3DPW 3DHP
Year 2014 2019 2017 2018 2017
Imaging Space 1000 ⇥ 1002 1920 ⇥ 1080 320 ⇥ 240 1920 ⇥ 1080 2048 ⇥ 2048

or 1920 ⇥ 1080
Camera Distance 5.2 ± 0.8 5.1 ± 1.2 8.0 ± 1.0 3.5 ± 0.7 3.8 ± 0.8
Camera Height 1.6 ± 0.05 1.0 ± 0.3 0.9 ± 0.1 0.6 ± 0.8 0.8 ± 0.4
Focal Length 1146.8 ± 2.0 1172.4 ± 121.3 600 ± 0 1962.2 ± 1.5 1497.88 ± 2.8
No. of Joints 38 34 24 24 28 or 17
No. of Cameras 4 5 1 1 14
No. of Subjects 11 13 145 18 8
Bone Length 3.9 ± 0.1 3.7 ± 0.2 3.7 ± 0.2 3.7 ± 0.1 3.7 ± 0.1
GT source VICON VICON Rendering SMPL The Capture
No. Train Images 311,951 222,514 867,140 22,375 366,997
No. Test Images 109,764 82,378 507 35,515 2,875

Table 1: Comparison of existing datasets commonly used for training and eval-
uating 3D human pose estimation methods. We calculate the mean and std of
camera distance, camera height, focal length, bone length from training set. Focal
length is in mm while the others are in unit meters. 3DHP has two kinds of
cameras and the training set provide 28 joints annotation while test set provide
17 joints annotation.

training and evaluation, it is typical to predict the relative 3d pose (see e.g.,[21,
30]) and express the joint positions relative to a specified root joint (typically the
pelvis) and crop/scale the input image accordingly. This pre-processing serves
to largely “normalize away” dataset di↵erences in camera intrinsic parameters
and camera distance shown in Table 1. However, it does not address camera
orientation.

Fig. 2: Distribution of view-independent
body-centered pose, visualized as a 2D em-
bedding produced with UMAP [18]

To characterize the remaining vari-
ability, we factor the camera-relative
pose into camera viewpoint (the posi-
tion of the camera relative to a canon-
ical body-centered coordinate frame
defined by the orientation of the per-
son’s torso) and the pose relative to
this body-centered coordinate frame.

Computing Body-centered Coordinate

Frames To define a viewpoint-
independent pose, we need to specify
a canonical body-centered coordinate
frame. As shown in Fig 9a, we take
the origin to be the camera-centered
coordinates of root joint (pelvis) pp =
(xp, yp, zp) and the orientation is de-
fined by the plane spanned by pp, the
left shoulder pl and the right shoulder
pr. Given these joint positions, we can
compute an orthogonal frame consist-
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(a) Viewpoint Azimuth (b) Viewpoint Elevation

Fig. 3: Distribution of camera viewpoints relative to the human subject. We show
the distribution of camera azimuth (�180�, 180�) and elevation (�90�, 90�) for
50k poses sampled from each representative dataset (H36M, GPA, SURREAL,
3DPW, 3DHP).

ing of the front direction f , up direction u and right direction r are defined
as:

u = (pl + pr)/2� pp

f = (pl � pp)⇥ (pr � pp)

r = f ⇥ u

The rotation between the body-centered frame and the camera frame is then
given by the matrix R = �[r, u, f ]. We find it useful to represent rotations using
unit quaternions (as have others, e.g. [41, 35]). The corresponding unit quaternion
representing R has components:

q =
1

4q0
[4q20 , u2 � f1, f0 � r2, r1 � u0], q0 =

p
(1� r0 � u1 � f2) (1)

Distribution of Camera Viewpoints Fig 3 shows histograms capturing the distri-
bution of camera viewing direction in terms of azimuth (Fig 3a) and elevation
(Fig 3b) relative to the body-centered coordinate system for 50k sample poses
from each of the 5 datasets.

We observe H36M has a wide range of view direction over azimuth with
four distinct peaks (�30 degree, 30 degree, �160 degree, 160 degree), it shows
during the capture session subjects are always facing towards or facing away the
control center while the four RGB cameras captured from four corners. H36M
has a clear bias towards elevation above 0; GPA is more spread over azimuth
compared with H36M, most of the views range from �60 degree to 90 degree;
SURREAL synthetically sampled camera positions with a uniform distribution
over azimuth, and also have a uniform distribution over elevation. The viewpoint
bias for 3DPW arises naturally from filming people in-the-wild from a handheld
or tripod mounted camera roughly the same height as the subject. Of the non-
synthetic datasets, 3DHP is the most uniform spread over azimuth and includes
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a wider range of positive elevations, a result of utilizing cameras mounted at
multiple heights including the ceiling.

These di↵erences are further highlighted in Fig 9 which shows the joint
distribution of camera views and reveals the source of non-uniformity of the
azmuthal distribution for 3DHP and H36M due to subjects tending to face a
canonical direction while performing some actions. For example, in H36M in
Fig 9b, actions in which the subject lean over or lie down (extreme elevations)
only happen at particular azimuths. Similarly, in 3DHP (Fig 9f), the 14 camera
locations are visible as dense clusters at specific azimuths indicating a significant
subset of the data in which the subject was facing in a canonical direction relative
to the camera constellation.

Distribution of Pose To characterize the remaining variability in pose after the
viewpoint is factored out, we used the coordinates of 14 joints common to all
datasets expressed in the body-centered coordinate frame. We also scaled the
body-centered joint locations to a common skeleton size (removing variation in
bone length shown in Table 1). To visualize the resulting high-dimensional data
distribution, we utilized UMAP [18] to perform a non-linear embedding into 2D.
Figure 2 shows the resulting distributions which show a substantial degree of
overlap. For comparison, please see the Appendix which show embeddings of the
same data when bone length and/or viewpoint are not factored out.

We also trained a multi-layer perceptron to predict which dataset a given
body-relative pose came from. It had an average test accuracy of 20% providing
further evidence of relatively little bias in the distribution of poses across datasets
once viewpoint and body size are factored out.

4 Learning Pose and Viewpoint Prediction

To overcome biases in viewpoint across datasets, we propose to use viewpoint
prediction as an auxiliary task to regularize the training of standard camera-
centered pose estimation models.

4.1 Baseline architecture

Our baseline model [21, 50] consists of two parts: the first ResNet [7] backbone
which takes in images patches cropped around the human; followed by the
second part which takes the resulting feature map and upsamples it using three
consecutive deconvolutional layers with batch normalization and ReLU. A 1-by-1
convolution is applied to the upsampled feature map to produce the 3D heatmaps
for each joint location. The soft-argmax [30] operation is used to extract the 2D
image coordinates (x̂j , ŷj) of each joint j within the crop, and the root-relative
depth ŷj . At test time, we can convert this prediction into into a 3d metric joint
location pj = (xj , yj , zj) using the crop bounding box, an estimate of the root
joint depth or skeleton size, and the camera intrinsic parameters.
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Fig. 4: Flowchart of our model. We augment a model which predicts camera-
centered 3d pose using the human pose branch with an additional viewpoint

branch that selections among a set of quantized camera view directions.

The loss function of the coordinate branch is the L1 distance between the
estimated and groud-truth coordinates.

Lpose =
1

J

JX

j=1

||pj � p⇤j ||1

4.2 Predicting the camera viewpoint

To predict the camera viewpoint relative to the body-centered coordinate frame
we considered three approaches: (i) direct regression of q, (ii) quantizing the space
or rotations and performing k-way classification, and (iii) a combined approach
of first predicting a quantized rotation followed by regressing the residual from
the cluster center. In our experiments, we found that the classification-based
loss yields less accurate coordinate frame predictions but yielded the largest
improvements in the pose prediction branch (see Table 4).

To quantize the space of rotations, we use k-means to cluster the quaternions
into k=100 clusters. The clusters are computed from training data of a single
dataset (local clusters) or from all five datasets (global clusters). We visualize
the global cluster centers in azimuth and elevation space in Fig 9 b-f, as well as
randomly sampled quaternions from H36M, GPA, SURREAL, 3DPW and 3DHP
datasets.

To regress the quaternion q we simply add a branch to our base pose prediction
model consisting of a 1x1 convolutional layer to reduce the feature dimension
to 4 followed by global average pooling and normalization to yield a unit 4-
vector. We train this variant using a standard squared-Euclidan loss on target q⇤.
For classification, we use the same prediction q but compute the probability it
belongs to the correct cluster using a softmax to get a distribution over cluster
assignments:

p(c|q) = exp(�µT
c q)Pk

i=1 exp(�µT
i q)
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(a) Body-centered coordinate
(b) H36M (c) GPA

(d) SURREAL (e) 3DPW (f) 3DHP

Fig. 5: a: Illustration of our body-centered coordinate frame (up vector, right
vector and front vector) relative to a camera-centered coordinate frame. b-f :
Camera viewpoint distribution of the 5 datasets color by quaternion cluster index.
Quaternions (rotation between body-centered and camera frame) are sampled
from training sets and clustered using k-means. They are also visualized in
azimuth / elevation space following Fig 3.

where {µ1, µ2, . . . , µk} are the quaternions corresponding to cluster centers com-
puted by k-means. We use the negative log-likelihood as the training loss,

Lq = �log(p(c⇤|q))

where c⇤ is the viewpoint bin that the training example was assigned during clus-
tering. Our final loss consists of both quaternion and pose terms: L = �Lq + Lpose.

5 Experiments

Data and evaluation metric. To reduce the redundancy of the training images (30
fps video gives lots of duplicated images for network training), we down sample
3DHP, SURREAL to 5 fps. Following [21, 50], we sample H36M to 10 fps, and
use the protocol 2 (subject 1,3,5,7,8 for training and subject 9,11 for testing) for
evaluation. As GPA is designed as monocular image 3d human pose estimation,
which is already sampled, we follow [43] and directly use the released set. Number
of images in train set and test set is shown in Table 1. In addition, we use the
MPII dataset [1], a large scale in-the-wild human pose dataset for training a more
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MPJPE (in mm, lower is better)
Testing \Training H36M GPA SURREAL 3DPW 3DHP

Baseline

H36M 53.2 110.5 107.1 125.1 108.4
GPA 105.2 53.9 86.8 111.7 90.5
SURREAL 118.6 103.2 37.2 120.8 108.2
3DPW 108.7 116.4 114.2 100.6 113.3
3DHP 111.8 123.9 120.3 139.7 91.9

Our Method

H36M 52.0 102.5 103.3 124.2 95.6
GPA 98.3 53.3 85.6 110.2 91.3
SURREAL 114.0 101.2 37.1 113.8 107.2
3DPW 109.5 112.0 112.2 89.7 105.9
3DHP 111.9 119.7 118.2 136.0 90.3

Same-Dataset Error Reduction # 1.2 0.6 0.1 10.9 1.5
Cross-Dataset Error Reduction # 10.6 18.6 9.1 13.1 20.4

Table 2: Baseline cross-dataset test error and error reduction from the addition
of our proposed quaternion loss. Bold indicates the best performing model on
each the test set (rows). Blue color indicates test set which saw greatest error
reduction. See appendix for corresponding tables of PCK and Procrustese aligned
MPJPE.

robust pose model. It contains 25k training images and 2,957 validation images.
We use two metrics, first is mean per joint position error (MPJPE), which is
calculated between predicted pose and ground truth pose. The second one is
PCK3D [19], which is the accuracy of joint prediction (threshold on MPJPE
with 150mm).

Implementation Details. As di↵erent datasets have diverse joint configuration, we
select a subset of 14 joints that all datasets share to eliminate the bias introduced
by di↵erent number of joints during training. We normalize the z value from
(�zmax, +zmax) to (0, 63) for integral regression. zmax is 2400 mm based all 5
set. We use PyTorch to implement our network. The ResNet-50 [7] backbone is
initialized using the pre-trained weights on the ImageNet dataset. We use the
Adam [11] optimizer with a mini-batch size of 128. The initial learning rate is
set to 1 ⇥ 10�3 and reduced by a factor of 10 at the 17th epoch, we train 25
epochs for each of the dataset. We use 256 ⇥ 256 as the size of the input image
of our network. We perform data augmentation including rotation, horizontal
flip, color jittering and synthetic occlusion following [21]. We set � to 0.5 for the
quaternion loss which is validated on 3DPW validation set.

5.1 Cross-dataset evaluation

We list the cross-dataset baseline and our improved results in Table 2. The bold
numbers indicate the best performing model on the test set. As expected, the
best performance occurs when the model is trained and evaluated on the same
set. The numbers marked with blue color indicate the test set where the error
reduction is most significant, using our proposed quaternion loss.

Training on H36M. Adding the quaternion loss reduces total cross-dataset error by
10.6 mm (MPJPE), while the same-dataset error reduction is 1.2 mm (MPJPE).
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Fig. 6: We visualize viewpoint distributions for train (3DHP) and test (H36M)
overlayed with the reduction in pose prediction error relative to baseline

MPJPE (in mm, lower is better)
Metric \Training Set H36M GPA SURREAL 3DPW 3DHP
Same-Dataset Error Reduction # 0.6 4.2 0.2 7.6 1.2
Cross-Dataset Error Reduction # 2.4 12.3 1.9 10.1 9.3

Table 3: Retraining the model of Zhou et al. [50] using our viewpoint prediction
loss yields also shows significant decrease in prediction error, demonstrating the
generality of our finding. See appendix for full table of numerical results.

This may be explained by the error on H36M already being low. The largest error
reduction is on GPA (6.9 mm) which we attribute to de-biasing the azimuth
distribution di↵erence as shown in Fig 3a.

Training on GPA. The total cross-dataset error reduction is 18.6 mm (MPJPE),
and the same data error reduction is 0.6 mm (MPJPE). We attribute this to the
bias during capture [43]: the coverage of camera viewing directions is centered in
the range of �60 to 90 degrees azimuth (as in Fig 3a). The largest cross-data set
error reduction occurs for H36M, with 8.0 mm. This further demonstrates that
the view direction distribution is largely di↵erent from H36M.

Training on SURREAL. Adding the quaternion loss reduces the cross-dataset
error by 9.1 mm (MPJPE), while the same-dataset error reduction is 0.1 mm
(MPJPE). We attribute this to the fact that viewpoint distribution on SURREAL
itself is already uniform as in Fig 3a. We can see distribution over azimuths is
quite uniform. Thus adding more supervision in the form of quaternion loss helps
little. The most error reduction (2.0mm) is observed on 3DPW. We attribute
this to the fact that 3DPW is strongly biased dataset in terms of view direction,
and the quaternion loss helps reduce the view di↵erence between SURREAL and
3DPW.

Training on 3DPW. The error is reduced by 10.9 mm (MPJPE) on itself (also the
most error reduction one with model trained on 3DPW), and the cross-dataset
error reduction is 13.1 mm (MPJPE). From the Fig 3a we can see, in terms of
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Datasets Baseline C R C+R C+local cluster C+cannonical pose
3DPW (MPJPE (mm)) 100.6 89.7 94.0 93.2 93.1 100.3

Table 4: Ablation analysis: we compare the performance of our proposed camera
view-point loss using classification (C), regression (R), using both (C+R); using
per-dataset clusterings (local) rather than the global clustering; and adding a
third branch which also predicts pose in canonical body-centered coordinates.

azimuth, 3DPW has a strong bias towards �30 degree to 60 degree. As during
capture, the subject is always facing towards the camera to make it easier for
association between the subject (there are multiply persons in crowded scene)
and IMU sensors, this bias seems inevitable and quaternion loss is helpful for
this kind of in the wild dataset to reduce view direction bias. It is also verified in
3DHP, where half of the test set is in the wild, and have view direction bias.

Training on 3DHP. Adding the quaternion loss reduces the total cross-dataset
error by 20.4 mm, while the same-dataset error reduction is 1.5 mm (MPJPE).
During the capture, 3DHP capture images from a wide range of viewpoints. We
can see from the Fig 3 that the azimuth of 3DHP is the most uniformly distributed
of the real datasets. Thus treating it as training set will enable the network to
be robust to view direction. We also calculate error reduction conditioned on
azimuth and elevation on the H36M test set (Fig 6). The blue/black line is
azimuth and elevation histogram distribution for H36M/3DHP training sets while
the red line shows relative error reduction for H36M. We can see the error is
reduced more where H36M has fewer views relative to 3DHP.

5.2 E↵ect of Model Architecture and Loss Functions

To demonstrate the generalization of our approach to other models, we also added
a viewpoint prediction branch to the model of [50] which utilizes a di↵erent model
architecture. We observe similar results in terms of improved generalization (see
Table 3 and appendix). We note that while our primary baseline model [21] uses
camera intrinsic parameters to back-project, [50] utilizes an average bone-length
estimate from the training set which results in higher prediction errors across
datasets.

Ablation study To explore whether our methods are robust to di↵erent k-means
initialization, we repeat k-means 4 times and report performance on 3DPW. We
find the range of the MPJPE is within 90± 0.4 ([89.9, 89.6, 90.2, 89.7]) mm. We
also vary the number of clusters to select the best k 2 {10, 24, 50, 100, 200, 500},
with corresponding errors [93.0, 95.2, 92.3, 89.7, 93.0,93.2]. We find k=100 is
the best number with at most 6 mm reduction compared to k=24. In Table 4,
the error of global clusters is 3.4 mm error less than local, per-dataset clusters,
demonstrating training on global clusters is better than local clusters which
are biased towards the training set view distribution. In terms of choice for
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MPJPE#: lower is better PCK3D": higher is better
H36M GPA SURREAL 3DPW 3DHP H36M GPA SURREAL 3DPW 3DHP

Mehta [19] 72.9 - - - - - - - - 64.7
Zhou [50] 64.9 96.5 - - - - 82.9 - - 72.5
Arnab[2] 77.8 - - - - - - - - -
Kanazawa [9] 88.0 - - - 124.2 - - - - 72.9
Kanazawa [10] - - - 127.1 - - - - 86.4⇤ -
Moon [21] 54.3 - - - - - - - - -
Kolotouros [22] 78.0 - - - - - - - - -
Tung[37] 98.4 - 64.4⇤ - - - - - - -
Varol[39] 51.6⇤ - 49.1 - - - - - - -
Habibie [5] 65.7 - - - 91.0 - - - - 82.0
Yu [48] 59.1 - - - - - - - - -
Ours 52.0 53.3 37.1 89.7 90.3 96.0 96.8 97.3 84.6 84.3

Table 5: Comparison to state-of-the-art performance. There are many missing
entries, indicating how infrequent it is to perform multi-dataset evaluation. Our
model provides a new state-of-the art baseline across all 5 datasets and can serve
as a reference for future work. * denotes training using extra data or annotations
(e.g. segmentation). Underline denotes the second best results.

quaternion regression, k-way classification reduced error by 4.3 mm compared
to regression. While utilizing both classification and regression losses gives error
than regression only.

Finally, we also consider adding a third branch and loss function to the model
which also predicts the 3D pose in the body-centered coordinate system. This is
related to the hand pose model of [51], although we don’t use this prediction of
canonical pose at test time. This variant performs global pooling on the ResNet
feature map after upsampling followed by a two layer MLP that predicts the
viewpoint q and canonical pose. When training with this additional branch we
find the camera-centered pose predictions show no improvement over baseline
(Table 4). We also observe that the canonical pose predictions have higher error
than the camera-centered predictions which is natural since the the model can’t
directly exploit the direct correspondence between the 2D keypoint locations and
the 3D joint locations.

5.3 Comparison with state-of-the-art performance

Table 5 compares the proposed approach with the state-of-the-art performance
on all 5 datasets. Note that our method is the first to evaluate 3d human
pose estimation on the five representative datasets reporting both MPJPE and
PCK3D, which fills in some blanks and serves as a useful baseline for future
work. As can be seen, our method achieves state-of-the-art performance on
H36M/GPA/SURREAL/3DPW/3DHP datasets in terms of MPJPE. While [10]
uses additional data (both H36M and 3DHP, and LSP together with MPII) to
train, they have slightly better performance on 3DHP in terms of PCK3D.

Qualitative Results: We visualize the prediction on the 5 datasets with model
trained on H36M using our proposed method in Fig 7. The 2d joint prediction
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Fig. 7: Model predictiosn on 5 datasets from model trained on Human3.6M dataset.
The 2d joints are overlaid with the original image, while the 3d prediction (red)
is overlaid with 3d ground truth (blue). 3D prediction is visualized in body-

centered coordinate rotated by the relative rotation between ground truth
camera-centered coordinate and body-centered coordinate. From top to bottom
are H36M, GPA, SURREAL, 3DPW and 3DHP datasets. We rank the images
from left to right in order of increasing MPJPE.

is overlaid with cropped images while the 3d joint prediction is visualized in
our proposed body-centered coordinates. From top to bottom are H36M, GPA,
SURREAL, 3DPW and 3DHP datasets. We display the images from left to right
in ascending order by MPJPE.

6 Conclusions

In this paper, we observe strong dataset-specific biases present in the distribution
of cameras relative to the human body and propose the use of body-centered
coordinate frames. Utilizing the relative rotation between body-centered coordi-
nates and camera-centered coordinates as an additional supervisory signal, we
significantly reduce the 3d joint prediction error and improve generalization in
cross-dataset 3d human pose evaluation. Out model also achieves state-of-the-art
performance on all same-dataset evaluations. We hope that our cross-dataset
analysis is useful for future work and serves as a resource to guide future dataset
collection.
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(a) UMAP with only

root-subtraction

(b) UMAP with root-

subtraction and L2 nor-

malization

(c) UMAP body-centered

coordinates with only

root-subtraction

Fig. 8: Distribution of view-dependent, view-independent body-centered pose, visualized
as a 2D embedding produced with UMAP [18].

Appendix

In the appendix, we (1.) visualize the UMAP embedding [18] of view-dependent
pose (root-relate coordinates) from the five datasets. (2.) We provide results
for other evaluation metrics (PMPJPE and PCK3D) that parallel the MPJPE
results shown in the main paper. We also provide more detailed results showing
the e↵ectiveness of our quaternion loss in improving generalization of an alternate
model of Zhou [50]. (3.) We visualize the distribution of viewpoints of five
datasets in azimuth and elevation with cluster centers overlaid, (4.) We show
selected examples based on the quaternion distribution pattern from five datasets.
(5.) Finally, we show qualitative comparisons of training on each single dataset
and testing across the five datasets, and training on five di↵erent datasets while
testing on the same image from single dataset.

A UMAP Visualization

We visualize the UMAP [18] embedding of view-dependent coordinate (root-relate
coordinate) of H36M [8], GPA [43] , SURREAL [40], 3DPW [15] and 3DHP [19]
datasets in Fig 8a. We further normalize out skeleton size and visualize in Fig
8b. To compare with view-independent coordinate (body-center coordinate), we
visualize them before L2 normalization in Fig 8c. We can see the body-centered,
size normalized pose distribution (main paper) shows much higher overlap across
datasets while the root-relative coordinates implicitly which encode camera
orientation provide distinguishable information (dataset bias).

B PMPJPE, PCK3D results on posenet [21] and MPJPE

results on Zhou [50]

We provide PMPJPE in Table 6 and PCK3d in Table 7 to demonstrate the
e↵ectiveness of adding quaternion loss to PoseNet [21]. To demonstrate the utility
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PA-MPJPE (in mm, lower is better)
Testing \Training H36M GPA SURREAL 3DPW 3DHP

Baseline

H36M 43.4 75.0 69.6 91.3 75.0
GPA 75.4 41.7 66.3 84.4 70.2
SURREAL 76.5 73.5 31.8 85.8 77.9
3DPW 68.0 66.9 64.3 68.7 68.1
3DHP 88.5 91.2 86.9 111.3 71.4

Our Method

H36M 42.5 69.5 67.5 91.4 72.6
GPA 71.4 40.9 65.6 81.4 70.6
SURREAL 75.9 71.7 31.7 82.1 76.9
3DPW 68.3 65.1 63.8 65.2 66.4
3DHP 89.0 89.7 85.9 109.2 70.6

Same-Dataset Error Reduction # 0.9 0.8 0.1 3.2 0.8
Cross-data Error Reduction # 2.9 10.6 4.3 8.7 4.7

Table 6: Baseline cross-dataset test error and error reduction (Procrustese aligned
MPJPE) from the addition of our proposed quaternion loss. Bold indicates the
best performing model on each the test sets (rows). Blue color indicates test set
which saw greatest error reduction.

PCK3D (accuracy, higher is better)
Testing \Training H36M GPA SURREAL 3DPW 3DHP

Baseline

H36M 95.7 75.7 52.3 70.6 77.8
GPA 78.3 96.3 58.8 76.2 84.5
SURREAL 76.4 84.5 97.2 73.6 81.0
3DPW 83.2 78.7 54.5 82.1 81.7
3DHP 76.1 70.3 44.8 68.4 84.2

Our Method

H36M 96.0 78.9 52.6 72.8 78.3
GPA 81.5 96.8 59.3 76.4 84.8
SURREAL 80.0 84.8 97.3 76.2 81.3
3DPW 83.2 80.8 54.7 84.6 81.7
3DHP 76.1 73.5 45.1 70.3 84.3

Same-Dataset Accuracy Increase " 0.3 0.5 0.1 2.5 0.1
Cross-data Accuracy Increase " 6.8 8.8 1.3 6.9 1.1

Table 7: Baseline cross-dataset test accuracy and accuracy increases (PCK3D)
from the addition of our proposed quaternion loss. Bold indicates the best
performing model on each the test set (rows). Blue color indicates test set which
saw greatest accuracy increase.

of our quaternion loss on other models, we also show results based on retraining
the model of [50] in Table 8 with MPJPE metric.

C Quaternion and cluster centers

Instead of colorizing each quaternion with cluster index, we directly visualize
quaternion with the same color within each dataset in Fig 9, and also plot the
cluster centers in the azimuth and elevation space.

D Sampled images from five datasets

Sampled images from H36M We sample images from the interesting azimuth/elevation
pattern from H36M. We can see the images from Fig 10a are facing right while
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MPJPE (in mm, lower is better)
Testing \Training H36M GPA SURREAL 3DPW 3DHP

Baseline

H36M 72.5 126.0 116.6 135.5 118.0
GPA 110.5 76.6 97.3 116.2 100.6
SURREAL 129.6 116.0 54.1 132.3 118.7
3DPW 120.1 121.9 120.2 108.5 119.8
3DHP 122.9 133.6 128.5 148.0 104.5

Our Method

H36M 71.9 122.2 115.4 134.4 109.9
GPA 109.9 72.4 97.8 115.3 102.0
SURREAL 129.2 113.5 53.9 126.5 119.4
3DPW 119.1 119.3 119.9 100.9 116.5
3DHP 122.5 130.2 127.6 145.7 103.3

Same-Dataset Error Reduction # 0.6 4.2 0.2 7.6 1.2
Cross-data Error Reduction # 2.4 12.3 1.9 10.1 9.3

Table 8: Retraining the model of Zhou et al. [50] using our viewpoint prediction loss
also shows significant decrease in prediction error, demonstrating the generality
of our finding.

images from Fig 10b are facing left. The index in the azimuth/elevation images
corresponds with the index on top of images sampled and placed around the
center figure.

Sampled images from GPA/SURREAL We sample images from SURREAL and
GPA with uniform azimuth from left to right, and place some randomness on
elevation during sampling. We can see the patterns of sampled images from left
to right: facing towards back and rotating to facing right, and facing towards the
camera, and then facing back again in Fig 11.

Sampled images from 3DHP We sample images from 3DHP with uniform azimuth
from left to right as shown in Fig 12b, uniform elevation from top to down as
shown in Fig 12c, and from camera center as shown in Fig 12a, during sampling
we add some randomness on sampled elevation/azimuth around camera centers.

Sampled images from 3DPW We sample images from 3DPW with extreme
elevation as shown in Fig 13a, and randomly as shown Fig 13b.

E Qualitative Results

Qualitative Results trained on four datasets We visualize the prediction on the 5
datasets with model trained on GPA, SURREAL, 3DPW, 3DHP separately
on using our proposed method in Fig 14,15,16,17. The 2d joint prediction is
overlaid with cropped images while the 3d joint prediction is visualized in our
proposed body-centered coordinates. From top to bottom are H36M, GPA,
SURREAL, 3DPW and 3DHP datasets. We rank the images from left to right in
MPJPE increasing order.
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(a) Body-centered coordinate
(b) H36M (c) GPA

(d) SURREAL (e) 3DPW (f) 3DHP

Fig. 9: a: Illustration of our body-centered coordinate frame (up vector, right
vector and front vector) relative to a camera-centered coordinate frame. b-f :
Camera viewpoint distribution of the 5 datasets overlaid with quaternion cluster
centers. Quaternions (rotation between body-centered and camera frame) are
sampled from training sets and clustered using k-means.

Qualitative Results tested on the same images We further visualize the models
trained on 5 datasets, and test on images from the dataset H36M in Fig 18, GPA
in Fig 19, SURREAL in Fig 20, 3DPW in Fig 21 and 3DHP in Fig 22. The
results from left to right are models trained on H36M, GPA, SURREAL, 3DPW,
and 3DHP. The RGB images are overlaid with 2d joint prediction from model
trained on each dataset.
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(a) H36M with index 0-17 (b) H36M with index 18-35

Fig. 10: H36M and sampled images.

(a) GPA with sampled images. (b) SURREAL with sampled images

Fig. 11: GPA and SURREAL sampled images.
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(a) 3DHP with images sampled from camera center.

(b) 3DHP with sampled images in uniform azimuth space.

(c) 3DHP with sampled images in uniform elevation space.

Fig. 12: 3DHP sampled images.
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(a) 3DPW with extreme elevation sampled images.

(b) 3DPW with random sampled images.

Fig. 13: 3DPW sampled images.
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Fig. 14: Our prediction on 5 diverse dataset with model trained on GPA dataset.
The 2d joints are overlaid with the original image, while the 3d prediction (red)
is overlaid with 3d ground truth (blue). 3D prediction is visualized in body-

centered coordinate rotated by the relative rotation between ground truth
root-relative coordinate and body-centered coordinate. From top to bottom are
H36M, GPA, SURREAL, 3DPW and 3DHP datasets. We rank the images from
left to right in MPJPE increasing order.

Fig. 15: Our prediction on 5 diverse datasets with model trained on SURREAL
dataset.
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Fig. 16: Our prediction on 5 diverse datasets with model trained on 3DPW
dataset.

Fig. 17: Our prediction on 5 diverse datasets with model trained on 3DHP dataset.
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Fig. 18: Model trained on 5 models tested on the same images from H36M, from
left to right (model trained on H36M, GPA, SURREAL, 3DPW, 3DHP).

Fig. 19: Model trained on 5 models tested on the same images from GPA, from
left to right (model trained on H36M, GPA, SURREAL, 3DPW, 3DHP).
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Fig. 20: Model trained on 5 models tested on the same images from SURREAL,
from left to right (model trained on H36M, GPA, SURREAL, 3DPW, 3DHP).

Fig. 21: Model trained on 5 models tested on the same images from 3DPW, from
left to right (model trained on H36M, GPA, SURREAL, 3DPW, 3DHP).
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Fig. 22: Model trained on 5 models tested on the same images from 3DHP, from
left to right (model trained on H36M, GPA, SURREAL, 3DPW, 3DHP).


