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Abstract

We consider gradient descent like algorithms for Sup-
port Vector Machine (SVM) training when the data is in
relational form. For relational data the gradient of the
SVM objective cannot be efficiently computed by known
techniques as it suffers from the “subtraction problem”.
We first show that the subtraction problem cannot be
surmounted by showing that computing any constant
approximation of the gradient of the SVM objective
function is #P -hard, even for acyclic joins. However, we
circumvent the subtraction problem by restricting our
attention to stable instances, which intuitively are in-
stances where a nearly optimal solution remains nearly
optimal if the points are perturbed slightly. We give an
efficient algorithm that computes a “pseudo-gradient”
that guarantees convergence for stable instances at a
rate comparable to that achieved by using the actual
gradient. We believe that our results suggest that this
sort of stability analysis would likely yield useful insight
in the context of designing algorithms on relational data
for other learning problems in which the subtraction
problem arises.

1 Introduction

Many learning tasks faced by data scientists involve
relational data that is stored in tables in a relational
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database. However, almost all standard algorithms
for standard learning problems assume that the input
consists of points in Euclidean space [20], and thus
these algorithms are not designed to operate directly on
relational data. The current standard practice for a data
scientist, confronted with a learning task on relational
data, is to first issue a feature extraction query to
extract the data from the relational database by joining
together the tables to materialize a design matrix J =
T1 on · · · on Tm where T1, . . . , Tm are the input tables
and on is the natural inner join operator. Then (after
converting any non-numerical data to numerical data)
importing this design matrix J into a standard learning
package to train the model. So conceptually in this
standard practice, the learning package can be viewed as
sitting on a layer above the database in the computing
stack.

This standard practice is wasteful for several rea-
sons, including: (1) computing relational joins are com-
putationally expensive, both in terms of time and space,
(2) the resulting design matrix will likely have signifi-
cant redundancy and be much larger than the aggregate
sizes of the tables, and (3) this redundancy in the de-
sign matrix will likely mean that the machine learning
algorithm takes more time than should conceptually be
necessary. More formally, if each table has n rows, the
design matrix J can have as many as nm entries. Thus,
independent of the learning task, this standard practice
necessarily has exponential worst-case time and space
complexity as the design matrix can be exponentially
larger than the underlying relational tables.

Thus there are several companies that are devel-
oping products, notably RelationalAI [2] and Google’s
BigQuery ML [1], that integrate machine learning di-
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rectly in the database. The ideal situation would be to
design what we call relational algorithms for the stan-
dard learning tasks. Informally relational algorithms
operate directly on the tables, without joining the ta-
bles, and are efficient (ideally nearly linear time, or at
worst lower order polynomial time) in terms of the ag-
gregate sizes of the tables (independent of the size of
the design matrix). In this context, a natural research
question is to determine which natural problems, and
in particular which standard learning problems, admit
relational algorithms.

This paper is a followup to the paper [27], which
considered algorithmic problems that can be reduced to
evaluating an FAQ-AI(1) query, which is Sum-Product
formula over the rows in the design matrix that satisfy
some additive inequality. Example problems that are
related to the classic Support Vector Machines (SVM)
learning problem and that can reduce to evaluating an
FAQ-AI(1) query include:

1. Counting the number of points correctly (or incor-
rectly) classified by a linear classifier (hyperplane).

2. Finding the minimum distance of a correctly classi-
fied point to the boundary of a given linear classifier
(hyperplane).

3. Computing the gradient of the SVM objective
function at a particular point.

[27] showed how to develop pseudo-polynomial time al-
gorithms for FAQ-AI(1) queries by reducing the evalua-
tion of such queries to evaluating an unconstrained Sum-
Product query over a dynamic programming semiring,
which is a semiring design to implement a particular
dynamic program. [27] then showed that if the original
sum and product operators were approximation preserv-
ing then one could apply standard sketching techniques
to obtain a Relational Approximation Scheme (RAS),
which is a collection {Aε} of relational algorithms where
Aε achieves (1+ε)-approximation. Roughly speaking an
operation ⊕ is approximation preserving if the following
holds: if x̂ is a good approximation of x and ŷ is a good
approximation of y then x̂⊕ ŷ is good approximation of
x⊕ y. The common operators addition, multiplication,
minimum and maximum are generally approximation
preserving. Thus, the techniques from [27] yield a RAS
for the first example problem above, namely determin-
ing the number of points classified correctly by a linear
classifier. The most common example of an operator
that is not approximation preserving is subtraction. If
x̂ is a good approximation of x and ŷ is a good approxi-
mation of y then x̂− ŷ is not necessarily a good approxi-
mation of x−y because if the values of x and y are close
we are not even able to determine the sign of x−y from

x̂− ŷ. Because of this, the techniques from [27] do not
yield a RAS for the second and third problems above,
namely finding the closest point to a hyperplane and
computing the gradient of the SVM objective function.
[27] called this the subtraction problem.

A natural research question is whether the subtrac-
tion problem can be surmounted or circumvented to ob-
tain some sort of positive algorithmic result in problems
where the subtraction problem seems inherent. Intu-
itively if x̂ and ŷ are approximately equal, then although
one cannot learn a good relative approximation of x−y,
one can know that x and y are approximately equal,
which may have sufficient utility for some problems. As
a test case, we consider the classic learning problem
of (soft-margin linear) Support Vector Machine (SVM)
training, and solving this problem using the classic gra-
dient descent approach. SVM is identified as one of
the five most important learning problems in [20], and
is covered in almost all introductory machine learning
textbooks. Gradient descent is probably the most com-
monly used computational technique for solving convex
learning optimization problems [42].

1.1 Background Before stating our results, we cover
the minimal background that is required to understand
our results, namely (1) gradient descent, (2) SVM train-
ing, (3) gradient descent for SVM, (4) relational data
and relational algorithms, and (5) how the subtraction
problem arises within the context of computing the gra-
dient of the SVM objective function.

1.1.1 Gradient Descent Gradient descent is a first-
order iterative optimization method for finding an ap-
proximate minimum of a convex function F : Rd → R,
perhaps subject to a constraint that the solution lies in
some convex body K. In the gradient descent algorithm,
at each descent step t the current candidate solution β(t)

is updated according to the following rule:

β(t) ← β(t−1) − ηtG(β(t−1))(1.1)

where ηt is the step size. In projected gradient descent,
the current candidate solution β(t) is updated according
to the following rule:

β(t) ← ΠK

(
β(t−1) − ηtG(β(t−1))

)
(1.2)

where ΠK(α) = argminβ∈K ‖α− β‖2 is the projection of
the point α to the closest point to α in K. In (projected)
gradient descent, G is ∇F (β(t)), the gradient of F at
β(t). There are lots of variations of gradient descent,
including variations on the step size, and variations, like
stochastic gradient descent[42], in which the gradient is
only approximated for a uniform sample of the data.
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1.1.2 SVM Training Conceptually, the in-
put to SVM training consists of a collection
X = {x1, x2, . . . , xN} of points in Rd, and a collection
Y = {y1, y2, . . . , yN} of associated labels from {−1, 1}.
For convenience let us rescale the points so that each
point in X lies within the hypercube [−1, 1]d. A feasible
solution is a d-dimensional vector β, sometimes called a
hypothesis. The objective is to minimize a linear com-
bination F (β,X, Y ) of the average “hinge” loss function
of the points L(β,X, Y ) = 1

N

∑
xi∈X max(0, 1−yiβ ·xi)

and a regularizer R(β). We will take the regularizer
to be the 2-norm squared of β, as that is a standard
choice [20], although this choice is not so important for
our purposes. Thus, the objective is to minimize:

F (β,X, Y ) =
1

N

∑
xi∈X

max(0, 1− yiβ · xi) + λ||β||22

(1.3)

Here the loss function measures how well the hypothesis
β explains the labels, and one of the regularizer’s pur-
poses is to prevent overfitting. The λ factor intuitively
specifies the amount that the loss has to decrease to jus-
tify an increase in the norm of β. When either X and
Y are understood, for notational convenience, we may
drop them from the objective.

1.1.3 Gradient Descent for SVM In Section A,
we show that by a straightforward specialization of a
standard convergence analysis for projected gradient
descent to SVM one obtains Theorem 1.1, which bounds
the number of descent steps needed to reach a solution
with a specified relative error.

Theorem 1.1. Let F (β) be the SVM objective func-
tion. Let β∗ = argminβ F (β) be the optimal solu-

tion. Let β̂s = 1
s

∑s−1
t=0 β

(t). Let ηt = 1
8λ
√
dt

. Then

if T ≥
(

4d3/2

ελF (β̂T )

)2
then projected gradient descent guar-

antees that

F (β̂T ) ≤ (1 + ε)F (β∗)

Thus, if the algorithm returns β̂ at the first time t where

t ≥
(

4d3/2

ελF (β̂t)

)2
, then it achieves relative error at most

ε.

1.1.4 Relational Data and Relational Algo-
rithms One immediate difficulty that we run into is
that if the tables have a sufficiently complicated struc-
ture, almost all natural problems/questions about the
design matrix are NP-hard. For example, it is NP-hard
to even determine whether or not the design matrix is

empty (see for example [24, 35]). Thus, as we want to fo-
cus on the complexity of the algorithm (learning) prob-
lems, we conceptually want to abstract out the complex-
ity of the join structure. The simplest way to accom-
plish this is to primarily focus on instances where the
structure of the tables is simple, with the most natural
candidate for “simplicity” being that the join is acyclic.
You may find the definition of joins and acyclicity in
Appendix B. Acyclic joins are the norm in practice and
are a commonly considered special case in the database
literature. For example, there are efficient algorithms to
compute the size of the design matrix for acyclic joins.

Formally defining what a “relational” algorithm is
problematic, as for each natural candidate definition
there are plausible scenarios in which that candidate
definition is not the “right” definition. But in this paper
it is sufficient to think of a “relational” algorithm as one
whose runtime is polynomially bounded in the aggregate
sizes of the tables if the join is acyclic.

1.1.5 SVM Gradient and the Subtraction Prob-
lem The gradient of the SVM objective function F is

∇F = 2λβ − 1

N

∑
i∈L

yixi(1.4)

where L is the collection of indices i satisfying the
additive inequality yiβ · xi ≤ 1. Note the term 2λβ
term is trivial to compute, so let us focus on the term
G = 1

N

∑
i∈L yixi. Now let us focus on a particular

dimension, and use xik to refer to the value of point
xi in dimension k. Let L−k = {i | i ∈ L and yixik < 0}
denote those points that are in L and whose the gradient
in the kth coordinate has negative sign. Conceptually
each point in L−k pushes the gradient in dimension k
up with “force” proportional to its value in dimension
k. Let L+

k = {i | xi ∈ L and yixik > 0} denote those
points that are in L and whose the gradient in the kth

coordinate has positive sign. And conceptually each
point in L+

k pushes the gradient in dimension k down
with “force” proportional to its value in dimension k.

The results in [27] can be applied to obtain a RAS

to compute a (1 + ε) approximation Ĝ+
k to G+

k =
1
N

∑
i∈L+

k
yixik, and a RAS to compute a (1 + ε)

approximation Ĝ−k to G−k = 1
N

∑
i∈L−

k
yixik. However,

the results in [27] cannot be applied to get a RAS for
computing a (1 + ε)-approximation to G = G−k + G+

k ,
because it suffers from the subtraction problem as G−k
and G+

k will have different signs.

1.2 Our Results We start with a rather discourag-
ing negative result that shows we cannot surmount the
subtraction problem in the context of computing the
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gradient of the SVM objective problem. In particular,
we show in Section 2 that computing an O(1) approxi-
mation to the partial derivative in a specified dimension
is #P -hard, even for acyclic joins. Thus we need to try
to circumvent (not surmount) the subtraction problem.
After some reflection, one reasonable interpretation of
our #P -hardness proof is that it shows that computing
the gradient is hard on unstable instances. In this con-
text, intuitively an instance is stable if a nearly optimal
solution remains nearly optimal if the points are per-
turbed slightly. Intuitively one would expect real-world
instances, where there is a hypothesis β that explains
the labels reasonably well, to be relatively stable (some
discussion of the stability of SVM instances can be found
in [17]). And for instances where there isn’t a hypothe-
sis that explains the labels reasonably well, it probably
doesn’t matter what hypothesis the algorithm returns,
as it will likely be discarded by the data scientist any-
ways.

Long story short, the main result of this paper is a
relational algorithm that computes a “pseudo-gradient”
that guarantees convergence for stable instances at a
rate comparable to the standard bound on the conver-
gence rate when using the real gradient. The algorithm
design can be found in Section 3, and the algorithm
analysis can be found in Section 4. Postponing for the
moment our formal definition of stability, we state our
main result in Theorem 1.2. The reader should com-
pare Theorem 1.2 to the analysis of gradient descent in
Theorem 1.1.

Theorem 1.2. Let X be an (α, δ, γ)-stable SVM in-
stance, as defined in Definition 4.3, formed by an acyclic
join. Let n be the maximum number of rows in any
table, d be the aggregate number of features over all
the tables, and m be the number of tables. Let β∗ =
argminβ F (β) be the optimal solution. Then there is a
relational algorithm that can compute a pseudo-gradient
in time O(mε2 (m3 log2(n))2(d2mn log(n))), where ε =

min( δ8 , α). After T =
(

256d3/2

λδF (βa,Xa)

)2
iterations

of projected descent using this pseudo-gradient there
is a relational algorithm that can compute in time
O( 1

ε2 (m3 log2(n))2(d2mn log(n))) a hypothesis β̂ such
that:

F (β̂,X) ≤ (1 + γ)F (β∗, X)

Note that most commonly n is the dominant pa-
rameter as usually n � d and n � m, and our algo-
rithm referenced in Theorem 1.2 computes the pseudo-
gradient in time nearly linear in the dominant param-
eter. One reasonable interpretation of Theorem 1.2 is
that it suggests that this sort of stability analysis might

be a useful tool for other algorithmic learning problems
on relational data that suffer from the subtraction prob-
lem.

To quote from the stability analysis section of Tim
Roughgarden’s CACM survey article [39] on “beyond
worst-case analysis”:

The unreasonable effectiveness of modern ma-
chine learning algorithms has thrown down the
gauntlet to algorithms researchers, and there
is perhaps no other problem domain with a
more urgent need for the beyond worst-case
approach.

To date, the sort of stability analysis we use in this paper
has primarily been applied to clustering problems [39].
So to mix metaphors, we believe that at least to some
extent, we have picked up Roughgarden’s gauntlet and
moved the ball forward a bit with respect to beyond
worst-case analysis of learning algorithms.

1.3 Related Results Relational algorithms are
known for certain types of Sum of Sums (SumSum)
and Sum of Products (SumProd) queries. In particular,
the Inside-Out algorithm [7] can evaluate a SumProd
query in time O(md2nh log n), where m is the num-
ber of tables, d is the number of columns, and h is
the fractional hypertree width [25] of the query. Note
that h = 1 for the acyclic joins, and thus Inside-Out
is a polynomial-time algorithm for acyclic joins. One
can reduce SumSum queries to m SumProd queries [3],
and thus they be solved in time O(m2d2nh log n). The
Inside-Out algorithm builds on several earlier papers,
including [10, 23, 29, 25].

SumSum and SumProd queries with additive in-
equalities were first studied in [3]. [3] gave an algorithm
with worst-case time complexity O(md2nm/2 log n). So
this is better than the standard practice of forming
the design matrix, which has worst-case time com-
plexity Ω(dnm). Different flavors of queries with in-
equalities were also studied [28, 30, 6]. [27] showed
that computing even very simple types of SumSum
and SumProd queries with a single inequality is NP-
hard. But an RAS for special types queries is in-
troduced in [27]. The algorithm in [27] can obtain
(1 + ε) approximation for problems such as counting
the number of rows on one side of a hyperplane in time
O( 1

ε2 (m3 log2(n))2(d2mnh log(n))).
Algorithms for linear/polynomial regression on re-

lational data are given in [40, 4, 5, 32, 33] and an algo-
rithm for k-means clustering on relational data is given
in [21].

Stability analysis, similar in spirit to our results,
has been consider before in clustering problems [39, 18,
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34, 8, 14, 22, 31, 38, 11, 13, 15]. For example, the NP -
hard k-means, k-medians and k-centers clustering prob-
lems are polynomially solvable for instances in which
changing the distances of the points by a multiplicative
factor of at most 2 does not change the optimal solu-
tion [11, 13, 15]

SVM is covered in almost every introductory ma-
chine learning textbook, for example [20]. Optimization
methods for learning problems, including variations of
gradient descent, are discussed in [42]. One common
variation of gradient descent is stochastic gradient de-
scent, in which the gradient is computed on a random
sample of the points. [19, 41] consider stochastic gradi-
ent descent in the context of linear SVM training, and
empirically showed that stochastic gradient descent can
improve the optimization speed compared to batch gra-
dient descent in many situations. Still stochastic gra-
dient descent needs multiple iterations over the whole
data in order to achieve a meaningful guarantee, and
thus necessarily would have worst-case time complexity
exponential in the size of the relational data. A overview
of the type of online convex optimization that we apply
can be found in [16, 26].

2 Hardness of Gradient Approximation

Lemma 2.1. It is #P hard to O(1)-approximate the
partial derivative of the SVM objective function in a
specified dimension.

Proof. We reduce the decision version of the count-
ing knapsack problem to the problem of approximat-
ing the gradient of SVM. The input to the decision
counting knapsack problem is a set of weights W =
{w1, w2, . . . , wm}, a knapsack size L, and an integer k.
The output of the problem is whether there are k differ-
ent combinations of the items that fit into the knapsack.

We create m+1 tables, each with two columns. The
columns of the first m tables are (Key, Ei) for Ti and
the rows are

Ti = {(1, 0), (1, wi/L), (0, 0)}.

The last table has two columns (Key,Value), and it
has two rows (1, 1), (0,−k). Note that if we take the
join of these tables, there will be m + 2 columns:
(Key,Value, E1, E2, . . . , Em).

Let β = (0, 0, 1, 1, . . . , 1) and λ = 0, so β is 0 on the
columns Key and Value and 1 everywhere else. Then
we claim, if the gradient of F on the second dimension
(Value) is non-negative, then the answer to the original
counting knapsack is true, otherwise, it is false.

To see the reason, consider the rows in J : there
are 2m rows in the design matrix that have (1, 1) in
the first two dimensions and all possible combinations

of the knapsack items in the other dimensions. More
precisely, the concatenation of (1, 1) and wS for every
S ∈ [m] where wS is the vector that has wi/L in the
i-th entry if item i is in S or 0 otherwise. Further, J
has a single special row with values (0,−k, 0, 0, . . . , 0).
Letting G2 be the second dimension of the gradient of
SVM (the column Value), we have,

G2 =
∑

x∈J:1−β·x≥0

x2

For the row with Key = 1 for each S ∈ [m], we have
1 − β · x = 1 −

∑
i∈S wi/L ≥ 0 if and only if the items

in S fits into the knapsack and x2 = 1. For the single
row with Key = 0, we have 1− β · x = 1, and its value
on the second dimension is x2 = k. Therefore,

G2 = CL(w1, . . . , wm)− k

where CL is the number of subsets of items fitting
into the knapsack of size L. This means if we could
approximate the gradient up to any constant factor, we
would be able to determine if G2 is positive or negative,
and as a result we would be able to answer the (decision
version of) counting knapsack problem, which is #P -
hard.

3 Algorithm Design

3.1 Review of Row Counting with a Single
Additive Constraint We now summarize algorithmic
results from [27] for two different problems, that we will
use as black boxes.

In the first problem the input is a collection
T1, . . . , Tm of tables, a label ` ∈ {−1,+1}, and an
additive inequality L of the form

∑
j∈[d] gj(xj) ≥ R,

where each function gj can be computed in constant
time. The output consists of, for each j ∈ [d] and
v ∈ D(j), where D(j) is the domain of column/feature
j, the number C`j,v of rows in the design matrix J =
T1 on . . . on Tm that satisfy constraint L, that have la-
bel `, and that have value v in column j. [27] gives a
relational algorithm, which we will call the Row Count-
ing Algorithm, that computes a (1 + ε)-approximation

for each such Ĉ`j,v to each C`j,v, and that runs in time

O(mε2 (m3 log2(n))2(d2mnh log(n)))
In the second problem the input is a collection

T1, . . . , Tm of tables, a label ` ∈ {−1,+1}, and an
expression of the form of

∑
j∈[d] gj(xj), where the gj

functions can be computed in constant time. The
output consists of, for each k ∈ [0, log1+εN ], the
maximum value of Hk such that the number of points
in the design matrix J = T1 on . . . on Tm with
label ` ∈ {−1, 1} satisfying the additive inequality∑
j∈[d] gj(xj) ≥ Hk is at least b(1 + ε)kc. [27] gives

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited



an algorithm for this problem, which we will call the
Generalized Row Counting Algorithm, that runs in time
O( 1

ε2 (m3 log2(n))2(d2mnh log(n))). Using the result of
the algorithm, for any scalar distance H, it is possible
to obtain a row count N̂(H) such that N(H)/(1 + ε) ≤
N̂(H) ≤ N(H), where N(H) is the number of points in
the design matrix with label ` satisfying the inequality∑
j∈[d] gj(xj) ≥ Hk.

3.2 Overview of Our Approach Recall from the
introduction that the difficulty arises when a Ĝ+

k is

approximately equal to −Ĝ−k . In this case, it would
seem that by appropriately perturbing one of L−1 or
L+
1 by a relatively small amount one could force G =

Ĝ− + Ĝ+ for this perturbed instance. In which case, if
we used 2λβ(t)+(Ĝ−+Ĝ+) as the pseudo-gradient, then
it would be the true gradient for a slightly perturbed
instance. However, this isn’t quite right, as there is
an additional issue. If we perturb a point xi, then
the sign of 1 − yiβ · xi may change, which means this
point’s contribution to the gradient may discontinuously
switch between 0 and −yixi. To address this issue,
when computing the pseudo-gradient, we use a new
instance X ′ that excludes points that are “close” to
the separating hyperplane 1 − yiβ · xi = 0. That
is, X ′ excludes every point that can change sides of
the hyperplane in an ε-perturbation of each coordinate.
This will allow us to formally conclude that if we used
2λβ(t) + (Ĝ− + Ĝ+), where Ĝ− and Ĝ+ are defined on
X ′, as the pseudo-gradient, then it would be the true
gradient for a slightly perturbed instance. After the last
descent step, we choose the final hypothesis to be the ε-
perturbation of any computed hypothesis β(t), t ∈ [0, T ]
that minimizes the SVM objective.

In the analysis we interpret the sequence
β(0), β(1), . . . , β(T ) as solving an online convex op-
timization problem, and apply known techniques from
this area.

3.3 Pseudo-gradient Descent Algorithm Firstly,
in linear time it is straight-forward to determine if the
points in X lie in [−1, 1]d, and if not, to rescale so that
they do; this can be accomplished by, for each feature,
dividing all the values of that feature in all of the input
tables by the maximum absolute value of that feature.
The initial hypothesis β(0) is the origin. For any vector
v, let u = |v| be a vector such that its entries are the
absolute values of v, meaning for all j we have that
uj = |vj |.
Algorithm to Compute the Pseudo-gradient:

1. Run the Row Counting Algorithm to compute, for
each j ∈ [d] and v ∈ D(j), a (1 + ε) approximation

Ĉ−j,v to C−j,v, which is the number of rows x ∈ J with
negative label and xj = v, satisfying the additive
inequality 1 + β(t) · x ≥ ε

∣∣β(t)
∣∣ · |x|.

2. Run the Row Counting Algorithm to compute, for
each j ∈ [d] and v ∈ D(j), a (1 + ε) approximation

Ĉ+
j,v to C+

j,v, which is the number of rows in x ∈ J
with positive label and xj = v, satisfying the
additive inequality 1− β(t) · x ≥ ε

∣∣β(t)
∣∣ · |x|.

3. For all k ∈ [d], compute Ĝ−k =∑
v∈D(k):v<0 v Ĉ

−
k,v −

∑
v∈D(k):v≥0 v Ĉ

+
k,v .

4. For all k ∈ [d], compute Ĝ+
k =∑

v∈D(k):v≥0 v Ĉ
−
k,v −

∑
v∈D(k):v<0 v Ĉ

+
k,v.

5. The pseudo-gradient is then

Ĝ =
Ĝ− + Ĝ+

N
+ λβ(t)

Algorithm for a Single Descent Step: The next
hypothesis β(t+1) is

β(t+1) = ΠK(β(t) − ηt+1Ĝ)

Here ηt = 1
λ
√
dt

and ΠK(β) is the projection of β onto

a hypersphere K centered at the origin with radius√
d

2λ . Note that ΠK(β) is β if ‖β‖2 ≤
√
d

2λ and
√
d

2λ‖β‖2
β

otherwise.
Algorithm to Compute the Final Hypothesis:
After T − 1 descent steps, the algorithm calls the
Generalized Row Counting twice for each t ∈ [0, T − 1],
with the following inputs:

• ` = 1 and additive expression 1−β(t)·xi−ε|β(t)|·|xi|

• ` = −1 and additive expression 1+β(t) ·xi−ε|β(t)| ·
|xi|

Note that both of these expressions are equivalent to
1 − yiβ(t) · xi − ε|β(t)| · |xi|. Let the array H+ be the
output for the first call and H− be the output for the
second call. Note that H+

k and H−k are monotonically
decreasing in k by the the definition of the Generalized
Row Counting algorithm. Let L+ be the largest k such
that H+

k ≥ 0 and L− be the largest k such that H−k ≥ 0.

The algorithm then returns as its final hypothesis β̂, the
hypothesis β(t̂) where t̂ is defined by:

t̂ = argmin
t∈[T ]

F̂ (β(t), X)(3.5)
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where
(3.6)

F̂ (β(t), X) =

1

N

L+−1∑
k=0

(1 + ε)k(H+
k −H

+
k+1) + (1 + ε)L

+

H+
L+


+

1

N

L−−1∑
k=0

(1 + ε)k(H−k −H
−
k+1) + (1 + ε)L

−
H−L−


+ λ

∥∥∥β(t)
∥∥∥2
2

Note that the values L−, L+, H+ and H− in the
definition of F̂ , in equation (3.6), all depend upon t,
which we suppressed to make the notation somewhat
less ugly.

4 Algorithm Analysis

In Section 4.1, we prove Theorem 4.1 which bounds the
convergence of our projected pseudo-gradient descent
algorithm in a rather nonstandard way by applying
known results on online convex optimization [16, 26].
In Section 4.2, we introduce our definition of stability
and then prove Theorem 1.2.

4.1 Perturbation Analysis Before stating Theo-
rem 4.1 we need some definitions.

Definition 4.1.

• A point p is an ε-perturbation of point q if every
component of p is within (1 + ε) factor of the
corresponding component of q. Meaning in each
dimension j we have (1− ε)q ≤ p ≤ (1 + ε)q

• A point set Xa is an ε-perturbation of a point set
Xb if there is a bijection between Xa and Xb such
that every point in Xa is an ε-perturbation of its
corresponding point in Xb.

• Let β∗ = argminβ F (β,X) to be the optimal solu-
tion at X.

• For any ε-perturbation Xa of X, define β∗a =
argminβ F (β,Xa) to be the optimal solution at Xa.

• For a given hypothesis β, we call a point x with
label y close if there is some ε-perturbation x′ of x
such that 1− yβ · x′ < 0; otherwise it is called far.
In other words, a point x with label y is close if
1− yβ · x < ε |β| · |x|

Theorem 4.1. Assume our projected pseudo-gradient
descent algorithm ran for T − 1 descent steps. Then for

all hypotheses β ∈ Rd there exist ε-perturbations Xa and
Xb of X such that

F (β̂,Xa) ≤ (1 + ε)F (β,Xb) +
32d3/2

λ
√
T

(4.7)

To prove Theorem 4.1, our main tool is a result
from the online convex optimization literature [16, 26].
Intuitively, this theorem states that if we run gradient
descent on a series of different convex cost functions
(as opposed to a single cost function), the algorithm’s
average cost for the points it finds in each iteration of
the gradient descent converges to the average cost of
any optimal fixed point.

Theorem 4.2. [16, 26] Let g0, g1, ..., gT−1 : Rn → R
be G-Lipschitz functions over a convex region K, i.e.,
||∇gt(β)|| ≤ G for all β ∈ K and all t. Then, starting
at point β(0) ∈ Rn and using the update rule of β(t) ←
ΠK
(
β(t−1) − ηt∇gt−1(β(t−1))

)
, with η = D

G
√
t

for T − 1

steps, we have

1

T

T−1∑
t=0

gt(β
(t)) ≤ 1

T

T−1∑
t=0

gt(β
∗) +

2DG√
T

(4.8)

for all β∗ with ||β(0) − β∗|| ≤ D.

To apply Theorem 4.2, we set gt(β
(t)) =

F (β(t), X(t), Y ), where X(t) is an ε-perturbation of X,
such that the pseudo-gradient at X is equal to the true
gradient at X(t). We establish the existence of X(t) in
Lemma 4.1. Thus, our projected pseudo-gradient de-
scent algorithm updates the hypothesis in exactly the
same way as stated in Theorem 4.2 (assuming that we
use the same upper bounds onD andG). Then in defini-
tion 4.2 we identify the ε-perturbation Z that minimizes
F (β, Z), and then in Lemma 4.2 bound the relative er-

ror between F̂ (β,X) and F (β, Z). Finally, in Lemma
4.3 and Lemma 4.4, we show the existence of Xb and Xa,
respectively, and that allows us to conclude the proof of
Theorem 4.1.

Lemma 4.1. In every descent step t, the computed
pseudo-gradient Ĝ is the exact gradient of F (β(t), X(t))
for some point set X(t) that is an ε-perturbation of X.

Proof. To prove the claim, we show how to find a desired
X(t) – this is only for the sake of the proof, and the
algorithm doesn’t need to know X(t). We call any point
x with label y “far” if it satisfies the inequality

1− yβ(t) · x ≥ ε
∣∣∣β(t)

∣∣∣ · |x| ,(4.9)

otherwise we call the point “close”. Note that for a far
point, there is no ε-perturbation to make the derivative
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of the loss function 0. That is, for any point x with
label y, if 1 − yβ · x ≥ ε

∑
j∈[d] |βj | |xj |, then we have

1− yβ ·x′ ≥ 0 for any x′ that is ε-perturbation of x. To
see this, note that we have 1−yβ ·x′ = 1−

∑d
k=1 βkx

′
k ≥

1 −
∑d
k=1 (βkxk + ε |βk| |xk|) ≥ 0 because of x′ being

ε-perturbation of x. On the other hand, for all the
close points there exists a perturbation x′ such that
1−yβ(t) ·x′ < 0. We first perturb all of the close points
such that they don’t have any effect on the gradient.

Next, we need to show a perturbation of the far
points for which the Ĝ is the gradient of the loss
function. Let X+

f and X−f be the set of far points with

positive and negative labels. Let Xf = X+
f ∪X

−
f . We

show the perturbation for each dimension k separately.
Based on definition of Ĝ+

k and Ĝ−k we have:

Ĝ+
k + Ĝ−k

=
∑

v∈D(k)

v Ĉ−k,v −
∑

v∈D(k)

v Ĉ+
k,v

=
∑

v∈D(k)

v (1± ε)C−k,v −
∑

v∈D(k)

v (1± ε)C+
k,v

Note that in our notation (1±ε) can be any real number
in [1− ε, 1 + ε] and not necessarily the values 1− ε and
1 + ε. Also, note that C+

k,v is the number of points in

X+
f with value v in dimension k. Therefore,

Ĝ+
k + Ĝ−k =

∑
v∈D(k)

v (1± ε)C−k,v −
∑

v∈D(k)

v (1± ε)C+
k,v

=
∑

xi∈X−
f

(1± ε)xi,k −
∑

xi∈X+
f

(1± ε)xi,k

= −
∑
xi∈Xf

(1± ε)yixi,k

where the last term is N ∂L(β(t),X(t))

∂β
(t)
k

in which X(t) is an

ε-perturbation of X.

Definition 4.2. Let Z(t) be an ε-perturbation of X
such that for all zi ∈ Z(t) and for all dimensions k

zi,k =

{
(1− ε)xi,k yiβ

(t)
k ≥ 0

(1 + ε)xi,k yiβ
(t)
k < 0

Note that this ε-perturbation minimizes F (β(t), Z(t)).

Lemma 4.2. For all t, we have

1

1 + ε
F (β(t), Z(t)) ≤ F̂ (β(t), X) ≤ F (β(t), Z(t)).

Proof. Consider a value t and let

N+(τ) =∣∣∣{xi | yi = +1 and 1− β(t) · xi − ε
∣∣∣β(t)

∣∣∣ · |xi| ≥ τ}∣∣∣

and

N−(τ) =∣∣∣{xi | yi = −1 and 1 + β(t) · xi − ε
∣∣∣β(t)

∣∣∣ · |xi| ≥ τ}∣∣∣
Intuitively, N+(τ) is the number of positively la-
beled points in X for which the hinge loss of any ε-
perturbation of them is at least τ . Similarly, N−(τ) is
the number of negatively labeled points with the same
property.

Before proving the lemma we prove the following
claim:

F (β(t), Z(t)) =

1

N

∫ ∞
τ=0

N+(τ)dτ +
1

N

∫ ∞
τ=0

N−(τ)dτ + λ
∥∥∥β(t)

∥∥∥2 .
Note that based on the definition of Z(t) it is the

case that

1− yiβ(t) · zi = 1− yiβ(t) · xi − ε
∣∣∣β(t)

∣∣∣ · |xi| .
Therefore, we have

N+(τ) =
∣∣∣{yi = +1 ∈ Z(t) and 1− yiβ(t) · zi ≥ τ}

∣∣∣
and

N−(τ) =
∣∣∣{yi = −1 ∈ Z(t) and 1− yiβ(t) · zi ≥ τ}

∣∣∣ .
Hence,

(4.10)

L(β(t), Z(t)) =
1

N

∑
i

max(0, 1− yiβ · zi)

=
1

N

∑
i:1−yiβ·zi≥0

1− yiβ · zi

=
1

N

∑
i:1−yiβ·zi≥0

∫ 1−yiβ·zi

τ=0

dτ

=
1

N

∫ ∞
τ=0

∑
i:1−yiβ·zi≥τ

dτ

=
1

N

∫ ∞
τ=0

(N+(τ) +N−(τ))dτ

Therefore,
(4.11)

F (β(t), Z(t))

=
1

N

∫ ∞
τ=0

N+(τ)dτ +
1

N

∫ ∞
τ=0

N−(τ)dτ + λ
∥∥∥β(t)

∥∥∥2 .
The number of points with label ` satisfying 1− `β(t) ·
xi − ε

∣∣β(t)
∣∣ · |xi| ≥ τ for any τ ∈ [H`

k, H
`
k+1) is in
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the range [b(1 + ε)kc, b(1 + ε)(k+1)c). Therefore, the
claim follows by replacing N+(τ) in Equation (4.11)
with (1 + ε)k for all the values of τ ∈ [H+

k , H
+
k+1) and

replacing N−(τ) in (4.11) with (1+ε)k for all the values
of τ ∈ [H−k , H

−
k+1).

Lemma 4.3. For all hypothesis β, there exists an ε-
perturbation Xb of X such that

min
s
F (β(s), Z(s)) ≤ F (β,Xb) +

2DG√
T

Proof. By Theorem 4.2

1

T

T−1∑
t=0

F (β(t), X(t)) ≤ 1

T

T−1∑
t=0

F (β,X(t)) +
2DG√
T

(4.12)

Then

(4.13)

min
s
F (β(s), Z(s)) ≤ 1

T

T−1∑
t=0

F (β(t), Z(t))

≤ 1

T

T−1∑
t=0

F (β(t), X(t)).

The first inequality follows since the minimum is less
than the average, and the second inequality follows from
the definition of Z(t). Let u = argmaxt F (β,X(t)), and
Xb = X(u). Then

1

T

T−1∑
t=0

F (β,X(t)) ≤ max
t
F (β,X(t)) = F (β,Xb)(4.14)

Thus, combining lines (4.12), (4.13) and (4.14) we can
conclude that:

min
s
F (β(s), Z(s)) ≤ F (β,Xb) +

2DG√
T

(4.15)

Lemma 4.4. There exists an ε-perturbation Xa of X
such that

F (β̂,Xa) ≤ (1 + ε) min
s
F (β(s), Z(s))

Proof. Let Xa = Z(t̂) where

F (β̂,Xa)

≤ (1 + ε)F̂ (β̂,X) By Lemma 4.2

= (1 + ε) min
s
F̂ (β(s), X) By definition of β̂

≤ (1 + ε) min
s
F (β(s), Z(s)) By Lemma 4.2

4.2 Stability Analysis Our formal definition of sta-
bility, which we give in Definition 4.3, is surely not the
first natural formalization that one would think of. The
most natural formulation would be something like that
a good solution would stay a good solution if one slightly
perturbed the points once. However, due to the nature
of non-traditional approximation achieved in Theorem
4.1, we need (as best as we can tell) a formulation of sta-
bility that intuitively says that a good solution would
stay a good solution if one slightly perturbed the points
twice. From a practical point of view, there probably
isn’t any real difference between one and two slight per-
turbations, but we admit the mathematical elegance of
this formulation is less than fully satisfying.

Definition 4.3. An SVM instance X is (α, δ, γ)-
stable for δ ≤ 1 if for all Xa and Xb that are α-
perturbations of X it is the case that:

• β∗a is a (1 + δ) approximation to the optimal ob-
jective value at Xb, that is, F (β∗a, Xb) ≤ (1 +
δ) minβ F (β,Xb).

• If βa is (1+2δ) approximation to the optimal SVM
objective value at Xa then βa is a (1 + γ) approxi-
mation to the optimal SVM objective value at Xb.
That is if F (βa, Xa) ≤ (1 + 2δ) minβ F (β,Xa) then
F (βa, Xb) ≤ (1 + γ) minβ F (β,Xb)

Proof. [Proof of Theorem 1.2] Let ε ≤ min(δ/8, α).

F (β̂,Xa)

≤ (1 + ε)F (β∗a, Xb) +
32d3/2

λ
√
T

[Xa and Xb come from Theorem 4.1]

= (1 + ε)(1 + δ)F (β∗a, Xa) +
32d3/2

λ
√
T

[By definition of stability]

= (1 + ε)(1 + δ)F (β∗a, Xa) +
δ

8
F (β̂,Xa)

[By definition of T ]

≤ (1 + δ)(1 + ε)

1− δ/8
F (β∗a, Xa)

[By algebra]

≤ (1 + 2δ)F (β∗a, Xa)

[ by definition of ε]

Finally, since β̂ is (1 + 2δ) approximate solution at Xa,

by the definition of stability, β̂ is a (1 + γ) approximate
solution at X.
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A Analysis of Gradient Descent for SVM

Theorem A.1 and Corollary A.1 give bounds on the
number of iterations on projected gradient descent
to reach solutions with bounded absolute error and
bounded relative error, respectively.

Theorem A.1. [16, 26] Let K be a convex body and
F be a function such that ‖∇F (β)‖2 ≤ G for β ∈ K.
Let β∗ = argminβ∈K F (β) be the optimal solution.

Let D be an upper bound on
∥∥β(0) − β∗

∥∥
2
, the 2-

norm distance from the initial candidate solution to the
optimal solution. Let β̂s = 1

s

∑s−1
t=0 β

(t). Let ηt = D
G
√
t
.

Then after T−1 iterations of projected gradient descent,

it must be the case that

F (β̂T )− F (β∗) ≤ 2DG√
T

Corollary A.1. Adopting the assumptions from The-

orem A.1, if T ≥
(

4DG

εF (β̂T )

)2
then

F (β̂T ) ≤ (1 + ε)F (β∗)

That is, projected gradient descent achieves relative
error ε.

The gradient of SVM objective F is

∇F = 2λβ − 1

N
yi
∑
i∈L

xi(A.1)

where L is the collection {i | β · xi ≤ 1} of indices
i where xi is currently contributing to the objective.
Note that in this hinge loss function, the gradient for
the points on the hyperplane 1 − β · x = 0 does not
exist, since the gradient is not continuous at this point.
In our formulation we have used the sub-gradient for
the points on 1 − β · x = 0, meaning for a β on the
hyperplane 1− β · x = 0, we have used the limit of the
gradient of the points that 1− β′x > 0 when β′ goes to
β. For all the points that 1 − β′x > 0, the gradient is
x; therefore, the limit is also x.

Assume β(0) is the origin and adopt the assumptions
of Theorem A.1. Then ∇F (β∗) = 0 implies for any
dimension j

∣∣β∗j ∣∣ =

∣∣∣∣∣ 1

2Nλ

∑
i∈L

xij

∣∣∣∣∣ ≤ 1

2λ
(A.2)

where the additional subscript of j refers to dimension
j. And thus

∥∥∥β(0) − β∗
∥∥∥
2
≤ ‖β∗‖2 ≤

√
dmax
j∈[d]

∣∣β∗j ∣∣ ≤ √d2λ
(A.3)

Thus let us define our convex body K to be the

hypersphere with radius
√
d

2λ centered at the origin. Thus
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for β ∈ K,

‖∇F (β)‖2 =

√√√√√∑
j∈[d]

(
2λβj −

1

N

∑
i∈L

xij

)2

≤

√√√√√∑
j∈[d]

4(λβj)2 + 2

(
1

N

∑
i∈L

xij

)2

≤ 2λ
∑
j∈[d]

|βj |+
√

2
1

N

∣∣∣∣∣∑
i∈L

xij

∣∣∣∣∣
≤ 2d+

√
2d

≤ 4d.

The first inequality is because (a− b)2 ≤ 2a2 + 2b2, and
the second inequality is because

√∑
i a

2
i ≤

∑
i |ai|.

Theorem A.2. Let the convex body K be the hyper-

sphere with radius
√
d

2λ centered at the origin. Let F (β)
be the SVM objective function. Let β∗ = argminβ F (β)

be the optimal solution. Let β̂s = 1
s

∑s−1
t=0 β

(t). Let
ηt = 1

8λ
√
dt

. Then after T − 1 iterations of projected

gradient descent, it must be the case that

F (β̂T )− F (β∗) ≤ 4d3/2

λ
√
T

Theorem 1.1 then follows by a straightforward
application of Theorem A.2.

B Background

We start by defining the joins.

Definition B.1. (Join) Let T1, . . . , Tm be a set of
tables and for each table Ti, let Ci denote the set of
columns in Ti. The join of T1, . . . , Tm denoted by
T1 on · · · on Tm is a table J with set of column C =

⋃
j Cj

such that a tuple/row x is in J if an only if its projection
onto Cj is in Tj for all j.

The structure of a join can be modeled as a hypergraph
in which each vertex vi of the hypergraph is associated
with column fi and each hyperedge Sj is associated with
a table Tj such that vi ∈ Sj if and only if fi ∈ Cj . In
what the following, we use n to denote the size of the
largest input table in the join query Q = T1 on · · · on Tm.
We also use J to denote the output and |J | to denote
its size. We use the join query Q and its hypergraph H
interchangeably.

B.1 Fractional edge cover number and output
size bounds

Definition B.2. (Fractional edge cover number)
Let H = (V, E) be a hypergraph (of some query Q).
Let B ⊆ V be any subset of vertices. A fractional
edge cover of B using edges in H is a feasible solution
~λ = (λS)S∈E to the following linear program:

min
∑
S∈E

λS

s.t.
∑
S:v∈S

λS ≥ 1, ∀v ∈ B

λS ≥ 0, ∀S ∈ E .

The optimal objective value of the above linear program
is called the fractional edge cover number of B in H and
is denoted by ρ∗H(B). When H is clear from the context,
we drop the subscript H and use ρ∗(B).

Given a join query Q, the fractional edge cover
number of Q is ρ∗H(V) where H = (V, E) is the hyper-
graph of Q.

Theorem B.1. (AGM-bound [12, 25]) Given a join
query Q over a relational database instance I, the output
size is bounded by

|J | ≤ nρ
∗
,

where ρ∗ is the fractional edge cover number of Q.

Theorem B.2. (AGM-bound is tight [12, 25])
Given a join query Q and a non-negative number n,
there exists a database instance I whose relation sizes
are upper-bounded by n and satisfies

|J | = Θ(nρ
∗
).

Worst-case optimal join algorithms [43, 36, 37] can
be used to answer any join query Q in time

(B.4) O(|V| · |E| · nρ
∗
· log n).

B.2 Tree decompositions, acyclicity, and width
parameters

Definition B.3. (Tree decomposition) Let H =
(V, E) be a hypergraph. A tree decomposition of H is
a pair (T, χ) where T = (V (T ), E(T )) is a tree and
χ : V (T ) → 2V assigns to each node of the tree T a
subset of vertices of H. The sets χ(t), t ∈ V (T ), are
called the bags of the tree decomposition. There are two
properties the bags must satisfy

(a) For any hyperedge F ∈ E, there is a bag χ(t),
t ∈ V (T ), such that F ⊆ χ(t).

(b) For any vertex v ∈ V, the set {t | t ∈ V (T ), v ∈
χ(t)} is not empty and forms a connected subtree
of T .
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Definition B.4. (acyclicity) A hypergraph H =
(V, E) is acyclic iff there exists a tree decomposition
(T, χ) in which every bag χ(t) is a hyperedge of H.

When H represents a join query, the tree T in the
above definition is also called the join tree of the query.
A query is acyclic if and only if its hypergraph is acyclic.

For non-acyclic queries, we often need a measure of
how “close” a query is to being acyclic. To that end, we
use width notions of a query.

Definition B.5. (g-width of a hypergraph [9])
Let H = (V, E) be a hypergraph, and g : 2V → R+ be
a function that assigns a non-negative real number to
each subset of V. The g-width of a tree decomposition
(T, χ) of H is maxt∈V (T ) g(χ(t)). The g-width of H is
the minimum g-width over all tree decompositions of H.
(Note that the g-width of a hypergraph is a Minimax
function.)

Definition B.6. (fractional hypertree width) Let s be
the following function: s(B) = |B| − 1, ∀V ⊆ V. Then
the treewidth of a hypergraph H, denoted by tw(H), is
exactly its s-width, and the fractional hypertree width
of a hypergraph H, denoted by fhtw(H), is the ρ∗-width
of H.

From the above definitions, fhtw(H) ≥ 1 for any
hypergraph H. Moreover, fhtw(H) = 1 if and only if H
is acyclic.

B.3 Algebraic Structures In this section, we define
some of the algebraic structures used in the paper.
First, we discuss the definition of a monoid. A monoid
is a semi-group with an identity element. Formally, it
is the following.

Definition B.7. Fix a set S and let ⊕ be a binary
operator S×S → S. The set S with ⊕ is a monoid if (1)
the operator satisfies associativity; that is, (a⊕ b)⊕ c =
a ⊕ (b ⊕ c) for all a, b, c ∈ S and (2) there is identity
element e ∈ S such that for all a ∈ S, it is the case that
e⊕ a = a⊕ e = a.

A commutative monoid is a moniod where the op-
erator ⊕ is commutative. That is a ⊕ b = b ⊕ a for all
a, b ∈ S.

Next, we define a semiring.

Definition B.8. A semiring is a set R with two opera-
tors ⊕ and ⊗. The ⊕ operator is referred to as addition
and the ⊗ is referred to as multiplication. This is a
semiring if,

1. it is the case that R and ⊕ are a commutative
monoid with 0 as the identity.

2. R and ⊗ is a monoid with identity 1.

3. the multiplication distributes over addition. That
is for all a, b, c ∈ R it is the case that a⊗ (b⊕ c) =
(a⊗ b)⊕ (a⊗ c) and (b⊕ c)⊗ a = (b⊗ a)⊕ (c⊗ a).

4. the 0 element annihilates R. That is, a⊗0 = 0 and
0⊗ a = 0 for all a ∈ R.

A commutative semiring is a semiring where the
multiplication is commutative. That is, a⊗b = b⊗a for
all a, b ∈ S.

B.4 FAQ-AI Query The input to FAQ-AI problem
consists of three components:

• A collection of relational tables T1, . . . Tm with real-
valued entries. Let J = T1 on T2 on · · · on Tm be the
design matrix that arises from the inner join of the
tables. Let n be an upper bound on the number of
rows in any table Ti, let N be the number of rows
in J , and let d be the number of columns in J .

• An FAQ Q(J) that is either a SumProd query or a
SumSum query. We define a SumSum query to be
a query of the form:

Q(J) =
⊕
x∈J

d⊕
i=1

Fi(xi)

where (R,⊕, I0) is a commutative monoid over the
arbitrary set R with identity I0. We define a
SumProd query to be a query of the form:

Q(J) =
⊕
x∈J

d⊗
i=1

Fi(xi)

where (R,⊕,⊗, I0, I1) is a commutative semiring
over the arbitrary set R with additive identity I0
and multiplicative identity I1. In each case, xi is
the entry in column i of x, and Fi is an arbitrary
function with range R.

• A collection L = {(G1, L1), . . . (Gb, Lb)} where Gi
is a collection {gi,1, gi,2, . . . gi,d} of d functions that
map the column domains to the reals, and each Li
is a scalar.

FAQ-AI(k) is a special case of FAQ-AI when the cardi-
nality of L is at most k.

The output for the FAQ-AI problem is the result
of the query on the subset of the design matrix that
satisfies the additive inequalities. That is, the output
for the FAQ-AI instance with a SumSum query is:

Q(L(J)) =
⊕

x∈L(J)

d⊕
i=1

Fi(xi)(B.5)
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And the output for the FAQ-AI instance with a
SumProd query is:

Q(L(J)) =
⊕

x∈L(J)

d⊗
i=1

Fi(xi)(B.6)

Here L(J) is the set of tuples x ∈ J that satisfy all
the additive inequalities in L, that is for all i ∈ [1, b],∑d
j=1 gi,j(xj) ≤ Li, where xj is the value of coordinate

j of x.
We now illustrate how some of the SVM related

problems can be reduced to FAQ-AI(1). First consider
the problem of counting the number of negatively la-
beled points correctly classified by a linear separator.
Here each row x of the design matrix J conceptually
consists of a point in Rd−1, whose coordinates are spec-
ified by the first d − 1 columns in J , and a label in
{1,−1} in column d. Let the linear separator be de-
fined by β ∈ Rd−1. A negatively labeled point x is
correctly classified if

∑d−1
i=1 βixi ≤ 0. The number of

such points can be counted using SumProd query with
one additive inequality as follows: ⊕ is addition, ⊗ is
multiplication, Fi(xi) = 1 for all i ∈ [d− 1], Fd(xd) = 1
if xd = −1, and Fd(xd) = 0 otherwise, g1,j(xj) = βjxj
for j ∈ [d− 1], g1,d(xd) = 0, and L1 = 0. Next, consider
the problem of finding the minimum distance to the lin-
ear separator of a correctly classified negatively labeled
point. This distance can be computed using a SumProd
query with one additive inequality as follows: ⊕ is the
binary minimum operator, ⊗ is addition, Fi(xi) = βixi
for all i ∈ [d−1], Fd(xd) = 1 if xd = −1, and Fd(xd) = 0
otherwise, g1,j(xj) = βjxj for j ∈ [d − 1], g1,d(xd) = 0,
and L1 = 0.
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