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Abstract

We consider the problem of efficiently estimating the size of the inner join of a collection of preprocessed relational
tables from the perspective of instance optimality analysis. The run time of instance optimal algorithms is comparable
to the minimum time needed to verify the correctness of a solution. Previously instance optimal algorithms were only
known when the size of the join was small (as one component of their run time that was linear in the join size). We
give an instance optimal algorithm for estimating the join size for all instances, including when the join size is large,
by removing the dependency on the join size. As a byproduct we show how to sample rows from the join uniformly at
random in a comparable amount of time.

1 Introduction

1.1 The Problem Statement
We consider the problem of efficiently estimating the size, or equivalently the number of rows, in an inner join

J = T1 on T2 on . . . on Tt

given as input the collection τ = {T1, . . . Tt} of relational tables, and some associated data structures D1, . . . , Dt that
were obtained by independently preprocessing the tables. We also consider the related problem of uniformly sampling a
row from J .

One application of estimating the join size is in the context of determining a physical query plan for a particular
logical query. [12, Chapter 15] As example, let us consider the logical query T1 on T2 on T3. Assume that one knew
that T1 on T2 was large, but T2 on T3 and T1 on T2 on T3 were small. Then first joining T2 with T3 and then joining
the result with T1, would likely be a more efficient physical query plan than first joining T1 and T2 as it would avoid
(unnecessarily) computing a large intermediate result. If the joined table J is large, one common method for efficiently
solving some computational problem on a joined table J is to solve the problem on a uniformly sampled collection
of points from J . For example, [11] shows that uniformly sampling can be used to efficiently solve a wide range of
common regularized loss minimization problems with arbitrary accuracy.

It is NP-hard to determine whether or not the the joined table J is empty (see for example [7, 9]). Thus it is NP-hard
to approximate the join size within any reasonable factor. Due to this hardness result, this paper addresses join size
estimation from the perspective of instance optimality analysis.
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1.2 Instance Optimality Analysis
In instance optimality analysis one ideally seeks an algorithm A that on every instance I is almost as fast as the fastest
correct algorithm A is on instance I . That is, A(I) ≤ minA′∈C A

′(I), where A(I) is the time for algorithm A on input
I, A′(I) is the time for algorithm A′ on input I, and C is the collection of all correct algorithms. Note that in order for
an algorithm to be correct it must be correct on all inputs, not just input I.

However this ideal is overly ambitious and impractical for most problems for several reasons. One of these reasons is
that characterizing the fastest time that an algorithm can solve a particular problem or problem instance is generally well
beyond our current understanding (the P=NP problem is essentially the problem of characterizing the fastest time that
instances of NP-complete problems can be solved). A standard workaround is to first observe that the nondeterministic
time complexity lower bounds the deterministic time complexity. That is the fastest time that an algorithm can solve
an instance is lower bounded by the fastest time that an algorithm can verify a proof or certificate that a candidate
solution is correct for that instance. Again allowing arbitrary certificates is overly ambitious and impractical. So
generally for each problem one picks a particular type C of certificate that seems natural for the particular problem
under consideration. Then one might seek an algorithm A where the time of A is at most the minimum certificate
size. That is, A(I) ≤ minC∈C(I) |C(I)|, where here C(I) is the collection of certificates of type C that proves that
a particular answer is correct for the instance I, and |C| denotes the size of C. Such an algorithm A would then be
instance optimal among all algorithms that produce a certificate of type C. For example, [2] gives an algorithm for
finding Pareto frontier of points in the plane that is instance optimal among comparison based sorting algorithms.

One often needs to relax this a bit more via approximation. So we seek algorithms A where

A(I) = Õ( min
C∈C(I)

F (|C(I)|))

where the Õ hides poly-log factors of the input size, and F is some function that is as close to linear as possible. That
is, ignoring poly-log factors, we want the time to be a function of the certificate size, and we want this function to be as
slowly growing as possible.

Instance optimality analysis is often viewed as falling under the rubric of “beyond worst-case” analysis techniques.
A survey of instance optimality analysis and other “beyond worst-case” analysis techniques can be found at [10].

1.3 Previous Instance Optimality Results for Join Size
Here we consider a type of certificate that has been used in previous papers on join size computation using instance
optimality analysis [8, 3, 4], namely a collection of gap boxes. To apply this certificate one assumes that a priori it is
the case that all table entries have been mapped to integers in the range [1, n]. Thus if there are a total of d attributes
in the tables in τ then J can be viewed as a collection of z axis-parallel unit hypercubes in [0, n]d. To accomplish
this, one can view each row r of J as a point in Nd in the natural way, and then associate r with the axis-parallel unit
hypercube h that contains r, and where r is the furthest point in h from the origin. We define a box to be an axis parallel
hyperrectangle that is the Cartesian product of intervals. Then a gap box b is a box that does not intersect any unit
hypercube in J . A collection B of gap boxes, whose union has volume V , can be viewed as a certificate that the join
size z is at most nd − V . Let C be the minimum cardinality collection of gap boxes that cover [0, n]d − J .

As an example of these definitions, consider the instance in Figure 1 where d = 2. Figure 1a shows the two unit
hypercubes associated with the points (2, 4) and (3, 1). Figure 1b shows a minimum cardinality collection of gap boxes
that establishes that volume of these points is at most two. So C = 4 for this instance.

[8] gives an algorithm Tetris for the join size problem. The algorithm Tetris and its analysis was extended in [3, 4].
[3, 4] shows how to preprocess each table to construct a collection of O(dn logd n) gap boxes, which are the maximal
dyadic gap boxes. A dyadic box is a box that its width in each dimension is a power of 2 and its projection into each
dimension is an integer multiple of its width in that dimension. [3, 4] shows that any certificate of gap boxes can be
replaced by a certificate that is a subset of maximal dyadic gap boxes without a substantial increase in the size of the
certificate. The running time of the preprocessing is Õ(n). [8] explains how to store dyadic gap boxes in what is
essentially a trie using space O(d log n) per box. Using this data structure, Tetris computes the exact join size z in time
Õ(|C|d/2 + z) by constructing a collection B of Õ(C) gap boxes. Conceptually in each iteration Tetris finds a point p
that is not in the joined table J , and not covered by any box in B, and then adds to B all the dyadic boxes that contain p
in any of the data structures associated with any of the tables. The costly operation is finding p, which conceptually is
achieved by exhaustive enumeration.
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(a) (b)

Figure 1: Two points in two dimensional space and the minimum number of gap boxes needed to cover the empty space.

1.4 Our Results
In many applications of the join size computation/estimation, such as the application of computing a physical query
plan, the linear dependence on the join size z in the running time of Tetris is not desirable. In these settings one wants
to be able to estimate quickly even if the join is large. Our main result is an algorithm Welltris 1 that is a variation of
Tetris, that estimates the join size without any dependence in the running time on the join size z. So we assume that the
input to the join size problem additionally contains two parameters ε and δ. Welltris then computes an estimate z̃ to the
number of rows z in the joined table J that is accurate to within a factor of 1 + ε with probability at least 1− δ. That is
Pr
[

z
1+ε ≤ z̃ ≤ (1 + ε)z

]
≥ 1− δ.

The preprocessing of the tables in Welltris is identical to that of Tetris used in [3, 4]. But for completeness we cover
this in section 3. When computing the join size, Welltriss, like Tetris, maintains a collection B of Õ(C) dyadic boxes,
and in each iteration it finds a point p not in the joined table and not covered by any box in B. But Weltriss does not
use exhaustive search to find p. Instead Welltris samples points uniformly at random from points not covered by the
boxes in B. The intuition behind this is that the uniform sampling will likely lead to choosing choosing boxes that
contain a large number of points uncovered by any boxes in B. To accomplish this it modifies Chan’s algorithm [6] for
Klee’s measure problem, which is the problem of computing the volume of the union of a collection of boxes. The
running time for Chan’s algorithm, which is Õ(Cd/2). We show that the running time of Welltris is Õ(Cd/2+1) 2, or
more precisely,

O

(
Cd/2+1 · 1

ε
· log(1/δ) · 2d

2/2+d · logd
2+d(n) · log(m)

)
So Welltris can estimate the join size quickly for instances in which there is a modestly-sized certificate bounding the
join size, and in which the number of dimensions is small, even if the join size is large.

Welltris can be modified to sample q points uniformly from the joined table J in time Õ(Cd/2+1 + qC), or more
precisely,

O
(
Cd/2+1 · log(q) · 2d

2/2+d · logd
2/2+d(n) · logd

2/2(m) + q · C · d42d · log2d+1(n)
)

It is W [1] hard to decide if a collection of boxes covers the whole space, that is to decide whether z = 0 or whether
z > 0 [5]. Thus a running time that did not have exponential dependence on d would imply W [1] = FPT , which is
considered unlikely. For this reason, believe Welltris has roughly optimal efficiency for join size estimation with this
type of certificate.

2 Formal Definitions
In this section we state the formal definitions of the terms used in the rest of the paper. A table/relation Ti with di
columns/dimensions as a collection of points in a di dimensional space such that each dimension has an associated
positive integer that we refer to as the attribute of the column. No attribute can be associated with more than one
dimension in the table. Different tables may share attributes. The join of T1, . . . , Tt is a table J such that the set of
attributes of J is the union of the attributes of T1, . . . , Tt and a point x is in J if and only if for all Ti the projection of

1Welltris the game is a variation of the original game Tetris [1]
2This assumes that ε, δ and d are treated as constants.
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x onto the subspace formed by the columns of Ti exists in Ti. We use t to denote the number of tables in our join query,
d to denote the total number of columns, m to be the maximum number of rows in any of the input tables, and n to be
the size of the domain of each dimension (the maximum number of unique values in that dimension). Note that if we
assume that the tables involved in the join are the only tables in the database, then n ≤ tm.

Given a set of points in d dimensional space, a gap box is a d dimensional box that does not contain any of the
points. We denote the set of all gap boxes by B. b ∈ B is a maximal gap box if and only if there is no other box in B
that covers b entirely and is not equal to b. We denote the set of all maximal boxes in B by Bm. Given a set of boxes
B′, we call C(B′) a certificate for B′ if and only if it is a set of minimum number of boxes needed to cover the union
of B′. It is easy to observe that if Bm is the set of maximal boxes in B then |C(B)| = |C(Bm)|.

A dyadic gap box is a gap box that its size in each dimension is a power of 2 and its location in each dimension is
a multiple of its size in that dimension. We show the set of maximal dyadic gap boxes by Bd. A dyadic box can be
represented by a d dimensional vector and in each dimension it has the binary prefix of a set of points; then such a
dyadic box will cover all the points that this box is a prefix of in all the dimensions. Note that the binary prefix can be
empty in a dimension (denoted by λ) and in that case that dyadic box spans that dimension entirely. Note that each
point is also a dyadic box of size 1. For d = 3 and n = 8, a dyadic box can be (λ, 1, 101) which means its size in the
first dimension is 8, in the second one 4, and in the third dimension is 1. In this case, (111, 100, 101) is a point covered
by this dyadic box and (111, 000, 101) is an uncovered point.

Lemma 2.1 ([8]). Each dyadic box can be fully contained in at most logd(n) other dyadic boxes.

Proof. Based on definition of dyadic box, a dyadic box A = (a1, . . . , ad) contains all the points x = (x1, . . . , xd)
such that ai is a prefix of xi for all i. Therefore, a dyadic box A = (a1, . . . , ad) contains a dyadic box B = (b1, . . . , bd)
if and only if there ai is a prefix of bi for all i. Since each dimension has at most log(n) prefix, the lemma follows.

Lemma 2.2 ([3, 4, 8]). The maximum number of dyadic boxes needed to cover the area of a gap box is at most
2d logd(n).

3 Preprocessing

3.1 Gap box construction
The preprocessing step for our algorithm is constructing the dyadic gap boxes for all the input tables. The algorithm
introduced in [3] produces all maximal dyadic boxes of the input tables. It is also shown that any certificate can be
replaced by a certificate that is a subset of maximal gap boxes without a substantial increase in the size of the certificate.
For completeness, we explain the algorithm in [3] and the relevant theorems.

The algorithm picks an input table Ti and constructs a set of dyadic gap boxes that include all the maximal dyadic
gap boxes in them. We assume that all the attributes have a specified domain and they have been mapped to an integer
in [1, n]. The algorithm initializes two sets D and D′ to empty set. Then for all the tuples x ∈ Ti and for all the dyadic
boxes b that contain x, the algorithm adds b to D. This step can be performed by enumerating all the gap boxes whose
elements in different dimensions are prefixes of the ones in x.

Furthermore, for every box b that is added to D and every dimension a of b that does not span the whole space
(is not λ), it creates a dyadic box by flipping the last bit of a in b and adds it to D′. For example, if b = (10, λ, 111),
then the algorithm adds the dyadic boxes (11, λ, 111) and (10, λ, 110) to D′. At the end, the algorithm returns D′ \D.
Algorithm 1 shows a pseudo-code of the preprocessing step. The following algorithm will output at most d(log(m)+1)d

dyadic gap boxes which include all the maximal dyadic gap boxes.

4



Algorithm 1 Algorithm for dyadic gap box construction

1: procedure CONSTRUCT GAP BOXES(Ti)
2: Input: An input table Ti
3: Output: A set of dyadic gap boxes including all maximal dyadic gap boxes.
4: D ← ∅
5: D′ ← ∅
6: for x ∈ Ti do
7: for all dyadic boxes b such that x ∈ b do
8: D ← D ∪ {b}
9: for all attributes a such that ba 6= λ do

10: b′ ← b
11: Flip the last bit of b′a
12: D′ ← D′ ∪ {b′}
13: Return D′ \D.

Theorem 3.1. Let Bid be the output of Algorithm 1 for table Ti and let Bd =
⋃
iB

i
d. Furthermore, let Bi be the set of

all the gap boxes for table Ti and B =
⋃
iB

i. Then,

1. |C(Bd)| = O(2d logd(n))|C(B)|

2. |Bd| = O(dt logd(m))

Note that in the above theorem, C(B) is the smallest possible certificate over any set of gap boxes. Therefore, we
can conclude that Algorithm 1 produces a set of dyadic gap boxes that is efficient both in term of the size of the index
and the size of the certificate.

3.2 Dyadic Tree Data Structure
For our algorithm we need a data structure to efficiently store a set of dyadic boxes and search if a given dyadic
box is included in the set or not. To store the dyadic boxes, first we consider each dyadic boxes as a string from the
alphabet {0, 1, λ, , } (the last element of the alphabet is a comma.) For example, a dyadic box of form (00, λ, 1) can
be represented as the string “00, λ, 1". Then we use a Trie (prefix tree) to store and search the strings representing
the dyadic boxes. Since there is a one to one relation between the dyadic boxes and their string representations, this
approach will be able to correctly store the dyadic boxes and search for any query box.

Note that the length of every string representing a dyadic box is at most O(d log(n)). Thus the time needed for
constructing the trie in the most straight forward manner is O(kd log(n)) where k is the number of dyadic boxes, and
the time to search for a dyadic box is O(d log(n)).

3.3 Chan’s Algorithm for Klee’s Measure Problem
In this section we explain the general outline of the Chan’s algorithm [6]. Given a set of n boxes in d dimensional
space, Chan’s algorithm returns the volume of the union of the boxes in time O(nd/2). We later use this algorithm to
sample an uncovered point uniformly at random. You may find the general description of the algorithm in Algorithm 2.
The input of the algorithm is a set of boxes B and a boundary box S that represents the whole space. The output is the
volume of the union of B intersecting with S.

Algorithm 2 Chan’s Algorithm

1: procedure MEASURE(B,S)
2: If |B| is bellow a constant return the answer directly.
3: Simplify B
4: Cut S into two sub-cells S1 and S2.
5: B1 ← boxes in B that have intersection with S1

6: B2 ← boxes in B that have intersection with S2

7: Return measure(B1, S1) + measure(B2, S2)
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The reason that the algorithm gets a good time complexity lies in steps 3 and 4. The simplification step B removes
any box that is equivalent to slabs spanning in all dimensions except for one when restricted to S. When removing these
boxes, the algorithm changes S and all the boxes in B that has intersection with the slabs and removes the intersection
from them. Note that this step doesn’t increase the number of boxes in B.

After removing the slabs and simplifying the boxes, the algorithm cuts S into two disjunctive sub-cells S1 and
S2 and recursively calls the same function on those subproblems. The cut is done in a way that balances the number
of faces of the boxes in B that are present in S1 and S2 and it gives different weight to each of them based on the
dimensions they are spanning.

The main properties of Chan’s algorithm that are useful for us in order to uniformly sample a point are the following:

1. S1 and S2 are disjunctive.

2. There is a one to one relation between the uncovered points in S1 and S2 and the uncovered points in S.

Using the above properties, it is very easy to sample k uncovered points uniformly at random. We initialize S to
be the cross product of the domains of the attributes (having all possible tuples). Then we run Chan’s algorithm to
measure the number of uncovered points in S. The algorithm generates a list L containing k random positive integers
smaller than the number of of uncovered points and runs the Chan’s algorithm again; however, this time the input to
the algorithm also has L in a sorted array and the volume of uncovered points in the previous recursions (initially 0).
Then the leafs of the recursive call returns an uncovered point uniformly at random for any of the numbers in L that is
between the number of uncovered before this leaf and after this leaf. Algorithm 3 describes the process.

Algorithm 3 Uniform Sampling Algorithm

1: procedure SAMPLE(B,S, L, V )
2: if |B| is bellow a constant then
3: V ′ ← volume of uncovered points in S.
4: k′ ← |{x|x ∈ L and V < x ≤ V + V ′}|
5: P ← k′ uniformly sampled uncovered points in S.
6: return (P, V ′)

7: Simplify B and S
8: Cut S into two sub-cells S1 and S2.
9: B1 ← boxes in B that have intersection with S1

10: B2 ← boxes in B that have intersection with S2

11: (V1, P1)← Sample(B1, S1, L, V )
12: (V2, P2)← Sample(B1, S1, L, V + V1)
13: Map coordinates of P1 and P2 according to S before step 7.
14: Return (V1 + V2, P1 ∪ P2)

Note that since we simplify and cut S, the coordinates of the points returned by the recursive call are not the same
as their original coordinate. Therefore, we need to perform step 13 to change their coordinates.

Theorem 3.2. The uniform sampling algorithm can return k uniformly at random selected uncovered points in time
O(log(k)|B|d/2 + kd2 log2(|B|)).
Proof. The only extra operations that Algorithm 3 is performing compared to Chan’s Algorithm is the sampling of the
points and mapping the coordinates of the sampled points in the recursion. Step 4 is done in all of the leafs and it takes
O(log(k)). The sampling step happens once per sampled point and it takes O(d). The only remaining step to analyse is
the mapping step. Mapping can be done in O(d log(|B|)) for each sampled point, because all we need to know for
each dimension is the location of the slabs that are removed. The number of times each sampled point goes through the
mapping phase is the depth of the recursion tree. Analysis of Chan’s algorithm shows that the depth of the recursion is
O(log(|B|)d). Therefore, the total time that step 13 takes in all of the recursions is O(k log2(|B|)d2).

4 The Welltris Algorithm
Given a join query and the dyadic gap boxes of all relations, we propose the following algorithm for estimating the
row count of a join in time proportional to the certificate size of that join. The proposed algorithm finds a (1 + ε)
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approximation of the join size with probability at least 1− δ. Consider an input table Ti and a gap box b of Ti. We say
b covers a point p if the projection of p onto the subspace, with the dimensions in Ti, lies inside b.

Algorithm Welltris Description

1. Initialize the set of selected gap boxes E to be empty and Bd to be set of dyadic boxes of all the relations.

2. Uniformly select k = 4
ε (log(|Bd|) + log( 1δ )) random points with replacement independently that are not covered

by the boxes in E.

3. Check the points one by one to find the dyadic gap boxes in Bd that covers them.

4. For one of the points that are covered by boxes in Bd, add all the dyadic gap boxes in Bd that covers it to E.

5. If none of the points was covered by a dyadic gap box in Bd, return the volume of the points not covered by E as
the estimate of the join size.

In the following theorem statement recall that B is the set of all dyadic gap boxes of all tables; see Theorem 3.1.

Theorem 4.1. Let C(B) be the smallest certificate over all choices of gap boxes and C = |C(B)|, then given the
dyadic gap boxes constructed in the preprocessing algorithm (Algorithm 1), Algorithm Welltris can return a 1 + ε

estimation of the join size with probability at least 1− δ in time O( 1ε log(1/δ) · log(m) ·2d2/2+d · logd
2+d(n) ·Cd/2+1).

Proof. First, we prove the approximation guarantee and then we prove the time complexity. The approximation
guarantee can be proven by applying Chernoff bound and union bound. Let Ui be the set of uncovered points at iteration
i and let |J | be the actual join. For an arbitrary iteration i, using the fact that k points are sampled independently, we
will prove that if |Ui| ≥ (1 + ε)|J | then the probability that our algorithm stops in that iteration and returns |Ui|, is at
most δ

|C| . Then using union bound over all possible iterations, whose number is bounded by |C|, we will show that the
probability that our algorithm stops at any iteration for which |Ui| > (1 + ε)|J | is at most δ.

Fix an iteration i. Let p1, p2, . . . , pk be the points that the algorithm samples at iteration i, and let X1, X2, . . . , Xk

be a Bernoulli random variables such that Xi is 1 if and only if pi /∈ J and let X =
∑k
j=1Xj . Then we have

Pr[Xj = 1] = |Ui\J|
|Ui| ≥

ε
1+ε ≥

ε
2 since |Ui| > (1 + ε)|J |. Note that the algorithm stops if X = 0. Using the fact that

{Xj}j∈[k] are independent, we have

Pr[X = 0] =
∏
j∈[k]

Pr[Xj = 0] ≤ (1− ε

2
)k ≤ exp (−kε

2
).

Plugging in k = 4
ε (log(|Bd|) + log( 1δ )) we have Pr[X = 0] ≤ δ

|Bd| .

Note that the at each iteration of the algorithm, one of the boxes in the certificate of the dyadic boxes C(Bd) is
added to E, therefore the maximum number of iterations is |C(Bd)| which is smaller than |Bd|. Therefore, using
union bound over all the possible iterations, we can conclude that with probability 1 − δ the algorithm stops when
|Ui| ≤ (1 + ε)|J | and it returns a (1 + ε) approximation of the join size.

The time complexity of the algorithm depends on the time needed to sample the points, the time needed to find
the boxes covering the sampled points, and the number of iterations. Let Cd denote |C(Bd)| and C denote |C(B)|.
Furthermore, let Ei denote the number of boxes in E at iteration i. At each iteration, based on Lemma 2.1, at most
O(logd(n)) boxes are added to E including one of the boxes in Cd; therefore, using Theorem 3.1, we can conclude that
the number of iterations is at most Cd, and for all iterations we have Ei = O(logd(n)Cd).

Using Theorem 3.2, the sampling of k points in iteration i takes O(log(k)E
d/2
i + kd2 log2(Ei)) which is at most

O(kE
d/2
i ). Based on Theorem 3.1, |Bd| = dtm log(m). Therefore, we can replace k with the following upperbound:

k =
4

ε
(log(|Bd|) + log(

1

δ
)) = O(

1

ε
log(1/δ) log(m))

and Ei with O(logd(n)Cd) to derive the following time complexity for the sampling step in each iteration:

O(kE
d/2
i ) ≤ O(

1

ε
log(1/δ) log(m) logd

2/2(n)C
d/2
d )
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Finding out if a point is covered by any of the dyadic boxes in Bd can be done in time O(d log(d+1)(n)) using
Dyadic Tree data structure by looking for all possible O(logd(n)) dyadic boxes that include the point; See Section 3.2.
Therefore, steps 3 and 4 can be performed in time

O(kd logd+1(n)) = O(
d

ε
log(1/δ) log(m) logd+1(n)).

Multiplying the time complexity of all three steps by the number of iterations gives us the total time complexity of

O(
1

ε
log(1/δ) log(m) logd/2(n)C

d/2+1
d +

d

ε
log(1/δ) log(m) logd+1(n)Cd),

and by replacing Cd with 2d logd(n)C we have

O(
1

ε
log(1/δ)2d

2/2+d logd
2+d(n) log(m)Cd/2+1 +

d

ε
log(1/δ) log(m)2d log2d+1(n)C)

=O(
1

ε
log(1/δ) log(m)2d

2+d logd
2/2+d(n)Cd/2+1).

We now explain how to modify Welltris to return q points sampled uniformly at random from the joined table J . The
number of points k sampled in each iteration is set to be q. Then in step 3, every time that any of the the sampled point
is not in any gap box, that point is returned as one of the q sampled points. By rejection sampling, we can conclude
these points are sampled uniformly at random from J .

Corollary 4.2. This modification of Welltris samples q points uniformly at random from a join in time
O
(
log(q)2d

2/2+d logd
2+d(n)Cd/2+1 + qd42d log2d+1(n)C

)
.

Proof. The time complexity of steps 2,3, 4 in each iteration isO(log(q)E
d/2
i +qd2 log2(Ei)+qd log

d+1(n)), note that
Ei = O(2d log2d(n)C), and we can replace log(Ei) with d log(n) because the maximum size of the certificate is nd.
Multiplying by the maximum number of iterations Cd = O(2d logd(n)C) we derive the claimed time complexity.
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