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Abstract

Let G be an n-vertex graph with maximum degree ∆(G) and minimum degree δ(G).
We give algorithms with complexity O(1.3158n−0.7 ∆(G)) and O(1.32n−0.73 ∆(G)) that
determines if G is 3-colorable, when δ(G) ≥ 8 and δ(G) ≥ 7, respectively.
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1 Introduction

A coloring of the vertices of a graph is proper if adjacent vertices receive different colors. A

graph G is k-colorable if it has a proper coloring using k colors. The chromatic number of a

graph G, written as χ(G), is the smallest integer k such that G is k-colorable.

The proper coloring problem is one of the most studied problems in graph theory. To

determine the chromatic number of a graph, one should find the smallest integer k for which

the graph is k-colorable. The k-colorability problem, for k ≥ 3, is one of the classical

NP-complete problems [9].

Even approximating the chromatic number has been shown to be a very hard problem.

Lund and Yannakakis [8] have shown that there is an ε such that the chromatic number of

a general n-vertex graph cannot be approximated with ratio nε unless P = NP .

In 1971, Christofides obtained the first non-trivial algorithm computing the chromatic

number of n-vertex graphs running in n!nO(1) time [3]. Five years later Lawler [7] used

dynamic programming and enumerations of maximal independent sets to improve it to an
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algorithm with running time O∗(2.4423n). Later the running time was improved by Eppstein

[4]. The best-known complexity for determining the chromatic number of graphs is due to

Björklund, Husfeldt, and Koivisto [2] who used a combination of inclusion-exclusion and

dynamic programming to develop a O(2n) algorithm to determine the chromatic number of

n-vertex graphs.

The k-colorability problem for small values of k, like 3 and 4 is also a highly-studied

problem that has attracted a lot of attention. Not only this problem has its own importance,

but also improving the bounds for small values of k could be used to improve the bound for

higher values of k and as a result, improve the complexity of the general coloring problem.

The fastest known algorithm deciding if a graph is 3-colorable or not runs in O(1.3289n)

time and is due to Beigel and Eppstein [1]. The fastest known algorithm for 4-colorability

runs in O(1.7272n) and is due to Fomin, Gaspers, and Saurabh [5].

In this paper, we prove the following.

Theorem 1. Let G be an n-vertex graph with maximum degree ∆(G) and minimum degree

δ(G), where δ(G) ≥ 8. We can determine in O(1.3158n−0.7∆(G)) time if G is 3-colorable or

not.

Theorem 2. Let G be an n-vertex graph with maximum degree ∆(G) and minimum degree

δ(G), where δ(G) ≥ 7. We can determine in O(1.32n−0.73∆(G)) time if G is 3-colorable or

not.

For smaller minimum degree conditions, results similar to the statements of Theorems 1

and 2 can be proved, but the complexity would increase. For example, the 3-colorability of

a graph with minimum degree 6 can be determined in O(1.368n−.7d(v)) time. This result is

not an improvement compared to that of Beigel and Eppstein [1] however, because 1.368 >

1.3289.

2 Definitions, Notation, and Tools

In this section we define the terms and notation we use to prove Theorems 1 and 2.

For a graph G with vertex set V (G) and edge set E(G), we denote the minimum degree

by δ(G) and the maximum degree by ∆(G). We suppose all graphs studied in this paper

are simple. Let v be a vertex in G. The degree of v in G is denoted by dG(v) or simply d(v)

(when there is no fear of confusion). The open neighborhood of v in G, denoted by NG(v) (or

simply N(v)), is the set of neighbors of v in G and N2(v) denotes the set of vertices in G that
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are in distance (exactly) 2 from v. Therefore N(v) ∩ N2(v) = ∅. The closed neighborhood

of v in G, denoted by N [v], is equal to N(v) ∪ {v}.
Let A be a subset of V (G). The graph G[A] is the induced subgraph of G with vertex

set A. Let u and v be two vertices of G. The graph G/uv is the graph obtained from G

after contracting (identifying) the vertices u and v in G and replacing multiple edges by one

edge, so that the resulting graph is simple. Therefore G/uv is a graph with V (G/uv) =

(V (G) ∪ {w})− {u, v} and E(G/uv) = E(G− {u, v}) ∪ {wz : vz ∈ E(G) or uz ∈ E(G)}.
Suppose for each vertex v in V (G), there exists a list of colors denoted by L(v). A proper

list coloring of G is a choice function that maps every vertex v to a color in the list L(v) in

such a way that the coloring is proper. A graph is k-choosable if it has a proper list coloring

whenever each vertex has a list of size k.

A Boolean expression is a logical statement that is either TRUE or FALSE. In computer

science, the Boolean satisfiability problem (abbreviated to SAT) is the problem of determining

if there exists an interpretation that satisfies a given Boolean expression. The 3-satisfiability

problem or 3-SAT problem is a special case of SAT problem, where the Boolean expression

can be divided into clauses such that every clause contains three literals.

The constraint satisfiability problem is a satisfiability problem which is not necessarily

Boolean. In an (r, t)−CSP instance, we are given a collection of n variables, each of which

can be given one of up to r different colors and a set of constraints, where each constraint is

expressed using t variables, i.e., certain color combinations are forbidden for t variables.

By the above definition 3-SAT is the same as (2, 3)-CSP. It was proved in [1] that each

(a, b)-CSP instance is equivalent to a (b, a)-CSP instance. Therefore any 3-SAT is equivalent

to a (3, 2)-CSP instance.

The following result was proved by Beigen and Eppstein in [1]. We will apply this theorem

in the proof of Theorem 1.

Theorem 3. [1] All n-variable (3,2)-CSP instances can be solved in O(1.3645n) time.

3 Proof of Theorem 1

To prove Theorem 1 we prove the following stronger theorem.

Theorem 4. Let G be a graph and v be a vertex in G with the property that all vertices

in V (G) − (N [v] ∪ N2(v)) have degree at least 8 in G, then we can determine in time

O(1.3158n−0.7d(v)) if G is 3-colorable or not.
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Proof. We apply induction on n − d(v) to prove the assertion. Since G is simple, we have

d(v) ≤ n− 1. Therefore n− d(v) ≥ 1.

When n − d(v) = 1, the vertex v has degree n − 1. In this case G is 3-colorable if and

only if G− v is 2-colorable. Since 2-colorability can be determined in polynomial time (for

example using a simple Breadth First Search algorithm we can determine in linear time if

the graph is bipartite), the assertion holds in this case.

Let us assume that for any n-vertex graph H, with a vertex v of degree d(v), where

n − d(v) ≤ k and k ≥ 1, we can determine if H is 3-colarable in O(1.3158n−0.7d(v)) time,

given all vertices in V (H)− (N [v] ∪N2(v)) have degree at least 8 in H.

We prove that the Theorem holds when the graph G is an n-vertex graph having a vertex

v with n− d(v) = k + 1, where all vertices in V (G)− (N [v] ∪N2[v]) have degree at least 8

in G.

If there are three vertices u1, u2, u3 in N(v) with u1u2, u2u3 ∈ E(G) (see Figure 1), then

u1u3 ∈ E(G) implies that G is not 3-colorable, and u1u3 6∈ E(G) implies that the vertices u1

and u3 must get the same colors in any proper 3-coloring of G. As a result, we can identify

u1 and u3 in G and study the smaller graph. Hence we may suppose that G[N(v)] has no

vertex of degree at least 2.

u1 u3u2

v

Figure 1: When G[N(v)] has a vertex u2 of degree at least 2.

We consider three cases.

3.1 Case 1: When d(v) > 0.309n.

In this case we reduce the problem into a (3,2)-CSP problem with n−d(v)−1 vertices. With

no loss of generality we may suppose that in any coloring the color of v is 1. As a result, the

vertices in N(v) must get colors in {2, 3}. We create a (3,2)-CSP on V (G)−N [v] in such a

way that G is 3-colorable if and only if the (3,2)-CSP problem has a solution.

Suppose N(v) = {u1, . . . , ur, w1, . . . , wr, z1, . . . , zt}, where u1w1, . . . , urwr are the only

edges with both ends in N(v). This holds because G[N(v)] has no vertex of degree at least

2.
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v

u1 w1 ur wr ztz1... ...

Figure 2: Notation of Case 1.

If ui and wi, for some integer i, have a common neighbor y in N2(v), then in any proper

3-coloring of G the vertices v and y must get the same color. As a result we can contract

v and y in G and study the smaller graph. Hence we may suppose that ui and wi have no

common neighbors in N2(v).

Let H be a graph with V (H) = V (G)−N [v]. We define a (3,2)-CSP on H as follows:

For vertices x, y ∈ V (H), if xy ∈ E(G), then we need to avoid patterns 1-1, 2-2, and 3-3

on x and y, i.e., we need (x, y) 6= (1, 1), (2, 2), (3, 3). If x and y have a common neighbor in

N(v) (in G), then we need to avoid patterns 2-3 and 3-2 on x and y (i.e. (x, y) 6= (2, 3), (3, 2)),

since otherwise we cannot extend the coloring on V (H) to a proper 3-coloring of G. Finally,

if xui, ywi ∈ E(G), then we need to avoid patterns 2-2 and 3-3 on x and y (i.e. (x, y) 6=
(2, 2), (3, 3)), since otherwise we cannot extend the coloring on V (H) to a proper 3-coloring

of G.

By the above construction of the (3,2)-CSP on H, the graph G is 3-colorable if and only if

the (3,2)-CSP on H has a solution. Note that constructing H takes polynomial time and by

Theorem 3 determining if the (3,2)-CSP instance on H has a solution or not has complexity

O((1.3645)n−d(v)−1). Observe that O((1.3645)n−d(v)) ⊆ O(1.3157n−0.7d(v)) for d(v) > 0.309n.

Therefore a polynomial factor of O(1.3157n−0.7d(v)) is a subset of O(1.3158n−0.7d(v)), as de-

sired.

3.2 Case 2. When V (G) = N [v] ∪N 2(v) and d(v) ≤ 0.309n.

In this case with no loss of generality we may suppose that in any coloring the color of v is

1. As a result, the vertices in N(v) must get colors in {2, 3}. Therefore there are at most

2d(v) different possibilities for the colors of the vertices in N [v]. Since V (G) = N [v]∪N2(v),

all vertices in V (G)−N [v] have at least one neighbor in N(v).

Let c be a proper coloring over G[N [v]] using colors 2 and 3. As a result, to extend this

coloring to a proper coloring of G each vertex in N2(v) must avoid at least one color (the

color(s) of its neighbor(s) in N(v)). Hence each vertex in N2(v) has a list of size at most 2,

such that c can be extended to a proper coloring of G if and only if there exists a proper list
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coloring on N2(v). Note that we can determine in polynomial time if there exists a proper

list coloring on the vertices of a graph, when each list has size at most 2 (see [6]).

Since there are at most 2d(v) proper coloring on N(v) in which all vertices get colors in

{2, 3}, we can determine in a polynomial factor of 2d(v) if G is 3-colorable or not. Since

d(v) ≤ 0.309n, we have 2d(v) ≤ (1.31578)n−0.7d(v). Hence 2d(v) ⊆ O(1.31578)n−0.7d(v), which

implies poly(n)2d(v) ⊆ O(1.3158)n−0.7d(v), as desired.

3.3 Case 3. When V (G) 6= N [v] ∪N 2(v) and d(v) ≤ 0.309n.

Let x be a vertex in V (G)− (N [v] ∪N2(v)). In any proper 3-coloring of G, if it exists, the

vertex x either gets the same color as v or x receives a different color than v. Therefore it is

enough to determine if any of the graphs G/xv and G ∪ xv are 3-colorable. Recall that by

our hypothesis d(x) ≥ 8.

Let H = G/xv and H ′ = G ∪ xv. Let w be the vertex in H that is obtained from the

identification of x and v in G. The graph H has n− 1 vertices. Since x has degree at least 8

in G and since it has no common neighbor with v, we have dH(w) ≥ dG(v) + 8. Similarly, we

have n(H ′) = n(G) and dH′(v) = dG(v) + 1. Therefore by the induction hypothesis, we can

determine inO(1.3158n−1−0.7(dG(v)+8)) time if the graphH is 3-colorable and we can determine

in O(1.3158n−0.7(dG(v)+1)) time if the graph H ′ is 3-colorable. Therefore to determine if

G is 3-colorable, we require an algorithm of complexity at most O(1.3158n−0.7dG(v)−6.6) +

O(1.3158n−0.7dG(v)−0.7).

Note that 1.3158n−0.7dG(v)−6.6 + 1.3158n−0.7dG(v)−0.7 < 1.3158n−0.7dG(v). Therefore the as-

sertion holds.

4 Proof of Theorem 2

The proof of Theorem 2 is very similar to the proof of Theorem 1. To avoid redundancy we

skip the parts of the proof that are similar. We prove the following stronger result.

Theorem 5. Let G be a graph and v be a vertex in G with the property that all vertices in

V (G)−(N [v]∪N2(v)) have degree at least 7 in G, then we can determine in O(1.32n−0.73d(v))

time if G is 3-colorable or not.

Proof. We apply induction on n − d(v). When n − d(v) = 1, the graph G has a vertex v

of degree n − 1. In this case G is 3-colorable if and only if G − v is 2-colorable (can be

determined in polynomial time), the assertion holds in this case.
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Assume that for any n-vertex graph H, with a vertex v of degree d(v), where n−d(v) ≤ k

and k ≥ 1, we can determine if H is 3-colarable in O(1.32n−0.73d(v)) time, given all vertices

in V (H)− (N [v] ∪N2(v)) have degree at least 7 in H.

We prove that the statement holds when an n-vertex graph G has a vertex v with n −
d(v) = k + 1, where all vertices in V (G)− (N [v] ∪N2(v)) have degree at least 7 in G.

Similar to the argument in the proof of Theorem 4 there are no three vertices u1, u2, u3

in N(v) with u1u2, u2u3 ∈ E(G) (see Figure 1).

We consider the following three cases.

Case 1. When d(v) > 0.309n.

Case 2. When V (G) = N [v] ∪N2(v) and d(v) ≤ 0.309n.

Case 3. When V (G) 6= N [v] ∪N2(v) and d(v) ≤ 0.309n.

The proof of Cases 1 and 2 is almost identical to that in the proof of Theorem 4 with

the small difference that the base of the complexity (1.3158) must be replaced by 1.32 and

1.3157 and 1.31578 in Cases 1 and 2 must be replaced by 1.3199. Hence we move forward

to the proof of Case 3, which is also similar to that in the proof of Theorem 4.

Let x be a vertex in V (G) − (N [v] ∪ N2(v)). Note that G is 3-colorable if and only if

G/xv or G∪xv is 3-colorable. Therefore it is enough to determine if any of the graphs G/xv

and G ∪ xv is 3-colorable. Recall that by our hypothesis d(x) ≥ 7.

Let H = G/xv and H ′ = G ∪ xv. The graph H has n − 1 vertices and dH(v) ≥
dG(v) + 7. Similarly, we have n(H ′) = n(G) and dH′(v) = dG(v) + 1. Hence, by the hy-

pothesis, we can determine in O(1.32n−1−0.73(d(v)+7)) time if the graph H is 3-colorable,

and we can determine in O(1.32n−0.73(d(v)+1)) time if the graph H ′ is 3-colorable. All

together, to determine if G is 3-colorable, the algorithm has a complexity of at most

O(1.32n−0.73d(v)−6.11) +O(1.32n−0.73d(v)−0.73).

Since 1.32n−0.73d(v)−6.11 + 1.32n−0.73d(v)−0.73 < 1.32n−0.73d(v), the assertion holds.
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