

Improved algorithm to determine 3-colorability of graphs with minimum degree at least 7

Nicholas Crawford*, Sogol Jahanbekam† and Katerina Potika‡

Abstract

Let G be an n -vertex graph with maximum degree $\Delta(G)$ and minimum degree $\delta(G)$. We give algorithms with complexity $O(1.3158^{n-0.7} \Delta(G))$ and $O(1.32^{n-0.73} \Delta(G))$ that determines if G is 3-colorable, when $\delta(G) \geq 8$ and $\delta(G) \geq 7$, respectively.

Keywords: algorithms, complexity, proper coloring, 68W01, 68Q25, 05C15

1 Introduction

A coloring of the vertices of a graph is *proper* if adjacent vertices receive different colors. A graph G is *k -colorable* if it has a proper coloring using k colors. The *chromatic number* of a graph G , written as $\chi(G)$, is the smallest integer k such that G is k -colorable.

The proper coloring problem is one of the most studied problems in graph theory. To determine the chromatic number of a graph, one should find the smallest integer k for which the graph is k -colorable. The k -colorability problem, for $k \geq 3$, is one of the classical NP-complete problems [9].

Even approximating the chromatic number has been shown to be a very hard problem. Lund and Yannakakis [8] have shown that there is an ϵ such that the chromatic number of a general n -vertex graph cannot be approximated with ratio n^ϵ unless $P = NP$.

In 1971, Christofides obtained the first non-trivial algorithm computing the chromatic number of n -vertex graphs running in $n!n^{O(1)}$ time [3]. Five years later Lawler [7] used dynamic programming and enumerations of maximal independent sets to improve it to an

*Department of Mathematics and Statistics, San Jose State University, San Jose, CA; nicholas.crawford@sjsu.edu.

†Department of Mathematics and Statistics, San Jose State University, San Jose, CA; sogol.jahanbekam@sjsu.edu.

Research was supported in part by by NSF grant CMMI-1727743 and Woodward Fund.

‡Department of Computer Science, San Jose State University, San Jose, CA; katerina.potika@sjsu.edu.

algorithm with running time $O^*(2.4423^n)$. Later the running time was improved by Eppstein [4]. The best-known complexity for determining the chromatic number of graphs is due to Björklund, Husfeldt, and Koivisto [2] who used a combination of inclusion-exclusion and dynamic programming to develop a $O(2^n)$ algorithm to determine the chromatic number of n -vertex graphs.

The k -colorability problem for small values of k , like 3 and 4 is also a highly-studied problem that has attracted a lot of attention. Not only this problem has its own importance, but also improving the bounds for small values of k could be used to improve the bound for higher values of k and as a result, improve the complexity of the general coloring problem. The fastest known algorithm deciding if a graph is 3-colorable or not runs in $O(1.3289^n)$ time and is due to Beigel and Eppstein [1]. The fastest known algorithm for 4-colorability runs in $O(1.7272^n)$ and is due to Fomin, Gaspers, and Saurabh [5].

In this paper, we prove the following.

Theorem 1. *Let G be an n -vertex graph with maximum degree $\Delta(G)$ and minimum degree $\delta(G)$, where $\delta(G) \geq 8$. We can determine in $O(1.3158^{n-0.7\Delta(G)})$ time if G is 3-colorable or not.*

Theorem 2. *Let G be an n -vertex graph with maximum degree $\Delta(G)$ and minimum degree $\delta(G)$, where $\delta(G) \geq 7$. We can determine in $O(1.32^{n-0.73\Delta(G)})$ time if G is 3-colorable or not.*

For smaller minimum degree conditions, results similar to the statements of Theorems 1 and 2 can be proved, but the complexity would increase. For example, the 3-colorability of a graph with minimum degree 6 can be determined in $O(1.368^{n-0.7d(v)})$ time. This result is not an improvement compared to that of Beigel and Eppstein [1] however, because $1.368 > 1.3289$.

2 Definitions, Notation, and Tools

In this section we define the terms and notation we use to prove Theorems 1 and 2.

For a graph G with vertex set $V(G)$ and edge set $E(G)$, we denote the minimum degree by $\delta(G)$ and the maximum degree by $\Delta(G)$. We suppose all graphs studied in this paper are simple. Let v be a vertex in G . The degree of v in G is denoted by $d_G(v)$ or simply $d(v)$ (when there is no fear of confusion). The open neighborhood of v in G , denoted by $N_G(v)$ (or simply $N(v)$), is the set of neighbors of v in G and $N^2(v)$ denotes the set of vertices in G that

are in distance (exactly) 2 from v . Therefore $N(v) \cap N^2(v) = \emptyset$. The closed neighborhood of v in G , denoted by $N[v]$, is equal to $N(v) \cup \{v\}$.

Let A be a subset of $V(G)$. The graph $G[A]$ is the induced subgraph of G with vertex set A . Let u and v be two vertices of G . The graph G/uv is the graph obtained from G after contracting (identifying) the vertices u and v in G and replacing multiple edges by one edge, so that the resulting graph is simple. Therefore G/uv is a graph with $V(G/uv) = (V(G) \cup \{w\}) - \{u, v\}$ and $E(G/uv) = E(G - \{u, v\}) \cup \{wz : vz \in E(G) \text{ or } uz \in E(G)\}$.

Suppose for each vertex v in $V(G)$, there exists a list of colors denoted by $L(v)$. A *proper list coloring* of G is a choice function that maps every vertex v to a color in the list $L(v)$ in such a way that the coloring is proper. A graph is k -*choosable* if it has a proper list coloring whenever each vertex has a list of size k .

A *Boolean expression* is a logical statement that is either TRUE or FALSE. In computer science, the *Boolean satisfiability problem* (abbreviated to SAT) is the problem of determining if there exists an interpretation that satisfies a given Boolean expression. The 3-satisfiability problem or 3 -SAT problem is a special case of SAT problem, where the Boolean expression can be divided into clauses such that every clause contains three literals.

The constraint satisfiability problem is a satisfiability problem which is not necessarily Boolean. In an $(r, t) - CSP$ instance, we are given a collection of n variables, each of which can be given one of up to r different colors and a set of constraints, where each constraint is expressed using t variables, i.e., certain color combinations are forbidden for t variables.

By the above definition 3-SAT is the same as $(2, 3)$ -CSP. It was proved in [1] that each (a, b) -CSP instance is equivalent to a (b, a) -CSP instance. Therefore any 3-SAT is equivalent to a $(3, 2)$ -CSP instance.

The following result was proved by Beigen and Eppstein in [1]. We will apply this theorem in the proof of Theorem 1.

Theorem 3. [1] All n -variable $(3, 2)$ -CSP instances can be solved in $O(1.3645^n)$ time.

3 Proof of Theorem 1

To prove Theorem 1 we prove the following stronger theorem.

Theorem 4. Let G be a graph and v be a vertex in G with the property that all vertices in $V(G) - (N[v] \cup N^2(v))$ have degree at least 8 in G , then we can determine in time $O(1.3158^{n-0.7d(v)})$ if G is 3-colorable or not.

Proof. We apply induction on $n - d(v)$ to prove the assertion. Since G is simple, we have $d(v) \leq n - 1$. Therefore $n - d(v) \geq 1$.

When $n - d(v) = 1$, the vertex v has degree $n - 1$. In this case G is 3-colorable if and only if $G - v$ is 2-colorable. Since 2-colorability can be determined in polynomial time (for example using a simple Breadth First Search algorithm we can determine in linear time if the graph is bipartite), the assertion holds in this case.

Let us assume that for any n -vertex graph H , with a vertex v of degree $d(v)$, where $n - d(v) \leq k$ and $k \geq 1$, we can determine if H is 3-colorable in $O(1.3158^{n-0.7d(v)})$ time, given all vertices in $V(H) - (N[v] \cup N^2(v))$ have degree at least 8 in H .

We prove that the Theorem holds when the graph G is an n -vertex graph having a vertex v with $n - d(v) = k + 1$, where all vertices in $V(G) - (N[v] \cup N^2[v])$ have degree at least 8 in G .

If there are three vertices u_1, u_2, u_3 in $N(v)$ with $u_1u_2, u_2u_3 \in E(G)$ (see Figure 1), then $u_1u_3 \in E(G)$ implies that G is not 3-colorable, and $u_1u_3 \notin E(G)$ implies that the vertices u_1 and u_3 must get the same colors in any proper 3-coloring of G . As a result, we can identify u_1 and u_3 in G and study the smaller graph. Hence we may suppose that $G[N(v)]$ has no vertex of degree at least 2.

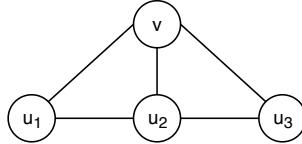


Figure 1: When $G[N(v)]$ has a vertex u_2 of degree at least 2.

We consider three cases.

3.1 Case 1: When $d(v) > 0.309n$.

In this case we reduce the problem into a (3,2)-CSP problem with $n - d(v) - 1$ vertices. With no loss of generality we may suppose that in any coloring the color of v is 1. As a result, the vertices in $N(v)$ must get colors in $\{2, 3\}$. We create a (3,2)-CSP on $V(G) - N[v]$ in such a way that G is 3-colorable if and only if the (3,2)-CSP problem has a solution.

Suppose $N(v) = \{u_1, \dots, u_r, w_1, \dots, w_r, z_1, \dots, z_t\}$, where u_1w_1, \dots, u_rw_r are the only edges with both ends in $N(v)$. This holds because $G[N(v)]$ has no vertex of degree at least 2.

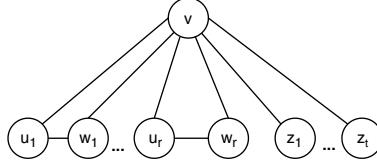


Figure 2: Notation of Case 1.

If u_i and w_i , for some integer i , have a common neighbor y in $N^2(v)$, then in any proper 3-coloring of G the vertices v and y must get the same color. As a result we can contract v and y in G and study the smaller graph. Hence we may suppose that u_i and w_i have no common neighbors in $N^2(v)$.

Let H be a graph with $V(H) = V(G) - N[v]$. We define a (3,2)-CSP on H as follows:

For vertices $x, y \in V(H)$, if $xy \in E(G)$, then we need to avoid patterns 1-1, 2-2, and 3-3 on x and y , i.e., we need $(x, y) \neq (1, 1), (2, 2), (3, 3)$. If x and y have a common neighbor in $N(v)$ (in G), then we need to avoid patterns 2-3 and 3-2 on x and y (i.e. $(x, y) \neq (2, 3), (3, 2)$), since otherwise we cannot extend the coloring on $V(H)$ to a proper 3-coloring of G . Finally, if $xu_i, yw_i \in E(G)$, then we need to avoid patterns 2-2 and 3-3 on x and y (i.e. $(x, y) \neq (2, 2), (3, 3)$), since otherwise we cannot extend the coloring on $V(H)$ to a proper 3-coloring of G .

By the above construction of the (3,2)-CSP on H , the graph G is 3-colorable if and only if the (3,2)-CSP on H has a solution. Note that constructing H takes polynomial time and by Theorem 3 determining if the (3,2)-CSP instance on H has a solution or not has complexity $O((1.3645)^{n-d(v)-1})$. Observe that $O((1.3645)^{n-d(v)}) \subseteq O(1.3157^{n-0.7d(v)})$ for $d(v) > 0.309n$. Therefore a polynomial factor of $O(1.3157^{n-0.7d(v)})$ is a subset of $O(1.3158^{n-0.7d(v)})$, as desired.

3.2 Case 2. When $V(G) = N[v] \cup N^2(v)$ and $d(v) \leq 0.309n$.

In this case with no loss of generality we may suppose that in any coloring the color of v is 1. As a result, the vertices in $N(v)$ must get colors in $\{2, 3\}$. Therefore there are at most $2^{d(v)}$ different possibilities for the colors of the vertices in $N[v]$. Since $V(G) = N[v] \cup N^2(v)$, all vertices in $V(G) - N[v]$ have at least one neighbor in $N(v)$.

Let c be a proper coloring over $G[N[v]]$ using colors 2 and 3. As a result, to extend this coloring to a proper coloring of G each vertex in $N^2(v)$ must avoid at least one color (the color(s) of its neighbor(s) in $N(v)$). Hence each vertex in $N^2(v)$ has a list of size at most 2, such that c can be extended to a proper coloring of G if and only if there exists a proper list

coloring on $N^2(v)$. Note that we can determine in polynomial time if there exists a proper list coloring on the vertices of a graph, when each list has size at most 2 (see [6]).

Since there are at most $2^{d(v)}$ proper coloring on $N(v)$ in which all vertices get colors in $\{2, 3\}$, we can determine in a polynomial factor of $2^{d(v)}$ if G is 3-colorable or not. Since $d(v) \leq 0.309n$, we have $2^{d(v)} \leq (1.31578)^{n-0.7d(v)}$. Hence $2^{d(v)} \subseteq O(1.31578)^{n-0.7d(v)}$, which implies $\text{poly}(n)2^{d(v)} \subseteq O(1.3158)^{n-0.7d(v)}$, as desired.

3.3 Case 3. When $V(G) \neq N[v] \cup N^2(v)$ and $d(v) \leq 0.309n$.

Let x be a vertex in $V(G) - (N[v] \cup N^2(v))$. In any proper 3-coloring of G , if it exists, the vertex x either gets the same color as v or x receives a different color than v . Therefore it is enough to determine if any of the graphs G/xv and $G \cup xv$ are 3-colorable. Recall that by our hypothesis $d(x) \geq 8$.

Let $H = G/xv$ and $H' = G \cup xv$. Let w be the vertex in H that is obtained from the identification of x and v in G . The graph H has $n-1$ vertices. Since x has degree at least 8 in G and since it has no common neighbor with v , we have $d_H(w) \geq d_G(v) + 8$. Similarly, we have $n(H') = n(G)$ and $d_{H'}(v) = d_G(v) + 1$. Therefore by the induction hypothesis, we can determine in $O(1.3158^{n-1-0.7(d_G(v)+8)})$ time if the graph H is 3-colorable and we can determine in $O(1.3158^{n-0.7(d_G(v)+1)})$ time if the graph H' is 3-colorable. Therefore to determine if G is 3-colorable, we require an algorithm of complexity at most $O(1.3158^{n-0.7d_G(v)-6.6}) + O(1.3158^{n-0.7d_G(v)-0.7})$.

Note that $1.3158^{n-0.7d_G(v)-6.6} + 1.3158^{n-0.7d_G(v)-0.7} < 1.3158^{n-0.7d_G(v)}$. Therefore the assertion holds. \square

4 Proof of Theorem 2

The proof of Theorem 2 is very similar to the proof of Theorem 1. To avoid redundancy we skip the parts of the proof that are similar. We prove the following stronger result.

Theorem 5. *Let G be a graph and v be a vertex in G with the property that all vertices in $V(G) - (N[v] \cup N^2(v))$ have degree at least 7 in G , then we can determine in $O(1.32^{n-0.73d(v)})$ time if G is 3-colorable or not.*

Proof. We apply induction on $n - d(v)$. When $n - d(v) = 1$, the graph G has a vertex v of degree $n-1$. In this case G is 3-colorable if and only if $G - v$ is 2-colorable (can be determined in polynomial time), the assertion holds in this case.

Assume that for any n -vertex graph H , with a vertex v of degree $d(v)$, where $n - d(v) \leq k$ and $k \geq 1$, we can determine if H is 3-colorable in $O(1.32^{n-0.73d(v)})$ time, given all vertices in $V(H) - (N[v] \cup N^2(v))$ have degree at least 7 in H .

We prove that the statement holds when an n -vertex graph G has a vertex v with $n - d(v) = k + 1$, where all vertices in $V(G) - (N[v] \cup N^2(v))$ have degree at least 7 in G .

Similar to the argument in the proof of Theorem 4 there are no three vertices u_1, u_2, u_3 in $N(v)$ with $u_1u_2, u_2u_3 \in E(G)$ (see Figure 1).

We consider the following three cases.

Case 1. When $d(v) > 0.309n$.

Case 2. When $V(G) = N[v] \cup N^2(v)$ and $d(v) \leq 0.309n$.

Case 3. When $V(G) \neq N[v] \cup N^2(v)$ and $d(v) \leq 0.309n$.

The proof of Cases 1 and 2 is almost identical to that in the proof of Theorem 4 with the small difference that the base of the complexity (1.3158) must be replaced by 1.32 and 1.3157 and 1.31578 in Cases 1 and 2 must be replaced by 1.3199. Hence we move forward to the proof of Case 3, which is also similar to that in the proof of Theorem 4.

Let x be a vertex in $V(G) - (N[v] \cup N^2(v))$. Note that G is 3-colorable if and only if G/xv or $G \cup xv$ is 3-colorable. Therefore it is enough to determine if any of the graphs G/xv and $G \cup xv$ is 3-colorable. Recall that by our hypothesis $d(x) \geq 7$.

Let $H = G/xv$ and $H' = G \cup xv$. The graph H has $n - 1$ vertices and $d_H(v) \geq d_G(v) + 7$. Similarly, we have $n(H') = n(G)$ and $d_{H'}(v) = d_G(v) + 1$. Hence, by the hypothesis, we can determine in $O(1.32^{n-1-0.73(d(v)+7)})$ time if the graph H is 3-colorable, and we can determine in $O(1.32^{n-0.73(d(v)+1)})$ time if the graph H' is 3-colorable. All together, to determine if G is 3-colorable, the algorithm has a complexity of at most $O(1.32^{n-0.73d(v)-6.11}) + O(1.32^{n-0.73d(v)-0.73})$.

Since $1.32^{n-0.73d(v)-6.11} + 1.32^{n-0.73d(v)-0.73} < 1.32^{n-0.73d(v)}$, the assertion holds. \square

Acknowledgment: The authors would like to thank the anonymous referees, whose suggestions greatly improved the exposition of this paper.

References

- [1] R. Beigel and D. Eppstein, 3-coloring in time $O(1.3289^n)$, *J. Algorithms*, 54:2, 168–204, 2005.
- [2] A. Björklund, T. Husfeldt and M. Koivisto, Set partitioning via inclusion–exclusion, *SIAM J. Comput.* 39 (2009), 546–563.

- [3] N. Christofides, An Algorithm for the Chromatic Number of a Graph, *Computer J.*, 14, 38–39, 1971.
- [4] D. Eppstein, Small Maximal Independent Sets and Faster Exact Graph Coloring, *Journal of Graph Algorithms and Applications*, Vol. 7, no. 2, 131–140, 2003.
- [5] F.V. Fomin, S. Gaspers, S. Saurabh, Improved Exact Algorithms for Counting 3- and 4-Colorings, *Proc. 13th Annual International Conference, COCOON 2007, Lecture Notes in Computer Science, 4598, Springer*, 65–74, 2007.
- [6] J. Kratochvíla and Z. Tuza, Algorithmic complexity of list colorings, *Discrete Applied Mathematics*, Volume 50, Issue 3, 297–302, 1994.
- [7] E. L. Lawler, A note on the complexity of the chromatic number problem, *Information Processing Letters*, 5 (3): 66—67, 1976.
- [8] C. Lund and M. Yannakakis, On the hardness of approximating minimization problems, *Journal of the ACM (JACM)*, Volume 41 Issue 5, 960–981, 1994.
- [9] D. B. West, *Introduction to Graph Theory*, Second edition, Published by Prentice Hall 1996, 2001. ISBN 0-13-014400-2.