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ABSTRACT

By prioritizing simplicity and portability, least-privilege engineer-
ing has been an afterthought in OS design, resulting in monolithic
kernels where any exploit leads to total compromise. ySCOPE (“mi-
croscope”) addresses this problem by automatically identifying op-
portunities for least-privilege separation. uSCOPE replaces expert-
driven, semi-automated analysis with a general methodology for
exploring a continuum of security vs. performance design points
by adopting a quantitative and systematic approach to privilege
analysis. We apply the uSCOPE methodology to the Linux ker-
nel by (1) instrumenting the entire kernel to gain comprehensive,
fine-grained memory access and call activity; (2) mapping these
accesses to semantic information; and (3) conducting separability
analysis on the kernel using both quantitative privilege and over-
head metrics. We discover opportunities for orders of magnitude
privilege reduction while predicting relatively low overheads—at
15% mediation overhead, overprivilege in Linux can be reduced up to
99.8%—suggesting fine-grained privilege separation is feasible and
laying the groundwork for accelerating real privilege separation.
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1 INTRODUCTION

The Principle of Least Privilege is a key aspiration for secure sys-
tem design [41, 62]. However, despite decades of work, we still
use over-privileged software at every layer of the software stack.
Fundamentally, composing systems while minimizing privilege is
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Figure 1: The interaction of code and objects in Linux kernel v4.10 at the direc-
tory level. Directories are in alphabetical order with labels shown on top-level
directories; blank entries are nested in the preceding labeled directory. Color
intensity indicates the logscale number of unique interaction edges from a
directory (X axis) to code or data objects owned by another directory (Y axis).
HSCOPE collects data at the instruction level; we aggregate to directories to
produce a viewable figure.

hard due to the complexity of defining privilege compartments and
the performance challenges they impose [50], leading developers to
simplify by building software with large, single trust domains. This
is problematic because these “monolithic” software artifacts (e.g.,
commodity operating systems) create an environment in which a
single vulnerability could lead to full compromise of the system—for
example, Project Zero’s recent iOS exploit [10] was built from a sin-
gle memory error in the kernel and led to a devastating zero-click,
radio-transmitted and wormable complete device compromise. Fac-
ing a range of both external [65, 69] and insider threats [11, 36], the
risks posed by monolithic software are not theoretical in nature,
but a daily reality.
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Addressing overprivilege in operating system design is a matter
of both mechanism and policy. Privilege separation requires a self-
protecting mechanism to enforce privilege boundaries and mediate
any necessary boundary crossings (i.e., a reference monitor [8]).
Perhaps surprisingly, achieving this goal does not require abandon-
ing today’s operating systems (and all their source code) in favor
of microkernel architectures (e.g., L4 [25]); in fact, mechanisms for
retrofitting privilege compartmentalization into monolithic ker-
nels [18, 19, 52, 56, 72] and userspace applications [14, 22, 33, 34,
42, 46, 68, 71] have already been demonstrated. For example, Daut-
enhahn et al. [19] demonstrate that, by trapping on all updates to
virtual memory, it is possible to embed an intra-kernel reference
monitor (or “Nested Kernel”) within an existing monolithic OS that
can mediate accesses to physical memory or other system resources.
They leverage the Nested Kernel to define a coarse-grained com-
partmentalization that assures the integrity of the core kernel in
the presence of untrusted dynamically loaded modules.

These works demonstrate feasible mechanisms for retrofitting
privilege separation, but their focus on coarse-grained compart-
mentalizations only scratches the surface of the Principle of Least
Privilege. Why should a bug in one kernel subsystem have any
bearing at all on the integrity of another completely independent
subsystem? For that matter, why should a bug in one kernel function
undermine the integrity of other unrelated lines of code?

These questions are a matter of policy. Privilege separation re-
quires us to (retroactively) identify privilege compartments that pro-
vide a reasonable tradeoff between security and cost. With upwards
of tens of millions of lines of code to consider, manually defining
policies and privilege boundaries is infeasible. Unfortunately, while
recent attempts at privilege reduction [6, 12, 23, 29, 35, 45, 47] have
improved upon influential, but labor-intensive, early work [13, 37,
58, 72], they still fall short in terms of both least-privilege identifi-
cation and automation. In these approaches, an expert either labels
sensitive data (e.g., private keys) or low-integrity components (e.g.,
input parsing), and then performs a semi-automated compartmen-
talization routine that minimizes access to the sensitive data and/or
the reach of the low-integrity code. However, even for state-of-
the-art metric-based techniques [47], these approaches fall short of
whole-system privilege reduction, instead protecting a few coarse-
grained critical compartments. This is because they depend on the
availability and omniscience of experts to label security-relevant
data, code, or components—where, for massive systems like an op-
erating system, there may be no such single expert. At present, we
have no systematic approach to identifying and evaluating privilege
separation opportunities in monolithic software artifacts whose scale
exceeds the knowledge of a single developer.

With this in mind, we present pSCOPE (“Systematizing Com-
partmentalization Opportunities for Privilege Encapsulation”), a
methodology that enables the identification of whole-system priv-
ilege reduction opportunities without requiring manual analysis
by experts. pySCOPE instruments and profiles software activity at
the granularity of instructions and objects, encoding each refer-
ence (i.e., privilege requirement) in a novel low-level access control
matrix, the CAPMAP (Context-Aware Privilege Memory Access
Pattern). uSCOPE then uses the CAPMAP as the ground truth
with which it compares competing software compartmentalization
hypotheses that are either drawn from syntactic code structure
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(e.g., functions, files, directories) or procedurally-identified through
data-driven clustering algorithms that combine frequently inter-
acting code and data. uSCOPE introduces a metric that allows it to
evaluate the level of privilege separation that is possible for a given
compartmentalization strategy compared to both monolithic (fully
overprivileged) and the minimum-required-to-run (least privilege)
baselines, then uses a performance model that estimates the cost of
enforcement for a range of potential isolation mechanisms.

To demonstrate the power of pSCOPE and evaluate whether
privilege separation is generically feasible, we apply uSCOPE to
analyze the notoriously overprivileged Linux kernel. We identify
the privilege separability of kernel objects, show the range of com-
partmentalizations that can be achieved in terms of aggregate levels
of privilege separation and overhead, and automatically identify the
data structures and design patterns that are important candidates
for refactoring. These results demonstrate the utility of uSCOPE’s
automated privilege analysis. Figure 1 previews our results under
a directory-based compartmentalization process. Here, individual
instructions (references) are clustered by the directory in which
the code resides. Even under this relatively coarse compartmental-
ization, the large amount of whitespace indicates massive privilege
separation opportunities for Linux. Even more surprising, our per-
formance analysis suggests that enforcing such privilege separation
opportunities might be practical and eliminates costly manual sep-
aration efforts from exploring impractical compartmentalizations.

In summary, our primary contributions include:

e uSCOPE, a framework for comprehensive, automated privi-
lege analysis (Sec. 5). It consists of four main components: (1)
A novel low-level privilege representation, the CAPMAP; (2) A
compartmentalization model that relaxes the standard object
ownership model; (3) Quantitative Metrics for characterizing
both privilege (the novel privilege set), and performance; (4)
Separability analysis, a novel systematic exploration of entire
compartmentalization spaces.

e An implementation of uSCOPE for the Linux kernel, binding
the C language abstractions to the CAPMAP model (Sec. 6).
uSCOPE’s analysis code and data sets are available from
https://fierce.cs.rice.edu/uscope/.

e A characterization of the degree to which Linux is privilege
separable, including automated identification of potential
refactorings (Sec. 8). We uncover opportunities for orders
of magnitude in privilege separation, up to a 500x reduction
(99.8%) in overprivilege, at predicted overhead of approx.
15%, suggesting that fine-grained privilege separation may
be possible with low overhead in monolithic kernels. Further,
we have released a browsable explorer! to allow researchers
to better understand the interactions between Linux objects
observed by ySCOPE.

2 MOTIVATION

As a concrete example to illustrate our concerns and motivate our
approach, let us consider the credential structure (struct cred)
from the Linux kernel (Fig. 2). This data structure controls the
privileges that user space subjects (e.g., processes, users) have to
system resources (e.g., tasks, files, sockets) [20]. As such, malicious

Uhttps:/fierce.cs.rice.edu/uscope/object_explorer
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/* The security context of a task ... */

struct cred {

kuid_t uid; /] real UID of task
kgid_t gid; // real GID of task
kcap_t cap_permitted; [/ caps we're permitted

struct key* proc_keyring; // keyring for process
struct user_struct *user; // real user ID
struct user_namespace *uns; // user namespace

b

Figure 2: The (simplified) struct cred data structure used by the Linux
kernel for task access control and privilege management.
manipulation of this structure is a common vector for privilege
escalation. For example, a recent vulnerability can be exploited to
change the UID field of a user space process’ credential structure
to that of root, thus gaining root privilege and access to all system
resources [60].

In a monolithic kernel, the attack surface for struct cred alone
is enormous: this field could be modified by any of the 104,240
potentially unsafe write instructions in the kernel; i.e., any bug
that allows an attacker to control one of the more than a hundred
thousand possibly unsafe write instructions could become a vector
to manipulate its contents. However, as our analysis identifies, only
113 write instructions from 31 functions should legitimately have
access to struct cred objects. The other 104,127 write instructions
(99.89%) hold excess privilege that reduce the security of the entire
system. In other words, this privilege escalation attack is made
possible because a compromised kernel component has privileges
beyond those required to do its job.

2.1 Our Approach: Quantifying Privilege

This example illustrates a concrete way to quantify privilege and
overprivilege: we can count the number of instructions that strictly
require a given privilege, then compare that count to the number
that the system actually allows. Further, if we were to divide the
kernel into compartments such that only writes within a compart-
ment with legitimate need could access struct cred objects, we
could quantify the reduction in writes (privileges) that came from
that particular compartmentalization. Reducing the number of in-
structions with privilege to write to struct cred makes it harder
to find a vulnerability that can be exploited to corrupt struct cred,
reducing its attack surface. If there is, on average, one exploitable
security vulnerability in the code every 1,000 writes [9, 31, 51], a
system with a hundred thousand privileged write instructions has
al—-(1- 10_3)105=1 - 3.5% 1074 ~ 100% chance of having an
exploitable vulnerability, while a compartment with only 100 such
write instructions has only a 1 — (1 — 10_3)102 = 9.5% chance.

Of course, even if we limit the code that can directly write into
struct cred objects, an attacker could launch a confused deputy
attack and invoke one of the 31 authorized functions in an attempt
to manipulate that function into making the desired change. Since
Linux is a monolithic kernel, any of the 51,258 other functions could
conceivably be manipulated to call one of those 31 authorized func-
tions. However, there are actually only 26 “secondary” functions
with legitimate need to call those struct cred-authorized functions.
Allowing the other 51,222 functions access is, again, overprivilege.
A true least-privilege policy would remove that unnecessary privi-
lege, further reducing struct cred’s attack surface.
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However, struct cred isn’t the only object in a program that
carries security implications. For example, page table entries and
secret keys are also clearly security-critical. We can perform simi-
lar analyses on each of these to quantify the minimum privileges
necessary to run, the overprivilege of the monolithic design, and
the privilege implications of a particular compartmentalization. We
include a web-based object explorer generated from our tool to
show the usage patterns of other kernel objects: ySCOPE object
explorer.!

3 SECURITY MODEL

Threat Model. This work considers a realistic and powerful at-
tacker that has discovered an exploitable software vulnerability
(e.g., memory corruption, disclosure, or code execution) in a mono-
lithic software artifact, e.g., an OS kernel.? It is possible for the
attacker to trigger this exploit through the target system’s interac-
tions with low-integrity components such as user-space processes,
network communications, or peripheral devices. Leveraging this
exploit, the attacker seeks to take control of the system or gain
access to confidential data — under normal circumstances, the above
exploit alone would be sufficient to take full control of the system.
We conservatively make no assumption about the specific system
objects that the adversary seeks to access or corrupt; it is possible
that any object is relevant to the attacker’s objectives.

System Model. The target system is not without its own de-
fenses. We assume it is equipped with a state-of-the-art reference
monitor [8], the likes of which have been concretely instantiated in
recent work [14, 18, 19, 22, 27, 33, 34, 42, 46, 52, 56, 68, 71, 72]. This
mechanism can provide complete mediation over attempted accesses
at arbitrarily fine granularities, down to the memory references
contained in individual lines of code. It is tamper proof, meaning
that the reference monitoring cannot be disabled during operation.
Due to its small size, the reference monitor has been verified to
operate correctly. Critically, this reference monitor is able to op-
erate securely and correctly without the use of hardware-based
protection — that is, it executes in the same protection ring [63]
as the tasks that it mediates — allowing it to restrict the privileges
of other Ring 0 code. However, while the mechanism for privilege
separation is assumed to be present, the optimal security policy for
minimizing the privilege of the attacker is unknown.

4 DESIGN GOALS

The aim of uSCOPE is to systematically analyze fine-grained, whole-
system privileges within monolithic trust environments. Specifi-
cally, it aims to enable (1) comprehensive privilege analysis and
policy derivation, (2) automated instead of manual analysis, and
(3) exploration of the continuum of privilege-performance points
rather than a handful of single points in the space.

4.1 Comprehensive Privilege Coverage

Prior work has focused on manual or semi-automated compartmen-
talization by experts [12, 24, 29, 37, 47, 58, 67, 72]. In general, these
approaches selectively (1) sandbox buggy components (e.g., parsers)
or (2) protect a limited subset of sensitive data (code-pointers or

2 The recent Project Zero iOS zero click radio exploit is an example of such a vulnera-
bility that allows circumvention of all mitigations in a monolithic kernel [10].
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secret keys). However, considering the capabilities and objectives
of our attacker, such an approach is not sufficient because it only
restricts the privileges of one or two critical components. Our so-
lution must be able to define a privilege policy that assures that
the attacker’s privileges will be always be restricted, even at an
arbitrary and unknown entry point into the system.

4.2 Automated Analysis

Today’s state-of-the-art in privilege reduction is based on manual,
expert analysis to identify what excess privileges the system should
remove. As code bases grow in age and complexity, the demand for
experts outstrips their availability and capability. For the largest of
code bases, many of which are decades old, no single person is an
expert on the whole system and all of its interactions. For example,
today’s Linux kernel contains 28 million Lines-of-Code, contributed
by over 19,000 developers [1], leaving it susceptible to a wide range
of vulnerabilities [11]. Accepting that experts may not be available
and may be fallible, our solution must take an automated approach
to privilege analysis.

4.3 Privilege Continuum

Between a fully-separated, least-privilege design and a monolithic
design, there is a vast set of possible decompositions at various
points in the security vs. performance tradeoff space. With current
manual and semi-automated compartmentalization techniques, it
is prohibitively expensive to explore even a fraction of this space
because each point requires (1) expert analysis and (2) significant
engineering to evaluate the viability of the choice. Furthermore, a
common concern is that privilege separation is not viable at fine
granularities due to performance costs, which deters practitioners
and researchers alike from even considering such options. Instead,
our solution must systematically explore a wide range of points in
the compartmentalization continuum. The tools we develop must
be flexible and easily integrate expert domain-specific knowledge,
to the extent available, through parameter adjustment or by placing
constraints on the search space.

5 THE pSCOPE METHODOLOGY

In this section, we present the generic pfSCOPE methodology. We
show its concrete application to Linux in Sec. 6.

5.1 Privilege Model and CAPMAP

The uSCOPE privilege model is based on mapping software com-
ponents into subject and object domains in order to track their
access privileges at runtime. In object-oriented languages, innate
definitions for subject and object emerge based on the language’s
structure. However, such definitions are not apparent in procedural
languages such as C. Moreover; our objective is to evaluate a contin-
uum of privilege separation tradeoffs, some of which may conflict
with the object-oriented abstraction. Instead, we define a privilege
as an ISA-level operation (memory read, memory write, function
call, return, and memory deallocation) that may be performed by a
subject (instruction) on an object (virtual address region of mem-
ory). We choose this low-level representation due to its generality;
all access privileges can be reduced to instruction- and byte-level,
regardless of the program language.
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DEF. 1 (PRIVILEGE). A privilege allows an instruction, i € I, to
perform a low-level operation, op € Ops, on object, 0 € O. I is the set
of all instructions, O the set of all objects, and Ops, the set of low-level
operations.

This instruction-level privilege separation represents the finest-
grained separation that we identify in uSCOPE (Sec. 5.3.1). For this
finest-grained definition, the machine instructions I form our sub-
ject domain. For allocations and frees, we use the instruction that
performs the call to the allocator/free routine as the identifier for
that subject. Objects are likewise labeled by the instruction that
calls the allocator routine. However, each instruction is also an ob-
ject since it can be called (and potentially written, in case of mutable
code), allowing us to capture privileges needed to make individual
calls and returns. Aside from dynamically loaded or generated code
(considered in Sec. 11), identifying dynamically allocated objects
with allocating instructions means the set of object classes are lim-
ited to the set of statically allocated objects and statically known
allocation instructions. Therefore, the set of instructions and ob-
jects can be determined at compile time and do not change during
execution.

For context sensitive privilege analysis, it is possible to extend
the subject tuple to include separation contexts, such as the call
chain or kernel entry point. For practical reasons (e.g., state explo-
sion in the dynamic tracing system) we leave such exploration to
future work. Note, however, that the metrics presented here can eas-
ily accommodate context sensitivity. Our algorithmic approaches
(Sec. 6.2) can also handle context-sensitive subjects as is, but further
specialization may be needed to exploit context to its fullest extent.

Next, we define a privilege predicate priv(i, o, op) that indicates
if instruction i is allowed to perform op op on object o. Different def-
initions of the function priv(i, o, op) represent candidate policies on
the continuum of the privilege separation design space. priv(i, o, op)
is an embodiment of Lampson’s access matrix [41]. This simple
operation matches the minimal conditions that Lampson identifies
for isolated execution, selected because of its generality expressing
privileges and its ability to easily map to compiler IR or assembly
level operations.

DEF. 2 (PRIVILEGE SET). The Privilege Set (PS) is the set of all
privileges for which priv(i, o, op) is true for a program.

A given PS can be modeled as a graph that encodes the whole-
system privileges of the associated program. The instructions i € I,
and objects 0 € O, are vertices in the graph, while priv(i, o, op)
defines whether or not there is an edge of type op € Ops between
the nodes i and o. Alternately, PS can be modeled as an access matrix
where rows are instructions and objects are rows and columns while
op will appear in cell(i, 0) if priv(i, o, op) is true.

Given the notion of privilege sets, it would clearly be valuable to
identify PSyipn, the minimum privilege set needed in order for the
program to run. Our system will derive PS,;,;, dynamically through
the notion of CAPMAPs:

DEF. 3 (CAPMAP). The Context-Aware Privilege Memory Access
Pattern (CAPMAP) is the minimum PS necessary for a program to run
during the course of an observed execution. That is, capmap(i, o, op) is
the least privilege definition of priv(i, o, op); if any privilege (i, 0, op)
is removed from the CAPMAP, the program cannot perform its task.
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Figure 3: ySCOPE Overview. A software system S with unknown privilege separability is instrumented to trace its operations (read, write, call, return, and free)
at the level of instructions and data objects. The trace is then transformed into a CAPMAP, a low-level representation of the privilege required by the software
system. An analysis engine operates on the CAPMAP, allowing it to explore a range of compartmentalization hypotheses. We define new metrics to measure the
privilege permitted by a given compartmentalization and use a simple analytical model to estimate the performance cost of enforcing the compartmentalization

with a range of possible hardware mechanisms.

As a lower bound for capmap(i, o, op), we include all privileges
observed during one to many dynamic executions of the program
(Sec. 7); we discuss the potential threats to validity posed by our
dynamic analysis based approach in Sec. 11.

5.2 Compartmentalization Model

While PSy,, i, privilege is ideal from a security perspective, instruction-
level least privilege is a single (and, perhaps, impractical) point in
the privilege-performance continuum. Instead, our compartmental-
ization model gathers individual instructions and primitive objects
together into larger groupings. We call a grouping of instructions
a Subject Domain (sd € SD) and a grouping of objects an Object
Domain (od € OD), each of which is a collection of primitive in-
structions and objects, respectively.

We divide the entire code into a set of groups, sd € SD. Each
instruction, i, goes in exactly one sd. Similarly, we divide the data
into groups with each object, o, in exactly one od. Recall that, since
each instruction is also an object, each sd is also an od (or SD c OD).

Our basic compartmentalization model must specify for each
operation op whether access from an sd to an od is: Not allowed,
allowed but Mediated, or allowed Unmediated. The table in Fig. 3
shows one particular decision of an algorithm. Specifically, we
define the mediation types as the following:

o Not access is appropriate when the subject group does not
use an operation on an object group; we grant no privileges
between sd and od for op.

o Mediated operations are dynamically validated against the
CAPMAP at the fine-grained instruction and object level.
This supports CAPMAP allowed, least-privilege access with-
out allowing unnecessary access from other instructions
in that subject group, thereby achieving high security but
imposing per-access costs.

e Unmediated access between subject and object groupings
mean that any instruction for the particular op from the sd to
any object in the od will be permitted without fine-grained
runtime monitoring. Unmediated edges represent a coarse-
grained relaxation of privilege, but allow frequently inter-
acting components to reduce costs. This matches a virtual-
memory protection model where a subject domain maps in
the object domain.

We can think of each sd and the set of ods to which it has unmedi-
ated access as a compartment. This allows each od to exist within
multiple compartments. The mediation type may differ with the
op type to allow different operational privileges; for example an od
group that is only read by an sd may be mapped Unmediated for
read but Not for write, call, return, and free. The SD and ODs form
nodes in the coarser compartmentalization graph.

DEF. 4 (COMPARTMENTALIZATION). A compartmentalization is a
division of instructions and objects into Subject Domain and Object
Domain sets and an assignment of edge types, Type(sd, od, op), to one
of {Not, Mediated, Unmediated) for all (sd, od, op) triplets.

We can reflect the privilege reduction of a given compartmental-
ization back to instruction-level privileges by consulting this coarse
compartmentalization graph:

Privcompart(i, 0,0p) = capmap(i, 0, 0p) V (1
3sd, od( (0€od) A (i € sd) A

(Type(sd, od, op) = Unmediated) )

In other words, the compartmentalized graph starts with all the
minimum privileges observed in the CAPMAP. Then, additional
unmediated edges are added between all instructions in sd and
all objects in od. As a result, if any instruction i € sd and object
o0 € od have an operation privilege defined in the CAPMAP, every
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instruction and object in the (sd, od) compartment is granted that
operation privilege. Note that our compartmentalization model is
more general than conventional models that typically (1) require
objects to exist within at most one compartment (have unmediated
edges from a single subject) and (2) assign object ownership based
on the allocating subject.

5.3 Metrics

p#SCOPE treats compartmentalization as an optimization problem
over the privilege-performance space. To do so, it uses metrics that
can be computed on a CAPMAP augmented with dynamic privilege
counts to capture tradeoffs in privilege and separation costs.

5.3.1 Privilege. To quantify the privilege that exists in the sys-
tem under various compartmentalizations, we use the size of the
privilege set, |PS| (see Sec. 2). To make the numbers generally mean-
ingful for comparison, the Privilege Set Ratio (PSR) is defined as a
ratio of the |PS| under a particular compartmentalization and the
|PS| of the monolithic case, i.e., when the whole task is a single
compartment. We break down five different operations (read, write,
call, return, and free) and provide a separate PSR for each.?
Simply put, we add one unit of privilege to the |PS| for each
particular instruction that is allowed to perform the specified oper-
ation on a particular object. For memory reads and writes case, the
unit object is a byte of memory, and we group together all the bytes
allocated by a particular static instruction as a single object class.
For calls and returns, the unit is a single function entry or return
point. The total privilege then is the weighted sum of all instruc-
tions and the objects they are allowed to operate upon. Specifically,
for each operation type op, we can compute |PS(op)| for any priv(-)
definition as a weighted sum over the privileges that exist:

|PS(op)| = Z Z epriv(i, 0, 0p) X w(o, op) @)
i€l 0€O

Here cpriv simply has a 1 when priv(i, o, op) is true, and 0 when
it is false. w(o, op) is a weighting function that potentially depends
on the operation, the size of the object, and the security importance
of the object. In the simplest case, it could be the size of the object
in bytes.

The reference count for the monolithic case, |PSmono(0p)|, is
simply the case where all feasible privileges exist. So, we evaluate
Eq. 2 with priv = privmonoe:
true, if i performs op

®)

false, otherwise

Privmono(i, 0,0p) = {

Conversely, for the least-privilege compartmentalization PS, i (0p),

every instruction is its own sd and every object is its own od. We can
compute |PSmin(op)| as Eq. 2 with priv(i, o, op) = capmap(i, o, op).
With this in mind, the lower bound of PSR is given as:

PSRmin(0p) = |PSmin(0p)l/|PSmono(op)l 4

For the compartmentalization case where edges are typed as Not,
Mediated, or Unmediated, we compute Eq. 2 using priv(i, 0, op) =
Privcompart (i, 0,0p) from Eq. 1. A concrete example to illustrate
these metrics is shown in App. A.

30ther types of operations, such as jumps or memory allocation, can be represented
in the same way.
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5.3.2  Performance Model. To reason about the overhead of a candi-
date compartmentalization, we build a model to estimate the impact
of these external operations, assigning a fixed cost to each mediated,
unmediated, and internal operation:

Tsep = Tunsep + Z Npea(0p) X Treq(op)
opeOPS

+ Z Nunmed(©0p) X Tyunmed(op)
opeOPS

+ Z Nint(0p) X Tint(op) (5)
opeOPS

Here Tsep is the estimated execution time for the separated design
while Ty pnsep is the original, unseparated execution time. Ty, q(0p)
is the additional time for a mediated external operation op, and
Nea(0p), Nynmed(op), and Nip:(op) are the total number of me-
diated, unmediated, and internal operations of type op. Ty, med 1S
the additional time for an unmediated external operation. Tjn(op)
is the the additional time for an internal operation, a call or re-
turn inside the SD, when separated for modeling cases, like SFI
[26] (Sec. C), where each of these operations adds some overhead.
We can calculate the number of mediated external accesses for a
particular compartmentalization as:

Niealop)= > >\ d(i,0,0p) x tops(i,0,0p) ~ (6)
iel 0€KO
1, if = (3sd,od ((0 € or) A (i € sc)
A Type(sd, od, op) = Unmediated))

0, otherwise

d(i,o0,0p) =

tops(i, 0, 0p) is the number of times i performs op on o. d(i, 0, op)
is a similar calculation to Eq. 1 that identifies all edges in the fine-
grained privilege map that are associated with an unmediated edge
in the coarse-grained compartmentalization graph. We calculate un-
mediated and internal operations similarly with different conditions
on d(i, 0, 0p). This model does not explicitly account for temporal
or blocking effects; as such, the numbers are best interpreted as
averages. We treat memcpy as a single mediated operation.

5.4 Separability Analysis

Once we have a CAPMARP to represent necessary privileges (Sec. 5.1),
a dynamic performance trace to represent relative frequency of use,
a compartmentalization model that defines the space of legal com-
partments (Sec. 5.2), and metrics for privilege and performance
(Sec. 5.3), it becomes possible to systematically analyze the space
of compartmentalizations. We could generate all such compartmen-
talizations, evaluate their privilege and performance metrics, and
report the full continuum of privilege-performance points obtain-
able for the system. Unfortunately, the full set of compartments
is too large to practically enumerate for all but the most trivial
systems.

The CAPMAP with dynamic frequency counts on edges gives us
a graph to which we can apply standard single- and multi-objective
graph clustering and partitioning algorithms to gain access to the
interesting points in the continuum. This allows us, for example, to
formulate compartmentalization as constrained graph clustering
optimization problems by placing constraints on properties of the
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compartments (e.g., subject size, object size, maximum number of
edges on subject or object) and the privilege metric (Eq. 2) or perfor-
mance (Eq. 5) and identifying objective functions to minimize, such
as excess privilege (|PS(op)| — |PSmin(op)|), performance overhead
((Tsep — Tunsep)/Tsep) or the ratio of privilege and performance
(IPS(0p)|/Tsep)- Using a sequence of optimization queries, we can
establish bounds on feasible performance and privilege points in
the space. Furthermore, since the models themselves are parametric
(e.g., relative weighting of operations and objects), analyses can be
tuned for different needs (e.g., privacy vs. integrity) and mechanisms
(Sec. 6.6), and adjusted for perceived importance (e.g., object weight-
ing, Sec. 8.8). We provide concrete examples of parameterization
and heuristic clustering algorithms in Secs. 6.2 through 6.6.

6 MAPPING LINUX AND C TO ySCOPE

In this section we apply the generic ySCOPE methodology to the
Linux kernel. We present a concrete instance of the approach that
makes selections for: (1) language bindings to generate meaning-
ful identifiers for subjects and objects, (2) specific algorithms for
choosing subject groups, object groups, and access mediation, (3)
specific privilege metric weights for our analysis, and (4) a spe-
cific set of mechanism costs to estimate the performance overhead
of separation, given a range of possible enforcement mechanisms.
These decisions represent initial design choices and offer many
parameterizations.

6.1 Mapping C for Fine-Grained Identification

Each machine instruction in the vmlinux must be mapped to a SD,
and each static and dynamically allocated C object must be mapped
to an OD. Objects includes global and per-CPU variables, as well
as objects from Linux’s dynamic allocators (Sec. 7.1). For simplicity
of analysis, we statically compile all required kernel modules.

6.2 Subject Domains

The data in the weighted CAPMAP provides us with rich, low-
level information about the control-flow flow and data-accessing
patterns of code, from which we can intelligently produce subject
domains. Because clustering is known to be NP-hard [7], we use a
lightweight, greedy clustering algorithm that assigns instructions
into clusters. More heavyweight clustering would only increase the
high separability we are able to identify. We begin the algorithm
by placing each function into its own cluster; we then proceed to
perform repeated cluster-merge operations until an assignment
of code into Subject Domains is produced. To determine which
clusters to merge at each step, we consider all possible pairs and
compute the ratio of a utility function to that of a cost function
for that pair; we then take the pair with the highest ratio, perform
the merge, and repeat. The utility function we use is the expected
performance savings of combining the two clusters: by combining
frequently interacting pieces of code, we save on the costs of cross-
compartment calls between those clusters. The cost function we
use is the net increase in |PS| incurred by the merge—that is, after
merging two clusters, the code and data of each can be exposed to
the code of the other (in the case of Unmediation), and |PS| captures
this quantification. The algorithm stops when there are no merges
left with a ratio above a specified minimum threshold « (that is,

RAID °21, October 6-8, 2021, San Sebastian, Spain

no merges are favorable in terms of performance savings to |PS|).
Intuitively, a specifies the acceptable tradeoff level of performance
cost per unit of |PS]|.

By varying values of &, we can produce a range of Subject Do-
mains at various points in the privilege-performance continuum.
We refer to subject domains constructed from this clustering algo-
rithm from their values of . We include a web-based compartment
explorer for compartments generated with this algorithm: ySCOPE
compartment explorer.4

6.3 Object Domains

After assigning instructions into Subject Domains, we then assign
the objects from the CAPMAP into ODs. At the most fine-grained
level, each object would be mapped into its own Object Domain
(e.g., the data allocated from each allocation site, or each global
variable, would be its own OD). For some enforcement mechanisms,
such as Virtual Memory using an MMU, there may be significant
performance implications for subjects that are allowed access to
many ODs (e.g., TLB pressure). For these enforcement mechanisms,
we run an object clustering algorithm that combines object classes
together into coarser ODs, so that no SD has access edges to more
than a specific object limit number of ODs. For some of the enforce-
ment mechanisms we model (capability hardware, direct hardware
support) no object clustering is applied.

To cluster objects, we use a greedy clustering algorithm similar to
the one we use for creating subject domains. We begin by assigning
each object class into its own OD. We then iteratively consider each
SD that has access edges to more than the object limit number of
ODs. For each such SD, we consider all pairs of ODs accessed by the
SD as candidates for a merge. We select the pair that has the lowest
value of a cost function, merge those ODs into a single OD, then
move on to the next SD that is over the limit until all SDs satisfy
the object limit constraint. The cost function we use to evaluate
merges is the net total increase of |PS| that would result from the
merge—since merging object classes will open up more PS (due
to each OD being possibly mapped unmediated in multiple SDs).
We set the object limit to 64 to match the number of entries in the
DTLB on modern CPUs [17].

6.4 Access Mediation

For each Subject Domain, Object Domain and operation type triple
(sd, od, op) we must choose a mediation type (Sec. 5.2). If the opera-
tion is not included in the CAPMAP, then the mediation is typed
as Not and the operation is not allowed. For operations that are
allowed, the mediation is typed as either Mediated or Unmediated.

We begin our algorithm with all edges typed as Mediated. We
then pick the edge that yields the largest performance savings per
unit increase of |PS| to unmediate. We set its type as Unmediated,
record the properties of the compartmentalization, then repeat the
same process until all edges are typed as Unmediated. Note that
this tradeoff curve connects the two extremes (all-Mediated and
all-Unmediated) but that moderate points are likely more attractive
concrete compartmentalizations that balance minimizing privilege
with performance cost. Privilege-performance tradeoff curves gen-
erated from mediation selection are presented in Sec. 8.

“https://fierce.cs.rice.edu/uscope/compartment_explorer
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Table 1: Performance profile modeling parameters.

Tunmed(0p) || Tmed(op)
Architecture||r, w| call, ret || r, w,| call,
free|int| ext|| free| ret
Kernel Context 0 6000 |(6000|6000

Page Table + EPT 0| 0| 450(/1500| 650
SFI (baseline)|| 50| 25| 25| 150| 50

SFI (optimized)|| 5| 5| 5| 150] 50
Capability Hardware|| 0| 0| 600|| 50| 600
Direct Hardware 0|10 10 10| 10

=

6.5 Weighting Parameters

For the privilege optimization objective used during clustering and
mediation, we take a simple linear sum across the individual PS
metrics for ops, |PS(op)|. Another decision to make is how best
to weight objects. At a uniform object weight of 1, PSR could be
interpreted as the ratio of permitted interactions in an access control
matrix compared to the monolithic case. However, larger objects
(such as composite structures containing multiple fields) likely
represent additional privilege. We weight objects by their size; a
size component in the weight also means that a refactoring to split
apart objects reduces privilege. This means that our PSRs can be
interpreted as an exposure reduction per byte compared to the
monolithic case. Weight tuning is discussed further in Sec. 8.8.
For global objects and code we take the size to simply be the static
size in bytes. For heap objects we take the size to be the average live
data size in bytes associated with the allocation site in our dynamic
runs. We model stack memory as a single monolithic object with
a size equal to the average number of live stack bytes. Important
future work will be decomposing stack memory for more fine-
grained separation. For calls and returns we use w(o, {call, ret}) = 1.
An advantage of the above weighting scheme is that it can be applied
automatically with no human intervention (Sec. 4.2). There is an
opportunity to further tune the compartmentalization algorithms by
scaling the various privilege operation components or by weighting

them according to a policy; e.g., confidentiality or integrity.

6.6 Performance Profiles

For demonstration, we use a set of performance profiles that illus-
trate a range of potential costs for different protection mechanisms
(Tab. 1). All entries are given in cycles; references and calibration
are detailed in App. C. The numbers are best interpreted as average
times for operations including typical caching effects; as such, the
simple model does not account for the specific time of each opera-
tion instance in context. Consequently, we pick conservative values
to use for these averages, and, most importantly, the profiles model
costs that span orders of magnitude to illustrate how curves shift
with a range of costs.

7 EXPERIMENTAL METHODS

7.1 CAPMAP Tracer

To collect CAPMAPs from the Linux kernel, we use Memorizer [61].
Memorizer is a tracing kernel that uses a combination of source code
annotations and compile-time tooks to capture every call, return,
allocation, free, and memory access. Captured traces are stored in
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Figure 4: Linux kernel dynamic tracing privilege coverage. Twenty passes of
the LTP test suite are added to a single CAPMAP (blue), followed by twenty
passes of the Phoronix benchmarks (green). Each point shows the total num-
ber of new CAPMAP graph entries that are observed for the first time in that
pass of testing. Note the log-scale Y axis.

memory and written out after a tracing run for post-processing and
analysis. We disable KASLR so that addresses are consistent across
runs and use a single core configuration, but otherwise use the
default kernel 4.10.0 configuration from Ubuntu LTS 16.04. Read,
write and call logging are turned off during boot, but memory
allocations are still traced. Logging is enabled before running a
workload or LTP [3] test on the kernel. This means the CAPMAPs
produced do not include permissions needed only during boot.

7.2 Coverage Test Sets

To exercise the kernel and build an initial CAPMAP, we use the
Linux Test Project (LTP) test suite [3] (release 20180926). The LTP
contains suites of tests for stressing various kernel components
(e.g., scheduling, syscalls). We run all the tests applicable to our
configuration (App. B). To improve coverage, we run the test suite
twenty times. In Fig. 4, we show the number of CAPMAP entries
(vertices and edges) that are found (instruction, object, or privilege
used for the first time) by the LTP tests as they are added to a single
CAPMAP (blue). On the last pass of the test suite, 35 new entries
were added, for a cumulative total of 331,013 graph elements after
training. To collect coverage CAPMAPs, we run the LTP tests on
the tracing kernel using QEMU for a total of ~§ CPU-months.

7.3 Performance Benchmarks

While the LTP benchmarks are good for coverage testing, their
emphasis on coverage means they do not represent a typical Linux
workload that one would see in practice. To represent more typ-
ical performance, we run the Phoronix Test Suite [5] (v8.2.0) for
performance overhead assessment. We combine the kernel and
linux-system test suites and run all of the benchmarks that run on
our configuration (22, see App. B). When we add twenty passes of
the Phoronix benchmark CAPMAPs to the full coverage CAPMAP
produced from the LTP runs, 1,196 (0.36%) new CAPMAP entries
are discovered (green in Fig. 4).° Ten of the full benchmark passes
encountered one or zero new instruction-level privileges; note that
the privileges exercised in Phoronix but were not present in the
LTP suite indicate ways to improve the quality of LTP.

For performance modeling, we boot the tracing kernel on a bare
metal system with a 2.1 GHz Intel Xeon CPU E5-2620 and 128GB of
memory.® We collect baseline kernel runtime Ty nsep (Eq. 5) from

5These runs for coverage assessment were also collected using QEMU.
®We use the same vml inux image in the coverage and performance experiments.
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Sep. Hypothesis  |TopDir.|a=5e-8/a=1e-7|Dir. |a=5e-7|a=1e-6 |a=1e-5 |File a=1e-4 |a=1e-3 |Func.
PSR all-Unmediated |0.215  [0.00520(0.00427|0.0302 |0.00257|0.00133 |0.000771 |0.00289 |0.000618|0.000578|0.000567
PSR half-Unmediated|0.0687 (0.00282|0.00255|0.00745|0.00147/0.000697|0.0003102|0.000833|0.000204/0.000167|0.000140
PSR all-Mediated 0.0476 |0.00047/0.00040(0.00272(0.00018|0.000085(0.0000552|0.000200(0.000047|0.000045(0.000040
struct key 6.10% |0.815% |0.785% |5.50% |0.770% (0.760% |0.738% (1.40% |0.730% |(0.720% |0.720%
struct cred 384% |25.1% |23.0% (20.2% |(16.6% |1.63% |(1.10% 1.52% [0.695% |0.670% |0.664%
struct buffer head |24.5% (24.2% |22.3% |20.1% |16.0% |3.95% |0.846% |2.05% |0.614% |0.604% |0.604%
struct file 71.6% |24.8% |22.9% [29.2% (17.0% |10.9% |4.66% 3.25% |2.65% |1.32% |1.16%

Table 2: Aggregate PSR and object write accessibility. For each separation hypothesis (row 1) we show the range of the aggregate PSR metric based on edge
mediation (rows 2-4). Rows 5-8 show the percent of write instructions that have write privilege to the shown object in the half-Unmediated case. Some objects are
very separable (struct key, struct cred)whereas other objects are poorly encapsulated and are difficult for the algorithms to separate (struct file).

| | TopDir. | Dir. | File | Func. |
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(b) Clustered Subject Domains ECR

Figure 5: The External Call Ratio for the syntactic domains (top) and the al-
gorithmic clustered domains (bottom).

the same system with the exact same kernel configuration, except
with tracing disabled (vanilla Linux) using perf [4]. We also collect
baseline function counts in the same manner on an independent
run. Some functions are invoked proportional to runtime. As a
result, our tracing kernel runs see more function invocations (by
27% on average) than the baseline function counts. For overhead
estimates, we use the function counts from the baseline system and
scale operation counts proportionally.

8 LINUX SEPARABILITY RESULTS

8.1 Linux Performance Separability

One important characteristic for performance is the External Call
Ratio (ECR); that is, the fraction of dynamic calls that are external
to the subject for a given choice of SDs and hence pay separation
overhead costs. Fig. 5 (top) shows the ECR for domains generated
from source code structure, and Fig. 5 (bottom) shows how the
ECR trends with « for our algorithmically generated domains. At
an & parameter of 107 the clusterer achieves a smaller External
Call Ratio than the TopDir syntactic domain, which has compart-
ments that are 400X larger on average. This shows the advantage
of the clustering algorithms over the syntactic cuts: they have the
freedom to place functions with high call connectivity in the same
compartment to minimize the cost of domain crossings.

8.2 Linux Privilege Separability

Tab. 2 shows how much separation we can get under various sepa-
ration hypotheses. For each separation hypothesis (row 1) we show
the range of the aggregate privilege metric PSR from three edge

assignments: all-Mediated (row 2), half-Unmediated (row 3) and
all-Unmediated (row 4).

To show how the accessibility of several concrete objects trends
with PSR and our various separation hypotheses, we pick a set of
common Linux kernel objects (rows 5-8) and show the percent of
write instructions from live code that have write privilege in the
half-Unmediated case. Note that some objects are very separable
(struct cred) while others are less so (struct file).

8.3 Privilege-Performance Continuum

Fig. 6 shows how we trade off total Privilege Set Ratio and per-
formance overhead for the PageTable+EPT Performance Profile
(Sec. 6.6, Tab. 1). Given a tolerance for a certain level of overhead,
the privilege-performance graph allows us to see what level of priv-
ilege reduction we can potentially obtain. This is a key advantage of
systematic analysis and making the continuum available to develop-
ers. The data shows there is a large potential for privilege reduction
without manual refactoring or paying a substantial performance
penalty. At a 15% overhead, we can achieve a privilege reduction of
500x. Note that we calculate overheads for kernel time, which is
typically a small fraction of total time for most applications.

Each curve in Fig. 6 represents the range of privilege-performance
points generated by edge mediation choices (Sec. 6.4), with the low-
privilege/high-overhead end being fully mediated and the high-
privilege/low-overhead end being all unmediated accesses. The fact
the curves typically have a knee where the overhead drops quickly
at the expense of a small change in privileges shows the value of al-
lowing a small amount of unmediated access. Note that the domains
produced from clustering (colored lines) provide substantially better
privilege-performance tradeoffs than the code-structured domains
(grayscale lines). Larger domains (produced from a smaller o value)
have more privilege since no mediation is applied to calls and re-
turns within a domain. Larger domains have lower costs since more
calls and returns are internal to the domain and incur no overhead.

8.4 Highly-Connected Objects and Refactoring

There are some object outliers in the kernel that are accessed by
many subjects; these objects pose the greatest challenges in object
separability. The most highly accessed objects, measured in number
of accessing functions, are task_struct (1,136), ext4_inode (610),
file (529), and dentry (406).! These objects would induce high
overhead if they could only be placed in a compartment with a
single subject. The ability to mark edges as unmediated in our
compartmentalization model, and, particularly, to allow unmediated
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Figure 6: The privilege-performance continuum for each separation hypothesis using the EPT enforc t mech The privilege lower bound (PSR 5, ) is

shown as a black vertical line. The squares show the privilege-performance point when each object is owned (Unmediated) by the single subject with the highest

access frequency.

access to an object from multiple subjects, can keep the overhead
down for these subjects (Sec. 5.2). In Fig. 6, the squares show what
would happen if we forced every object exclusively into the single
compartment that accessed it most frequently. As can be seen, this
inhibits all high-performance design points.

Importantly, this kind of analysis sets us up to consider refac-
torings that would improve separability. For example, we can run
the compartmentalization algorithms on a moderate domain size
(e = 107%) and apply the mediation restriction that each object is
owned (unmediated) by the single subject with the most accesses.
The objects responsible for the largest fraction of mediated accesses
from other subjects tells us directly which objects are poorly en-
capsulated and are preventing the algorithms from finding a tight
separation. The worst offending objects of this type, measured
by their fraction of the total dynamic accesses, are task_struct
(responisble for 12.2% of all mediated accesses), ext4_inode_info
(8.7%), seq_file (8.2%) and seq_buf (6.7%); this suggests that large
improvements in seperability are possible through refactoring a
small subset of the overall system, and that ySCOPE analysis can
be used to guide these efforts.

8.5 Highly-Connected Subjects and Localizing

Similarly, there are some subject outliers that access many objects.
The worst offenders were common C library operations (e.g.,memcpy,
stremp). To improve their separability, we add a new config option to
the kernel to inline these functions into their calling compartments—
this approach of localizing or replicating code is a simple way to
remove the object overprivilege for stateless functions.

Of the remaining high object-degree functions, the worst of-
fenders were related to strings—there are tens of thousands of
read-only string constants in the kernel recording various mes-
sages and names. The function with the highest object degree was
filldir which accepts a char * name argument and performs reads
to 2,093 string constants. Excluding string constants, the highest
object degree functions were sysfs_add_file_mode_ns (169) and
internal_create_group (147), which access many global variables
related to permissions. The functions with the most edges to heap
objects were __rcu_process_callbacks (81), __call_rcu (80), and
__mutex_init (40). With the help of a human designer to indicate
where it is safe, these functions with high object privilege could be
localized into compartments to produce a more separable design
and pSCOPE can guide these priorities. We note that a majority of
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Figure 7: The Pareto-optimal privilege-performance tradeoff curve for
each enforcement mechanism. The Pareto-optimal curve shows the lowest-
overhead point for each PSR value found from any domain.

object clustering merges (Sec. 6.3) were combining together read-
only string constants due to their large representation in high object
degree functions. The algorithms intentionally avoid combining
objects used by disparate pieces of code or unnecessarily opening
up read and write permissions due to the large increase in PS that
results from exposing objects to new code or operation types.

8.6 Allocator-Use Patterns

We further see that the allocating subject is often not the subject that
uses the object the most. Object-style constructor/accessor patterns
are common in the kernel. For example, get_empty_filp() is the
sole allocator of struct file objects, but only performs around
~3% of dynamic accesses to such objects. We find that for heap
objects, on average, the allocating function only performs around
~6% of accesses while the function with the most accesses performs
around ~20%. This indicates that the allocator of an object is a poor
predictor of actual dynamic use, and is therefore not a good method
for defining compartments.

8.7 Performance of Various Mechanisms

Fig. 7 shows the privilege-performance Pareto tradeoff curves for
the performance profiles introduced in Sec. 6.6 over our range of
compartmentalizations. Capturing a range of performance over-
heads in our profiles allows us to illustrate how the tradeoffs shift,
and possibly reshape, with different mechanism costs. The pro-
files also illustrate how lightweight mechanisms can enable higher
privilege separation for lower costs. For example, at an overhead
estimate of only ~1%, direct hardware support allows us to achieve
the same level of separation that would impose a ~50% overhead
for the EPT model. This highlights another reason automated com-
partmentalization that has access to the full compartmentalization
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Figure 8: The impact of increasing struct cred’s write weight on its final
write overprivilege. By increasing its weight, the write overprivilege can be
driven lower for the same overhead level, giving a designer an easy tool for
tuning the protection of a chosen object.

continuum is important—it allows a system to easily adapt to exploit
new hardware support with lower costs for separation.

8.8 Security Tuning

Tab. 2 shows the write exposure of struct cred for various separa-
tion hypotheses and mediation levels; this data is from a default,
fully-automatic compartmentalization flow. A developer can easily
control the overprivilege on objects they deem sensitive (like struct
cred) by increasing their weighting relative to other objects. This
will drive the algorithms (Secs. 6.2-6.4) to reduce the overprivilege
exposure for these items. In Fig. 8 we show the impact of increas-
ing struct cred’s write weight on its final write exposure. This
illustrates the advantages of automation in responding to evolving
threat models and security preferences.

9 EXPLOIT CASE STUDY

The compartmentalization model introduced by ySCOPE can be
qualitatively evaluated by studying concrete kernel exploits. This
section analyzes three CVEs relative to various compartmentaliza-
tions to assess the concrete security implication of the privilege
metric and separation methodology. We leave a more complete and
systematic analysis across all kernel CVEs to future work.
CVE-2017-7308 is a vulnerability in the Linux 4.8 network stack
that allows an unprivileged user to cause a kernel heap out-of-
bounds write that can grant root access to an unprivileged user. The
user facing packet-socket interface provides clients with the ability
to request kernel networking data structures, like ring buffers, but
lacks a critical security check. An adversary can submit a malformed
request to the interface to build a ring buffer and overwrite a kernel
timer function pointer. A common target is to use this to invoke code
in arch/x86/kernel/cpu/common that disables two critical security
protections (SMEP and SMAP [16]) by overwriting CR4. With these
protections disabled, the user process can force the kernel into
reading and executing memory in the user address space, which
can then be used to grant a user full root access to the host.
Directory level compartmentalization (as well as the more fine-
grained separations) would have prevented the exploit detailed
above by removing the attack edge where the overwritten function
pointer (in the kernel timer mechanism) is used to call the sensitive

functions that disable SMEP/SMAP (in arch/x86/kernel/cpu/common).

CVE-2017-18344 [40] tracks a vulnerability in one of the POSIX
timer system-call interfaces that enables unprivileged code to read
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arbitrary regions of kernel virtual and physical memory. The prob-
lem is that the timer_create system call fails to validate an input,
specifically the sigev_notify field in a k_itimer structure, which
is used to define a POSIX interval timer. The sigev_notify field
is used to index into a global array of strings. The PoC uses the
out-of-bounds read to access user space pages from within a kernel
thread and eventually map arbitrary kernel pages into the user
address space. The existing exploit fails when SMAP is enabled, i.e.,
two large compartments, but event without that, this example hints
at the broader need for compartmentalization and mediated access
within the kernel. The function that executes the overflow only
requires access to six objects, and can thus be restricted to avoid
the corruption. Furthermore, this function is called so rarely that
the clustering algorithms never grouped it with other code, and so
in all of our compartmentalizations the out-of-bounds read is never
permitted access to any other data.

CVE-2017-15649 is a use-after-free vulnerability that is caused
by a race condition in the net kernel subsystem. After the race
condition is triggered, a dangling reference to a freed heap object of
type struct packet_fanout is held by a live structure. An attacker
can manipulate the contents of the freed-but-accessible object by
causing a fresh allocation of a similar size to claim and access
the same memory. The struct packet_fanout contains a function
pointer id_match, which, when overwritten, offers a control-flow
hijack opportunity when the function pointer is later used. In a
system that enforces CAPMAP compartmentalizations, only a small
subset of the functions in the system have write permission to
these objects, meaning that even the initial corruption will be more
complex to execute and must be done through the net subsystem.

Assuming the function pointer can be overwritten successfully,
there is a single instruction that performs the hijacked call. In Tab. 9
we show (1) the |PS. ;| of the specific indirect call instruction, (2)
the total number of gadgets accessible to the hijacked domain,
(3) the number of distinct registers that can serve as stack pivot
targets, (4) whether or not Ropper can construct a write-what-
where gadget, (5) whether or not Ropper succeeds in constructing
a payload, and (6) the estimated overhead of that separation for
the All-Unmediated case (see Fig. 6 for full tradeoff-curves). To
determine whether Ropper succeeds in constructing a payload, we
add an additional pass to Ropper in which it filters out gadgets
that are made inaccessible to the hijacked domain by pSCOPE. This
shows that the general compartmentalization algorithms based on
PS not only eliminate needed privileges but also that exploiting this
vulnerability without a typical ROP chain significantly increases
the attacker’s work factor as they must perform repeated confused-
deputy attacks [30] to reach their target.

10 RELATED WORK

Early privilege separation approaches reduced privilege by man-
ually decomposing a system [37, 58, 72]; such efforts require sig-
nificant human capital, in the form of time and domain expertise,
and are thus limited in terms of both scalability and the level of
privilege reduction provided. Later approaches introduced various
degrees of automation that reduce, but do not eliminate, the hu-
man capital requirement. This can be achieved through requesting
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Mono. TopDir. |a=1e-8|a=1e-7 | Dir a=1e-6 | a=1e-5 | File a=1e-4 | Func.
[PScail 12,759,707 | 1,143,488 | 866,112 | 16,368 | 247,977 | 5,216 1,440 44,132 | 1,264 1,264
Total Gadgets 796,304 65,215 47,291 | 872 17,554 | 252 39 3,313 |12 12
Stack Pivot Target Regs. |6 2 2 0 1 0 0 1 0 0
Write-What-Where Y Y Y N N N N N N N
Ropper Payload Succeeds | Y Y Y N N N N N N N
Estimated Overhead 0% 200% ~1% ~1% 340% 15% 62% 670% | 130% 1000%

Figure 9: CVE-2017-15649 metrics and statistics.

developer annotation of source code to derive privilege compart-
ments [12, 13, 29, 47, 54], or the combination of partial code anno-
tations with analysis infrastructures to further reduce developer
burden (SMV [35], SOAAP [29], Wedge [12], ACES [15], ERIM [67],
IwC [44], PM [47],[23]). These systems either retain the coarse-
grained, default-allow model of privilege, or, in cases where they
can support many compartments, still depend on experts: they are
“semi-automatic” at best, providing an incomplete and ad hoc explo-
ration of the privilege-performance space. Microkernels [11, 38, 59]
and other manual separation efforts [2, 32, 53, 70] have been ap-
plied to OSs, but lack the automation and exploration advantages
of uSCOPE’s approach.

11 DISCUSSION AND FUTURE WORK

p#SCOPE analysis shows that the Linux kernel runs with exces-
sive privilege (over 25,000x) and has the potential for considerable
privilege reduction (500x) while indicating minimal restructuring
and excessive overhead (15%). This should be viewed as bringing
an enticing opportunity to light, but it stops far short of showing
how to engineer solutions that fully exploit it; it will still require
significant contributions to fully extract this promise.

Coverage and Dynamic Analysis: ySCOPE uses dynamic anal-
ysis to collect privileges and their runtime usage counts for privilege
and performance analysis. Our coverage results stabilized over our
test suites and kernel workloads (Fig. 4), indicating that our analysis
is quite comprehensive for the configuration under study. However,
coverage is a limitation of dynamic analysis. Like other works [15],
our framework could be combined with static analysis for a hybrid
design. The PSy,;, difference between static and dynamic analysis
would be interesting to explore. Note that, most mechanisms will
incur some generalization when applying a CAPMAP, e.g., accesses
could be generalized on a per-function or per-module level. It is
unlikely that data will only be touched in uncovered passes and
the implicit generalization will naturally include some potentially
missed accesses. Omissions discovered from ySCOPE can be used
to improve the quality of kernel test suites [3], and ySCOPE could
be used in conjunction with related fields such as Whitebox Fuzz
Testing [28] in discovering test cases for additional privilege cov-
erage. Our needs for privilege coverage are well aligned with the
needs for test coverage by the community at large.

Runtime modes, usability and alert messages: The refer-
ence monitor would support two modes: audit mode (in which
violations are written to a log file) and strict mode (in which vio-
lations produce failstop behavior). The logs produced from audit
mode include rich context, including the call stack and instruction-
level access that produced the violation, which allows an engineer
to discern whether or not to include the missing privilege and how

to extend the testing suite to capture it. A system would typically
be run in audit mode until the rate of violations drops below an
acceptable threshold. Even in strict mode, note that not all viola-
tions would cause the OS to terminate: when acting on behalf of a
program, only the offending system call or process need fail.

Interface Integrity: Our privilege metric identifies a “first or-
der” separation in that it quantifies memory accessibility and the
reachability of function calls. It does not assess indirect privilege
that might come from, for example, an exported getter or setter. Re-
fining privilege metrics to account for such effects, such as making
the weight w(o, op) of a call be a function of the privilege available
to the callee, would be interesting future work.

Correlation of Security and Privilege Metrics: We hypoth-
esize that privilege reduction is strongly correlated with security
improvement (Sec. 4) and provide some evidence that it does (Sec. 2).
Nonetheless, there is a need for a more complete and systematic
characterization of the relationship between privilege separation
and security to refine and validate efforts such as this one and
PM [47].

Dynamically Loaded or Generated Code: In some cases a
static instruction-level CAPMAP will not be adequate to define
privileges: kernels load dynamic kernel modules, application soft-
ware loads dynamically linked libraries, and code can be compiled
dynamically (and compilation may be data-dependent). In these
cases we can identify subjects and objects at a higher-level.

12 CONCLUSION

In this work we conduct a limit study on the privilege separability
of complex software. Our analysis is made possible by uSCOPE, a
framework that includes new models, metrics and algorithms for
exploring the continuum of compartmentalization spaces. We apply
p#SCOPE to the Linux kernel and show that orders of magnitude
of privilege separation are possible, how the separability of kernel
objects can be explored and tuned, and that we can automatically
identify important refactorings for further improving separability.
We also highlight the potential for lightweight separation mecha-
nisms to enable greater privilege separation for lower costs. These
results demonstrate the utility of systematic privilege analysis.
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Figure 11: The amount of data we associate with each kind of memory region based on our object weighting model.

B TESTS AND BENCHMARKS

The Phoronix benchmarks we use are shown in Fig. 11, along with
the amount of memory we associate with each kind of memory
type based on our object weighting model. Code corresponds to the
size of the . text section in the compiled vmlinux binary. Globals
include the combined final size of the global objects stored in the
.data, .rodata and .bss sections. The SLUB, Page and VMalloc
allocators show the average data size of live objects as discussed
in our object weighting model. uSCOPE treats stack memory as a
single object, with a size equal to the average number of live stack
bytes across all kernel stacks. Memblock memory is physically allo-
cated from the Memblock subsystem; it is treated as a single object
with a size equal to the number of used pages. Lastly, VMEMMAP
corresponds to the size of the sparse virtual memory map structure
used by Linux for fast translations. gnupg uses an unusually large
amount of SLUB heap memory, which we identified as the Linux
buffer cache.

We use the following LTP tests: admin tools, can, cap bounds,

commands, connectors, containers, crypto,dio, fcntl locktests,

filecaps, fs, fsbind, fs ext4, fs perms simple, fsx, hugetlb,
input, io, kernel_misc, 1tp aio stress, ltplite, math, mm,
network commands, nptl, pipes, power management tests, sched,
power management tests exclusive, quickhit, securebits,
stress, syscalls, syscalls ipc, timers, and tpm tools.

C PERFORMANCE PROFILES

Page Table Process Protection: One way to provide separation
is via the use of virtual memory. Subject Domains are mapped to
processes. Object Domains are mapped to contiguous, page-aligned
regions of virtual memory, which may contain either static objects
or serve as pools for dynamic allocations for that OD. Unmedi-
ated pages are mapped in to the process page table according to
their allowed permissions. Mediated accesses generate a trap to a
supervisor, which performs the CAPMAP check, and, if allowed,

performs the operation or performs a context switch in the case of
a cross-domain call or return. This is modeled by the 6000 cycles
for mediated operation based on a rough estimates from [43] and
[66]. A highly optimized microkernel context switch might be less
expensive [25] and closer to some of the leaner options that follow.

EPT Protection: The vmfunc [48] operation in modern Ex-
tended Page Tables (EPT) makes it less expensive to change page
tables for an operation. Unmediated reads, writes, and frees, as well
as internal calls, are directly mapped in the page table so they can
complete with no overhead. External calls and returns make an
explicit vmfunc call to perform the context switch; external medi-
ated calls and returns perform a CAPMAP check in the vmfunc call
[43, 48]. Mediated reads and writes will trap, check the CAPMAP,
and perform the vmfunc operation from the trap, when allowed
[64]. We model two traps (at 200 cycles each), two vmfunc calls
(at 450 cycles each) and one CAPMAP lookup (at 200 cycles) for
the total of 1500 cycles for a read, write or free. For the call, we
model one vmfunc call and one CAPMAP lookup. We calibrated
the vmfunc timing by measuring the kernel overhead time for Page
Table protection implementation in the public release of xMP [57]
and counting the number of added vmfuncs; so the 450 cycle rep-
resents the average cycles added per vmfunc including caching
effects. These numbers are consistent with [64]. The raw number
of cycles in the vmfunc is closer to 150, consistent with [39], but
that doesn’t include the caching impact. We measure the 200 cycles
per CAPMAP lookup from our hash implementation.

Software Fault Isolation (SFI): In an SFI scheme [26, 49, 55],
we can check any potentially unmediated read, write, or free access
with an inline code monitor. We model two cases, one standard
(baseline), and one optimized based on information we have in the
CAPMAP (optimized). When we know from the CAPMAP that a
small number of unmediated objects is accessed from a particular
instruction, these can be checked quickly with specialized, inline
base and bounds checks [55]. Our tracing shows that the dynamic
distribution of accessed objects is highly skewed (call entropy is
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0.041, read/write entropy is 0.265); this means the checks can be
constructed in a tree organized like a Huffman encoding. Our opti-
mized model includes the cost for a single check in the average case.
Mediated accesses can be checked with a hash table lookup. Exter-
nal calls and returns can be wrapped with a springboard to permit
only CAPMAP allowed operations and change context information
when a call or return changes domains [73].

Capability Hardware: Capability hardware can restrict oper-
ations without requiring virtual memory and hence page table
changes [71]. Mediated read and write operations can use capabil-
ity pointers. Mediated calls and returns still require some time to
check the CAPMAP and change capabilities, but this can be less
expensive than a traditional OS context switch. We take the 600
cycle estimate from Tab. 2 in [71]. In the best case, mediated reads
and writes can use the capability pointers, but may require some
addition cycles to select and load capability pointers. Unmediated
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operations on a single OD can use the capability bounds check to
eliminate per reference costs.

Direct Hardware Support: If we were to design hardware di-
rectly to support the CAPMAP, it could look like the HardBound
hardware hash mechanism [21] or a cached tag rule checking mech-
anism [22]. That is, on every operation, the hardware uses the
program counter and the address of the object to consult a hard-
ware cached hash of the CAPMAP. Hits to the cache will add no
overhead, while misses will incur a few cycles to fetch replacement
entries for the CAPMAP cache. We use 10 cycles as a crude estimate
for average time of a reference considering most references will
take 0 time, but 5% of references may take 200 cycles. Since the
miss rate will decrease with cluster size, assuming this high, fixed
miss rate will make overhead results increasingly pessimistic with
increasing cluster size.
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