Current Robotics Reports (2021) 2:177-188
https://doi.org/10.1007/543154-021-00045-6

DEFENSE, MILITARY, AND SURVEILLANCE ROBOTICS (S FERRARI AND P ZHU, SECTION EDITORS) ")

Information-Driven Path Planning
Shi Bai'

Accepted: 3 March 2021 / Published online: 30 April 2021

Check for
updates

- Tixiao Shan? . Fanfei Chen3 - Lantao Liu* - Brendan Englot?

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract

Purpose of Review The era of robotics-based environmental monitoring has given rise to many interesting areas of research.
A key challenge is that robotic platforms and their operations are typically constrained in ways that limit their energy, time,
or travel distance, which in turn limits the number of measurements that can be collected. Therefore, paths need to be
planned to maximize the information gathered about an unknown environment while satisfying the given budget constraint,
which is known as the informative planning problem. This review discusses the literature dedicated to information-driven
path planning, introducing the key algorithmic building blocks as well as the outstanding challenges.

Recent Findings Machine learning approaches have been introduced to solve the information-driven path planning problem,

improving both efficiency and robustness.

Summary This review started with the fundamental building blocks of informative planning for environment modeling and
monitoring, followed by integration with machine learning, emphasizing how machine learning can be used to improve the
robustness and efficiency of informative path planning in robotics.

Keywords Informative path planning - Environmental sensing and modeling - Mapping and exploration

Introduction

Path planning is one of the most critical capabilities
for autonomous robots operating in complex unstructured
environments [57]. Particularly, in many outdoor missions,
the robots (shown in Fig. 1) need to leverage information
perceived from environments to look ahead and plan actions
for the subsequent steps. Such information-driven path
planning has been extensively investigated by integrating
with information theoretic and decision theoretic paradigms
as well as learning-based frameworks. The goal of this
paper is to provide a survey on the most recent research
of the information-driven path planning and also to provide
insights on future challenges of related directions. Since
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the information-driven planning involves interactions with
environments, we will base our discussions on two parts:
(i) environmental sensing and modeling where informative
knowledge is continuously retrieved and utilized for
planning during the long-term autonomy; (ii) exploration in
unknown environment where a map is built autonomously
for robot accurate navigation.

Environmental sensing and modeling is a process
that given a certain environmental attribute of interest
(e.g., elevation of an uneven terrain, concentration of
some pollutant), corresponding measurement samples are
collected from different locations so that a continuous
map describing the levels and variations of environmental
attribute can be constructed [42]. In other words, the
map is not simply the averaged value of collected
samples, but a continuous map that describes or predicts
the variance across an entire spatiotemporal field. The
environmental sensing and modeling allow scientists to
assess the processes of a particular environment and have
been used in a broad range of applications. For instance,
stationary sensor networks [1] have been used to perform
fixed-location sampling to detect forest fires [78] and
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Fig.1 a Autonomous surface vehicle for water quality sensing and modeling. b Unmanned aerial vehicle for air quality monitoring. ¢ Autonomous

ground vehicle for 3D mapping

volcanic activity [125]. However, such sensor networks
lack flexibility for capturing high resolutions in critical
regions that might change spatially and temporally, and this
limitation can be addressed by using mobile robots, which
can also significantly reduce the costs of sensor deployment
and maintenance. To date, unmanned aerial vehicles (UAVs)
have been used to estimate yields of crops or fruits [94,
131] and to study spatial ecology and its spatiotemporal
dynamics [3]; with a capacity for performing long-range
and long-duration tasks, marine robots can collect large-
area ocean data [29, 113] and trace chemical plumes [46,
59]; autonomous boats have been used to monitor fish
schools [121]. Our application examples are also shown
in Fig. 1. However, a drawback that cannot be neglected
when using robots is that the collection of environmental
data requires a series of sequential motion actions (and
measurement operations), and the whole course takes time
because the measurements typically need to spread across
many different spatial locations [36]. This requires that a
robot’s sensing must be adaptive to environmental attributes
(e.g., spatiotemporal variations or distributions). Also,
because sensor data is continuously collected, learning
methodologies therefore also play an important role in
equipping robots with intelligent sensing behaviors to aid
the measurement (or sampling) process.

Informative Planning

Navigating robots to collect environmental data samples
offering the largest amount of new information is called
informative planning [13, 87, 112]. The goal is to max-
imize information gain (or informativeness), which may
be derived from a robot’s evolving map, its estimation
uncertainty, and/or prediction models of environmental phe-
nomena being sampled. Compared with lawnmower-based
sampling of the environment, which focuses on spatial
resolution, informative planning methods tend to achieve
spatial coverage quickly, while managing estimation uncer-
tainty [112]. Due to these reasons, informative planning has
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been widely used for spatiotemporal environmental sensing,
modeling, and monitoring.

Environment Modeling

To model spatial phenomena in continuous domains, a
widely adopted method is the Gaussian Process (GP), which
is a generic supervised learning method capable of solving
regression and probabilistic classification problems [95,
102, 112]. Built on an environmental model learned
with the aid of GPs, the path planning and motion
control can be developed. The regression capability of
GPs has been proven a powerful tool for predicting
environment states based on the subset of the environment
that can be monitored. In the geostatistics or spatial
statistics literature, the GP regression technique is often
called kriging [60] and is mostly used to analyze spatial
properties. Oftentimes, kriging relies on the knowledge
of certain spatial structure, which is modeled via second-
order properties, e.g., the variogram or covariance, of
the underlying random function [74]. There are many
applications where GPs have been utilized as a framework
for modeling the environment. For instance, GPs have
been used to design placement patterns of static sensors
in a sensor network so that the environment model can be
predicted with a solution that is near-optimal [56]. GP-aided
optimization of static sensor placement has been applied to
modeling indoor 3D environments [45] and outdoor urban
environments [77] using appropriate kernels (covariance
functions).

For robotics information-driven planning, the GP mod-
eling is usually combined with Bayesian learning property
to assimilate data collected online. For example, GPs have
been used on a mobile robot to build a spatial model describ-
ing gas distribution [116], to provide a measure of uncer-
tainty to guide sensor-centric robot localization [17], and by
modeling mutual information with the aid of Bayesian opti-
mization, GPs have been used to guide robots to explore
unknown static environments [5]. In dynamic settings, vari-
ants of GPs have also been employed to learn uncertainty
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models of environmental processes, to aid the operation of
autonomous underwater vehicles (AUVs) in the ocean [61,
62]. By integrating with vehicle routing and communication
constraints, methods have been developed for informative
ocean sampling and monitoring in complex ocean environ-
ments with multi-robot systems [51, 65, 84].

To improve the prediction accuracy of GPs, the
choice among different prior covariance functions and the
update of its hyperparameters are crucial, especially in
scenarios involving spatiotemporal dynamics. This problem
is typically referred to as model selection and adaptation
of hyperparameters [102]. Specifically, the adaptation
of hyperparameters can be achieved using a data-driven
approach. The most common approach is to maximize
the marginal likelihood, or minimize the generalization
error, using a cross-validation approach. For the case
of GP classification, other optimization criteria such as
alignment [34] can also be adopted.

Myopic vs. Non-myopic Planning

A variety of methodologies have been proposed to tackle
the informative planning problem, among which the
most investigated approaches belong to the non-myopic
framework. Formally, the term myopic means that the
path waypoints are computed individually and greedily,
without considering the cost and consequences of making
observations over a long horizon into the future. Instead, a
non-myopic strategy performs optimization and computes a
series of waypoints by considering the effect of later time-
steps [87, 134ee]. Representative non-myopic informative
planning approaches include, for example, a recursive-
greedy-based algorithm [112] where the informativeness
is generalized as a submodular set function, upon which
a sequential-allocation mechanism is designed in order
to obtain subsequent waypoints. This recursive-greedy
framework has been extended by taking into account
the avoidance of shipping lanes [12] and diminishing
returns [13] in the marine planning environments. Differing
from the above mechanisms where the path waypoints
are built by separate searching techniques with the
informativeness as a utility function, Low [79] proposed
a differential entropy-based planning method in which a
batch of waypoints can be obtained through solving a
dynamic program. Such a framework has been extended
to approaches incorporating mutual information [22] and
Markovian [80] optimization criteria. An informative
planning method based on dynamic programming was
recently proposed to compute informative waypoints across
an arbitrary continuous space [83]. This non-myopic
method has also been combined with Markov decision
processes to cope with a robot’s action uncertainty caused
by external disturbances. In addition, there are also

many methods that optimize over complex planning and
information constraints (e.g., [114]).

Online Planning

A critical problem for persistent tasks (long-term, or even
life-long autonomy) is the large-scale data accumulated.
Although “big” data might predict the most accurate model,
in practice, large amounts of data can exceed a robot’s
onboard computational capacity. Methods for reducing
the computing burdens of GPs have been previously
investigated. For example, GP regression can be performed
in a real-time fashion where the problem can be estimated
locally, with local data [92]. Another potentially suitable
framework is a sparse representation of the GP model [29,
35, 85] which is based on a combination of a Bayesian
online algorithm together with a sequential construction
of the most relevant subset of the data [82]. This method
allows the model to be refined in a recursive way as the
data streams in. This framework has been further extended
to many application domains, such as visual tracking [101]
and spatial modeling [116].

To reduce both the length of a path and the probability
of collisions, pareto optimization has been used in
designing path planners [33]. Recently, a sampling-based
method has also been proposed to generate Pareto-optimal
trajectories for multi-objective motion planning [72]. In
addition, multi-robot coordination also benefits from multi-
objective optimization. The goals of different robots can be
simultaneously optimized [54, 70]. To balance the operation
cost and the travel discomfort experienced by users, multi-
objective fleet routing algorithms compute Pareto-optimal
fleet operation plans [23]. Related work also includes multi-
objective reinforcement learning [103], including multi-
objective Monte Carlo tree search (MO-MCTS). However,
MO-MCTS is computationally prohibitive and cannot be
used for online planning. Vast computational resources are
needed in order to maintain a global Pareto optimal set with
all the best solutions obtained so far. Recently, a framework
was developed which maintains a local approximate Pareto
optimal set in each node which can be processed in a
much faster way [31]. This approach is also flexible and
adaptive with regard to capturing environmental variability
[30].

Dealing with Motion Uncertainty

If the environment is complex, unstructured, and even
dynamic, then the robot motion/action outcomes can
become highly uncertain. When motion uncertainty is
considered, stochastic methods, e.g., decision theoretic
planning based on the Markov Decision Process [16, 98],
stochastic optimal control [11, 47], and stochastic model
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predictive control [100, 108] have been broadly used to cope
with the stochasticity.

Comparing with deterministic and many probabilis-
tic motion planners, an advantage of the decision theo-
retic framework is that it exploits the stochastic structure
of the world model to formulate the motion uncertainty
using a stochastic state transition function and to enforce
rewards/penalties for outcomes of future actions. Building
upon the MDP architecture, a partially observable MDP
(POMDP) is a generalization of MDPs to situations where
an agent cannot reliably identify the underlying environ-
ment state [64]. Such an extension dramatically increases
the computational complexity, making exact solutions vir-
tually intractable. Planning in dynamic environments in
the presence of other non-stationary objects can be mod-
eled with the MDP or POMDP frameworks. For example,
existing methods [37, 52, 86] formulate this problem as
POMDPs where the behavior of other dynamic objects is
not observable but assumed to be selected from a fixed
number of closed-loop policies. The deterministic rollouts
are then used to determine the best policy to execute. A
similar work [8] models this problem as a mixed observ-
ability MDP, which is a variant of POMDP [68]. A more
general framework is proposed in [40] where the authors
combine motion prediction and receding horizon planning
to reduce the uncertainty during planning. An important
performance metric for decision-theoretic methods is the
computational efficiency especially in robot online planning
scenarios. Recently, reachability-based methods have been
exploited [39, 128e] to mitigate the computational chal-
lenges where the key idea is to identify a small subset of
states that contribute most to the reward optimization and
then prioritize exploitation of this subset of states.

Autonomous Mapping and Exploration

The informative planning focuses on the spatiotemporal
information of the environment and can work particularly
well for non-continuous, sparse, and limited sensing
data. Apart from the previously discussed environmental
modeling and informative planning, there is another type
of information gathering framework which focuses on more
accurate representation (usually 3D) of the environmental
structure. This is based on environment mapping and
exploration which are also crucial for precisely controlling
robot motion in GPS-denied environments.

Building an accurate map requires the robot to (a)
localize itself while mapping and (b) generate a path
consisting of informative view points. In this section,
we survey robot state estimation methods and include
different exploration approaches for efficient mapping. We
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highlight the recent development on machine learning—
related approaches and extend to outstanding challenges in
the next section.

Localization Without Prior Map

Mobile robots relies on robust state estimation to perform
accurate motion control. The SLAM [20] has been a
standard framework to real-time estimate robot state and
map environments of all kinds. As a ranging sensor, LIDAR,
which stands for light detection and ranging, is invariant to
environmental lighting and can capture the environment’s
fine details in a long range. Therefore, range-based state
estimation methods that utilize LiDAR have achieved great
success in accuracy. Among them, the LiDAR odometry
and mapping method proposed (LOAM) in [135] is the
most widely used. LOAM divides the state estimation
problem into two sub-problems: a scan-to-scan matching
is performed at high frequency but with low accuracy; a
scan-to-map matching is performed at low frequency but
with high accuracy. A lightweight LiDAR odometry and
mapping (LeGO-LOAM) approach is proposed in [110]
that further improves LOAM’s efficiency and accuracy
by introducing point cloud segmentation. Both LOAM
and LeGO-LOAM use IMU for point cloud de-skew and
obtaining motion prior. However, the measurements from
IMU are not involved in the optimization stage of the
algorithms. Thus, these two methods can be categorized as
loosely coupled LiDAR odometry methods. Lately, tightly
coupled LiDAR odometry methods [71, 99, 133] draw more
attention as they provide better accuracy and robustness
in LiDAR-degraded environments, such as a long corridor.
A tightly coupled LiDAR inertial odometry and mapping
framework, LIO-mapping, is introduced in [133]. LIO-
mapping jointly optimizes measurements from IMU and
LiDAR and achieves high robustness when compared with
LOAM. However, LIO-mapping’s performance suffers in a
feature-rich environment as its global voxel map becomes
dense for scan-matching. LIO-SAM [111] overcomes the
issue by introducing a sliding window-based scan-matching
approach. Performing scan-matching at a local scale
instead of a global scale significantly improves the system
efficiency without sacrificing accuracy. Some representative
results of LIO-SAM are shown in Fig. 2.

Vision-based SLAM approaches usually incorporate
monocular or stereo cameras, inertial measurement units
(IMU), and other modes of odometry sensing (such as wheel
encoders) when available. A system involves, only visual
information is called visual odometry [106], which can be
solved either by extracting sparse features (indirect method
[90]) or use the intensity of each pixel directly (direct
method [48]). Indirect methods use feature descriptors
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Fig.2 Representative results of
LIO-SAM [111]. a An operator
carries the sensor suite and
performs a mapping task. b A
point cloud map built using only
LiDAR and IMU data. Changes
in color indicate elevation
change

(a)

such as SIFT [75] or FREAK [2] to find correspondences
between different frames, which pays the cost of feature
extraction and assumes the motion of the camera can be
recovered by the selected feature points. Direct methods
however take pixel intensity directly and tend to use more
pixels (sometimes all of the pixels) for robustness and
accuracy, which can be very computationally expensive.
Recently improvements on direct method [49] significantly
improved efficiency while preserving the accuracy. After
the correspondences of visual appearances are determined
in a series of representative frames (key frames), a joint
optimization can be performed to further improve on
accuracy; this process is called bundle adjustment [117].
Both the 3D location of the visual features and the pose
of each key frame are solved in bundle adjustment by
minimizing the re-projection error of the features. While
visual odometry can recover the motion as well as the 3D
location of the feature points, it does not sense the scale
[50, 73], which is usually estimated with IMU (and other
odometry sensing if available).

Also, the localization uncertainty of the robot may grow
unbounded if the SLAM system solely depends on dead
reckoning (e.g., through wheel odometry, LIDAR odometry,
or visual odometry). Fully developed SLAM frameworks
[110, 111] could utilize either global position systems
(GPS), or loop closure, to eliminate the drift incurred during
motion. Therefore, many planning methods have been
proposed in the last two decades to reduce the uncertainty
of localization by choosing constrained paths or re-visiting
landmarks that was previously seen. Among those planning
under uncertainty algorithms, sampling-based methods have
drawn great attention due to their capability in high-
dimensional settings. The belief roadmap (BRM) [97] finds
paths with lower uncertainty by utilizing extended Kalman
filter (EKF) covariance factorization when searching for

a valid path. By propagating an EKF over rapidly-
exploring random graphs (RRG), rapidly-exploring random
belief trees (RRBT) [19] yield shortest paths subject to
constraints on collision probability. Chance-constrained
RRT* (CC-RRT#*) [81] incorporates collision risk as an
objective during planning and reduces a robot’s collision
probability. The robust belief roadmap [14] introduces a
novel uncertainty metric, which is an upper bound on
the maximum eigenvalue of the EKF covariance matrix.
This eigenvalue bound metric provides optimal substructure
property, which is not available in EKF-based methods.
Utilizing this new metric, a min-max rapidly exploring
random tree (MMRRT#*) [44] proposes a framework with
lexicographic optimization for planning under uncertainty.
A belief roadmap search method is discussed in [109] that
improves the computation efficiency by utilizing a best-first
search scheme.

Other approaches focusing on reducing both uncertainty
of a robot’s pose and entropy of the map were developed.
The initial attempt [115] uses the particle filter and captured
a trajectory’s uncertainty using the particle weight. Recent
work [122] considered the correlation between localization
and information gain to reduce uncertainties. More recently,
a expectation-maximization (EM) exploration algorithm
[123] introduces virtual landmarks to represent the uncer-
tainty of unknown regions, with a novel utility function
it solves for optimal map accuracy given all the possible
sensing actions.

Data-Driven Exploration
To quickly build a map of the environment, although
frontier-based exploration approaches [130] achieve reason-

able efficiency in 2D mapping scenarios (assuming perfect
localization), information theoretic approaches have shown
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great advantages with the aid of map entropy, where the
mutual information (MI) between a robot’s sensor observa-
tions and the cells of its map is a key ingredient used to
guide a map-building robot to uncover unknown regions.
However, as a robot incrementally reduces the entropy of its
map by collecting sensor observations (e.g., from a depth
camera or LiDAR), the updates to the map will also update
the mutual information, even when multiple observations
are gathered from the same viewpoint.

Conventional Paradigm

Among the earliest information theoretic exploration
strategies are those proposed by Elfes [43] and Whaite
and Ferrie [126]. The former focused on maximizing
the MI between sensor observations and an occupancy
grid map, and the later proposed to explore an a priori
unknown environment with minimizing the map entropy.
More recent works [15, 115] brought up the trade-off
between maximizing MI and managing the localization
uncertainty in a robot’s SLAM process, in addition to
selecting trajectories in favor of map accuracy [67]. In
order to reduce computational cost of MI, efforts made to
consider small, predetermined candidate trajectories, using
a skeletonization of the known occupancy map [66] and
the evaluation of information gain over a finite number
of motion primitives [24, 132], 3D viewpoints [127], or
compression on occupancy grid map [91]. There are also
learning-based exploration methods which try to make
inferences of the information gain associated with candidate
view points, e.g., with Gaussian process regression as the
model [7], or through Bayesian optimization to improve on
sampling view points [6].

Deep Neural Networks

Deep neural networks have been successfully applied to
challenging problems such as image recognition [104],
robot manipulation [96], and control [38, 136]. Recent
work on obstacle avoidance [118] successfully trained a
deep neural network which took RGB images as input
and generated steering angles as output, while a robot was
moving forward at constant speed. A novel approach for
visual navigation proposed in [137] also took RGB images
as input, and the learned model was able to recognize the
cues for navigation to a target for which only the apperance
of the target was exposed to the network. Another work in
[21] used a deep neural network to detect exit locations from
building blueprints.

More recently, in [4] and [25], high-quality exploration
solutions can be trained via deep neural networks with
supervised and reinforcement learning using local occu-
pancy maps as input data. Moreover, in [93], the best next
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view frontier is estimated via a learned DRL policy using
global occupancy maps as input data.

While convolution neural networks became more and
more popular, graphs-based networks can offer generalized
topological representations of robot navigation, allowing
a much smaller state space than metric maps. Graph
neural networks (GNNs) [107] incorporate graphs into
neural network models to do learning tasks for many
fields. Graph Nets [9] is adopted for solving control
problems for dynamical systems [105]. Chen et al. [26, 27]
proposed to use GNNs with supervised learning [27] and
reinforcement learning [26] to perform robot exploration
under localization uncertainty. In [28], a novel neural
network model is proposed to solve the robot navigation
problem using a camera image and a topological map.
Wang et al. [124] proposed a deep graph neural network
with reinforcement learning to learn a scalable control
policy.

Reinforcement Learning

Compared to supervised learning, model-based reinforce-
ment learning methods often accelerate the training process
[55] since the agent can obtain training information from a
model in addition to rewards from the environment. A pre-
trained policy can also improve the performance of learning
and increase a robot’s learning efficiency [41]. Jaderberg
proposed an auxiliary approach to explore the potentially
reward-rich areas of an environment, avoiding low-reward
areas [63]. Such methods require a priori knowledge of
either the environments or the policy model.

Tai introduced a deep reinforcement learning [119]—
based obstacle avoidance policy that is trained and tested
using sensor data from the same environment. However, it
is ineffective to use learned policy across heterogeneous
environments. Combining an RNN and a DQN, [69]
proposed Deep Recurrent Q-Networks (DRQN) to play
First-Person-Shooting (FPS) games in a 3D environment.
The DRQN can generate appropriate outputs that depend
on the temporally consecutive inputs. Meanwhile, in [137],
the robot learned a target-driven visual navigation policy
in a simulated environment and implemented its policy
successfully in a physical environment. However, it is
difficult to predict the information gain of many potential
future sensing actions using a single camera view and the
requirement for the simulation environment is significantly
high. ExpLOre algorithm [32] is proposed to gather
information using imitation learning. The non-myopic
solutions are provided by this algorithm but the training
and testing environments are the same, with different view
nodes. Besides, for robot navigation problems, learning the
topology of an environment [58] and motion planning [120]
can be solved by reinforcement learning.
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Challenges and Opportunities

While information-driven planning and exploration algo-
rithms have been deployed on real robot platforms [83],
it is far from a solved problem. Since the environment
is unknown and could be dynamic, it is hard to esti-
mate the environment model, and thus it is challenging to
avoid myopic decision-making. In addition, the complex
and dynamic nature of the environment brings external dis-
turbances, which makes a robot’s motion stochastic. These
external disturbances need to be considered when planning;
otherwise, the actual execution result may be far from the
expected result.

An interesting problem for environmental sensing and
modeling lies in environmental dynamics which require
time-varying Markov transition models [76, 129]. The
Markov transition dynamics can be time-varying, and a
literature review informs us that time-varying Markov
models have been investigated for pattern analysis of the
economic growth [10, 89], which aims at understanding
the dynamics of growth based on a collection of different
states corresponding to different countries. However, these
existing models have been constructed on hidden Markov
models and assume that there is no action to control
state transitions. One drawback of state-of-the-art decision-
making methodologies lies in the fact that the basic model
relies on a fixed and exact form of uncertainty probabilistic
distribution. Such frameworks may be upgradable to some
sort of online planning methods through catching up to
the latest dynamics and a series of repetitive replanning
processes. However, replanning strategies still cannot
properly take into account future time-varying uncertainty
dynamics which if properly considered can be beneficial. In
essence, we believe that the planning and decision-making
community still lacks a general methodology to compute
solutions that consider not only a fully known (current and
past) stochastic description but also a (possibly uncertain)
prediction of future dynamics.

To enable a robot to effectively learn to act in complex
and especially unknown environments, transfer learning
provides a method for avoiding the expensive training
cost in real-world environments by doing the training
process in simulation environments. An off-line interactive
replay recorded from a real-world environment for one-shot
reinforcement learning is proposed in [18]. To fill the gap
between robot training in real and simulated environments,
domain randomization is utilized for transfer learned policy
[88]. Zero-shot reinforcement learning for autonomous
vehicle driving problem is proposed in [53] by extracting
important features from an input image with the attention
mechanism. While there are more and more datasets for
training, a neural network model to perform information

gathering tasks, generalization capability remains a key
challenge and requires further extensive investigations.

Conclusion

The purpose of this paper is to provide a survey on
the most recent research of the information-driven path
planning for mobile robots, and also to provide insights
on future challenges of related directions. In many
outdoor missions, the robots need to leverage sensed
information of environments to look ahead and plan actions.
Using the scenarios of environmental sensing, modeling,
and monitoring, we first discuss key information-driven
planning modules including environmental modeling with
Gaussian process, myopic vs non-myopic planning, online
planning, and motion with uncertainty. We then discuss
the autonomous mapping and exploration, followed by
integration with data-driven methodologies, emphasizing
how machine learning can be used to improve the
robustness and efficiency of existing SLAM frameworks.
The enhancement of these these critical components will
lead to more robust and adaptive frameworks with increased
functionalities that shall allow mobile robots to perform
missions in highly cluttered and unstructured environments.

Declarations

Conflict of Interest The authors declare no competing interests.

Human and Animal Rights and Informed Consent This article does not
contain any studies with human or animal subjects performed by any
of the authors.

References

1. Akyildiz IF, Weilian S, Sankarasubramaniam Y, Cayirci
E. Wireless sensor networks: a survey. Comput Netw.
2002;38(4):393-422.

2. Alahi A, Ortiz R, Vandergheynst P. Freak: Fast retina keypoint.
In: 2012 IEEE conference on computer vision and pattern
recognition, p. 510-517. Ieee; 2012.

3. Anderson K, Gaston KJ. Lightweight unmanned aerial
vehicles will revolutionize spatial ecology. Front Ecol Environ.
2013;11(3):138-146.

4. Bai S, Chen F, Englot B. Toward autonomous mapping and
exploration for mobile robots through deep supervised learning.
In: 2017 IEEE/RS]J International conference on intelligent robots
and systems (IROS). IEEE; 2017. p. 2379-2384.

5. Bai S, Wang J, Chen F, Englot B. Information-theoretic
exploration with bayesian optimization. In: 2016 IEEE/RSJ
International conference on intelligent robots and systems, IROS
2016, Daejeon, South Korea, October 9-14, 2016, p. 1816-1822;
2016.

@ Springer



184

Curr Robot Rep (2021) 2:177-188

10.

11.

12.

13.

14.

15.

18.

19.

20.

21.

22.

23.

24.

. Bai S, Wang J, Chen F, Englot B. Information-theoretic
exploration with bayesian optimization. In: 2016 IEEE/RSJ
International conference on intelligent robots and systems
(IROS). IEEE; 2016. p. 1816-1822.

. Bai S, Wang J, Doherty K, Englot B. Inference-enabled
information-theoretic exploration of continuous action spaces.
In: Robot Res. Springer; 2018. p. 419-433.

. Bandyopadhyay T, Won KS, Frazzoli E, Hsu D, Lee WS,
Daniela R. Intention-aware motion planning. In: Algorithmic
foundations of robotics X. Springer; 2013. p. 475-491.

. Peter W, Battaglia JBH, Bapst V, Alvaro S-G, Zambaldi V,

Malinowski M, Tacchetti A, Raposo D, Santoro A, Faulkner

R, et al. Relational inductive biases, deep learning, and graph

networks. arXiv:1806.01261. 2018.

Bazzi M, Blasques F, Koopman SJ, André L. Time varying

transition probabilities for markov regime switching models.

Tinbergen Institute Discussion Papers 14-072/II1 Tinbergen

Institute. 2014.

Dimitir PB, Steven S. Stochastic optimal control: the discrete-

time case; 2004.

Binney J, Krause A, Sukhatme GS. Informative path

planning for an autonomous underwater vehicle. In: International

conference on robotics and automation, p. 4791-4796; 2010.

Binney J, Krause A, Sukhatme GS. Optimizing waypoints for

monitoring spatiotemporal phenomena. Int J Robot Res (IJRR).

2013;32(8):873-888.

Bopardikar SD, Englot B, Speranzon A, van den Berg

J. Robust Belief Space Planning Under Intermittent Sensing

via a Maximum Eigenvalue-based Bound. Int J Robot Res.

2016;35(13):1609-1626.

Bourgault F, Makarenko AA, Williams SB, Grocholsky

B, Durrant-Whyte HF. Information based adaptive robotic

exploration. In: IEEE/RS]J international conference on intelligent

robots and systems. IEEE; 2002. p. 540-545.

. Boutilier C, Dean T, Hanks S. Decision-theoretic planning:
Structural assumptions and computational leverage. J Artif Intell
Res. 1999;11:1-94.

. Brooks A, Makarenko A, Upcroft B. Gaussian process models

for indoor and outdoor sensor-centric robot localization. IEEE

Trans Robot. 2008;24(6):1341-1351.

Bruce J, Siinderhauf N, Mirowski P, Hadsell R, Milford

M. One-shot reinforcement learning for robot navigation with

interactive replay. Advances in neural information processing

systems. 2017.

Bry A, Roy N. Rapidly-exploring random belief trees for motion

planning under uncertainty. In: IEEE International conference on

robotics and automation, p. 723-730; 2011.

Cadena C, Carlone L, Carrillo H, Latif Y, Scaramuzza

D, Neira J, Reid I, Leonard JJ. Past, present, and future

of simultaneous localization and mapping: toward the robust-

perception age. IEEE Trans Robot. 2016;32(6):1309-1332.

Jeffrey AC, Nicholas RJL, Geoffrey AH. Deep learning of

structured environments for robot search. In: 2016 IEEE/RSJ

international conference on intelligent robots and systems

(IROS). IEEE; 2016. p. 3987-3992.

Cao N, Low KH, Dolan JM. Multi-robot informative path

planning for active sensing of environmental phenomena: a tale

of two algorithms. In: Proceedings of the 2013 International

conference on autonomous agents and multi-agent systems, p.

7-14;2013.

Michal C, Javier A-M. Multi-objective analysis of ridesharing

in automated mobility-on-demand. In Robotics: Science and

Systems. 2018.

Charrow B, Kahn G, Patil S, Liu S, Goldberg K, Abbeel

P, Michael N, Kumar V. Information-theoretic planning with

@ Springer

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

trajectory optimization for dense 3d mapping. Robot Sci Syst.
2015;11:3-11.

Chen F, Bai S, Shan T, Englot B. Self-learning exploration and
mapping for mobile robots via deep reinforcement learning. In:
AIAA Scitech 2019 Forum, p. 0396; 2019.

Chen F, Martin JD, Huang Y, Wang J, Englot B. Autonomous
exploration under uncertainty via deep reinforcement learning
on graphs. In: 2020 IEEE/RSJ International conference on
intelligent robots and systems (IROS). IEEE; 2020.

Chen F, Wang J, Shan T, Englot B. Autonomous
exploration under uncertainty via graph convolutional networks.
In: International symposium on robotics research. IEEE; 2019.
Chen K, de Vicente JP, Sepulveda G, XiaF, Soto A, Vazquez
M, Savarese S. A behavioral approach to visual navigation with
graph localization networks. In Robotics: Science and Systems.
2019.

Chen W, Liu L. Long-term autonomous ocean monitoring with
streaming samples. In: OCEANS 2019 MTS/IEEE SEATTLE.
IEEE; 2019. p. 1-8.

Chen W, Lantao L. Multi-objective and model-predictive tree
search for spatiotemporal informative planning. In: IEEE 58th
Conference on decision and control (CDC). IEEE; 2019. p.
5716-5722.

Weizhe C, Lantao L. Pareto monte carlo tree search for
multi-objective informative planning. In: Robotics: science and
systems; 2019.

Choudhury S, Kapoor A, Ranade G, Dey D. Learning to
gather information via imitation. In: 2017 IEEE International
conference on robotics and automation (ICRA). IEEE; 2017. p.
908-915.

Choudhury S, Dellin CM, Srinivasa SS. Pareto-optimal search
over configuration space beliefs for anytime motion planning.
In: IEEE/RSJ International conference on intelligent robots and
systems (IROS). IEEE; 2016. p. 3742-3749.

Cristianini N, Elisseeff A, Shawe-Taylor J, Kandola J.
On kernel-target alignment. Advances in neural information
processing systems. 2001.

Csat6 L, Opper M. Sparse on-line gaussian processes. Neural
Comput. 2002;14(3):641-668.

Cui R, LiY, Yan W. Mutual information-based multi-auv path
planning for scalar field sampling using multidimensional rrt.
IEEE Trans Syst Man Cybern Syst. 2016;46(7):993—-1004.
Cunningham AG, Galceran E, Eustice RM, Olson E. Mpdm:
Multipolicy decision-making in dynamic, uncertain environ-
ments for autonomous driving. In: 2015 IEEE International
conference on robotics and automation (ICRA). IEEE; 2015. p.
1670-1677.

Cutler M, How JP. Autonomous drifting using simulation-aided
reinforcement learning. In: 2016 IEEE International conference
on robotics and automation (ICRA). IEEE; 2016. p. 5442—
5448.

Debnath S, Liu L, Sukhatme G. Solving markov decision
processes with reachability characterization from mean first
passage times. In: 2018 IEEE/RSJ International conference on
intelligent robots and systems (IROS). IEEE; 2018. p. 7063—
7070.

Toit NED, Burdick JW. Robot motion planning in dynamic,
uncertain environments. IEEE Trans Robot. 2011;28(1):101—
115.

Duan Y, Schulman J, Xi C, Bartlett PL, Sutskever I, Abbeel P.
RI12: fast reinforcement learning via slow reinforcement learning.
arXiv:1611.02779. 2016.

Dunbabin M, Marques L. Robotics for environmental moni-
toring: Significant advancements and applications. IEEE Robot
Autom Mag. 2012;19(1):24-39.


http://arxiv.org/abs/1806.01261
http://arxiv.org/abs/1611.02779

Curr Robot Rep (2021) 2:177-188

185

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Elfes A. Robot navigation: Integrating perception, environmental
constraints and task execution within a probabilistic framework.
In: International workshop on reasoning with uncertainty in
robotics. Springer; 1995. p. 91-130.

Englot B, Shan T, Bopardikar SD, Speranzon A. Sampling-
based min-max uncertainty path planning. In: 55th Conference
on Decision and Control (CDC), p. 6863-6870; 2016.

Erickson P, Cline M, Tirpankar N, Henderson T. Gaussian
processes for multi-sensor environmental monitoring. In: 2015
IEEE International conference on multisensor fusion and
integration for intelligent systems (MFI); 2015. p. 208-213.
Farrell JA, Pang S, Li W. Chemical plume tracing via
an autonomous underwater vehicle. IEEE J Ocean Eng.
2005;30(2):428-442.

Fleming WH, Rishel RW, Vol. 1. Deterministic and stochastic
optimal control. Berlin: Springer Science & Business Media;
2012.

Forster C, Pizzoli M, Scaramuzza D. Svo: Fast semi-
direct monocular visual odometry. In: 2014 IEEE international
conference on robotics and automation (ICRA). IEEE; 2014. p.
15-22.

Forster C, Zhang Z, Gassner M, Werlberger M, Scaramuzza D.
Svo: Semidirect visual odometry for monocular and multicamera
systems. IEEE Trans Robot. 2016;33(2):249-265.

Fraundorfer F, Scaramuzza D, Pollefeys M. A constricted
bundle adjustment parameterization for relative scale estimation
in visual odometry. In: 2010 IEEE International conference on
robotics and automation. IEEE; 2010. p. 1899-190.

Fung N, Rogers J, Nieto C, Christensen HI, Kemna
S, Sukhatme G. Coordinating multi-robot systems through
environment partitioning for adaptive informative sampling. In:
International conference on robotics and automation (ICRA).
IEEE; 2019. p. 2019.

Galceran E, Cunningham AG, Eustice RM, Olson E. Multi-
policy decision-making for autonomous driving via changepoint-
based behavior prediction, Robotics: Science and Systems 1.
2015.

Genc S, Mallya S, Bodapati S, Sun T, Tao Y. Zero-shot
reinforcement learning with deep attention convolutional neural
networks. Adv Neural Inform Process Syst. 2019.

Ghrist R, O’Kane JM, LaValle SM. Pareto optimal coordination
on roadmaps. In: Algorithmic foundations of robotics VI.
Springer; 2004. p. 171-186.

Shixiang G, Lillicrap T, Sutskever I, Levine S. Continuous
deep g-learning with model-based acceleration. In: International
conference on machine learning, p. 2829-2838; 2016.

Guestrin C, Krause A, Singh AP. Near-optimal sensor
placements in gaussian processes. In: Proceedings of the 22nd
international conference on machine learning. ACM; 2005. p.
265-272.

Guestrin CE. Planning under uncertainty in complex structured
environments. PhD thesis, Stanford, CA, USA. AAI3104233.
2003.

Gupta S, Davidson J, Levine S, Sukthankar R, Malik
J. Cognitive mapping and planning for visual navigation. In:
Proceedings of the IEEE Conference on computer vision and
pattern recognition, p 2616-2625; 2017.

Hajieghrary H, Tom AF, Hsieh MA, et al. An information
theoretic source seeking strategy for plume tracking in 3d
turbulent fields. In: 2015 IEEE International symposium on
safety, security, and rescue robotics (SSRR). IEEE; 2015.
p. 1-8.

Tomislav H. A practical guide to geostatistical mapping, volume
52, Hengl. 2009.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.
75.
76.

71.

78.

79.

Hollinger GA, Pereira AA, Binneym J, Somers T, Sukhatme
G. Learning uncertainty in ocean current predictions for safe
and reliable navigation of underwater vehicles. J Field Robot.
2016;33(1):47-66.

Hollinger GA, Pereira AA, Sukhatme G. Learning uncertainty
models for reliable operation of autonomous underwater
vehicles. In: Robotics and automation (ICRA), 2013 IEEE
international conference on. IEEE; 2013. p. 5593-5599.
Jaderberg M, Mnih V, Czarnecki WM, Schaul T, Leibo
JZ, Silver D, Kavukcuoglu K. Reinforcement learning with
unsupervised auxiliary tasks. arXiv:1611.05397. 2016.
Kaelbling LP, Littman ML, Cassandra AR. Planning and
acting in partially observable stochastic domains. Artif Intell.
1998;101:99-134.

Kemna S, Rogers JG, Nieto-Granda C, Young S, Sukhatme G.
Multi-robot coordination through dynamic voronoi partitioning
for informative adaptive sampling in communication-constrained
environments. In: IEEE International conference on robotics and
automation (ICRA), p. 2124-2130, IEEE; 2017. p. 2017.

Kollar T, Roy N. Efficient optimization of information-theoretic
exploration in slam. AAAI 2008;8:1369-1375.

Kollar T, Roy N. Trajectory optimization using reinforcement
learning for map exploration. Int J Robot Res. 2008;27(2):175—
196.

Kurniawati H, Hsu D, Lee WS. Sarsop: Efficient point-based
pomdp planning by approximating optimally reachable belief
spaces. In: Robotics: science and systems, volume 2008. Zurich,
Switzerland; 2008.

Lample G, Devendra SC. Playing fps games with deep
reinforcement learning. In: Proceedings of the thirty-first AAAI
conference on artificial intelligence. AAAI Press; 2017. p. 2140—
2146.

LaValle SM, Hutchinson SA. Optimal motion planning for
multiple robots having independent goals. IEEE Trans Robot
Autom. 1998;14(6):912-925.

Gentil CL, Vidal-Calleja T, Huang S. IN2LAMA: Inertial lidar
localisation and MApping. In: IEEE International conference on
robotics and automation, p. 6388-6394; 2019.

Lee J, Yi D, Srinivasa SS. Sampling of pareto-optimal trajec-
tories using progressive objective evaluation in multi-objective
motion planning. In: IEEE/RSJ International conference on intel-
ligent robots and systems (IROS). IEEE; 2018. p. 1-9.

Li AQ, Coskun A, Doherty SM, Ghasemlou S, Jagtap AS,
Modasshir M, Rahman S, Singh A, Xanthidis M, O’Kane
JM, et al. Experimental comparison of open source vision-
based state estimation algorithms. In: International symposium
on experimental robotics. Springer; 2016. p. 775-786.
Lichtenstern A. Kriging methods in spatial statistics. Technische
Universitdt Miinchen. 2013.

Lindeberg T. Scale invariant feature transform. 2012.

Liu L, Sukhatme GS. A solution to time-varying markov
decision processes. IEEE Robot Autom Lett. 2018;3(3):1631—
1638.

Liu X, Xi T, Ngai E. Data modelling with gaussian process
in sensor networks for urban environmental monitoring. In:
Proc. 24th International symposium on modeling, analysis and
simulation of computer and telecommunication Systems, p. 457—
462. IEEE Computer Society; 2016.

Lloret J, Garcia M, Bri D, Sendra S. A wireless sensor network
deployment for rural and forest fire detection and verification.
Sensors. 2009;9(11):8722-8747.

Low KH. Multi-robot adaptive exploration and mapping for
environmental sensing applications. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, USA. 2009.

@ Springer


http://arxiv.org/abs/1611.05397

186

Curr Robot Rep (2021) 2:177-188

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

Low KH, Dolan JM, Khosla P. Active markov information-
theoretic path planning for robotic environmental sensing. In:
Proceedings of the 10th international conference on autonomous
agents and multiagent systems (AAMAS-11), p. 753-760; 2011.
Luders BD, Karaman S, How JP. Robust sampling-based
motion planning with asymptotic optimality guarantees. In:
AIAA guidance, navigation, and control (GNC) conference, p.
5097; 2013.

Ma K-C, Liu L, Heidarsson HK, Sukhatme GS. Data-driven
learning and planning for environmental sampling. J Field Robot.
2018;35(5):643-661.

Ma K-C, Liu L, Sukhatme GS. An information-driven
and disturbance-aware planning method for long-term ocean
monitoring. In: IEEE/RS]J international conference on intelligent
robots and systems; 2016.

Ma K-C, Liu L, Sukhatme GS. Multi-robot informative
and adaptive planning for persistent environmental monitoring.
In: International symposium on distributed autonomous robotic
systems (DARS); 2016.

Ma K-C, Liu L, Sukhatme GS. Informative planning and online
learning with sparse gaussian processes. In: IEEE International
conference on robotics and automation (ICRA); 2017.

Mehta D, Ferrer G, Olson E. Backprop-mpdm: Faster risk-aware
policy evaluation through efficient gradient optimization. In:
2018 IEEE international conference on robotics and automation
(ICRA). IEEE; 2018. p. 1740-1746.

Meliou A, Krause A, Guestrin C, Hellerstein JM. Nonmyopic
informative path planning in spatio-temporal models. In:
Proceedings of national conference on artificial intelligence
(AAAI), p. 602-607; 2007.

Mordatch I, Lowrey K, Todorov E. Ensemble-cio: Full-body
dynamic motion planning that transfers to physical humanoids.
In: 2015 IEEE/RS]J International conference on intelligent robots
and systems (IROS). IEEE; 2015. p. 5307-5314.

Morier B, Teles V. A time-varying markov-switching model
for economic growth Textos para discussdao. 305, Escola de
Economia de Sao Paulo, Getulio Vargas Foundation (Brazil).
2011.

Mur-Artal R, Montiel JIMM, Tardos JD. Orb-slam: a versatile
and accurate monocular slam system. IEEE Trans Robot.
2015;31(5):1147-1163.

Erik N, Nathan M. Information-theoretic occupancy grid
compression for high-speed information-based exploration. In:
IEEE/RSJ International conference on intelligent robots and
systems (IROS). IEEE; 2015. p. 4976-4982.

Duy N-T, Jan P. Local gaussian process regression for real
time online model learning and control. In: Advances in neural
information processing systems 22 (NIPS; 2008.

Niroui F, Zhang K, Kashino Z, Nejat G. Deep reinforcement
learning robot for search and rescue applications: Exploration
in unknown cluttered environments. IEEE Robot Autom Lett.
2019:4(2):610-617.

Nuske S, Achar S, Bates T, Narasimhan S, Singh S. Yield
estimation in vineyards by visual grape detection. In: 2011
IEEE/RSJ International conference on intelligent robots and
systems. IEEE; 2011. p. 2352-2358.

Ouyang R, Low KH, Chen J, Jaillet P. Multi-robot active
sensing of non-stationary gaussian process-based environmental
phenomena. In: Proceedings of the 2014 International conference
on autonomous agents and multi-agent systems, p. 573-580x;
2014.

Pinto L, Gupta A. Supersizing self-supervision: Learning to
grasp from 50k tries and 700 robot hours. In: 2016 IEEE

@ Springer

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

international conference on robotics and automation (ICRA).
IEEE; 2016. p. 3406-3413.

Prentice S, Nicholas R. The belief roadmap: efficient planning
in belief space by factoring the covariance. Int J Robot Res.
2009;28(11-12):1448-1465.

Puterman ML. Markov decision processes: discrete stochastic
dynamic programming, 1st edn. New York: John Wiley & Sons,
Inc; 1994.

Qin C, Ye H, Pranata CE, HanJ, Zhang S, Liu M. LINS: A
Lidar-inertial state estimator for robust and efficient navigation.
In: IEEE International conference on robotics and automation;
2020. p. 8899-8906.

Qin SJ, Badgwell TA. A survey of industrial model predictive
control technology. Control Eng Pract. 2003;11(7):733-764.
Ranganathan A, Yang M-H, Ho J. Online sparse gaussian
process regression and its applications. IEEE Trans Image
Process. 2011;20(2):391-404.

Rasmussen CE, Williams CKI. Gaussian processes for machine
learning. The MIT Press. 2005.

Roijers DM, Vamplew P, Whiteson S, Dazeley R. A survey
of multi-objective sequential decision-making. J Artif Intell Res.
2013;48:67-113.

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma
S, Huang Z, Karpathy A, Khosla A, Bernstein M, et al.
Imagenet large scale visual recognition challenge. Int J] Comput
Vis. 2015;115(3):211-252.

Sanchez-Gonzalez A, Heess N, Springenberg JT, Merel J,
Riedmiller M, Hadsell R, Battaglia P. Graph networks as
learnable physics engines for inference and control. Int Conf
Mach Learn 4470-4479. 2018.

Scaramuzza D, Fraundorfer F. Visual odometry [tutorial]. IEEE
Rob Autom Magaz. 2011;18(4):80-92.

Scarselli F, Gori M, Chung Tsoi AH, Hagenbuchner M,
Monfardini G. The graph neural network model. IEEE Trans
Neural Netw. 2008;20(1):61-80.

Sethi S, Gerhard S. A theory of rolling horizon decision making.
Ann Oper Res. 1991;29(1-4):387-416.

Shan T, Englot B. Belief roadmap search: advances in
optimal and efficient planning under uncertainty. In: IEEE/RSJ
international conference on intelligent robots and systems, p.
5318-5325; 2017.

Shan T, Englot B. LeGO-LOAM: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain. In:
IEEE/RSJ International conference on intelligent robots and
systems, p. 4758-4765; 2018.

Shan T, Englot B, Meyers D, Wang W, Ratti, Daniela R. LIO-
SAM: tightly-coupled lidar inertial odometry via smoothing and
mapping. In: IEEE/RS]J International conference on intelligent
robots and systems, p. 5135-5142; 2020.

Singh A, Krause A, Guestrin C, Kaiser W, Batalin M.
Efficient planning of informative paths for multiple robots. In:
Proceedings of the 20th international joint conference on artifical
intelligence, IICAI’07, p. 2204-2211; 2007.

Ryan N, Smith MS, Smith SL, Jones BH, Rus D, Sukhatme
GS. Persistent ocean monitoring with underwater gliders:
Adapting sampling resolution. J Field Robot. 2011;28(5):714—
741.

Soltero DE, Schwager M, Rus D. Generating informative
paths for persistent sensing in unknown environments. IROS
2172-2179. 2012.

Stachniss C, Grisetti G, Burgard W. Information gain-based
exploration using rao-blackwellized particle filters. Robot Sci
Syst. 2005;2:65-72.



Curr Robot Rep (2021) 2:177-188

187

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

Stachniss C, Plagemann C, Lilienthal AJ, Burgard W. Gas
distribution modeling using sparse gaussian process mixture
models. Robot Sci Syst. 2008;3:310-317.

Strasdat H, Montiel JMM, Davison AJ. Visual slam: why filter?
Image Vis Comput. 2012;30(2):65-77.

Tai L, Li S, Ming L. A deep-network solution towards
model-less obstacle avoidance. In: 2016 IEEE/RS]J international
conference on intelligent robots and systems (IROS). IEEE;
2016. p. 2759-2764.

Tai L, Liu M. Towards cognitive exploration through deep
reinforcement learning for mobile robots. arXiv:1610.01733.
2016.

Tamar A, Yi W, Thomas G, Levine S, Abbeel P. Value iteration
networks. Adv Neural Inf Process Syst. 2016;29:2154-2162.
Tokekar P, Bhadauria D, Studenski A, Isler V. A robotic
system for monitoring carp in minnesota lakes. J Field Robot.
2010;27(6):779-789.

Valencia R, Mir6 JV, Dissanayake G, Andrade-Cetto J.
Active pose slam. In: 2012 IEEE/RSJ International conference
on intelligent robots and systems (IROS). IEEE; 2012. p. 1885—
1891.

Wang J, Englot B. Autonomous exploration with expectation-
maximization. In: International Symposium on Robotics
Research. IEEE; 2017.

Wang T, Liao R, BaJ, Fidler S. Nervenet: Learning structured
policy with graph neural networks. In: International conference
on learning representations; 2018.

Werner-Allen G, Lorincz K, Johnson J, Lees J, Welsh M.
Fidelity and yield in a volcano monitoring sensor network. In:
Proceedings of the 7th symposium on Operating systems design
and implementation. USENIX Association; 2006. p. 381-396.
Whaite P, Ferrie FP. Autonomous exploration: Driven by uncer-
tainty. IEEE Trans Pattern Anal Mach Intell. 1997;19(3):193—
205.

Wurm KM, Hennes D, Holz D, Rusu RB, Stachniss C,
Konolige K, Burgard W. Hierarchies of octrees for efficient
3d mapping. In: 2011 IEEE/RSJ international conference on
intelligent robots and systems. IEEE; 2011. p. 4249-4255.

128.# Xu J, Kai Y, Lantao L. Reachable space characterization of

markov decision processes with time variability. In: Proceed-
ings of Robotics: Science and Systems, FreiburgimBreisgau,

129.

130.

131.

132.

133.

Germany, June; 2019. This paper attempts to explore the
time variability property of the planning stochasticity and
investigate the state reachability, based on which an effi-
cient iterative method is developed to offer a good trade-off
between solution optimality and time complexity.

Junhong X, Yin K, Liu L. State-continuity approximation
of markov decision processes via finite element analysis for
autonomous system planning. arXiv:1903.00948. 2019.
Yamauchi B. Frontier-based exploration using multiple robots.
In: Proceedings of the second international conference on
Autonomous agents, 47-53; 1998.

Yang C. A high-resolution airborne four-camera imaging system
for agricultural remote sensing. Comput Electron Agricult.
2012;88:13-24.

Yang K, Gan SK, Sukkariech S. A gaussian process-based
rrt planner for the exploration of an unknown and cluttered
environment with a uav. Adv Robot. 2013;27(6):431-443.

Ye H, ChenY, Liu M. Tightly coupled 3d lidar inertial odometry
and mapping. In: IEEE International conference on robotics and
automation, p. 3144-3150; 2019.

134.e8Yu J, Schwager M, Rus D. Correlated orienteering problem

135.

136.

137.

and its application to informative path planning for persistent
monitoring tasks. In: IEEE/RSJ international conference on
intelligent robots and systems; 2014. This is one of the earliest
informative planning methods that investigate realistic, time-
varying, and spatially correlated scalar field.

Ji Z, Singh S. Low-drift and real-time lidar odometry and
mapping. Auton Robot. 2017;41(2):401-416.

Zhang T, Kahn G, Levine S, Abbeel P. Learning deep control
policies for autonomous aerial vehicles with mpc-guided policy
search. In: 2016 IEEE international conference on robotics and
automation (ICRA). IEEE; 2016. p. 528-535.

Zhu Y, Mottaghi R, Kolve E, Lim JJ, Gupta A, Fei-Fei
L, Farhadi A. Target-driven visual navigation in indoor scenes
using deep reinforcement learning. In: 2017 IEEE international
conference on robotics and automation (ICRA). IEEE; 2017. p.
3357-3364.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer


http://arxiv.org/abs/1610.01733
http://arxiv.org/abs/1903.00948

188 Curr Robot Rep (2021) 2:177-188

Affiliations

Shi Bail (2) . Tixiao Shan? - Fanfei Chen? - Lantao Liu* - Brendan Englot3

Tixiao Shan
shant@mit.edu

Fanfei Chen
fchen7 @stevens.edu

Lantao Liu
lantao @iu.edu

Brendan Englot
benglot@stevens.edu

1" Wing, Alphabet Inc. Mountain View, Palo Alto, CA,
94039, USA

Senseable City Lab, Massachusetts Institute of Technology,
Cambridge, MA, 02139, USA

Department of Mechanical Engineering, Stevens Institute
of Technology, Hoboken, NJ, 07030, USA

Luddy School of Informatics, Computing, and Engineering,
Indiana University-Bloomington, Bloomington, IN, 47408, USA

@ Springer


http://orcid.org/0000-0002-6081-3084
mailto: shant@mit.edu
mailto: fchen7@stevens.edu
mailto: lantao@iu.edu
mailto: benglot@stevens.edu

	Information-Driven Path Planning
	Abstract
	Introduction
	Informative Planning
	Environment Modeling
	Myopic vs. Non-myopic Planning
	Online Planning
	Dealing with Motion Uncertainty

	Autonomous Mapping and Exploration
	Localization Without Prior Map
	Data-Driven Exploration
	Conventional Paradigm
	Deep Neural Networks
	Reinforcement Learning


	Challenges and Opportunities
	Conclusion
	Declarations
	References
	Affiliations


