The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

Data-driven Competitive Algorithms for Online Knapsack and Set Cover

Ali Zeynali,' Bo Sun, > Mohammad Hajiesmaili, ' Adam Wierman 3

1 University of Massachusetts Amherst, USA
2 The Hong Kong University of Science and Technology, Hong Kong
3 California Institute of Technology, USA
azeynali @cs.umass.edu, bsunaa@connect.ust.hk, hajiesmaili @cs.umass.edu, adamw @caltech.edu

Abstract

The design of online algorithms has tended to focus on al-
gorithms with worst-case guarantees, e.g., bounds on the
competitive ratio. However, it is well-known that such algo-
rithms are often overly pessimistic, performing sub-optimally
on non-worst-case inputs. In this paper, we develop an ap-
proach for data-driven design of online algorithms that main-
tain near-optimal worst-case guarantees while also perform-
ing learning in order to perform well for typical inputs. Our
approach is to identify policy classes that admit global worst-
case guarantees, and then perform learning using historical
data within the policy classes. We demonstrate the approach
in the context of two classical problems, online knapsack and
online set cover, proving competitive bounds for rich policy
classes in each case. Additionally, we illustrate the practical
implications via a case study on electric vehicle charging.

1 Introduction

As the adoption of machine learning (ML) in infrastructure
and safety-critical domains grows, it becomes crucially im-
portant to ensure ML-driven algorithms can provide guar-
antees on their performance. Competitive analysis of online
algorithms has been a remarkably successful framework for
developing simple algorithms with worst-case guarantees.
The ultimate goal in this framework is to devise algorithms
with the best possible competitive ratio, which is defined as
the worst-case ratio between the cost of an online algorithm
and that of the offline optimal. However, because the focus
is on worst-case guarantees, the algorithms developed are
typically conservative and do not learn in a data-driven man-
ner. The result is that worst-case optimized algorithms tend
to under perform for typical scenarios where worst-case in-
puts are uncommon. This phenomenon is wide-spread, but
the importance of provable guarantees for safety and ro-
bustness means relaxing worst-case assumptions is undesir-
able in many settings. An important open question is how to
achieve the “best-of-both-worlds”, both near-optimal perfor-
mance in typical settings, which requires data-driven adap-
tation, and a near-optimal competitive ratio.

Toward this goal, there have been substantial efforts to im-
prove the performance of competitive algorithms using pre-
dictions (Chen et al. 2016, 2015; Antoniadis et al. 2020a),

Copyright (© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

10833

ML advice (Lykouris and Vassilvtiskii 2018; Angelopou-
los et al. 2020; Purohit, Svitkina, and Kumar 2018; Ro-
hatgi 2020; Lee, Hajiesmaili, and Li 2019; Antoniadis et al.
2020b; Banerjee 2020; Wang, Li, and Wang 2020), and ad-
vice from multiple experts (Gollapudi and Panigrahi 2019).
In these approaches the goal is to allow online algorithms to
use (potentially noisy) predictions (or advice) about future
inputs. Such predictions capture the fact that, often, some-
thing is known about the future that could be used to im-
prove the performance in typical cases. These approaches
have been successfully applied to design competitive algo-
rithms that perform near-optimally in the typical case in set-
tings such as the ski-rental problem (Purohit, Svitkina, and
Kumar 2018; Kodialam 2019; Angelopoulos et al. 2020; Ba-
mas, Maggiori, and Svensson 2020; Wei and Zhang 2020),
online optimization with switching costs (Chen et al. 2016),
online caching (Lykouris and Vassilvtiskii 2018; Rohatgi
2020), and metrical task systems (Antoniadis et al. 2020a),
to name a few. However, in this literature, the power of ML
models has been leveraged to first, predict the future input,
and then modify the algorithms to use this additional input
to further improve the performance. In this way, the learning
and algorithmic parts are decoupled, and practical improve-
ments could be obtained only when fine-grained predictions
of individual inputs are (nearly) perfect.

The idea of this paper is inspired by the fact that practi-
tioners typically prefer to learn from the coarse-grained pat-
terns observed in previous problem instances and then op-
timize over a class of algorithms that achieves high perfor-
mance given the coarse-grained patterns. This approach has
been of interest of empirical studies for a long time (Semke,
Mahdavi, and Mathis 1998; Leyton-Brown, Nudelman, and
Shoham 2009; Kotthoff, Gent, and Miguel 2012; Winstein
and Balakrishnan 2013; Akhtar et al. 2018; De Cicco, Cilli,
and Mascolo 2019). However, developing a theoretical un-
derstanding of this approach has received attention only
recently, after a seminal work of Gupta and Roughgar-
den (Gupta and Roughgarden 2017, 2020) and its follow-
ups (Kleinberg et al. 2019; Balcan, Dick, and Vitercik 2018;
Alabi et al. 2019; Cohen-Addad and Kanade 2017; Rough-
garden 2021).

Inspired by the above high-level idea, in this paper, we fo-
cus on developing data-driven competitive algorithms with
worst-case guarantees. The prior literature on online algo-

rithms with ML advice combines online algorithms with
learning in order to learn the uncertain input. This work,
in contrast, designs policy classes of algorithms that ensure
competitive guarantees for all algorithms in the policy class
and then learns the best algorithm based on historical data
directly. The result is an adaptive algorithm, tuned based on
historic data, that ensures worst-case robustness. Further, it
allows the richness of the policy class to be balanced with
the performance in the typical case — if the policy class is
broadened then the competitive ratio grows but there is a
potential to learn a better algorithm for the common case.

Realizing the potential of this approach requires two
steps. First, developing a policy class of online algorithms
whose worst-case competitive ratios are bounded. This is in
contrast to the typical style of analysis in online algorithms
that seeks an individual algorithm with an optimal compet-
itive ratio. The form of the policy class is crucial, since it
should be broad enough to allow adaptation in application
settings, but still provide near-optimal competitive guaran-
tees for all policies in the class; thus balancing worst-case
guarantees with performance in the typical case. Second, the
approach requires developing ML tools that can learn and
adapt from historical data to select a policy from the policy
class. This second task is standard, and can be approached
with a variety of tools depending on the setting (as discussed
in Section 5).

More formally, our goal in this paper is to derive policy
classes of online algorithms such that all policies in the class
have bounded degradation in terms of worst-case compet-
itive ratio. To that end, we introduce the degradation fac-
tor DF (A(0)) of an algorithm as the worst-case performance
degradation of an algorithm A(6), parameterized by param-
eter 0, with respect to a baseline algorithm:

CR(A(0)) < DF(A(6))CR(A(6h)), M

where A(fp) is the baseline algorithm that could be the one
that achieves the optimal competitive ratio, the algorithm in
literature with the best known competitive ratio, or simply
the current algorithm used in practice. Then, to characterize
the degradation factor of a policy class, we define a class
of ¢-degraded algorithms as one where every algorithm in
the class has degradation factor that is no larger than ¢, i.e.,
P(¢) = {0|DF(A(0)) < ¢}. Given such a class, in runtime,

ML tools can be used to learn algorithm A(6), where 0 is the
learned parameter, to optimize the performance while being
ensured of a worst-case loss of at most ¢.

As compared to (Gupta and Roughgarden 2017), where
the data-driven algorithm design is proposed as a general
framework of improving an algorithm, this work, to the best
of our knowledge, is the first that brings the idea of learn-
ing the best online algorithm among a policy class of algo-
rithms that all have provable a worst-case competitive ratio
guarantees. In addition, the degradation factor introduced in
the paper is a novel performance metrics that can explicitly
characterize the worst-case performance loss of online algo-
rithms due to the data-driven algorithms selection.

Summary of contributions. To introduce and develop the
above framework, we first consider, as a warm-up example,

10834

the classic ski-rental problem (Section 2). We provide a sim-
ple, concrete construction of a policy class of algorithms for
this problem. Then, we characterize the degradation factor as
well as ¢-degraded policies within the policy class. This re-
sult enables a trade-off between optimizing the typical case
while ensuring near-optimal worst-case performance.

After this warm-up, our main technical results focus on
illustrating the approach in two important online problems:
online knapsack (OKP) (Section 3) and online set cover
(0SC) (Section 4). For both OKP and OSC, we develop
policy classes, explicitly characterize the degradation factor
achieved by all policies in the class. For OSC, using a syn-
thetic input, we provide intuition about how the proposed
framework can leverage the coarse-grained structure of in-
puts to learn the best policy. This is a new design space that
could not be captured by online algorithms with ML advice
that only utilize the fine-grained prediction of future inputs.

Deriving the above results requires addressing two sets of
technical challenges: (i) determining how to choose the right
policy class of algorithms, which requires a delicate balance
between the worst-case guarantees and the learning design
space for practical improvement, and (ii) determining how
to bound the competitive ratio of a class of algorithms in a
parametric manner, which is not always a straightforward
extension of the analysis of the classical analysis. For ex-
ample, in our analysis of the policy class for OKP, we have
to identify and analyze two worst-case instances that differ
from the classical analysis of OKP.

Then, in Section 5, inspired by ideas in (Balcan, Dick, and
Vitercik 2018), we discuss how to cast a regret minimization
online learning problem for the selection of the best algo-
rithm given a policy class of online algorithms. This sec-
tion shows how to efficiently learn the best policy from the
class, and highlights our work as a complementary view in
the emerging space of data-driven algorithms.

Finally, to demonstrate the potential for achieving both
data-driven adaptation and worst-case guarantees in practi-
cal settings, we apply our approach to the application of on-
line admission control of electric vehicles in a charging sta-
tion, which is an extended version of OKP (Alinia, Hajies-
maili, and Crespi 2019; Sun et al. 2020). Our experiments
consider two months of electric vehicle data-traces from a
parking lot at Caltech (Lee, Li, and Low 2019), and show
that the approach can improve the observed performance by
13.7%, with only 3% of instances having worse performance
than the worst-case optimized online algorithm. The proofs
are given in (Zeynali et al. 2020).

2 Warm-up: The Ski-Rental Problem

To illustrate our approach using a simple example, we start
with the classic ski-rental problem (Karlin et al. 1986;
Borodin and El-Yaniv 2005), in which a skier goes skiing
for an unknown number of days. On each day, the skier can
either rent skis at a unit price or buy one at a higher integer
price of p > 1, and ski for free from then on. The uncer-
tainty is the number of days the skier will ski. Our focus
is on deterministic algorithms, for simplicity, and the best
known deterministic algorithm uses a break-even point and
rents the first p — 1 days before buying on the pth day. It is

3.0

2.5

2.0

—— DF(b/p)
¢=15
=2

—-——= =25

2 3 4 5

b/p
Figure 1: The lower bound of degradation factor as a func-

tion of normalized parameter b/p for the ski-rental problem

1

straightforward to see that this algorithm is 2-competitive,
which is optimal. However, such a choice of the break-even
point is overly conservative in typical situations.

Consider now a policy class of algorithms A(b) with
b e B = {1,2,...} defines the policy class. The param-
eter b is the number of renting days and can be optimized
based on historical data in order to improve the typical per-
formance, at the cost of an increased competitive ratio. The
following theorem characterizes the degradation factor of
A(b) followed by a corollary characterizing the policy class
of ¢-degraded algorithms.

Theorem 1 Let A(b),b € B={1,2,...} be a policy class
of algorithms. The degradation factor of algorithm A(b),
with respect to the baseline A(p), the optimal 2-competitive
algorithm, is DF (A(b)) = 1/2 + max{p/2b,b/2p}.

Note that with b = p, DF(A(b)) = 1, and A(b) reduces to
the algorithm that optimizes the competitive ratio. A proof
follows quickly from standard results and is given in full ver-
sion of the article in (Zeynali et al. 2020). Immediately from
Theorem 1, the ¢-degraded policy class is characterized as
follows.

Corollary 2 Let ¢ > 1. The policy class of ¢-degraded al-
gorithms for the ski-rental problem is determined by B(¢) =
[p/(2¢ — 1),p(2¢ — 1)]. That is, the degradation factor of
any A(b) with b € B(¢) is no larger than ¢: DF(A(b)) <
o,b € B(9).

To elaborate on typical design guidelines that follow the
above analysis, in Figure 1, we plot the degradation fac-
tor as a function of the normalized parameter b/p. With
b/p > 1, the competitive ratio degrades gracefully, while
with b/p < 1 the competitive ratio degrades drastically.
The figure also highlights a few ¢-degraded policy classes.
For example, the 2-degraded policy class, which leads to a
degradation factor of at most 2, is B(2) = p x [1/3, 3]. This
wide range shows that data-driven learning of a policy can
be effective at optimizing the typical case. We discuss how
to perform the data-driven learning in Section 5.

3 The Online Knapsack Problem

The goal of the online knapsack problem (OKP) is to pack
items that are arriving online into a knapsack with unit ca-
pacity such that the aggregate value of admitted items is
maximized. In each round, item ¢ € [n] = {1,...,n},

10835

with value v; and weight w;, arrives, and an online algo-
rithm must decide whether to admit or reject ¢ with the ob-
jective of maximizing the total value of selected items while
respecting the capacity. Given items’ values and weights
{vi, w; }iepn) in offline, OKP can be stated as

[Offline OKP] max >ic[n) Vii,
s.t., Eze[n] w;z; <1,
vars.,, x; € {0,1}, i€ [n],

where the binary variable z; = 1 denotes the admission of
item ¢ and z; = 0O represents a decline. In an online set-
ting, the admission decision z; for item ¢ must be made
only based on causal information, i.e., the items’ values
and weights up to now {v;,w;},c}; and previous decisions
{x;}jefi—1). Since there exists no online algorithm with
a bounded competitive ratio for the general form of OKP
(Zhou, Chakrabarty, and Lukose 2008), we focus on OKP
under the following two standard assumptions, e.g., (Zhang,
Li, and Wu 2017; Zhou, Chakrabarty, and Lukose 2008).

Assumption 1 The weight of each individual item is much
smaller than the unit capacity of the knapsack, i.e., w; <
1,Vi € [n].

Assumption 2 The value-to-weight ratio (or value density)
of each item is lower and upper bounded between L and U,
e, L <wv;/w; <U,Vi€ [n].

Assumption 1 naturally holds in large-scale systems, in-
cluding the case study of this work in the context of electric
vehicle charging. Assumption 2 is to eliminate the potential
for rare items that have extremely high or low-value densi-
ties. This version of OKP has been used in numerous applica-
tions including online cloud resource allocation (Amarante
et al. 2013; Zhang et al. 2017), budget constrained bidding
in keyword auction (Zhou, Chakrabarty, and Lukose 2008),
and online routing (Buchbinder, Naor et al. 2009). Also, as
rigorously stated in appendix, OKP is closely related to the
one-way trading problem (OTP) (El-Yaniv et al. 2001) in the
sense that the optimal competitive ratios of OKP and OTP
are the same and both can be achieved via threshold-based
algorithms. Consequently, our results also hold for OTP.

Under Assumptions 1 and 2, and using v := U/L to rep-
resent the fluctuation of the value density, the optimal com-
petitive ratio of OKP is In(v) + 1, in the sense that no (de-
terministic or randomized) online algorithms can achieve a
smaller competitive ratio (Zhou, Chakrabarty, and Lukose
2008). It has also been shown that a threshold-based al-
gorithm can achieve this optimal competitive ratio (Zhou,
Chakrabarty, and Lukose 2008; Zhang, Li, and Wu 2017).
Let U(z) : [0,1] — [L,U] U {+oo} denote a threshold
function. The online algorithm for OKP admits an item ¢
only if its value density is no less than the threshold value
at current utilization level z;_1, i.e., v;/w; > W(z_1).
With the threshold function designed in (Zhang, Li, and Wu
2017; Zhou, Chakrabarty, and Lukose 2008), this algorithm
is proved to be (In(+) + 1)-competitive.

3.1 A Competitive Policy Class for OKP

We consider a policy class of algorithms OKP-Alg(a),
a € A= {aJa > 0}. OKP-Alg(«) is a threshold-based

Algorithm 1 OKP-Alg(«a): A parametric algorithm for
OKP

1: Input: threshold function W, initial utilization zy = 0;
2: while item i arrives do
3: determine x; by solving the problem (4) given the
current utilization z;_1;

update utilization z; = z;—1 + w;x}
: end while

AN

algorithm whose threshold function ¥, is parameterized by
o as follows

L z€[0,T),
Uo(z) = ¢ min {U, Le*/T-V} 2 € [T,1), (3)
+OO z = 17

where ' = 1/(In(v) + 1) is a utilization threshold where
all items will be admitted. Figure 2 depicts ¥, with re-
spect to multiple parameter «. We can interpret ¥, (2) as
the marginal cost of packing items into the knapsack when
its utilization is z. This threshold function can then be used
to estimate the cost of using a portion of the knapsack ca-
pacity and OKP-Alg(«) aims to balance the value from the
item and cost of using the capacity. Particularly, upon the ar-
rival of item ¢, OKP-Alg(«) makes the admission decision
by solving a pseudo-utility maximization problem

x = argmax v;x; — Yo (z-1)wiz;, %)

z;€{0,1}

where z;_1 = > .,y w;z], is the cumulative capacity
utilization of the previous ¢ — 1 items. Given Assumption
1, ¥, (z;—1)w; estimates the cost of packing item . The on-
line algorithm admits an item only if its value density is high
enough such that a non-negative pseudo-utility can be ob-
tained. The OKP-Alg(«a) is summarized as Algorithm 1.
Note that the parametric algorithm OKP-Alg(«) is a gen-
eralization of the classic threshold-based algorithm (Zhang,
Li, and Wu 2017; Zhou, Chakrabarty, and Lukose 2008).
When o = 1, ¥, recovers the threshold function designed
in (Zhang, Li, and Wu 2017) and OKP-A1g(1) can achieve
the optimal competitive ratio.

To construct a competitive policy class for OKP, one could
consider various ways of parametrizing the threshold ¥, .
For instance, one could parameterize the minimum thresh-
old T of the flat segment (« € [0,7")) and/or the increas-
ing rate of the exponential segment (o € [T, 1)) to increase
aggressiveness of OKP-Alg(c). Our results focus on the
exponential rate, which provides a richness for tuning with-
out incurring significant degradation in the competitive ra-
tio. Our first result characterizes the degradation factor of
OKP-Alg(«) with respect to the worst-case optimized al-
gorithm OKP-Alg (1).

Theorem 3 The degradation factor of OKP-Alg(a), a €
A, with respective to OKP~A1g(1) is

— a € [1,+00),
DF(OKP-Alg(a)) = ¢ “t2 1 5)
areT o€(0.1)

10836

Threshold value

04 06
Utilization

Figure 2: Threshold function Figure 3: Degradation factor
U, in Eq. (3) with different DF(OKP-Alg(a)) for dif-
values of « for OKP; v = 20. ferent value of « for OKP.

Figure 3 illustrates the degradation factor as the parameter
« varies. In (Zeynali et al. 2020), we provide insights on the
growth of the degradation factor and the rigorous proof of
Theorem 3. The proof leverages the fact that, in the worst-
case scenario, the arriving items can be divided into two
batches. OKP-Alg(«) only admits the first batch of items
while the offline optimal solution only admits the second
batch. Depending on the parameter «, there exist two cases:
when o € [1,400), the value densities of the first batch
of items are exactly equal to the marginal cost of packing
each item upon their arrivals and the total weight of the ad-
mitted items is z“, at which the maximum value density is
reached, i.e., ¥, (z%) = U. Then the second batch of items
with value density U — € (e > 0) arrives and their total
weight is 1. The competitive ratio of this case can be de-

rived as (U — €)/ [Wa(s)ds. When v € (0, 1), since the
maximum marginal cost of packing items is less than the
maximum value density, i.e., ¥, (1) < U, the first batch of
items will occupy the whole capacity of the knapsack. Thus,
in this case, the competitive ratio becomes U/ fol U, (s)ds.
Substituting ¥, gives the competitive ratios in the two cases.
In order to adaptively tune v with worst-case performance
guarantees, data-driven models can be proactively built to
ensure a degradation factor no larger than ¢ by restricting o
in a ¢-degraded policy class. The following corollary char-
acterizes the ¢-degraded policy class of OKP-Alg(«).

Corollary 4 Ler ¢ € [1,7). The policy class of ¢-degraded
algorithms for OKP is

. ¢ _ Wsn oy — 1)}
y=¢ In(y) y-9¢ |’

where Wy, == W (—711;(13)(#6_111(7)(75/(7_@) and W (-) is

the Lambert function.

Alg) = (6)

The ¢-degraded policy class models a tradeoff between the
performance in typical settings and the robustness in worst-
case scenarios. A larger ¢ corresponds to a weaker worst-
case guarantee but provides a larger space for potentially
learning an algorithm that can work better in common cases.

4 The Online Set Cover Problem

The classical (unweighted) version of online set-cover prob-
lem (0OSC) is defined as follows. Let Z, with n := |Z|, be the
ground set of elements, each indexed by i. Let S, m := [S],

be a family of sets, such that each set s € S includes a subset
of elements in Z. In the online problem, a subset of elements
I’ C T arrives element-by-element over time. Once element
1 arrives, the algorithm must cover ¢ by selecting one (or
more) sets containing . The online algorithm knows Z and
S in advance, but not Z’. The ultimate goal is to pick the
minimum possible sets from S in order to cover all elements
in Z’. Given Z’, OSC can be formulated as follows.

[Offline 0SC] min Y oses Ts
s.t., Zs\ies s >1, 1€,
vars., xzs € {0,1}, s € S,

where the binary variable x; = 1 if set s is chosen, and
zs = 0, otherwise. The offline OSC problem is NP-hard and
the online version is even more challenging due to the un-
certainty of elements to be covered. The OSC problem was
first introduced in (Alon, Awerbuch, and Azar 2003) and
has been proved to be the core problem in numerous real-
world applications such as online resource allocation (Pu
et al. 2018; Wang et al. 2017), crowd-sourcing (Sheng,
Tang, and Zhang 2012; Bagaria, Pananjady, and Vaze 2013),
and scheduling (Pananjady, Bagaria, and Vaze 2015), etc.
In the literature, there exists several online algorithms for
0SC (Alon, Awerbuch, and Azar 2003; Buchbinder and
Naor 2009). Our design is based on (Alon, Awerbuch, and
Azar 2003) where the proposed algorithm is based on a
specifically-designed potential function. Upon arrival of an
element, the algorithm adds some subsets to cover the cur-
rent element, and meanwhile ensures the potential function
is non-increasing. This algorithm achieves a competitive ra-
tio of 4 log n(2 + log m). We primarily focus on developing
a class of algorithms for OSC by extending the algorithm
in (Alon, Awerbuch, and Azar 2003), and characterize the
degradation factor with respect to it. Also, we provide in-
sights about how to learn an online algorithm from the class.

4.1 A Competitive Policy Class for 0SC

In this section, we introduce 0SC—-A1g(#), a parametric pol-
icy class for OSC that generalizes the existing algorithm,
from (Alon, Awerbuch, and Azar 2003). The core of the pol-
icy class is a parameter € that determines the rate at which
the subsets should be covered. The algorithm works as fol-
lows. Let w, represent the weight of set s € S. These
weights evolve during the execution of OSC-Alg. Further,
let w; = Zse 5, Ws be the weight of element ¢, where S;
is the set of all subsets containing 7, and define Z°¢ and
S5l as the running sets of covered elements and chosen
subsets by the algorithm during its execution. The algorithm
maintains a potential function @ for the uncovered elements
defined as ® = 37, ;7.0 n?".

The details on how the algorithm proceeds are summa-
rized in Algorithm 2. Briefly, once a new element arrives,
if the element is already covered, the algorithm does noth-
ing. However, if the new element is uncovered, the algorithm
first updates the weight of the set containing ¢ according to
Lines 6 and 7, and then selects at most 26 log(n) subsets
from S; such that the potential function does not increase.

Algorithm 2 0SC-A1g(f): A parametric algorithm for 0SC

1: initialization: potential function ¢, > 1, and w; =
s8I = 0,55 =)
while element ¢ arrives do
if w; > 1,i.e., iisin Z°%* then
do nothing
else do the weight-augmentation:
find the minimum k such that 6% x w; > 1
update w, + 0% x w,, s € S;
select at most 26 log(n) subsets from S; such
that value of potential function does not increase if we
add these subsets to S°°*. Add i to Z5*
9: end if
10: end while

Note that, with 6 = 2, the algorithm degenerates to the ex-
isting algorithm in (Alon, Awerbuch, and Azar 2003), which
covers at most 4 logn subsets in each round. For intuition
behind potential functions and updating the weights, we re-
fer to (Alon, Awerbuch, and Azar 2003). The following the-
orem characterizes the degradation factor of 0SC-A1g(#)
using (Alon, Awerbuch, and Azar 2003) as the baseline.

Theorem 5 The degradation factor of 0SC-Alg(f) with
respect to 0SC—A1g(2) is
2log 0 +logm

DF(0SC-Alg(#)) =46 1oz 02 + Togm) |’ (8)

As expected, this theorem recovers the result of (Alon,
Awerbuch, and Azar 2003) for the case of # = 2, obtain-
ing the competitive ratio of CR = (4logn)(logm + 2)
which is O(log n log m). The proof (in (Zeynali et al. 2020))
is based on finding a feasible region for ¢ such that the
number of iterations in the weight augmentation is upper
bounded, and ensuring the feasibility of the operation in
Line 7 of 0SC-Alg. Also, note that with a slight change
in the setting and assuming that the frequency of elements
in subsets is bounded by d, OSC-Alg can be straightfor-
wardly extended to the case with a competitive ratio of
(201logn)(2 + logd/log0).

The next step is to characterize the ¢-degraded policy
class of algorithms, which involves calculations of the in-
verse of Eq. (8), and can be expressed by the r-Lambert
function, i.e., the inverse of f(x) = xe® + rz. However,
for clarity, in Figure 4, we plot the degradation factor for
two different values of m. Also, this figure shows 1.2 and
1.1-degraded policy classes. For example, it shows that with
m = 10°, by tuning 6 = [1.67, 3.93], the competitive ratio
will be degraded by at most 10%.

Last, to further highlight the practical difference of our
proposed framework with the existing prediction-based on-
line algorithms, we provide intuition on how the coarse-
grained structure of input provides insights on finding the
best policy. A key algorithmic nugget of 0OSC—A1lg is on the
number of subsets selected in Line 8. The higher the value
of 6, the higher the probability of selecting more subsets in
runtime. However, depending on the overlap of elements in
subsets, a higher value # might be good or bad. Specifically,

—— DF(0):m: 1xe2
-o= DF(6):m: 1xe5

Scenario 1

Normalized cost

,,,,,

Scenario 2

20 30
Figure 4: Degradation factor Figure 5: Normalized cost of
DF(0SC-Alg(#)) with dif- 0SC-A1g(#) for two differ-
ferent values of m for OSC ent problem scenarios

with higher 6, i.e., selecting more subsets in each round, is
beneficial if the overlap of appearing elements in subsets is
high since the algorithm covers some useful subsets in ad-
vance. We refer to this as “Scenario 1”. As “Scenario 27,
consider the case in which the overlap between elements in
subsets is small. In this scenario, smaller § might be better
since in each round the algorithm will cover only subsets that
are needed for the current element. To illustrate the impact
of learning the right value of # under Scenarios 1 and 2, in
Figure 5, we report an experiment with 20 random instances
of OSC with n = 120, m = 3200, and 80 elements ap-
peared on the input. The result illustrates our intuition above,
i.e., larger 0 favors Scenario 1 and smaller 6 favors Scenario
2. Our construction of policy class is able to capture these
scenarios for learning the best policy. Instead, the existing
prediction-based algorithms can only use fine-grained ML
advice that predicts the upcoming elements in near future.

5 Data-driven Algorithm Selection as
Online Learning

The previous sections have constructed competitive pol-
icy classes of online algorithms for ski-rental, OKP, and
OSC. Given these classes, the next question is how to
adaptively select the parametric algorithms using a data-
driven approach. This task falls into the emerging frame-
work of data-driven algorithm design, which has been intro-
duced in (Gupta and Roughgarden 2017, 2020) and followed
by (Balcan, Dick, and Vitercik 2018; Balcan, Dick, and Peg-
den 2020) by framing it as a principled online learning prob-
lem. In this section, we will discuss how the algorithm se-
lection problem within our policy classes can be formulated
as an online learning problem.

Consider the problem of adaptively selecting the para-
metric algorithm A(«) from a ¢-degraded policy class
A(¢) in a total of M rounds, where each round ¢ corre-
sponds to an instance of the underlying online problem.
At the beginning of round ¢t € [M], we choose a param-
eter a; € A(¢p) and run A(ay) to execute the instance
of this round Z;. Let R;(Z;, ;) denote the total reward
in round ¢. Suppose the instances of all rounds are known
from the start, the best fixed parameter oo is given by
ag = argmaxac a(g) 2reqar) Re(Zi,). The problem of
choosing the parameter is to design an online learning algo-
rithm that can determine «; in an online manner and mini-
mize the regret of the adaptively selected parameter oy with

10838

off
(&

Regret,, (a°T) = Z Ri(Zy, a2) — Z

te[M] te[M

respective to the best fixed parameter ad", i.e.,

Rt(It7 Olt).
]

To perform online learning for algorithm selection, we
can apply results from prior literature. One approach is to
convert the infinite set of parameters A(¢) into a finite

set fl(qb) using discretization, numerically evaluate the re-
ward function, and then apply existing online learning al-
gorithms to determine the parameter selection. Depending
on the computational complexity of evaluating the reward
function, we may choose Hedge algorithms (Freund and
Schapire 1997) for full information feedback, i.e., known
Ri(Z;,o),YVa € A(¢p), or EXP3 algorithms (Auer et al.
2002) for bandit information feedback, i.e., when the reward
Ry (Zy, o) is known just for the selected .

Another alternative is to obtain theoretical regret bounds
on the online learning problems over the original infinite
set A(¢). The critical challenge in this setting for the re-
gret analysis is to understand the properties of the per-round
reward function. In particular, when the reward function
is Lipschitz-continuous, sublinear regret algorithms can be
shown in both the full information and bandit settings (Mail-
lard and Munos 2010). For the one-way trading problem
(OTP), which could be interpreted as a simplified version
of the knapsack problem, one can show the reward func-
tion under our proposed parametric algorithms is Lipschitz-
continuous (See (Zeynali et al. 2020) for more detail).

However, for OKP and OSC, the per-round reward func-
tions are, in general, piecewise Lipschitz functions. It is
known that online learning algorithms for general piece-
wise Lipschitz functions suffer linear regret bounds (Cohen-
Addad and Kanade 2017), though recent work in (Balcan,
Dick, and Vitercik 2018) shows that sublinear regrets can be
achieved if the piecewise Lipschitz reward functions satisfy
some additional dispersion conditions. The key step of veri-
fying the dispersion condition is to characterize the disconti-
nuity locations of the reward function. For several classic of-
fline problems, (Balcan, Dick, and Vitercik 2018) provided
such characterizations for the reward functions correspond-
ing to their parametric offline algorithms. However, in the
online learning problems of OKP and OSC, the reward func-
tions are given by the optimal values of underlying online
problems, and hence their discontinuities are challenging to
characterize in general. However, proving sublinear regret
bounds by verifying the dispersion condition in specific ap-
plication settings is promising, since in the OTP setting, the
reward function can even be Lipschitz-continuous.

6 Case Study

To illustrate the practical implications of being able to op-
timize within a policy class while still ensuring worst-case
competitive bounds, we end the paper with a real-world case
study on the admission control of electric vehicles (EVs) in a
charging station, which is an extended version of OKP (Sun
et al. 2020; Alinia et al. 2020). We consider a charging sta-
tion with a charging demand more than its power capacity,
which increasingly is the case. Upon the arrival of an EV, the

station has to either admit or reject the request based on the
value and weight (amount of energy demand) of the charg-
ing request as well as the current utilization of the station.
Clearly, this is similar to the OKP setting, with the difference
being that the charging requests have flexibility within an
available window and the stations may schedule the charg-
ing requests with this flexibility. The station during the time
can be seen as the multiple knapsacks. Thus, the problem
is a time-expanded version of single OKP. In (Zeynali et al.
2020), we show the the relation between EV charging prob-
lem and OKP more formally and characterize its degradation
factor rigorously. Also, we explain how to achieve the opti-
mal competitive ratio of OKP for this extended problem.

Experimental setup. To explore the performance of
our framework for EV admission control, we use ACN-
Data (Lee, Li, and Low 2019), an open EV dataset including
over 50,000 fine-grained EV charging sessions. The data is
collected from an EV parking lot at Caltech that includes
more than 130 chargers. In this experiment, we use a two-
month sequence of EV charging requests including arrival
and departure times and charging demands. Since the data
does not include the value of each request, we use a value
estimation approach by modeling the distribution of histor-
ical arrivals and setting the values as a function of arrival,
i.e., the higher the rate of arrival, the higher the value; de-
tails are provided in (Zeynali et al. 2020). Moreover, we
used a water-filling scheduling policy to process the requests
during the time. The water-filling policy splits the demand
into the smaller parts then for each part, picks the slot with
minimum utilization sequentially and updates the utilization
by amount of smaller demand. In the experiments, each in-
stance considers one day, and we randomly generated 100
instances for each day, each with different values, and report
the results for 60 x 100 = 6000 instances.

We report the empirical profit ratio, profit of optimal of-
fline algorithm over the profit of online algorithm in ex-
periment, of different algorithms, which is the counterpart
of the theoretical competitive ratio in the empirical setting.
We compare the empirical profit ratio of three different al-
gorithms: (1) OKP-Alg(1), the worst-case optimized on-
line algorithm that does not take into account the power
of learning from historical data, but, guarantees the opti-
mal competitive ratio; (2) OKP-Alg(a®tf), an algorithm
that finds the best possible parameter in an offline manner.
OKP-Alg(a°*f) is not practical since it is fed with the op-
timal parameter; however, it illustrates the largest possible
improvement from learning; and (3) OKP-Alg(a°"), a sim-
ple, yet practical, algorithm that uses the optimal policy of
the previous instance of the problem for the current instance.

Experimental results. Figure 6 plots the CDF of the em-
pirical profit ratios of different algorithms. First, it shows
that OKP-A1g(a®F), e.g., the offline optimal policy, sub-
stantially improves the performance, i.e., the 80th percentile
of OKP-Alg(1l) has the profit ratio of 1.87, while with
OKP-Alg(a°*®), this is reduced to 1.46. Second, the per-
formance of practical OKP-A1g(a°") is very close to that
of OKP-A1g(a°t). To scrutinize the microscopic behav-
ior of OKP-Alg(a®), in Figure 7, we plot the CDF of
the improvement of the OKP-Alg(a°") as compared to

1.0

0.8

LDL().o

© 0.4 i —— OKP-Alg(a®//)

02 e OKP-Alg(a™)
—=~ OKP-Alg(1)

0.0

1.0 1.5 2.0 2.5 3.0
Empirical profit ratio
Figure 6: CDF of empirical
profit ratios of different al-
gorithms solving OKP

—— Avgi(RilT,, o))
,,,,, Avgy(Ri(I1,a21))

0 200 400 600 800 1000

Figure 8: Average reward
of the online learning algo-
rithm and the static optimal

—40 =20 0 20
Percentage change in profit ratio
Figure 7: Improvement of
OKP-Alg(a®®) compared
to OKP-Alg(1l)

)

of f

Regrety(af

0 200 400 600 800 1000

Figure 9: The regret of the
online learning algorithm
over different rounds

OKP-Alg(1). Notable observations are as follows: (i) ap-
proximately in 76% of instances OKP-Alg(a°") outper-
forms OKP-Alg(1), on average by 17.8%; (ii) in 21%,
OKP-Alg(a°") has no benefits over OKP-Alg(1); and fi-
nally, (iii) in 3% of cases, OKP-Alg(a°") does worse than
OKP-Alg(1), on average by 6.4%. A take-away from these
experiments is that the average performance is substantially
improved over the worst-case optimized algorithm, and that
this improvement comes while only degrading the perfor-
mance of a small fraction of instances by a small amount.
Algorithm selection via online learning. In this experi-
ment, we use an online learning approach for selecting the
best algorithm (as described in Section 5). Specifically, we
use the adversarial Lipschitz learning algorithm in a full-
information setting to implement the parameter selection
(Maillard and Munos 2010). Figure 8 reports the average re-
ward collected by the online learning approach and the best
offline static algorithm over different rounds of running the
problem. The average reward of an online algorithm con-
verges to the optimal offline reward when as the learning
process increases. The regret value’s growth is presented in
Figure 9. When the average reward of the online algorithm
merges to the optimal offline value, the marginal rate of re-
gret value decreases although the regret value increases.

7 Concluding Remarks

We developed an approach for characterizing policy classes
of online algorithms with bounded competitive ratios, and
introduce the degradation factor, a new performance metric
that determines the worst-case performance loss of learn-
ing the best policy as compared to a worst-case optimized
algorithm. We apply our approach to the ski-rental, knap-
sack, and set cover problems. These applications serve as
illustrations of an integrated approach for learning online
algorithms, while the majority of prior literature use ML for
learning the uncertain input to online problems.

Acknowledgments

Ali Zeynali and Mohammad Hajiesmaili acknowledge the
support from NSF grant CNS-1908298, and NSF CAREER
2045641. Adam Wierman’s research is supported by NSF
AitF-1637598, and CNS-1518941. Also, Bo Sun received
the support from Hong Kong General Research Fund, GRF
16211220.

References

Akhtar, Z.; Nam, Y. S.; Govindan, R.; Rao, S.; Chen, J.;
Katz-Bassett, E.; Ribeiro, B.; Zhan, J.; and Zhang, H. 2018.
Oboe: auto-tuning video ABR algorithms to network condi-
tions. In Proc. of the ACM SIGCOMM, 44-58.

Alabi, D.; Kalai, A. T.; Liggett, K.; Musco, C.; Tzamos, C.;
and Vitercik, E. 2019. Learning to Prune: Speeding up Re-
peated Computations. In Conference on Learning Theory,
30-33.

Alinia, B.; Hajiesmaili, M. H.; and Crespi, N. 2019. Online
EV charging scheduling with on-arrival commitment. /EEE
Transactions on Intelligent Transportation Systems 20(12):

4524-4537.

Alinia, B.; Hajiesmaili, M. H.; Lee, Z. J.; Crespi, N.; and
Mallada, E. 2020. Online EV scheduling algorithms for
adaptive charging networks with global peak constraints.
IEEE Transactions on Sustainable Computing .

Alon, N.; Awerbuch, B.; and Azar, Y. 2003. The online set
cover problem. In Proc. of ACM STOC, 100-105.

Amarante, S. R. M.; Roberto, F. M.; Cardoso, A. R.; and
Celestino, J. 2013. Using the multiple knapsack problem
to model the problem of virtual machine allocation in cloud
computing. In Proc. of IEEE CSE.

Angelopoulos, S.; Diirr, C.; Jin, S.; Kamali, S.; and Renault,
M. 2020. Online computation with untrusted advice. In
Proc. of ITCS.

Antoniadis, A.; Coester, C.; Elias, M.; Polak, A.; and Simon,
B. 2020a. Online metric algorithms with untrusted predic-
tions. arXiv preprint arXiv:2003.02144 .

Antoniadis, A.; Gouleakis, T.; Kleer, P.; and Kolev, P. 2020b.
Secretary and Online Matching Problems with Machine
Learned Advice. arXiv preprint arXiv:2006.01026 .

Auer, P.; Cesa-Bianchi, N.; Freund, Y.; and Schapire, R. E.
2002. The nonstochastic multiarmed bandit problem. SIAM
Jjournal on computing 32(1): 48-77.

Bagaria, V. K.; Pananjady, A.; and Vaze, R. 2013. Op-
timally approximating the lifetime of wireless sensor net-
works. arXiv preprint arXiv:1307.5230 .

Balcan, M.-F,; Dick, T.; and Pegden, W. 2020. Semi-bandit
Optimization in the Dispersed Setting. The Conference on
Uncertainty in Artificial Intelligence .

Balcan, M.-F,; Dick, T.; and Vitercik, E. 2018. Dispersion
for data-driven algorithm design, online learning, and pri-
vate optimization. In Proc. of IEEE FOCS, 603-614.

10840

Bamas, E.; Maggiori, A.; and Svensson, O. 2020. The
Primal-Dual method for Learning Augmented Algorithms.
Advances in Neural Information Processing Systems 33.

Banerjee, S. 2020. Improving Online Rent-or-Buy Algo-
rithms with Sequential Decision Making and ML Predic-
tions. Advances in Neural Information Processing Systems
33.

Borodin, A.; and El-Yaniv, R. 2005. Online computation
and competitive analysis. Cambridge university press.

Buchbinder, N.; and Naor, J. 2009. Online primal-dual algo-
rithms for covering and packing. Mathematics of Operations
Research 34(2): 270-286.

Buchbinder, N.; Naor, J. S.; et al. 2009. The design of com-
petitive online algorithms via a primal—dual approach. Foun-
dations and Trends®) in Theoretical Computer Science 3(2—
3): 93-263.

Chen, N.; Agarwal, A.; Wierman, A.; Barman, S.; and An-
drew, L. L. 2015. Online convex optimization using predic-
tions. In Proc. of ACM SIGMETRICS, 191-204.

Chen, N.; Comden, J.; Liu, Z.; Gandhi, A.; and Wierman,
A. 2016. Using predictions in online optimization: Looking
forward with an eye on the past. ACM SIGMETRICS 44(1):
193-206.

Cohen-Addad, V.; and Kanade, V. 2017. Online optimiza-
tion of smoothed piecewise constant functions. In Artificial
Intelligence and Statistics, 412-420.

De Cicco, L.; Cilli, G.; and Mascolo, S. 2019. Erudite: a
deep neural network for optimal tuning of adaptive video
streaming controllers. In Proc. of ACM MMSys, 13-24.

El-Yaniv, R.; Fiat, A.; Karp, R. M.; and Turpin, G. 2001.
Optimal search and one-way trading online algorithms. Al-
gorithmica 30(1): 101-139.

Freund, Y.; and Schapire, R. E. 1997. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of computer and system sciences 55(1):
119-139.

Gollapudi, S.; and Panigrahi, D. 2019. Online algorithms for
Rent-Or-Buy with expert advice. In Proc. of ICML, 2319—
2327.

Gupta, R.; and Roughgarden, T. 2017. A PAC approach to
application-specific algorithm selection. SIAM Journal on
Computing 46(3): 992-1017.

Gupta, R.; and Roughgarden, T. 2020. Data-driven algo-
rithm design. Communications of the ACM 63(6): 87-94.

Karlin, A. R.; Manasse, M. S.; Rudolph, L.; and Sleator,
D. D. 1986. Competitive snoopy caching. In Proc. of IEEE
FOCS, 244-254.

Kleinberg, R.; Leyton-Brown, K.; Lucier, B.; and Graham,
D. 2019. Procrastinating with Confidence: Near-Optimal,
Anytime, Adaptive Algorithm Configuration. In Proc. of
NeurIPS, 8881-8891.

Kodialam, R. 2019. Optimal algorithms for Ski Rental
with soft machine-learned predictions. arXiv preprint
arXiv:1903.00092 .

Kotthoff, L.; Gent, 1. P.; and Miguel, I. 2012. An evaluation
of machine learning in algorithm selection for search prob-
lems. AI Communications 25(3): 257-270.

Lee, R.; Hajiesmaili, M. H.; and Li, J. 2019. Learning-
assisted competitive algorithms for peak-aware energy
scheduling. arXiv preprint arXiv:1911.07972 .

Lee, Z.; Li, T.; and Low, S. H. 2019. ACN-Data charging
dataset: analysis and applications. In Proc. of ACM eEnergy.

Leyton-Brown, K.; Nudelman, E.; and Shoham, Y. 2009.
Empirical hardness models: Methodology and a case study
on combinatorial auctions. Journal of the ACM (JACM)
56(4): 1-52.

Lykouris, T.; and Vassilvtiskii, S. 2018. Competitive
Caching with Machine Learned Advice. In Proc. of ICML,
3302-3311.

Maillard, O.-A.; and Munos, R. 2010. Online learning in
adversarial lipschitz environments. In Joint european con-
ference on machine learning and knowledge discovery in
databases, 305-320. Springer.

Pananjady, A.; Bagaria, V. K.; and Vaze, R. 2015. The online
disjoint set cover problem and its applications. In Proc. of
IEEE INFOCOM, 1221-1229.

Pu, L.; Jiao, L.; Chen, X.; Wang, L.; Xie, Q.; and Xu, J.
2018. Online resource allocation, content placement and re-
quest routing for cost-efficient edge caching in cloud radio
access networks. IEEE Journal on Selected Areas in Com-
munications 36(8): 1751-1767.

Purohit, M.; Svitkina, Z.; and Kumar, R. 2018. Improving
online algorithms via ML predictions. In Proc. of NeurIPS,
9661-9670.

Rohatgi, D. 2020. Near-Optimal bounds for online caching
with machine learned advice. In Proc. of IEEE SOCA, 1834—
1845.

Roughgarden, T. 2021. Beyond the Worst-Case Analysis
of Algorithms. Cambridge University Press. doi:10.1017/
9781108637435.

Semke, J.; Mahdavi, J.; and Mathis, M. 1998. Automatic
TCP buffer tuning. In Proc. of ACM SIGCOMM, 315-323.

Sheng, X.; Tang, J.; and Zhang, W. 2012. Energy-efficient
collaborative sensing with mobile phones. In Proc. of IEEE
INFOCOM, 1916-1924.

Sun, B.; Zeynali, A.; Li, T.; Hajiesmaili, M.; Wierman, A.;
and Tsang, D. H. 2020. Competitive Algorithms for the On-
line Multiple Knapsack Problem with Application to Elec-
tric Vehicle Charging. Proceedings of the ACM on Measure-
ment and Analysis of Computing Systems 4(3): 1-32.

Wang, L.; Jiao, L.; Li, J.; and Miihlhduser, M. 2017. Online
resource allocation for arbitrary user mobility in distributed
edge clouds. In Proc. of IEEE ICDCS, 1281-1290.

Wang, S.; Li, J.; and Wang, S. 2020. Online Algorithms
for Multi-shop Ski Rental with Machine Learned Advice.
Advances in Neural Information Processing Systems 33.

10841

Wei, A.; and Zhang, F. 2020. Optimal Robustness-
Consistency Trade-offs for Learning-Augmented Online Al-
gorithms. Advances in Neural Information Processing Sys-
tems 33.

Winstein, K.; and Balakrishnan, H. 2013. TCP ex machina:
Computer-generated congestion control. ACM SIGCOMM
Computer Communication Review 43(4): 123—-134.

Zeynali, A.; Sun, B.; ; Hajiesmaili, M.; and Wierman,
A. 2020. Data-driven Competitive Algorithms for Online
Knapsack and Set Cover. arXiv preprint arXiv:2012.05361

Zhang, X.; Huang, Z.; Wu, C.; Li, Z.; and Lau, F. 2017. On-
line auctions in IaaS clouds: Welfare and pProfit maximiza-
tion with server costs. IEEE/ACM Trans. on Networking
25(2): 1034-1047.

Zhang, Z.; Li, Z.; and Wu, C. 2017. Optimal posted prices
for online cloud resource allocation. Proc. of ACM SIGMET-
RICS 1(1): 23:1-23:26.

Zhou, Y.; Chakrabarty, D.; and Lukose, R. 2008. Budget

constrained bidding in keyword auctions and online knap-
sack problems. In Proc. of WINE, 566-576.

