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Support varieties
Sheaf cohomology

1. Introduction

1.1. Let g be a classical simple Lie superalgebra over C and G be the corresponding
supergroup (scheme) with Lie G = g. Given a parabolic subgroup scheme P, a major
open question has been to compute the higher sheaf cohomology group R’ indgN for
j > 0 where N is a finite-dimensional P-module. General theory on this topic can be
found in [29], and some computations for Lie superalgebras such as gl(m|n), osp(m|2n),
and q(n) are presented in [29,12,13,22,23,26,27]. For reductive algebraic groups, when
P is a Borel subgroup and N is a one-dimensional module, the answer is given by the
classical Bott-Borel-Weil (BBW) theorem.

In this paper we introduce parabolic subsupergroups P = B such that the higher
sheaf cohomology R7ind%(—) can be computed using data from the BBW theorem.
These subgroups are obtained by using the detecting subalgebras via the stable action of
Gj on gi. One striking feature about these subalgebras is the interplay between the even
roots and the odd roots with their associated finite reflection groups, and the fact that
our approach allows for a uniform treatment of all classical simple Lie superalgebras. In
particular as a byproduct of our work, we obtain an important computation of the higher
sheaf cohomology groups of G/B for the trivial line bundle: H7(G/B, £(0)) := R/ind%C
for j > 0 (cf. Theorem 4.10.1). For classical simple Lie superalgebras other than p(n),
it is shown that the polynomial pg p(t) = >0y dim Riindg(C t' is equal to a Poincaré
polynomial for a finite reflection group Wi specialized at a power of ¢. This indicates that
the combinatorics of the length function on Wj plays in important role in this setting,
and opens the possibilities for developing a general theory involving these parabolic
subsupergroups.

1.2.  For finite groups it is well-known that the cohomology is detected on the col-
lection of elementary abelian p-subgroups. Moreover, Quillen [24,25] showed that these
subgroups can be used to describe the spectrum of the cohomology ring. Later Avrunin
and Scott [1] demonstrated that the support varieties for finite groups consist of tak-
ing unions of support varieties for elementary abelian subgroup whose varieties can be
described using rank varieties.

In the study of classical simple Lie superalgebras, Boe, Kujawa and Nakano [4] used
invariant theory for reductive groups to show that there are natural classes of “subalge-
bras” that detect the cohomology (see also [2]). These subalgebras come in one of two
families: f (when g is stable) and e (when g is polar). In all cases, g admits a stable action
and in most cases g admits a polar action (cf. [4, Table 5]).
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In this situation, the restriction maps induce isomorphisms*:

H.(g,g(),(C) = H.(f7 f(_)7C)N = H.<e7 e[_)’(c)We

where N is a reductive group and W, is a finite pseudoreflection group. These relative
cohomology rings may be identified with the invariant ring S* (g%)GO, where S*® denotes
the symmetric algebra, and so are finitely generated. This property was used to construct
support varieties for modules in the category F(4 4,) (i.e., finite-dimensional g-modules
that are completely reducible over gg).

The main application of the existence and properties of the BBW type parabolic
subalgebras is our verification of the following theorem.

Theorem 1.2.1. Let g be a simple classical Lie superalgebra and let M be in F(q 4.)-

(a) If g is stable then the map on support varieties
res” s Vis i) (M) /N = Vi(g,q5) (M)

is an tsomorphism.
(b) If g is stable and polar then the maps on support varieties

res” : V(e,e())(M)/We — V(fﬂc@)(M)/N — V(g’gﬁ)(M)
are isomorphisms, where W, is a pseudoreflection group.

The aforementioned theorem has been a conjecture that was first introduced in [4].
In that paper, the equality of the varieties in Theorem 1.2.1 was shown to hold on the
complement of the discriminant locus (i.e., an open dense set). This provided strong
evidence for the validity of the conjecture. Later, Lehrer, Nakano and Zhang [20] proved
the conjecture for the general linear Lie superalgebra and more generally type I classical
simple Lie superalgebra via a cohomological embedding theorem.

Kac and Wakimoto defined a combinatorial invariant called the atypicality of a
weight A when g is a basic classical simple Lie superalgebra. The support varieties in
Theorem 1.2.1 play a prominent role in the theory because they provide a geometric
interpretation of this combinatorial invariant. It is conjectured that for the basic simple
Lie superalgebras, the dimension of the support variety V4 q.y(L())) equals the atypi-
cality of the finite-dimensional irreducible representation L(A). This has been verified in
a number of cases including gl(m|n) [5] and osp(m|2n) [18].

4 There are some errors in the statements in [4] and [20]. In these papers “H®(f, f5, C)N/No” should be
replaced with “H®(f, f5, C)N” and “V(s,55)(M)/(N/Ng)” should be replaced with “V(; 5.y(M)/N™.
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1.3.  For the detecting subalgebra ¢ one has a realization of the support variety
Vie,eq)(M) as a rank variety:
Vie,eq) (M) = VR (M) == {x € e5 : M|y ((z)) is not projective} U {0}.

(8,2())

The establishment of Theorem 1.2.1 along with this rank variety description (i) provides
a concrete realization of V(g 4.y(M) and (ii) shows that the assignment (—) — V(g 4.)(—)
satisfies the properties as stated in [3] for a support datum. These important properties
are stated in the following corollary.

Corollary 1.3.1. Let g be a simple classical Lie superalgebra which is both stable and polar,
and let My, My and M be in Fq 4-)-

() Vig.go) (M) = Vil (M)/We;

(b) Vig.g5) (M1 @ Ma) = Vig,g5)(M1) N V(q,g5)(M2).

(c) Let X be a conical subvariety of V(g 4,)(C). Then there ewists L in Fg 4.y with
X =Vig.g)(L)-

(d) If M is indecomposable then Proj(V g q,)(M)) is connected.

Note that the verification of the corollary above follows by the same line of reasoning
as given in [20, Theorem 5.2.1].

1.4. The paper is organized as follows. In the next section, Section 2, the structure
theory for the detecting subalgebras and their relationship to various support variety
theories is reviewed. Given a classical simple Lie superalgebra, g, the construction of a
parabolic subalgebra, b, that is generated by the negative Borel subalgebra for gz and
the detecting subalgebra f is presented in Section 3. These parabolics are defined via
hyperplanes in the span of the roots in a Euclidean space. A comparison theorem is
proved between the relative cohomology for (b, b;) and (f,fs) (cf. Theorem 3.4.1) and
between the relative cohomology for (g,g5) and (b, bg) (cf. Theorem 3.5.1). The latter
relationship involves a natural grading on the group algebra of a finite reflection group

In Section 4, we investigate sheaf cohomology for G/B where g = Lie G and b = Lie B.
In particular, we consider the Poincaré series, pg p(t) = >0, dim Riind$C ' and give
a complete computation for all Lie superalgebras except when g = p(n). It is shown that
pa,B(t) is directly related to the standard Poincaré polynomial of Wy via the natural
length function on the finite reflection group Wy (cf. Table 7.2.1). Our calculations use
an intricate and detailed analysis of the (odd) dot action of W7 on a natural subset, @1,
of odd roots. Section 5 is devoted to investigating the situation for g = p(n). For p(2)
and p(3) it is shown that pg p(t) is governed by the BBW theorem. However, for p(4)
this is not the case and open questions are presented at the end of this section.

Finally, in Section 6, we indicate how our computation fit into a more functorial
setting involving natural spectral sequences (see Theorem 6.4.1 and Theorem 6.5.1). For
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all classical Lie superalgebras with the possible exception of g = p(n), it is shown that
the spectral sequence in Theorem 6.4.1 collapses. This result enables us to prove the
conjecture involving the equality of supports stated as Theorem 1.2.1.

1.5. Acknowledgments

The third author would like to acknowledge the support (under NSF grant DMS-
1440140) and hospitality of the Mathematical Sciences Research Institute (MSRI) during
his stay as a General Member in Spring 2018. Many of the results in the paper were
obtained during this time with weekly meetings after Wednesday Tea with the other
coauthors. We also thank Matthew Douglass, Chun-Ju Lai and the referee for their
comments and suggestions on an earlier version of this manuscript.

2. Preliminaries
2.1. Notation

We will use and summarize the conventions developed in [4-6]. For more details we
refer the reader to [4, Section 2].

Throughout this paper, let a be a Lie superalgebra over the complex numbers
C. In particular, a = ag @ aj is a Za-graded vector space with a supercommutator
[,]:a®a — a. A finite-dimensional Lie superalgebra a is called classical if there is a
connected reductive algebraic group Aj such that Lie(A5) = aj, and the action of Aj
on aj differentiates to the adjoint action of ag on aj. The Lie superalgebra a is basic
classical if it is a classical Lie superalgebra with a nondegenerate invariant supersym-
metric even bilinear form. In this paper our main focus will be on classical “simple” Lie
superalgebras. The algebras of interest are listed in Table 7.2.1. Although some of these
Lie superalgebras are not simple in the true sense, they are close enough to being simple
and are ones of general interest. With a slight abuse of notation we will let A(m|n) de-
note the Lie superalgebras gl(m|n) and sl(m|n) for m # n and sl(n|n) and psl(n|n) for
m = n. For the Lie superalgebras of type Q we use the notation of [23]. Namely, q(n) will
be the Lie superalgebra with even and odd parts gl,,, while psq(n) is the corresponding
simple subquotient of q(n). The Lie superalgebras that fall into the family of type P will
be denoted by P(n). These algebras include p(n) and its enlargement p(n).

Let U(a) be the universal enveloping superalgebra of a. We will use the term a-module
to be a unital module for U(a). If M and N are a-modules one can use the antipode
and coproduct of U(a) to define a a-module structure on the dual M* and the tensor
product M ® N.

Let a be an arbitrary Lie superalgebra (not necessary classical). In this paper we will
study homological properties of the category of a-modules where the projective objects
are relatively projective U(ag)-modules. Given a-modules, M, N, let Ext?a,uﬁ)(M ,N)
denote the n-extension group defined by using a relatively projective U (ag)-resolution
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for M. Under the conditions that either aj is finitely semisimple over ag or a = a5 @ ag is
a direct sum of ag-modules (cf. [19, 3.1.8 Corollary, 3.1.15 Remark]), there is a concrete
realization for these extension groups via the relative Lie superalgebra cohomology for
the pair (a,aj):

Ext(y q) (M, N) = H"(a, a5; M* @ N).

The later cohomology group can be computed using an explicit complex. For a de-
tailed discussion about the complex to compute relative Lie superalgebra cohomology
the reader is referred to [4, Section 2.3]. Set

pa(t) = dimH'(a,ag, C)t'. (2.1.1)
=0

When a is a classical Lie superalgebra, let F(, q,) be the full subcategory of finite-
dimensional a-modules which are finitely semisimple over a; (a ag-module is finitely
semisimple if it decomposes into a direct sum of finite-dimensional simple ag-modules).
The projectives in the category F := F(q q,) are the finite-dimensional relatively projec-
tive U(ag)-modules. Moreover, F(q q) is a Frobenius category (i.e., where injectivity is
equivalent to projectivity) [6]. Given M, N in F, Ext’z(M, N) = Ext(, . y(M,N). Let R
be the cohomology ring

H'(Cl, a(—);C) = S.(a%)ué ~ S'(cﬁ)A@,

The last isomorphism holds because Aj is reductive and acts semisimply on the sym-
metric algebra. Moreover, since Ay is reductive it follows that R is finitely generated.

2.2. Support varieties

We recall the definition of the support variety of a finite-dimensional a-supermodule
M (cf. [4, Section 6.1]). Let a be a classical Lie superalgebra, R := H*(a, a5;C), and
My, My be in F := F(q,q,). According to [4, Theorem 2.5.3], Ext%(Mi, My) is a finitely
generated R-module. Set J(q o) (M1, Ma) = Anng(Ext3 (M, My)) (i.e., the annihilator
ideal of this module). The relative support variety of the pair (M, N) is

V(avaﬁ)(Mv N) = MaXSpeC<R/J(a,u@)<M7 N)) (2.2.1)
In the case when M = My = My, set Jq,a5)(M) = J(a,a5)(M, M), and
V(a,a())(M) = V(u,a())(Ma M)

The variety V(q,a,)(M) is called the support variety of M. In this situation, Jiq q,)(M) =
Annpg Id where Id is the identity morphism in Extg_-(M , M).
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2.3. Structure theory for the detecting subalgebras

The main ideas used in constructing the detecting subalgebras § and ¢ for classical
simple Lie superalgebras are summarized below.

Let g be a classical simple Lie superalgebra as described in [4, Section 8]. It was shown
that the action of Gy on g7 admits a stable action. The reader is referred to [4, Section
3.2] [21] for a detailed exposition on stable actions.

Fix a generic element xg € g7 (cf. [4, Section 8.9] for an explicit construction). Set

H = Stabg,z0 = Gp 4,
and

fi=gf ={2€g7: hz=zforallh€ H}.

Note that the roots of f; are listed in Table 7.1.1. One can construct the detecting
subalgebra f by letting f5 = [f1, f;] with f := f5 @ f;.

Now let N = Ng,(H) and Nj be the connected component of the identity. Since xq
is semisimple, H is reductive as well as N. Set

Wi = W; := Ng, (H)/N;.

The finite group W7 is a pseudo-reflection group.
The action of G5 on g7 is a polar representation (as in [10]). In particular,

dime,, = Kr. dim S°*(g3)“°

where

ex, = {7 €97 [95,7] C [g5-70]}-

Set e1 = ¢, ¢ = ¢ D eg with ez = [e1, e1].
One can obtain a finite reflection group W, by setting

W. = NGG(ei)/StabGG(ei).

2.4. In this section, we compare the support varieties for the classical Lie superal-
gebras g, f, and ¢ under the restriction maps. Assume that g is both stable and polar.
Without the assumption that g is polar, the statements concerning cohomology and
support varieties for g and f remain true. We recall the exposition given in [4, Section
6.1].

First there are natural maps of rings given by restriction,

res : H*(g,95; C) — H*(f,f5; C) — H*(e, ¢, C),
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which induce isomorphisms
res : H*(g,g5; C) — H*(f,5: C)~ — H*(e,¢5,C)"e. (2.4.1)
The map on cohomology above induces a morphism of varieties:
res”™ 1 Vie,es)(C) — V(1,55 (C) = V(g,45)(C)
and isomorphisms (by passing to quotient spaces)
res™ 1 Vie,e) (C)/We = Vi3,5:) (C) /N = V(g,4,)(C). (2.4.2)

Let M be a finite-dimensional g-module. Then res* induces maps between support
varieties:

Vie,eq) (M) = Vi) (M) = Vg g5) (M).

Since M is a gg-module, the first two varieties are stable under the action of W, and
N respectively. Consequently, we obtain the following induced maps of varieties using
(2.4.2):

Vieyeo) (M) /We = Vig50) (M) [N = V(g 55)(M).
These maps are embeddings because if z € R annihilates the identity in Ho(g, g5, M* ®
M) then it must annihilate the identity elements in H°(f, fg, M* ® M) and H (e, ¢5, M* @
M), and the restriction maps induce isomorphisms on the cohomology given in (2.4.1).

2.5. Support varieties for stable and polar detecting subalgebras

We record the result proved in [20, Theorem 4.5.1] that shows that the support vari-
eties for ¢ and | coincide after taking the geometric quotient.

Theorem 2.5.1. Let g be a classical simple Lie superalgebra which is stable and polar. If
M € F55) then we have the following isomorphism of varieties:

res”™ : V(e,eﬁ)(M)/We — V(f’fﬁ)(M)/N.
3. Construction of b
3.1. Generalities on parabolic subalgebras

Let g be a classical simple Lie superalgebra with a fixed Cartan subalgebra h and root
system ® = ®(g, h). For the definitions of ¢;, d;, e we follow the convention of [17] with
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the exception of the superalgebras D(2,1,«), F(4), and G(3). For the latter we use the
following notation: (¢,0,0), (0,¢,0), (0,0,¢€) for €1, €2, €3, respectively, if g = D(2,1, a);
(0,€) for 0 if g = G(3) or g = F(4).

In what follows we use the terminology and setting of [11]. A parabolic subalgebra of
g is a subalgebra that contains a Borel subalgebra of g. We will consider only parabolic
subalgebras that contain f. Every such parabolic subalgebra corresponds to a parabolic
set of roots, as explained below.

Assume first that ® is symmetric, i.e., ® = —®. This is true for all classical Lie
superalgebras g except for those of type P. We call a proper subset S of ® a parabolic
set in @ if

d=5U(-95), and a,f €S with a+ € P implies a+p€S.

In the case when ® # —®, we call S C ® a parabolic subset if S = SN ® for some
parabolic subset S of ® U (—®).

To assign a parabolic set of roots to a parabolic subalgebra p of g, we use the corre-
spondence p — ®,, where ¢, are the roots of p relative to (g, h). For the reverse direction
we proceed as follows.

For a parabolic subset of roots S, we call S° := SN (—S) the Levi component of S,
S~ := S\(—9) the nilpotent component of S, and S = S U S~ the Levi decomposition

of S. Then ps =h D (@Mesg”> is a parabolic subalgebra of g containing h, and [¢ =

ho (@ueso g’“‘> and ng = @ues— gt are called the Levi subalgebra, and the nilradical
of pg, respectively.

Let Vg be a real vector space such that ® C Vg \ {0}. An element H in Vg defines
a parabolic subset of roots S = S(H) as follows. We define S° (respectively, S7) to be
the subset of ® consisting of all roots « such that a(h) = 0 (respectively, a(h) < 0) for
all h € H. Note that we identify the elements of (V3)* and Vp. A parabolic subset of
roots S that is of the form S(#) for some H is called principal parabolic subset. Note
that ker H is a hyperplane in Vg, and the roots in S° (respectively, S~) can be treated
as those that are on (respectively, “below”) the hyperplane ker #.

3.2. A parabolic subalgebra, b, that arises from taking a principal parabolic subset
S = S(H) = S°U S, where H is listed in Table 7.1.2, will be called a BBW parabolic
subalgebra. Later, in Theorem 4.10.1, it will be shown that these subalgebras have very
special cohomological properties involving equality of various Poincaré series. There ex-
ists a natural triangular decomposition of g = u™ @ §& u where the roots in u;r (resp. u)
coincide with —(57) (resp. S7). The BBW parabolic subalgebra identifies with b = f®u.
Even though b is a parabolic subalgebra and technically is not a Borel subalgebra, we
will view b as being analogous to a Borel subalgebra for a complex simple Lie algebra,
and the detecting subalgebra f like a maximal torus. In the cases when g = gl(n|n) or

q(n), b can be realized as matrices of the form:
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where L, (C) are the set of n x n lower triangular matrices. We add that there exists

€g: A, B, C, DeLn((C)}

a supergroup scheme B with Lie B = b that corresponds to the (super) Hopf algebra
U(b) = Dist(B).

For this paper, let ®; (resp. CID%L) correspond with the roots in uj (resp. u%r) One
has ®; = & U @ and in the case when g # p(n), &; = —((I){“). In particular, we
will take the liberty of calling ®; the negative roots of f. The authors realize that this
convention is not the standard practice in the literature. However, in Section 4.3, we will
demonstrate that the dot action of Wi on <I>;r is compatible with the dot action of the
Weyl group of G5 on <I>5“. This key observation entailing the compatibility of these even
and odd roots allows us to successfully complete the computations in the paper.

In Table 7.1.3 we describe the odd negative roots of the principal parabolic subsets
S = S% 1 S~ corresponding to the parabolic subalgebras b = § @ u. The elements H
defining P are listed in Table 7.1.2. For g = gl(m|n), sl(m|n), osp(2m|2n), osp(2m+1|2n),
we let Vo = Span{e;,d; | 1 <i < m,1 < j < n} and fix E; and D; to be the basis
vectors of Vg that are dual to €; and d;, respectively. Also, for these superalgebras, we let
E; =0 and D; = 0 whenever ¢ > m and j > n. For all exceptional Lie superalgebras we
choose Vo = R ®z (Z®). For g = D(2,1,«) we let Ey, Eo, E3 to be the dual to (e, 0,0),
(0,€,0), (0,0,¢€), respectively. Lastly, if g = G(3), F'(4) we use L, for the vectors in Vg
dual to the fundamental weights w; of G2 (i = 1,2), s0(7) (i = 1,2, 3), respectively, and
E for the dual of (0, €).

Note that x; are arbitrary real numbers subject to the conditions listed in the table.
In all cases ®; corresponds to the odd part of S™.

3.3.  For each classical simple Lie superalgebra g we can define a parabolic subalgebra
b via the decomposition of odd roots given in Table 7.1.3 and in Section 5.2 for g = p(n)
that satisfies the following properties:

(a) b = by @ by where bj is a (negative) Borel subalgebra of gz with maximal torus tj.
(b) t=t5 @ t; where t; = f; where f is the (stable) detecting subalgebra.

(c) f is a subalgebra of t.

(d) fg is Tj-stable where Lie T = t;.

(e) b =1t® u where u is a nilpotent Lie superalgebra.

(f) u=ug ® uy where ug is the unipotent radical of bg.

In this setting one has a weight space decomposition u; = @xe¢ (u7)x where (u) is a
tg-module with composition factors of the form A.
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3.4. Comparison of cohomology

We first compare the relative cohomology for (b, bg) and (f, f5)-

Theorem 3.4.1. Let b = t@ u be the parabolic subalgebra as defined in Section 3.5. Then

(a) H*(f,5,C) = S*(57).
(b) The restriction map

H* (b, b5, C) — H*(f, 5, C) "
is an isomorphism. Moreover, H®(f,f5, C)To =2 H*(t, t5, C).
Proof. (a) Since [fg, 1] = 0 it follows that
H® (f, 75, C) 22 S* (1) = S*(f7). (3.4.1)
(b) Next observe that

S"(67)%0 = Sn(5; @) = (P S @ 87 () = 8.

i+j=n

The last isomorphism holds since (i) S*(u)fo C §*(u¥)®® and (ii) the duals of roots in
* under the Tj-grading are positive (see Section 3.1). It follows that

Y
5" (65" = 57(1;)"
and dim S™(b%)P0 < dim S (2)70 for n > 0.
Since H* (b, by, C) = S*(b%)55, the restriction map H®(b, by, C) — H*(t, 5, C) is given
by the restriction map on functions:
S®(bx)Po — S* () 0. (3.4.2)
Finally, observe that as Bz-module, one has a short exact sequence
0—=u; — by =t = 0.
Therefore,

0=+t —b] =>uj—0

with Bg-acting trivially on t;. This shows there exists a subring S C §*(b%)50 such that
the restriction map induces an isomorphism of S == §*(t£)70 = §*(§%)70. The statement
of (b) now follows because dim S™(b%)%o < dim 5™ ()% for n > 0. g
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3.5. We can now demonstrate how the relative cohomology for b is related to the
relative cohomology for g and the dual of the group algebra of W3. One can view this
result as a functorial interpretation of the harmonic decomposition for S*(f).

Theorem 3.5.1. Let g be a classical simple Lie superalgebra. There exists a detecting
subalgebra § = 5 @ f1 obtained by using the stable action of G on g1 and a proper
parabolic subalgebra b with the following properties

(a) b= Dby ® by where by = f; @ ug and by is a Borel subalgebra for g;.
(b) There exists a finite reflection group Wi isomorphic to N/Ng and a grading on the
coordinate algebra, C[W3|, such that as graded vector spaces,

H.(bv b(_)’C) = H.(g,g(‘),(C) ® (C[Wi]"

Proof. Let b be as in Section 3.3. One has the harmonic decomposition (cf. [4, Theorem
3.5]):

S*(F%) = §°(1)N ® [ind¥Cl., (35.1)

as graded S'(f?)N -modules. Applying Tj fixed points and using the fact that T < N,
one has

S*(f) "0 = 5* ()™ @ [ind 5 CJ30. (3.5.2)
From the definition of the induced module, one has

ind¥C = [C[N] ® C|#
=~ Hompy (C, C[N])
Now by applying 75 fixed points and using the fact that Ny is generated by 75 and H:
[ind}C]™ = [Hompy (C,C[N])]™ = Homy, (C,C[N]) = C[Wj].
Here C[W7] is the coordinate algebra of Wi which is dual to the group algebra of Wj.
Next one can use the isomorphisms: H* (b, b, C) = 5*(f5)% by Theorem 3.4.1(b), and
H®(g,95.C) = S*(§1)" [4, Theorem 4.1]. One can now reinterpret (3.5.2) as
H*(b,b5,C) = H*(g,90,C) ® C[Wile. [0 (3.5.3)
The reader should be made aware that the grading on C[Wjle is not always given

by the Poincaré series for the finite reflection group W3. We will explore this important
issue in the upcoming sections.
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3.6.  Let W be a finite reflection group and consider the Poincaré polynomial (cf.
[15, Section 1.11])

pw(t) =Y . (3.6.1)

weW

Note that the coefficient of ¢/ is precisely [{w € W : I(w) = j}|. In general one has the
identity
n
pw(t) = [JO+ 4+ +1),

1=1

where e; are the exponents of W. Set
2p,9(t) = po(t)/pg(t) (3.6.2)
We now provide some examples that show how to compute zp 4(1).

Example 3.6.1 (g = q(n) and gl(m|n)). Assume that m > n. One has H*(b, by, C) =
S*(f2)™o. This implies that

H*(b,b5,C) = Clzy, 22, . - ., 2n]

where the degree of z; (j =1,2,...,n) is 1 for q(n) and 2 for gl(m|n). Furthermore, by
[4, Table 1],

H*(g,95,C) = C[zy, 22, . .. ,zn]Z".

Hence, H*(g, g5, C) is a polynomial algebra generated in degrees 1,2,...,n. Therefore,
2p,g(t) = px, (t") where r =1 for q(n) and r = 2 for gl(m|n).

Example 3.6.2 (g = D(2,1,a), G(3), F(4)). A direct computation shows that
H*(b,b5,C) = Clz] where z is of degree 2. From [4, Table 1], H*(g,g5,C) is a poly-
nomial algebra generated in degree 4. Therefore,

1t

Zb,9<t) T 12 =1 +t2 :p22(t2)'

One can compute zp 4(t) for the other classical simple Lie superalgebras by using the
ideas presented in the preceding examples. Table 7.2.1 provides the relationship between
2p,¢(t) and the Poincaré polynomial for W5 for other classical simple Lie superalgebras.
Note that the x’s, y’s, and z’s have degree one. We can summarize these results in the
following theorem.
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Theorem 3.6.3. Let g be a classical simple Lie superalgebra. Assume that g is not iso-
morphic to P(n). There exists a detecting subalgebra § = {5 @ f; obtained by using the
stable action of Gg on g7 and a parabolic subalgebra b such that zy 4(t) = pw; (s), where
s =t for Lie algebras g of type Q, and s = t* otherwise.

4. Connections with the geometry of G/B
4.1. Supergroups and the induction functor

Let G be an affine supergroup scheme over C and Mod(G) be the category of rational
modules for G. For a general overview and details about supergroup schemes, the reader
is referred to work of Brundan and Kleshchev [8, Sections 2,4,5] [9, Section 2].

In the case when g is a classical Lie superalgebra and g = Lie G, the category Mod(G)
is equivalent to locally finite integral modules for Dist(G) = U(g) (cf. [8, Corollary 5.7]).
In particular, if g is a classical Lie superalgebra, then Mod(G) is equivalent to Cla,g5)
(i.e., the category of g-supermodules that are completely reducible over gg).

Let H be a closed subgroup scheme of G and R’ ind%( —) be the higher right derived
functors of the induction functor indg(—). In the case when g = Lie GG is a classical
simple Lie superalgebra and H = P where P is a parabolic subgroup, the following two
propositions provide information about R*® indg M when restricted to Gfj.

Proposition 4.1.1. Let g = LieG be a classical simple Lie superalgebra and P be a
parabolic subgroup with M a P-module.

(a) Assume that R™ indJGgg’ [M ® A'((g7/p7)*)] = O for n-odd, and n-even when n # i.
Then

(R"ind§ M)|g, = R" ind7°[M & A*((g1/p1)")]

forn > 0.
(b) Assume that M = C and R"™ indlc_i(;j [A*((97/p7)*)] =0 for i # n. Then

(R"indf C)|g, = R" ind 7 [A*((91/p1)")]
forn > 0.
Proof. We will employ results provided in the exposition given in [9, Section 2]. Let
X = G/P and M be a P-module, with £(M) being the associated quasi-coherent
Ox G-(super)module. First note that H"(G/P,L(M)) = R"indSM for all n > 0. Now

according to [9, (6)], one has

R"indGM|g, = H"(G/P,L(M))|c, = H"(G/P,resg_(L(M))) (4.1.1)
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for all n > 0. Next observe that by [9, (2), Theorem 2.7] there exists a canonical filtration
of L(M):

JP=LM)2J' 27%2...77 27" ={0}
with
TTTH = Le(M @ N ((91/p1))) (4.1.2)
Finally, by [9, equation after (2)] one has the following isomorphisms:

H™(G/P,J"|J™") = H)(Gy/ Py, Leo(M @ N ((87/p1)")) = R'indp? [M @ A*((g7/p1)°)]-
(4.1.3)
(a) The filtration described above yields the short exact sequence:

0T 57 =777 =0

Next apply the long exact sequence in cohomology, and use the fact that H"(G/P, J*/
J1) = 0 for n-odd and i > 0 to obtain a five term exact sequences for (n — 1)-even:

0— Hn_l(G/P, ji+1> — Hn_1<G/P, jz) N Hn_l(G/P, jz/jz—l-l)
— H"(G/P,J"") = H"(G/P,J") — 0.

Using these five term sequences, we first show that H"(G/P, J*) = 0 for n-odd and
all i > 0. First consider the case when i + 1 = t. Then H"(G/P,J"™) =0 for all n > 0
and from the sequences above H"(G/P,J'~!) = 0 for n-odd. Now apply the process
again for i +1 =t — 1, and the prior result to show that H*(G /P, 7t=2) = 0 for n-odd.
Continuing this process proves that H"(G/P,J*) = 0 for n-odd and i > 0 and the
statement of part (a) of the theorem in the case when n is odd.

Next we finish off the statement of part (a) when n is even. From the results in the
prior paragraph, the five term exact sequences become short exact sequences of the form:

0— H"(G/P,J"") - H"(G/P,J") — H*(G/P,J"/J") =0, (4.1.4)

for n > 0 (here n can be either even or odd). Using these short exact sequences, we can
conclude that for i < n

H"(G/P,J") = H"(G/P,J") (4.1.5)
and for n < i,

H"(G/P,J") =0. (4.1.6)
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Combining these equations and using the assumptions in the theorem, it follows that as
Gy-module,

H™(G/P,J% = H"(G/P,J" /") = H"(G/P, @50 " | T1).

The result now follows by applying the identifications provided in the first paragraph.
(b) In order to prove the statement we need to consider the m-graded category of G-

(super)modules where m = Zs. In this category, the simple modules consist of the simple

G-modules with their images under the parity change functor II. In particular, one has

the trivial module C with trivial m-action and the module IIC with trivial G-action and

the non-trivial element in 7 acting as (—1). Denote the graded category by 7-(g, g5)-
The short exact sequence

0— JH =T = JYTH =0,

along with the long exact sequence in cohomology and the fact that H*(G/P, J¢/J*!) =
0 for i # k yields the five term exact sequence:

0— H(G/P,J") - H(G/P,J") = H(G/P,J' /T
— H'*YG/P, g™ - HY(G/P,T") — 0.
Moreover, one obtains the following isomorphisms:
HYG/P, g™ = HY(G/P,J") for k <iand k> i+ 1. (4.1.7)
Now fix n > 0. From the isomorphisms in (4.1.7),

H"(G/P,J"Y =2 H"(G/P,J")~...2 H"(G/P,J" ) =2 H"(G/P,J"), (4.1.8)
0=H"(G/P,J")=H"G/P,J" ") =... 2 H'(G/P,J""?) = H"(G/P,T"*").
(4.1.9)

One can use the five term sequence above along with (4.1.8) and (4.1.9) to obtain a four
term exact sequence

0— H"(G/P,J°) - H"(G/P,J"/J") - H" " (G/P, ")
— H"TY(G/P,J™) — 0.

From the exact sequence and the isomorphism R"ind%C ¢, = H"(G/P,J°), one has an
injection:

fn s R"ind%C|g, — H™(G/P,J"/J").

The statement of part (b) will now follow if we show that f, is an isomorphism for all
n > 0. Using the hypothesis and [9, Corollary 2.8], one has
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D (-D)"R"ndEC = (-1)"H™(G/P,J"/J"*").

n>0 n>0

Here the sum is taken in the Grothendieck group of m-graded Gg-modules. Using the
fact that f, is an injection, the simple modules appearing in H*(G/P,J"/J"!) and
R”indIGg(C have the same parity (depending on the parity of n, see [9, Lemma 4.4]).

It follows that

Z RznindgC — Z H2n<G/P, \72n/j2n+1)’

n>0 n>0
Z R2n+lindg(c _ Z H2n+1(G/P, j2n+1/j2n+2>.
n>0 n>0

Hence,

Y dim R"ind3C = ) " dim H"(G/P,J"/J"*").

n>0 n>0

This proves that f,, is an isomorphism for all n.

Proposition 4.1.2. Let g = LieG be a classical simple Lie superalgebra and P be a
parabolic subgroup with M a P-module. Assume that R’ indgg (M @ A*((g7/p7)%)] = 0
for 5 > 0. Then

(R ind§ M)|g, = R7 ind72[M @ A*((g1/p1)")]
for 3 > 0.

Proof. We use the setting as described in Proposition 4.1.1. For j > 0, H/ (G /P, J¢/Ji1)
= 0 for all i. It follows that H7(G/P, J%) = 0 for all i, thus R ind% M = 0 for j > 0.
Now consider the case when j = 0. For each i, one has the short exact sequence

0= J T -7 = J/7% =0

Applying the long exact sequence in cohomology and using the fact that H'(G/P, J%) =
0 yields a short exact sequence:

0— H'(G/P, g - HYG/P,J") — H'(G/P,T"/T") —= 0.
For each 7, this short exact sequence splits over G and one can deduce that

(R%ind% M)|g, = H'(G/P,J°) =~ o, H°(G/P,J" | T")
~ R%ind*[M @ A*((91/p1)°]. O
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The theorem above justifies the statement of [7, Proposition 6.1.1] when the addi-
tional hypothesis is added. The results in [7, Proposition 6.5.3] can be justified by using
Theorem 4.1.2.

Let P be a parabolic subgroup with P C GG and let

pa.p(t) = Z dim R'ind$C ¢°. (4.1.10)

1=0

The following proposition will be useful in making the transition from computing
R* indgg’ A*((g7/b7)*) to computing pe p(t) where B is the parabolic defined in Sec-
tion 3.2.

Proposition 4.1.3. Let j > 0.

(a) If g # q(n) and (R7 ind% C)|g, = C®, then RI ind% C = C®* as a G-module.
(b) If g = q(n) with (R’ ind§ C)|g, = C® and (R’ ind§, C)|g, = R indgg A*((g7/67)%)
for some k >0, then R/ indg C =2 C% gs a G-module.

Proof. (a) The statement follows immediately if there are no self-extensions of the trivial
module, that is, Ext%g?%)((C, C) = 0. This space identifies with S*(g7)“0. For all types
other than g = q(n) this is always equal to zero (cf. [4, Table 1]).

(b) Let g = q(n). For 7 > 0, the simple modules appearing as G-composition factors
in the 7-G-module, R’ indg C, all have the same parity. (i.e., they are either all C or all
IIC). See [9, Lemma 4.4.].

Since

Extl

J(IIC,TIC) = Extl (y ) (C.C) 2 §*(g7)™% C (g7)" =0,

-(9, 95 -(8,95)

it follows by using the hypothesis that R’ indg C as a m-G-module is isomorphic to
C®t if j is even and IIC®! if j is odd. Hence, as G-module (disregarding the grading),
RIind% C = C®.

We remark that Proposition 4.1.3 is stated for the ungraded situation where one
simply considers rational G-modules. One can also formulate a statement via the graded
category m-G-modules where one distinguishes between C where 7 acts trivially and IIC
where a non-trivial element of 7 acts as (—1). As rational G-modules, the grading is
ignored and C = IIC.

4.2. Poincare series for exceptional Lie superalgebras

In the following theorem, we compute pg p(t) for exceptional Lie superalgebras.
Although pg p(t) is a polynomial of degree 2, the verification extensively uses the rep-
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resentation theory of sly, G2 and so; along with the classical Bott-Borel-Weil (BBW)
theorem.

Theorem 4.2.1. Let g = D(2,1,a), G(3) or F(4) and b be the parabolic subalgebra de-
scribed in Table 7.1.5. Then

pa,B(t) =1+t = 204(t) = pu, (7).

Proof. The last two equalities follow from Theorem 3.6.3. It remains to show that
pa.p(t) =1+1%

First consider g = D(2,1, ). One has g5 = sl X slp x sly with g7 =2 VRV KV where V
is the 2-dimensional natural representation of sly. Let G = G (1) X G (2) X G (3) denote
the product of three copies of SLy with Borel subgroup Bj = Bj 1) X By 2y X Bp ()
(corresponding to the negative roots). For a given one-dimensional Bg-module, p =
(p1, p2, 43), one has

R”indggJ = @ R”lindggjsii w1 X R"Qindgg”g; o X R”3indg2:2; ps  (4.2.1)
ni+nz+nz=n
by the Kiinneth Theorem. It follows that if any of the components vanish then
R*indf? y1 = 0.

The weights of Al((g7/b7)*) are {(—¢, —¢, —¢€), (—¢, —¢,€), (¢, —€, —€)}. Let X (Tj) be
the integral weights of G and Cz be the closure of the bottom alcove in X (Tj). Moreover,
let X (7;)+ be the set of dominant integral weights. See [16, p. 571-572] for precise
definitions.

By the BBW theorem, since all the weights of A!((g7/b7)*) are in Cz — X (Tj)+,
it follows that at least one component in the decomposition (4.2.1) vanishes, so
R‘indgg/\l((gi/bi)*) = 0. Similarly, A%((g7/b1)*) is one-dimensional spanned by a
vector of weight © = (¢,—3€,—¢). The last component vanishes in (4.2.1), thus
R‘inngA?’((gi/bi)*) = 0. Also, note that A%((g7/b7)*) = C, so Rjindgg’/\o((gi/bi)*) =
0 for 7 > 0 and is isomorphic to C for j = 0.

We need to analyze A%((g7/b1)*). This will entail using two-dimensional Bg-modules.
Similar methods will also be employed for the G(3) and F'(4)-cases. A direct computation
shows that as a Bg-module, A?((g7/b7)*) has head isomorphic to (0, —2¢,0) and two-
dimensional socle (0, —2¢, —2¢) & (—2¢, —2¢, 0). Therefore, one has a short exact sequence:

0 — (—2¢,—2¢,0) — A?*((g7/b7)*) = N — 0 (4.2.2)

where N is a two-dimensional Bg-module isomorphic as (Bg (1) X By (2)) X Bg (3)-module

to (0, —2¢) X N’ where N’ is a two-dimensional Bp (3)-module with socle —2¢ and head
C.
As a Bj (3)-module, one has

0— N — L(2¢) > 2—0 (4.2.3)
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where L(2€) is the three-dimensional adjoint representation for Gy (3). Now by the tensor

identity, R/ inng’g’;L(%) ~ (R mdggg;m ® L(2¢). This is zero for j > 0. Applying the
: , —

long exact sequence in cohomology to (4.2.3) and the fact that R7ind ng 2¢ = 0 for

. ., .Gp . . ..
j > 0 shows that R’/ind ng’; N’ =0 for j > 0. It remains to look at the remaining part
of the long exact sequence:

0 — indj} ' N' — L(2€) = L(2¢) = Rlind 5 N = 0.

Gy .
The only dominant weight of N’ is 0 so ind ngi N’ is either 0 or C. This proves the

G_
arrow from L(2¢) to L(2¢) must be an isomorphism, thus R'inng’(? N' =0.
Now apply the long exact sequence in cohomology (4.2.2) and use the fact that
G,
R*ind ;> N’ = 0. This yields
0,(3)

RIind3?(—2¢, —2¢,0) 2 RIind? A% ((gq/b1)")

for all j > 0. Applying the Kiinneth theorem and the BBW theorem shows that
RjindggAQ((gi/bi)*) = 0 for j # 2 and R2indggA2((gi/bi)*) = C. Consequently,
pa,B(t) =1+ 2.

For G(3) and F(4) the calculations are much more lengthy and involved to show
that pe p(t) = 14 t*. First, G = G 1) x G (o) has two components and for any
one-dimensional By = By (1) X Bg (9)-module p = (u1, j12) one has

RUind§0 p= @ R™ind" p B R"™ind 5" iy (4.2.4)
ni+n2=n
In these cases the last component G()’(Q) is isomorphic to SLs, so to prove the vanishing,
the focus will be more on the first component Gg (1) which is Ga (resp. so7) for G(3)
(resp. F(4)).
We will outline the ideas to handle G(3). The ideas are similar for F'(4) and involve
more verifications. In the case of G(3), one has dim g7 /b; = 6.

(1) Show that if k # 0,2 then R*ind5?A*((gq/b7)*) = 0.

One of the main ideas to analyze A*((g7/b1)*) for k # 0,2 is to find a filtration of
Bg-modules whose subquotients are either one-dimensional or two-dimensional modules
N; such that R'indggNj = 0. For the one-dimensional modules, one shows that the
weights are in Cz — X (1), . For the two dimensional modules, one uses the argument
as given in D(2, 1, «) so that these modules are submodules of the adjoint modules for a

parabolic subgroup in G()y(l) corresponding to an SLs. For example, in G(3), the weights
for A1((gy/b;)") are

{(—w1 + w2, —¢€), (2w1 — wa, —€), (0, —€), (w1 — wa, —€), (—2w1 + wa, —€), (—w1, —€)}.
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By the BBW theorem, all the weights except for (0, —¢) and (—2w; + wa, —€) = —a3
yield no cohomology. One can see the vectors of these weights form a subquotient with
the desired properties.

(2) For k = 0, analyze RjindggAO((gi/bi)*) = Rjindgg(c.
From Kempf’s vanishing theorem, R’ indggC = 0 for j > 0, and one has indggC =C.

(3) For k = 2, show that Riind5° A?((g7/b7)*) = 0 for j # 2 and R%ind5> A((g7/by)*) =
C.

A technique that is used in the verification of (3) is the existence of an embedding of
A*((g7/b7)*) into A*(L) ® (—2¢) where L is an irreducible G (;)-module. For example,
when g = G(3), one has

0 — A?((g7/b7)") = A*(L(w;)) B (—2¢) = M — 0. (4.2.5)

From the tensor identity, one has that R’ indgg’ A%(L(w;)) X (=2¢) = 0 for j > 0. This
allows one to dimension shift via the long exact sequence in cohomology to concentrate
on calculating R’ indgg M. In the case M is a 6-dimensional module. This makes the
computations tractable to verify (3). A similar short exact sequence to (4.2.5) exists for
F(4) via the spin representation L(ws) for so7 and the same technique can be utilized
in this case.

4.3, Consider R"ind§C = R"indggA'((gi/bi)*) as a Gg-module for n > 0. The
weights of A™((g7/b7)*) are —p(J) where J C @;r and |J| = n. Here p(J) = > ;.
Set p1 = 1 3 o+ @ and let

w-A=w(A+p1) = p

for w € W7 and A in the Q-span of ®7. This will be referred to as the odd dot action of
Wi.
One has

pl—p(J)Z%ZV—%Za (4.3.1)

NeJ’ acJ

where J' = &7 — J. Now w € W7 permutes the set of odd roots ®;. Under the condi-
tion that ®7 = —®F, it follows that w(p; — p(J)) = p; — p(J1) where J; C ®F, and
consequently

w- (—=p(J)) = —p(J1) (4.3.2)

Let G be a reductive algebraic group, A be the simple roots in CDSL and W5 be the

Weyl group for the corresponding root system, ®g, for Gj. Let p®0 := pgs = % Y oacat O
0

and denote the even dot action by wo A = w(A+ pg) — pg where w € Wi and A € X(Tj).
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Table 4.3.1 provides the relationship between p7; and pg. Observe that in the case
when g is A(n|n) or osp(2n + 1]2n), G5 = Gp (1) X Gp (2)- In these cases pj is a sum
Po,(1) + Po,2) Where pg ;) is the half sum of positive roots arising from Gjp ;) where
j=12.

Table 4.3.1

Sums of even and odd roots.
g
q(n) P1 = Po
psq(n) PL=ro N
A(n|n) P1 = pPo = p%’(’{)l + 05 (2
05p(2n + 1|2n) P1 = Po = p(‘) (1) + pO (2)

A key idea to calculate R‘indg(C entails connecting the even and odd dot actions on
weights of A®(u7) as shown in the next example.

Example 4.3.1. Let g = q(n) or psq(n). There exists a Bg-isomorphism A®(ug) =
A*((g7/b7)*). Furthermore, p; = pg and the even and odd dot actions coincide.

One can now directly apply [16, IT 6.18, Proposition] to conclude that R”indﬁSA' ((g7/
b7)*) = C% where t, = [{w € ¥,, : I(w) = n}|. The contributions in this cohomology
group are given by weights in A”((gl /b7)*), so one can apply Proposition 4.1.3(b) to
conclude that pg p(t) = pw; (t). This result generalizes the ¢(2) example computed by
Brundan [9, Lemma 4.4] for all q(n), n > 1.

4.4. Combinatorics with odd roots

We will start by focusing on the cases when g is of type A(n|n) or osp(2n + 1|2n).

In this setting G is a product of two reductive algebraic groups which is unlike the
case for type Q. The dot action of the group W7 on ®7 is more complicated in this setting,
yet one still has a beautiful connection between w - 0 with natural subsets of roots in
<I)%L. We will consider the following set of even simple roots for gz given in Table 4.4.1
(cf. [14, 12.1]).

Set I ={1,2,...,n— 1} for A(n|n) (resp. I = {1,2,...,n} for osp(2n + 1|2n)). Let
s;0,(1) (resp. s;3, (2)) be the reflection corresponding to the jth root in Ag 1y (resp.
Ap (2))- For j € I, set

57 7 54.0,(1)5,0,(2)°
Then s; is a simple reflection in Wy and Wi is generated by {s; : j € I}.

Example 4.4.1. Let g = A(n|n). Observe that s;(e; — d;11) = dj41 — ¢; € ¢ and
5j(0j — €j41) = €j41 — 6; € 7. Furthermore,

Sj ( —{€& —0j41,0; —€¢j41}) C (I){r~
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Table 4.4.1

Even simple roots.
g Aa,u) A6,(2)
A(n|n) {61—62,...,671,1—671} {61—62,...,571,1—(571}
0sp(2n + 1|2n) {e1 —€2,...,€6n—1 —€n,€n} {61 —d2,...,0n—1 — 6n,20,}

That is, the only roots in <I>%L that are sent to ®; are €; — 0,41 and 0; — €41.

From direct computations, one can show that Example 4.4.1 extends to the other
algebras listed in Table 4.4.1. There are two sets of roots in (I)%’, Ay oy =1{Bj:j €I}
and A 9y = {7; : j € I} with the property that

o s;({B),75}) € @ with s;(8;) = —B; and s;(v;) = —;
e 5;(®F —{Bj,7}) C ®f

The following table gives this correspondence.

g Ai,(1) Ai,(2)
A(n|n) {e1 —02,...,€n—1 — n} {61 —€e2,...,0n_1 —€n}
0sp(2n + 1|2n) {e1 —02,...,€p—1 —n,0n} {61 —€2,...,0n—1 — €n,€n +n}

For w € W7 set

_ D) — nd— (DT +
B(w) = —(wd NOT) = wd NdF C 3T, (4.4.1)
The following results establish some basic facts about ®(w).

Proposition 4.4.2. Let w € Wy.

() [®(w)] = 2-I(w).
(b) w-0=—p(®(w)).

(c) If w=sj,...58;, is a reduced expression, then

D(w) = {Bj,5 551 Bizs $j1842Biss - -+ > Sj1Sja + - - Sje_1 Bjs }

U Y15 851 Vd2> S1 82 Viss - s 841 5da = Sjus Vie }+
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(d) If w-0=—p(J) for some J C @%’ then J = ®(w).

Proof. (a) (b) and (c): One proves these statements using induction on [(w). When
w = id (i.e., l(w) = 0), these statements are clear. Now suppose that w € W7 and
w = sjw’ where [(w) = l[(w’) + 1. One has §; ¢ ®(w') and v; ¢ ®(w') due to the
minimality of the expression w = s;w’. Since s; sends all roots in <I);“ other than 3; and
v to (ID%L, one can express

®(w) = s;(P(w') U{B;,7;}- (4.4.2)

This is a disjoint union of sets. This proves (a) and (c).
For (b), one observes that

w-0=s;- (w-0) = ;- (—p(®(w))) = —5;p(P(w)) + ;-0

= —s;p((w") = Bj — v = —p(@(w))

by using (4.4.2).

(d) We adapt the line of reasoning given in [28, Lemma 3.1.2(b)]. Statement (d) will
be proved by induction on I(w). If w = id or equivalently I(w) = 0 then w -0 = 0, so
J =2 =o(id).

Let w € Wy with [(w) > 0. One can write w = s;w’ with I(w) = I(w’) + 1. We have
Bj,v; € ®(w) and these elements are not in ®(w’).

Let w-0= —p(J) where J ={01,09,...,0m} € <I>;r. Then

/

w - 0=s; (w-0)=s;(w-0)+s;p—p=—(s501++8jom + B +75).

There are two cases.

Case 1: 0; # [; or 7, for all i. Without loss of generality we may assume that i = m
when there is equality. In this case, each of the three sets (that we will denote by J’)

. {Sjal,...,sjo'm;ﬂjafyj}
. {SjO'l,...,SjO'mflvﬁj}
. {8j0’1,...,8j0'm—17'7j}

yields distinct elements in <I>;r whose sum equals —w’ - 0. Now by induction, —p(J") =
®(w'). This is a contradiction because §; ¢ ®(w’) and ~; ¢ ®(w’).

Case 2: 0; = f; and o0j, = 7, for some i, k. We may assume that ¢ = m and k£ = m —1, so
w'-0 = —(sjo14 - -+5;0m—2). By induction, ®(w’) = {s;01,...,5;0m—2}. Consequently,
q)(w):q)<w/>u{ﬁ]77j}:{o-la70m} O
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4.5.  In this section we compute pg p(t) for the algebras listed in Table 4.4.1. This
will be accomplished in a series of steps. Recall that G5 = Gg 1) X Gj (2)- It will be
convenient to view a weight of G (1) X G (2) as a pair (01,02) that is expressed as
o1 + 02 when considered as a weight of A®((g7/b7)*).

When pg = pi, the even dot action is compatible with the odd action for w € Wj.
That is,

(w,w)op=w-p

for w € W7 and for any weight p (i.e., in the span of the €’s and d’s). This observation
about the compatibility of the actions is central to making the computations in the

paper.

(1) If 0 = (01,02) is a weight of A*((g7/b7)*) and R”indgg(al,ag) # 0 then o =
(w1 0 0,ws 0 0) where wy, wy € Wi. Here o denotes the dot action of the Weyl group of
G(_),(l) X G(_)’(Q)

First consider g = A(n|n). Then W37 can be identified as the diagonal embedding of
A8, < By X By with w € Wi represented as (w,w). There exists \; € X(T5,;))+
and w; € X, for j = 1,2 such that oy = wy o Ay and 09 = w2 0 . We have

wi 0 A1 +wz 0 Ay = —p(J) (4.5.1)

for some J C @%L. Since p5 = pp,(1) + Po,2) = P1, applying (wyt,wit) € Wi to this
equation yields

A+ (i wa) 0 dg = wy - (—p(J)) = —p(h) (4.5.2)

for some J; C @%L.
We claim that the dominance condition on A1 forces Ay = 0. One has

—p(J1) =Y mij(ei—6;) + > (6 —¢;) (4.5.3)

1>7 1>7

with 1 <4,j <n and m; j,n;; > 0. In (4.5.2), the term (w; 'ws) o Az only involves d;’s.
The term involving €; in (4.5.3) is less than or equal to zero, whereas the term involving
€y is greater than or equal to zero. Since \; is dominant it follows that A\; = 0. Therefore,
wy 00+ w0y = —p(J). Apply w;l to both sides and repeat the argument above to
get that Ao = 0.

Next consider g = o0sp(2n+1|2n). Then W7 = A(3,, X (Z2)™). Given (4.5.1), one can
use the same line of reasoning as in the preceding paragraph with a few modifications.
One needs to add the additional term to (4.5.3): 3, 5 gi,j(€;+0;)+>_; 750, with q; 5,75 <
0. The dominance condition for so(2n + 1) (resp. sp(2n)) entails that the coefficient
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involving €, (resp. d,,) is greater than or equal to zero. This allows us to show that
A1 =0and Ay = 0.

(2 )IfR”md (w1 00,wz00) #0 for wy, wy € Wy then wy = ws.

Suppose that wy 0 0+ wy 0 0 = —p(.J) for some J C ®F. Then (wy ws) 00 = —p(Jy)
for some J; C <I>%L. Set w = wl_lwg, and note that —p(Jy1) consists of a negative sum of
roots for Gg (o (i.e., roots involving d’s).

Let [(w) >0 and w = 3,5 2w be a reduced expression. Then

$i9,1) 20+ w 00=s;-(=p(J1)) = si(—=p(J1)) + ;- 0.

Now Si,(),(l) -0 = _<€i - 6i+1) and S; - 0= _<€i - €i+1) - ((51 - 5i+1)~ Set a = 51 - 5i+1-
It follows that

w0 = si(=p(1) —a
=—p(J1) + <—p(J1),54V>6z —a
=w-0+ [(—p(J1),a") — 1]a.

Therefore,
w-0—w-0=—[(—=p(J1),a") + 1]a. (4.5.4)
From the explicit descriptions of the negative roots summing to w’ -0 and w - 0, one can

conclude that w’-0—w-0 = —(w’) " (a). The equation (4.5.4) shows that (w’)~}(a) = &
and (—p(J1),a") = 0. Therefore,

0=(=p(J1),a") = 0= (w-0,a") = (wpy” — p”,a").

Consequently, (wp(() ), V) = 1. On the other hand,

2) - 2 -
(wpg”, @) = (sigw'sg-a") = (w'pg” —a") = (o, ~a¥) = -1.
This is a contradiction, so I(w) = 0 and wy = ws.
(3) dim A®((91/b1)") (wo0,wo0) = 1 for all w € W7,
The statement (3) follows from Proposition 4.4.2.

Let n > 0. According to the Kiinneth formula

R”indgg (wo0,wo0) @ R™indp’ o, <1> wo0 X R™indg o, (2) wo0. (4.5.5)

ni+nes=n
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This shows that

C n=2l(w)

R"ind$° (w-0,w-0) =
0 0 otherwise.

From (1), (2) and (3), one can conclude that R”indggA'((gi/bi)*) ~ C%n where
th = {w € Wy : § = l(w)}| for n even and zero when n is odd. Consequently, by
Proposition 4.1.3(a), one has that pg g(t) = pw, (£2).

4.6. Computing Poincaré series via spectral sequences

Let P be a parabolic subgroup such that B C P C G. The following result enables
one to compute pg p(t) from pg p(t) and pp p(t).

Proposition 4.6.1. Let P be a parabolic subgroup such that B C P C GG. Suppose that

(a) R?**ind5 C = C®5 and R?*t!ind5 C = 0;
(b) R2*t1ind% C = 0.

Then p(;’B(t) = p(;"p(t) -pP’B(t).

Proof. There exists a first quadrant spectral sequence

EY = Rind$ R'ind5C = R ind§C.

From (a), since the P-modules, R® ind% C are either 0 or a direct sum of trivial modules,
one can regard these modules as G-modules (i.e., the P-module structure lifts to G).
Therefore, by the tensor identity, the Es-page can be expressed as a tensor product

Ey) = Rind%C ® R'ind5C.

According to (b), Eé’j = 0 has non-zero terms only if ¢ and j are both even. The
differentials in the spectral sequence have bidegree (r,1 — 7). Therefore, the spectral
sequence must collapse and yields R’ind%@ = R'indg(C ® R*ind5C. This proves the
statement of the proposition.
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4.7. g =08p(2n|2n) forn > 1

We begin by comparing the even and odd roots for g = o0sp(2n|2n) through the
information below. (See Table 4.7.1.)

Table 4.7.1
Even simple roots.
g Ao, Ao, (2)
osp(2n|2n) {e1 —€2,. .., €n—1 —€n,€n_1+ €n} {61 —62,...,0n—1 —06n,20,}

In the case when g = 0sp(2n|2n) one has pj # py. Instead,
pr = pPm +2[er + - + €] + pOn

This necessitates the use of different techniques than the ones used for A(n|n) and
0sp(2n + 1|2n) (when pg = p1). The root system for type D,, embeds in the root system
for type C,, and one also has the relationship p©» = pP» + [e; + - -+ + €,].

Consider the subalgebra gl(n|n) in osp(2n|2n) and the parabolic subalgebra gener-
ated by gl(n|n) and the root vectors of weights {—¢; —d; : 1 < 4,5 < n}, and let P
be the corresponding parabolic subgroup scheme. From our prior section, R'indg(C is
isomorphic to a direct sum of trivial modules and

Y dim R/indC #/ = py, (7).

j=0
It suffices to show that
> dim R'indEC # = py, /e, (17) = (L+ )1+ 1) ... (1 +2") (4.7.1)
1=0

If this holds, then by Proposition 4.6.1, pg 5(t) = pw, (£2).
For the case g = 0sp(2n|2n), one has Wi = %,, x (Z2)" L. First observe that

mn: ~Y s Gy ° * ~J s Gp L] *
R"ind3C|g, = R"ind7°A®((g7/p1)*) = R"ind " A*((g7/p1)")-
The weights of (g7/p7)* are the roots —® := {—¢; —d; : 1 <i,j < n}. Suppose that
wy o A+ wy oy = —p(J) where J C &} Using the argument in Section 4.5(1), we can
deduce that
L2 A2 X2 2 A 2 A (4.7.2)

and

1> gy > g > > fin_1 > fin > 0. (4.7.3)
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From (4.7.3), u = 61 + 02 + - - - + d5s. Then

w0 p = wap + pr) — pr.

If s > 1, then the first term in u + p©~ is (n + 1)d; and must be sign changed to
obtain a summand involving —d,’s in —p(J). However, if this term is sign changed to
—(n+1) and possibly permuted, then the corresponding term in ws oy is at most —n —2
which less than —n. This leads to a contradiction, thus s = 0 and g = 0. Consider
wy 00 = wy(p©r) — p©r with p» =ndy + (n—1)d+ -+ 6, = (n,n —1,...,1). Using
(4.7.4) shows that wy must fix nd;. This proves that wy o A + we 0 0 = —p(J) where
Jg{—ei—éj: 1§z§n, 2§j§n}

Next from (4.7.2), A = €1 + €2+ - -+ €5 £ €, and consider wy o A = wy (A + pPn) — pPn.
Now if s > 1 then the term ne; in A + pP» must change sign so there is an e-coefficient
in w;y o A less than or equal to —n. However, from the preceding paragraph, in —p(J)
the coeflicient of ¢; is greater than —(n — 1). Therefore, s = 0 and by the dominance
condition, A = 0.

We will prove (4.7.1) by induction n. Assume for n — 1,

3 dim RindEC # = (1+2)(1+ %) ... (1+27D)
1=0

given via 2("=1 solutions of w; 00+wy00 = —p(J), J C {ei—6;: 2<i<n,2<j<n}
with {(w;) = l[(we). For osp(2|2) (i.e., n — 1 = 1), this can be verified directly.
Suppose for g = 0sp(2n|2n), one has

w100+ wg00=—p(J) (4.7.4)

with J C {e; —d;: 1 <i<n, 1<j<n}. First consider wy o0 = wg(pC") — p%n with
pCr =néy +(n—1)9 + -+, = (n,n—1,...,1). From (4.7.4) one can deduce that
wo must fix ndy and either (i) fix (n — 1)dy or (ii) permute and sign change (n — 1)d2 to
—(n —1)d,,. In the first case (i),

wg 00 = (0,0, %,%,...,%).

In the case (i) consider w; o 0 where pP» = (n — Dne; + (n — 2)d3 + -+ + €,-1 =
(n—1,n—2,...,1,0). Under wy, either (n—1) is fixed or gets sign changed to —(n—1) and
is permuted in the €,,-position. The latter is not possible because wo00 = (0,0, *, *, ..., *)
(i.e., only €, + ¢; can occur for j = 3,...,n). Hence, in case (i), wi 00 = (0, *,*,...,%).
The conclusion is that in case (i), we are reduced to the 2(»~1) solutions of w; 00+wy00 =
—p(J) in osp(2(n — 1)|2(n — 1)).

Next we handle case (ii). We can reduce to the solutions of (4.7.4) in osp(2(n —
1)]2(n — 1)) by multiplying by an element with length 2n. In case (ii), wy 0 0 =
(0,b1,b2,...,by—2,—n) and w1 00 = (ay,as,...,a,-1,—(n — 1)) with
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(0,1,012, <oy an—1, _(n - 1)) + (07 bl; b27 R bn727 _n) = _p(J)
Note that a;,b; < 0.

Set 71 = e, $1,—1,0,(1)5n—2,0,(1) - - - 51,0,(1) Where s, (€;) = ¢; for j =1,2,...,n—1 and
Se, (€n) = —€,. Even though 7 is not in the Weyl group for type D,,, it can be shown
that 7, w; 0 0 = w) 0 0 for some w} € ¥,, x (Z3)"~!. By direct computation,

w00 =(0,1+a,14+a,...,14an_1).
On the other hand, let 72 = s,, 5 (9)8,,—1,0,(2) - - - 52,0,(2) € 2n X (Z2)". One can verify that
75 twy 00 = (0,0,14by,14+bo,..., 1+ by o).

Next we need to show that

w004+ 75 fwe 00 = (0,14 ay,1+ag,...,1+a, 1)
+(0,0,1+b1,1+b2,...,1+bn_2):—p(JQ),

for some Jy C {e; —0;: 2<i<mn, 2<j<n}. From our assumption,
(a1,a2,...,a4pn—1,—(n—1)) + (0,b1,b2,...,bp—2,—n) = —p(J).
This implies that {€;, + 6, : 1 <i<n}U{e, +6;: 2<j<n-—-1}CJ, and
(a1 +L,ae+1,...,0,-1+1,0) 4+ (0,01 + L,ba+1,...,bp,—2+1,0) = —p(J1),
for some J; C {e —9d; : 1 <i<n-1,1<j <n—1} This claim now follows

by applying a permutation of the coordinates. We can now conclude by the induction
hypothesis that

Tl_lwlo()+7'2_1w20():121100+1b2002—p(Jg),

for unique w1, We € ¥,,—1 X (Z2)" 2. Moreover, one can verify that {(7;@;) = n + l(w;)
for j = 1, 2. Consequently, in case (ii), we are reduced to the 2(*~1) solutions of w; o 0 +
wy 00 = —p(J) in 0sp(2(n — 1)|2(n — 1)) by multiplying by 7—! = 7, *
length is 2n. This proves (4.7.1).

75 ! whose total

4.8. g=o08p(2(n+1)2n) forn >1

Consider the embedding osp(2n|2n) < osp(2(n + 1)|2n), and let p be the parabolic
subalgebra generated by 0sp(2n|2n) and the root vectors with weights of the form —e; £6;
for j = 1,2,...,n. Let P be the parabolic subgroup scheme with Lie P = p. One has
BCPCQG.
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Table 4.9.1

Embeddings.
g g R [n <m—1]
A(nlm —1) A(n|m) {€i = 0m : 1 <i<n}
osp(2n + 112(m — 1)) osp(2n + 1|2m) {—€;+d61: 2<i<n} U{e;+61: 1<i<n}uU{di}
0sp(2(m — 1) + 1|2n) 0sp(2m + 1|2n) {e1 —d6;: 1 <i<n}U{er+d6;: 1<i<n}
osp(2n|2(m — 1)) osp(2n|2m) {—€e;+d61: 1<i<n}U{e;+6: 1<i<n}
0sp(2(m — 1)|2n) 0sp(2m|2n) {e1 —d;i: 2<i<n}U{er+d6;: 1<i<n}

In this case, we have W7 = ¥,, x (Z2)" for g = o0sp(2(n + 1)|2n). In order to show
that pg,5(t) = pw, (t?), we use Proposition 4.6.1 to reduce our computation to proving
that pg p(t) = 1+ t?". Here we are using information about the Poincaré series for
osp(2n|2n).

The weights of (g7/p7)* are —e; £0; for j = 1,2,...,n. Suppose we have a weight

of the form w; o A + wy ou = —p(J) where J C {—e £6; : j = 1,2,...,n}.
Then wy o A = —ke; = —kw;. Therefore, (w; o \,a¥) = 0 for a € A()?(l). It follows
that (A + pél),wl_lozv> = 1. Consequently, w;'a > 0 and wi'a € Ag (1. We have
wy oo, . ani1y C{ag, .. ani1}, thus (A a;) =0for j =2,3,....,n+ 1.
Now consider w; o swy; = —kw; or equivalently,
w1 o se; = —key.

A direct computation using the dot action for D,,+; shows that there are two solutions:
(i) w; =1,s =0,k =0and (ii) s = 0, k = 2n and {(w1) = 2n. This proves the assertion.

4.9.  We now extend our computation for pg p(t) when g = A(p|q) and when g =
0sp(p|q). We consider the following embeddings of Lie superalgebras g’ C g and set of
positive roots @{P. Set n <m — 1.

Let p be the subalgebra generated by b and g’ and P be the corresponding parabolic
subgroup scheme with p = Lie P.

Theorem 4.9.1. Let ¢’ = LieG’ and g = LieG be as in Table 4.9.1. Then pg p(t) =
pcr B (t).

Proof. One has B C P C G. We prove the theorem by induction on m. One has R'indg(C
as a G'-module identifies with R®*ind$,C (cf. [16, I. 6.14(1)]). The cohomology in odd
degree vanishes and cohomology in even degree is isomorphic to a direct sum of trivial
modules. Therefore, by Proposition 4.6.1 it suffices to show that pg p(t) = 1 to prove
that PG,B (t) = pG/7B/(t).

One has

Rimd§Clg, = Rind$A* ((g7/pr)") = RIind S A® ((g7/p1)").
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The last isomorphism follows by using the spectral sequence relating the composition of
induction functors [16, I. 4.5(c) Proposition]| and the fact that Rtindgz(f =0 for t > 0.

The weights of g7/p7 coincide with @{P. Let o be a weight of A®((g7/p7)*) with
Rjindgga = 0 for some j > 0.

If g = A(n|m) then by the argument given in Section 4.5(1), 0 = w1 0 Ay + w2 00. It
follows that wg 0 0 = ¢ d,, where ¢ > 0. This can only happen if ¢ = 0, which implies
that ¢ = 0. This proves the statement of the theorem for A(n|m).

In the other cases, the arguments given in Sections 4.5(1), and 4.7 show that o =
w1 0 0 + wg 0 0. Consider the second case in Table 4.9.1. Then we 00 = —¢d; = —cw;. In
the root system C,,, this means that ¢ = 0 or ¢ = 2m. However, ¢ < 2n <2(m—1) < 2m
which implies that ¢ = 0, thus ¢ = 0. The other three cases in the table are handled
with a similar argument.

4.10. The computation of R‘indg(c and pa. B(t)

The following theorem relates the sheaf theoretic Poincaré polynomial with the
Poincaré polynomial for W7 when g is not of type P.

Theorem 4.10.1. Let g be a classical simple Lie superalgebra with g = Lie G. Assume that
g is not isomorphic to P(n). Let B be the parabolic subgroup such that b = Lie B where
b is the parabolic subalgebra defined in Table 7.1.5. Then

(a) R®ind% C is a direct sum of trivial modules.
(b) The number of trivial modules in R™ indg C is given by

pG,B(t) = zp,4(t) = pw; (s)
where s is the parameter defined in Table 7.2.1.

Proof. Parts (a) and (b) were proved for the various classical Lie superalgebras in the
following way. First, it was established that R® indgg A®((g7/b7)*) is a direct sum of
trivial modules. Now from Propositions 4.1.1 and 4.1.3, it follows that R®ind$ C is a
direct sum of trivial modules. Part (b) was verified along the way via the calculation of
R* ind’ A*((g1/b1)").

For the statements of (a) and (b) the cases when g = D(2,1,«), G(3) and F(4) were
proved in Theorem 4.2.1. For type () the statements was verified in Example 4.3.1, and
for the type A families and orthosymplectic Lie superalgebras in Section 4.9.

4.11.  The preceding theorem motivates the following definition.

Definition 4.11.1. Let GG be an algebraic supergroup where g = Lie GG is a classical simple
Lie superalgebra and B be a parabolic subgroup with b = Lie B such that
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(a) b = by @ by where by = f; ® u; where bj is a Borel subalgebra for gg.
(b) There exists a finite reflection group W3 such that as graded vector spaces,

H*(b, b5, C) = H*(g, g5, C) ® C[Wile.
Then b is called an BBW parabolic subalgebra if and only if
pa,B(t) = 20,4(t) = pw; (s)
where s = t" for some r > 1.
5. Results for the Lie superalgebra p(n)
5.1.  In this section we will present results for the Lie superalgebra p(n) and explain

how the theory differs from the other classical simple Lie superalgebras. Let g be the Lie
superalgebra p(n) where n > 2. This Lie superalgebra embeds into gl(n|n) as 2n x 2n

4 B 5.1.1
c|-at)’ (51.1)

where A, B and C are n x n matrices over C with A € sl,(C), B symmetric, and C

matrices of the form

skew-symmetric.
Let V' be the n-dimensional natural representation for sl,(C) with weights €;, j =
1,2,...,n. One has

a5 = 51, (C) and g7 = S%(V) @ A%(V*).
The weights of g; are given by
P ={ei+e: 1<i<j<n}U{—€ —¢: 1<i<j<n}

The Lie superalgebra p(n), which is an enlargement of p(n), is constructed by taking

5.2. Cohomology and Hilbert series

For the sake of convenience, we will redefine the detecting subalgebra § as follows. The
vector space fi is the span of the root vectors in g7 whose weights are of the form

®;,

1

B {:i:(61+j+621_j)} forj=0,1,...,0—1, n=2]
{:i:(€1+j + 62[+1,j), 26[+1} for j = 0, 1, “ee ,l - ]_, n =2l + 1.
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Set fg = [f1, 1] and | = f5 @ f1.
In both cases when n is even or odd, H is a torus of dimension [ and N/Ny = ¥;x (Z3)!.
One can define a parabolic subalgebra b as follows. We have
O ={ei+e: 1<i,j<ntU{—e—¢: 1<i<j<n}
Set
CI){ :{Ei-i—Ej: n—|—1<i+j}U{—e¢—ej: 1< 7, i+j<n+1}

and b be the parabolic subalgebra generated by the root vectors with roots in ®5 U®5, U
¢; and t5. The defining hyperplanes for the parabolic are given by

2= Zi:le(El —Eopy1-4), ;1 >0 >+ >x;>0 n=2]
Zi:l xz(Ez — E21+2_i>7 T >x0>--->x; >0 n=20+1.

The computation of H*(b, by, C) = S°(5)70 is given in Table 5.2.1.

Table 5.2.1

Cohomology and Hilbert series.
g Wy H*(b, b5, C)
p(n), n =21 S X (Z2)' Clziyr, 22, .-, By, T1T2 - .. Ty, Y1Y2 - - - Y1)
p(n),n=20+1 ¥ X (Zg)l C[mlyl,mgyg,...,mlyl,a:fxg‘..xfml_,_l}

The goal for the remainder of this section is to compute zp 4(¢) when n is even and
when n is odd.
In the case when n = 2[ is even, set

S = Clz1y1, ®2Y2, - - ., Ty, T1T2 . .. T, Y1Y2 - - - Yi

and

T:C[flan;'"7fl*17x1x2~-~xl7y1y2'"yl]

where f; is the jth symmetric polynomial in {z1y1, Z2Yy2, ..., 21y }. Then as in the case
for sl(i]l), S is free T-module of rank |¥;|. Furthermore, if ps(¢) (resp. pr(t)) are the
Poincaré polynomials of S (resp. T') then

ps, (£2) = ps(t)/pr(t) = po(t)/pr(t). (5.2.1)

Now we use the fact that T is a polynomial algebra generated in degrees 2,4,...,20 — 2,
[ and [. Therefore,

321
po(®) = 9, () - p2(6) = 5 _(32)[ : ) o (5.22)
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From [4, Table 1] H*(g, g5, C) is a polynomial algebra generated in degrees 4,8, ...,
4(1 — 1), I, and n. Consequently,

_ 44 __ 48 _ 44(-1) _4n
Zb,g<t> - (1 t )(1 t ) c Ei _ig)l )(1 t )(1 + tl> — pW{ (t2>pZ2 (tl) (523)

where W/ = % x (Zg)!~ 1.

In the case when n = 2] + 1 is odd, H*(b, by, C) is a polynomial algebra with [
generators in degree 2 and one generator in degree n = 2l + 1. On the other hand,
H*(g, g5, C) is a polynomial algebra with generators in degrees 4,8, ...,4l and n (cf. [4,

Table 1]). Therefore, for n odd,

_ 44 _ 48 _ 44l
Zp,g(t) = (-t )(1(132')?'(1 ) = pw, (t?). (5.2.4)

Note that after cancellation by the factors (1 — #2)! in (5.2.3) and (5.2.4), one obtains
that

20,0(1) = 2" (D! = (W],
5.8. p(2) and p(3)

First let g = p(2). Then ®; = {2e2} = {—a} where « is the positive root in g5 = sls.
Therefore, one sees that

C j=0,1

j + Ggpre *
Rlind 5 A*((91/b1)") =
0 else.
It follows that

ana(®) = D = e (6 = bt (5.31)

and b is a BBW parabolic subalgebra.
Next, let g = p(3). It will be convenient to use the root basis and the fundamental
weight basis for our calculations for &5 = Ay. One has

oy = {2€3,€2 + €3, —€1 — €2} = {2w2, —w1, —wa}.
Now —w1, —wy € Cz, and
Sap * (—2w2) = —w; € Cz - X(T5)+-

Therefore, R‘indggAl((gi /b7)*) = 0. Similarly,
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Say + (wa —3wy) =wy —wq € Oz — X(Tp) 4,

thus, R*ind’ A%((g1/by)*) = 0.

The weights of A2?((g7/b1)*) are {2ws — wy, —3ws, —w1 — wo}. The weight —2ws — w1
is conjugate to —ws by Sa, Say, and —w; —wy € Cz — X (Tg) . So these weights do not
contribute to give any cohomology. On the other hand,

(SaySay) - 0 = —3wa. (5.3.2)

Consequently, R'indggAz((gi/bi)*) =C.
In summary, one has

2p,9(t) = 1+ 2 = pw, (t*) = pc. B(t) (5.3.3)

and b is again a BBW parabolic subalgebra.

5.4. p(4)
Next consider the Lie superalgebra g = p(4). One has

Q; = {2647 2637 €3 + €4, €2 + €4, —€1 — €2, €] — 62}

= {—2(,03, —2&)2 + 2(4.13, —Wa, —W1 +LU2 — W3, —Wg, —W1 +w2 — UJ3}.

It is useful to express the elements in @7 in terms of fundamental weights of g5 = sl,,.
Note that —wy and —w; 4+ wy — w3 occur with multiplicity two.

The weights of A'((g7/b7)*) are precisely the ones in ® . All of these weights are
conjugate to a weight in Cz — X (Tg)4, thus R’indggAl((gi/bi)*) = 0. Next observe
that AS((g7/b1)*) is one-dimensional and spanned by a vector of weight —2p5. Therefore,
A*((g1/b1)%) = A ((91/61)%)" ® (—2p5)- Let o = —X — 25 be a weight of A°((g7/b1)*)
where A is a weight of A*((gy/b7)*). Then

wp + b= wo(—A) = —wpA.
The possible weights of the form wq - p are {—2w1, 2wy — 2ws, —wsy, —w1 +wz + w3 } which
are all conjugate to a weight in Cz — X (T}),. Consequently, R'indggA5((gi/bi)*) =0.

The distinct weights of A3((g7/b1)*) are

{ - 3LU2, —W] — Wy — W3, —W1 — 3W3, —2&)2 - 20.)3, —2&)1 + 20.)2 — —4&)3,

— W1 — 2&)2 + wiq, —2w1 — 2w1 + wg — 2(,03}.

A lengthy verification shows that all of the weights above are conjugate to a weight in
az — X(T6>+, thus R'indgg/\g((gi/bi)*) =0.
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The distinct weights in A%((gq/b7)*) that are conjugate to a weight in Cz — X (Tg)+
are

{—2wq, —wo — 2ws, —w1 + wy — 3wz, —w1 — Wo + W3, —W1 — W3 }.

For the other two weights: —3ws+2w3 (multiplicity 2), and —2w; +2ws —2ws (multiplicity
1), one has

(SaySas) - (—wa — 2w3) =0, (5.4.1)
(SoySas) - (—2w1 + 2we — 2ws3) = 0. (5.4.2)
Consequently, RjindggAz((gi/bi)*) =0 for j # 2 and RzindggA2((gi/bi)*) ~ C®3. By

using duality this also holds for A%((gg/b1)*).
Finally, wo(—2pg) = 0 and I(wg) = 6, thus RjindggAG((gi/bi)*) =0 for j # 6 and

Rﬁindgg A®((g1/b1)*) = C. By gathering all this information, one can now conclude that
pe,p(t) =1+ 32 +3t" +1° = (1 + %)% = 24 4(2).
For g = p(4), one has W; = X3 X (Z3)?. The Poincaré polynomial

pw; (t) = u _(fz%; ) _ (L)1 +t+12+13).

From this, it is clear that pg g(t) # pw, (t") for any » > 1, and b is not a BBW parabolic.

5.5.  Given our computations for g = p(n), we conclude this section with two open
questions about the parabolic subalgebra b.

(5.5.1) Does pg,p(t) = 2p,4(t)?

(5.5.2) Is there a natural subset of elements in ¥,, that describes the grading on C[W7]e
given by zp 4(t)7

6. Comparing cohomology and supports for (g, g5), (b, bg) and (¥, f5)

In the section assume that g is a classical Lie superalgebra, b is the BBW parabolic
subalgebra and § is the detecting subalgebra as defined in Section 3.5.

6.1. By using the finite generation of the cohomology ring H®(b, by, C), one can
define two types of support varieties. Let Vg u,)(M) be the variety associated to the
annihilator of H®(b, by, C) on Ext{y , (M, M). One has an injection of H*(g, g5, C) —
H* (b, bg, C) such that H®*(b, by, C) is finitely generated over H®(g, gg, C). Set 17([,7%)(M)
to be the variety associated to the annihilator of H*(g, g5, C) on Extf, , (M, M).
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The following theorem compares the support varieties for cohomology in (b, bg), (¢, tj)

and (f, f;)-

Theorem 6.1.1. Let M be a finite-dimensional b-module.

2

a) Vio,00) (M) = Vg 1) (M).

b) Vie,v5) (M) = Vig,e5)(M)/N.

) Vitig) (M) = V50 (M) /Ty

d) Viie)(M)/N = V550 (M )/N‘

i

(
(
(
(

Proof. (a) First observe that by Theorem 3.4.1(b), the restriction map H®(b, bg, C) —
H*(t,t5,C) is an isomorphism. Therefore, Vi ) (M) C V(b p,) (M) (cf. argument in [4,
Section 6.1]).

Let M = @xeq; M be a weight space decomposition of M. Note that each M, is a
t-module. Next observe one can construct a b-stable filtration of M:

M := My 2 M, DMy 2D ---2 M, D {0}

such that M;/M; 1 = M), for some \; € te.
The filtration above provides a short exact sequence 0 — My, — M — M /M, — 0.
One can then use the long exact sequence in cohomology to show that

Vio,og) (M, M") € Vip,65) (Mg, M) U Vg p,) (M /M, M)
for all finite-dimensional b-modules N. Specializing M = M’, one obtains
Vio,65) (M) € Vip,vg) (M) U V(p,p,) (M/Ms).
Applying this procedure inductively yields

Vio.o) (M) € | Vio.og) (M) (6.1.1)
AELE

Here M) is regarded as b-module with trivial u-action.
Next apply the LHS spectral sequence for My:

Ey7 = Ext{,(C,Ext]

(uvu(_))

(C,C) ® M5 ® My) = Ext(‘gﬂb (M, My).

By using the identification of
R:=H*(b,by,C) X H*(t,t5,C) 2 S*(t]) 70

one has that R acts on the rows of F5 and the abutment. It follows that
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V(b,b())(MA) - V(t,t@)(MA)'

Since Vt,5) (M) = Uxetg Vit,tp) (M), one has Vg ) (M) S Vig,i)(M).

(b) The result can be obtained using the argument given in (a) and replacing
(i) H‘(b,b@,@) - H.<t7 t()?C) byAH.(g7g()7(C) — H.(tv ta,C)N, (ii) V(t,’cﬁ)(_) by
Vit i) (—)/N, and (iii) Vip,05) (=) by Vie,65)(—)-

(c) We have f <t, so one can apply the Lyndon-Hochschild-Serre spectral sequence
for relative cohomology

E;j = Hi(t/f7 t()/f(’), H’ (f’ fo, M/)) = H'" (tv tg, M/)
for any t-module M’. The spectral sequence collapses (t/t; = f/f;) and yields:
H® (¢, t5, M) = H*(§, 15, M) To. (6.1.2)

This proves that the restriction map: H®(t, t5, M') — H*(f, f5, M’) is an injective map,
so by [20, Theorem 4.4.1], V(¢,¢,) (M) = Vj,5,) (M) /T.
(d) One can obtain this part by using (c) and taking quotients with N.

6.2. Geometric induction and spectral sequences

Let G (resp. B) be the supergroup (scheme) such that Lie G = g (resp. Lie B = b).
If M is a G-module (resp. B-module) then one can consider M as a g-module (resp. b-
module) by differentiation. The following result provides a spectral sequence that relates
the relative cohomology for g and b via the higher right derived functors of indg(—).

Proposition 6.2.1. Let M, be a G-module and Ms be a B-module. Then there exists a
first quadrant spectral sequence.

My, R’ ind$ M) = Ext’™ (M, Ms).

E;J = Eth (b,b5)

g,go)(
Proof. The spectral sequence is constructed via a composition of functors. Let F;(—) =
Homg ¢.y(M, —) and Fa(—) = ind%(—). We are regarding F; (resp. F») on the relative
category C(g,q5) (resp. C(p,u,)) Where the injective objects are relatively projective over
U(gg) (resp. U(by)).

The functors F; and F3 are left exact. Furthermore, an injective object in C(p p.) is a
direct summand of indgGN for some Bg-module N. Observe that

Fo(indf, N) = ind§[ind§, N] 2 ind§ N = indg [ind5°N].

Therefore, fg(indga N) is an injective module in C(g 4. It follows that injective objects
in C(p,p,) are taken to objects acyclic for 7. Finally, observe that
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fl o Fg(—) = Hom(g’%)(M, indg(—)) = Hom(b7ba)(M, —).
The existence of the spectral sequence now follows by [16, I. 4.1 Proposition].
6.3. Restricting relative U(gg)-injectives to U(b)

We can use the spectral sequence to investigate what happens when an relative injec-
tive U(gg)-module restricts to b.

Theorem 6.3.1. Let I be a g-module that is a relatively injective U(gg)-module and M be
any finite-dimensional g-module. Then

(a) Ext{, , (M, )2 Hom(g o) (M, [R? indf; C] @ I)

(b) Exty, og) (M 1) =0 for j > dim G;/B;.
Proof. One can apply the spectral sequence given in Proposition 6.2.1:

By’ = Ext{, (M, [R ind§ C] @ I) = Extl(';{,@)(M ). (6.3.1)

Since I is injective the spectral sequence collapses and yields (a). For part (b), one
has R7ind§ C = 0 for j > dim G/Bg by Proposition 4.1.1. g

The result above shows that I restricted to b need not be a relatively injective U (bg)-
module. However, the result does show that if I is a relatively injective U(gg)-module

then {0} = V(g’g())(I) - V([Lb())(j)'
6.4. Collapsing of the spectral sequence

The next result shows that the spectral sequence given in Proposition 6.2.1 collapses
when M = C and b is a BBW parabolic subalgebra.

Theorem 6.4.1. Let g be a classical simple Lie superalgebra with g # P(n). Then the
following spectral sequence collapses:

By’ = Ext{y o) (C, [R ind3 C]) = Ext(}7, |(C,C). (6.4.1)

Proof. It suffices to show that

) dim By’ = dim H" (b, by, C) (6.4.2)
i+ji=n

for all n > 0. This will insure that the differentials d, are zero for r > 2.
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Since R/ind%C =2 C®™ by Theorem 4.10.1(a), one has

P B’ = P H (995 C) ® Rind5C (6.4.3)

i+j=n i+j=n

for all n > 0.
Now by Theorem 4.10.1(b), pe(t) = py(t)-pc,5(t). Therefore, by comparing coefficients
of ™, one can conclude that (6.4.2) holds.

6.5.  We can now give conditions via the collapsing of the spectral sequence in Propo-
sition 6.2.1 for My = C and My = C to insure that Vi ) (M) = V(g g,)(M).

Theorem 6.5.1. Let M a finite-dimensional g-module. Suppose that

(a) R7ind%C = C®™ for j > 0.
(b) The spectral sequence

Ey? = Ext{y g, (C, [R’ indF C]) = Ext( 4, ,(C,C) (6.5.1)

collapses and yields an isomorphism of R = H*(g,g5,C) = S‘(gf)Gﬁ -modules.
Then res* : IA)([,’[,G)(M) — V(a,a5) (M) is an isomorphism.
Proof. Let M be a finite-dimensional g-module. By assumption, R’ indg C = C®™m for

j > 0. Using the tensor identity, R’ indg M =~ [R indg C] ® M, one has two spectral
sequences:

E;’J = EXtZ(.g’g(_))(C, C@mj) j Etha_,]bﬁ)(C’ C)? (6'52)
E;J _ Ethg,%)((C, M* ® M]Gamj) = EXtE;{:(,)(M’ M). (6.5.3)

The spectral sequence (6.5.2) acts on (6.5.3) in the following way. There exists a
natural map of C-algebras p : H*(b,bg,C) — Extf,, (M, M) that is defined by
taking an extension class in H®*(b, b;,C) and tensoring the class by M. Set jb M =
Annp Extzb’bﬁ)(M ,M). Then one has an injective ring homomorphism

p:H(b,b5,C)/Jyar — Extly (M, M). (6.5.4)
For j > 0, there also exist maps on the direct sum of algebras:
p; - H* (9,05, C)¥™ — Exty o (M, M)®™ (6.5.5)

with
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pj (R Im|®™ — Extly o\ (M, M)®™. (6.5.6)
Furthermore, there is a compatibility of differentials:

pi(dr(2)) = di(p; (2)). (6.5.7)

Since (6.5.2) collapses, d,.(x) = 0 for r > 2, thus d,.(p;(x)) = 0 for r > 2, j > 0. Therefore,
the differentials on [R/Jp/]®™ in (6.5.3) are zero, and Ext{y (M, M) contains a copy
of the module ®;>o[R/Jp]P™.

Now suppose that y € R annihilates Ethb,ba)(M ,M). Then y annihilates R/Jy; so
y € Ju. Consequently, Anng Extfy (M, M) C Juy, and V(g g0)(M) C ]7(5756)(M). The
other inclusion holds by looking at the action of R on the spectral sequence (6.5.3) [e.g., if
R annihilates F», then it annihilates the abutment]. Hence, V(g 4.y(M) = 17([,7[,6) (M). o

6.6. Proof of Theorem 1.2.1

For g = p(n), the first isomorphism in Theorem 1.2.1(b) can be deduced from [20,
Theorem 5.1.1(a)] since P(n) is type I. Now assume that g # P(n), then the first
isomorphism in Theorem 1.2.1(b) follows from Theorem 2.5.1. Therefore, it suffices to
prove that res™ : Vijs.)(M)/N — V(g,4,)(M) is an isomorphism. From Theorem 6.5.1
res™ 1 V(p,05) (M) — V(g,g5)(M) is an isomorphism. The statement of the theorem now
follows by applying Theorem 6.1.1(b)(d).

7. Tables for BBW parabolics and Poincaré series
7.1. BBW parabolics

The following tables provide a reference for the construction of BBW parabolic subal-
gebras. In these tables, the roots for the detecting subalgebras and the BBW parabolics
are given as well as the defining hyperplanes. One should note that although ®;. = ()
for g = q(n),psq(n) in Table 7.1.1, the algebra f; is not trivial, and it equals the odd
part of the Cartan subalgebra of g. Also, for convenience, the obvious restrictions for the
indexes are not included in some cases. For example, in Table 7.1.3, the restrictions of

Table 7.1.1
Roots for the detecting subalgebras.
g P
gl(m|n),sl(m|n) [m < n] {£ (e, —0;) |1 <t <m}
osp(2m|2n) {£ (e, — 8:) | 1 < ¢ < min(m,n)}
0sp(2m + 1|2n) [m > n] {£(ei—0:)]1<i<n
osp(2m + 1]2n) [m < n] {£ (i —38,)]1<i<m}
q(n), psa(n) 0
D(2,1,«) {£ (¢, —€,€)}
G(3) {£ (w1, —€)}

F(4) {£ (w3, =€)}
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Table 7.1.2
Hyperplanes of BBW parabolics.

9

H

gl(m|n), sl(m|n) [m < n]
osp(2m|2n)

osp(2m + 1|2n)

q(n), psq(n)

Yo izi(Ei + D), x> x> - > @y

Y1 zi(Ey + Dy), 1 > x2 > - > . > 0 [r = max(m,n)]

Y 1zi(Ei + Dy), 1 > x2 > -+ > . > 0 [r = max(m,n)]
?zlmiE'hxl >x2 >0 > T

D(2,1,a) z1E1 + (21 + x3)E2 + x3F3, 1 > x3 >0

G(g) :L‘1L1 + ZEQLZ + IElE, 2131 > o > 1 > 0

F(4) x1L1 +x2Lo +x3Ls +x3FE, 201 > x3 > x5 > 21 >0
Table 7.1.3

Roots of BBW parabolics.

g

oy

al(mIn), si(mln) [m < 7]
osp(2m|2n)

osp(2m + 1|2n) [m > n]
osp(2m + 1|2n) [m < n]
q(n), psq(n)

DY

2,1, )

G(3)

F(4)

{—€i+0;,—0; +e |i<j}

—€i+ 05, —0; + €5, —€ex — e, | i< 5}

—€; +5j;*51 + €5, —€x — 5@,7(% | i< ]}

—€; +6j,—57; + €5, —€x — 8¢, — 0y | 1< g, t < m}

—€; + €j| 1< j}

{(_65_67_6)7(_67_576)7(€a_6a _6)}

{(_Wl + wa, _6)7 (2(*)1 — W2, _6), (07 _6)7 (wl - W2, _6),

(—2wi1 + wa, —¢€), (—w1, —€)}

{(w2 — w3z, —¢€), (w1 — wa + w3, —€), (w1 — ws, —€),

(_w2 + w3, _6); (_wl + wa — w3, _6)7 (_wl + w3, _6)5 (_w37 _6)}

{
{
{
{

the indexes for ®5, when g = osp(2m|2n) should be i < j, 1 < i,k <m, 1 < j,¢ < n,

but we

just write ¢+ < 7.

7.2. Poincaré series

For the parabolic subalgebras b given in Section 7.1, the table below provides gives a
description of the cohomology H®(b, bg, C) and relationship between zp 4(t) with pw, (t).

Table 7.2.1

Cohomology and Hilbert series.
g Wi H*® (b, b5, C) zo,g(t)
gl(m|n) [m > n] =, Clziyr, T2y2, - - - TnYn] pw; (t2)
sl(m|n) [m > n] 3n Clz1y1, ®2y2,- - - TnYn) pWT(tQ)
sl(n|n) 3 Clziyr, T2y2, - - TnYn, TIT2 . . Ty, Y1Y2 + - - Yn] pw, (%)
psl(n|n) 3n Clziyr, T2y2, - TnYn, TIT2 . . Ty, Y1Y2 + - - Yn] pw, (%)
q(n) Y Clz1,22,- .., 2n] pw; (1)
pﬁq(n) 2n (C[Z17z27"'7Z7L7Z1Z2--~Zn]/(zl+z2+"'+zn) pWT(t)
osp(2m + 1]2n) S K (Za)" Clerys, 22ys, - r2ryr] [ = min(m, n)] pw (12)
0sp(2m|2n) [m > n] Xn X (Z2)™ Clz1y1, T2Y2, - - - s TnYn] pw; (%)
osp(2m|2n) [m < n) 3im X (Z2)m_1 Clz1y1, z2y2, - - TmYm)] Pwy (t2)
D(2,1,«) PP Clzy] pw; (%)
G(3) S Clzy] pw, (%)
F(4) S Clzy] pw, (£2)
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