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Support varieties
Sheaf cohomology

1. Introduction

1.1. Let g be a classical simple Lie superalgebra over C and G be the corresponding 

supergroup (scheme) with Lie G = g. Given a parabolic subgroup scheme P , a major 

open question has been to compute the higher sheaf cohomology group RjindG
P N for 

j ≥ 0 where N is a finite-dimensional P -module. General theory on this topic can be 

found in [29], and some computations for Lie superalgebras such as gl(m|n), osp(m|2n), 

and q(n) are presented in [29,12,13,22,23,26,27]. For reductive algebraic groups, when 

P is a Borel subgroup and N is a one-dimensional module, the answer is given by the 

classical Bott-Borel-Weil (BBW) theorem.

In this paper we introduce parabolic subsupergroups P = B such that the higher 

sheaf cohomology Rj indG
B(−) can be computed using data from the BBW theorem. 

These subgroups are obtained by using the detecting subalgebras via the stable action of 

G0̄ on g1̄. One striking feature about these subalgebras is the interplay between the even 

roots and the odd roots with their associated finite reflection groups, and the fact that 

our approach allows for a uniform treatment of all classical simple Lie superalgebras. In 

particular as a byproduct of our work, we obtain an important computation of the higher 

sheaf cohomology groups of G/B for the trivial line bundle: Hj(G/B, L(0)) := Rj indG
BC

for j ≥ 0 (cf. Theorem 4.10.1). For classical simple Lie superalgebras other than p(n), 

it is shown that the polynomial pG,B(t) =
∑∞

i=0 dim RiindG
BC ti is equal to a Poincaré 

polynomial for a finite reflection group W1̄ specialized at a power of t. This indicates that 

the combinatorics of the length function on W1̄ plays in important role in this setting, 

and opens the possibilities for developing a general theory involving these parabolic 

subsupergroups.

1.2. For finite groups it is well-known that the cohomology is detected on the col-

lection of elementary abelian p-subgroups. Moreover, Quillen [24,25] showed that these 

subgroups can be used to describe the spectrum of the cohomology ring. Later Avrunin 

and Scott [1] demonstrated that the support varieties for finite groups consist of tak-

ing unions of support varieties for elementary abelian subgroup whose varieties can be 

described using rank varieties.

In the study of classical simple Lie superalgebras, Boe, Kujawa and Nakano [4] used 

invariant theory for reductive groups to show that there are natural classes of “subalge-

bras” that detect the cohomology (see also [2]). These subalgebras come in one of two 

families: f (when g is stable) and e (when g is polar). In all cases, g admits a stable action 

and in most cases g admits a polar action (cf. [4, Table 5]).
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In this situation, the restriction maps induce isomorphisms4:

H•(g, g0̄, C) ∼= H•(f, f0̄, C)N ∼= H•(e, e0̄, C)We

where N is a reductive group and We is a finite pseudoreflection group. These relative 

cohomology rings may be identified with the invariant ring S•(g∗
1̄
)G0̄ , where S• denotes 

the symmetric algebra, and so are finitely generated. This property was used to construct 

support varieties for modules in the category F(g,g0̄) (i.e., finite-dimensional g-modules 

that are completely reducible over g0̄).

The main application of the existence and properties of the BBW type parabolic 

subalgebras is our verification of the following theorem.

Theorem 1.2.1. Let g be a simple classical Lie superalgebra and let M be in F(g,g0̄).

(a) If g is stable then the map on support varieties

res∗ : V(f,f0̄)(M)/N → V(g,g0̄)(M)

is an isomorphism.

(b) If g is stable and polar then the maps on support varieties

res∗ : V(e,e0̄)(M)/We → V(f,f0̄)(M)/N → V(g,g0̄)(M)

are isomorphisms, where We is a pseudoreflection group.

The aforementioned theorem has been a conjecture that was first introduced in [4]. 

In that paper, the equality of the varieties in Theorem 1.2.1 was shown to hold on the 

complement of the discriminant locus (i.e., an open dense set). This provided strong 

evidence for the validity of the conjecture. Later, Lehrer, Nakano and Zhang [20] proved 

the conjecture for the general linear Lie superalgebra and more generally type I classical 

simple Lie superalgebra via a cohomological embedding theorem.

Kac and Wakimoto defined a combinatorial invariant called the atypicality of a 

weight λ when g is a basic classical simple Lie superalgebra. The support varieties in 

Theorem 1.2.1 play a prominent role in the theory because they provide a geometric 

interpretation of this combinatorial invariant. It is conjectured that for the basic simple 

Lie superalgebras, the dimension of the support variety V(g,g0̄)(L(λ)) equals the atypi-

cality of the finite-dimensional irreducible representation L(λ). This has been verified in 

a number of cases including gl(m|n) [5] and osp(m|2n) [18].

4 There are some errors in the statements in [4] and [20]. In these papers “H•(f, f0̄, C)N/N0̄ ” should be 
replaced with “H•(f, f0̄, C)N ” and “V(f,f0̄)(M)/(N/N0̄)” should be replaced with “V(f,f0̄)(M)/N”.
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1.3. For the detecting subalgebra e one has a realization of the support variety 

V(e,e0̄)(M) as a rank variety:

V(e,e0̄)(M) ∼= Vrank
(e,e0̄)(M) := {x ∈ e1̄ : M |U(⟨x⟩) is not projective} ∪ {0}.

The establishment of Theorem 1.2.1 along with this rank variety description (i) provides 

a concrete realization of V(g,g0̄)(M) and (ii) shows that the assignment (−) → V(g,g0̄)(−)

satisfies the properties as stated in [3] for a support datum. These important properties 

are stated in the following corollary.

Corollary 1.3.1. Let g be a simple classical Lie superalgebra which is both stable and polar, 

and let M1, M2 and M be in F(g,g0̄).

(a) V(g,g0̄)(M) ∼= Vrank
(e,e0̄)(M)/We;

(b) V(g,g0̄)(M1 ⊗ M2) = V(g,g0̄)(M1) ∩ V(g,g0̄)(M2).

(c) Let X be a conical subvariety of V(g,g0̄)(C). Then there exists L in F(g,g0̄) with 

X = V(g,g0̄)(L).

(d) If M is indecomposable then Proj(V(g,g0̄)(M)) is connected.

Note that the verification of the corollary above follows by the same line of reasoning 

as given in [20, Theorem 5.2.1].

1.4. The paper is organized as follows. In the next section, Section 2, the structure 

theory for the detecting subalgebras and their relationship to various support variety 

theories is reviewed. Given a classical simple Lie superalgebra, g, the construction of a 

parabolic subalgebra, b, that is generated by the negative Borel subalgebra for g0̄ and 

the detecting subalgebra f is presented in Section 3. These parabolics are defined via 

hyperplanes in the span of the roots in a Euclidean space. A comparison theorem is 

proved between the relative cohomology for (b, b0̄) and (f, f0̄) (cf. Theorem 3.4.1) and 

between the relative cohomology for (g, g0̄) and (b, b0̄) (cf. Theorem 3.5.1). The latter 

relationship involves a natural grading on the group algebra of a finite reflection group 

W1̄.

In Section 4, we investigate sheaf cohomology for G/B where g = Lie G and b = Lie B. 

In particular, we consider the Poincaré series, pG,B(t) =
∑∞

i=0 dim RiindG
BC ti and give 

a complete computation for all Lie superalgebras except when g = p(n). It is shown that 

pG,B(t) is directly related to the standard Poincaré polynomial of W1̄ via the natural 

length function on the finite reflection group W1̄ (cf. Table 7.2.1). Our calculations use 

an intricate and detailed analysis of the (odd) dot action of W1̄ on a natural subset, Φ1̄, 

of odd roots. Section 5 is devoted to investigating the situation for g = p(n). For p(2)

and p(3) it is shown that pG,B(t) is governed by the BBW theorem. However, for p(4)

this is not the case and open questions are presented at the end of this section.

Finally, in Section 6, we indicate how our computation fit into a more functorial 

setting involving natural spectral sequences (see Theorem 6.4.1 and Theorem 6.5.1). For 
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all classical Lie superalgebras with the possible exception of g = p(n), it is shown that 

the spectral sequence in Theorem 6.4.1 collapses. This result enables us to prove the 

conjecture involving the equality of supports stated as Theorem 1.2.1.

1.5. Acknowledgments

The third author would like to acknowledge the support (under NSF grant DMS-

1440140) and hospitality of the Mathematical Sciences Research Institute (MSRI) during 

his stay as a General Member in Spring 2018. Many of the results in the paper were 

obtained during this time with weekly meetings after Wednesday Tea with the other 

coauthors. We also thank Matthew Douglass, Chun-Ju Lai and the referee for their 

comments and suggestions on an earlier version of this manuscript.

2. Preliminaries

2.1. Notation

We will use and summarize the conventions developed in [4–6]. For more details we 

refer the reader to [4, Section 2].

Throughout this paper, let a be a Lie superalgebra over the complex numbers 

C. In particular, a = a0̄ ⊕ a1̄ is a Z2-graded vector space with a supercommutator 

[ , ] : a ⊗ a → a. A finite-dimensional Lie superalgebra a is called classical if there is a 

connected reductive algebraic group A0̄ such that Lie(A0̄) = a0̄, and the action of A0̄

on a1̄ differentiates to the adjoint action of a0̄ on a1̄. The Lie superalgebra a is basic 

classical if it is a classical Lie superalgebra with a nondegenerate invariant supersym-

metric even bilinear form. In this paper our main focus will be on classical “simple” Lie 

superalgebras. The algebras of interest are listed in Table 7.2.1. Although some of these 

Lie superalgebras are not simple in the true sense, they are close enough to being simple 

and are ones of general interest. With a slight abuse of notation we will let A(m|n) de-

note the Lie superalgebras gl(m|n) and sl(m|n) for m ̸= n and sl(n|n) and psl(n|n) for 

m = n. For the Lie superalgebras of type Q we use the notation of [23]. Namely, q(n) will 

be the Lie superalgebra with even and odd parts gln, while psq(n) is the corresponding 

simple subquotient of q(n). The Lie superalgebras that fall into the family of type P will 

be denoted by P (n). These algebras include p(n) and its enlargement p̃(n).

Let U(a) be the universal enveloping superalgebra of a. We will use the term a-module 

to be a unital module for U(a). If M and N are a-modules one can use the antipode 

and coproduct of U(a) to define a a-module structure on the dual M∗ and the tensor 

product M ⊗ N .

Let a be an arbitrary Lie superalgebra (not necessary classical). In this paper we will 

study homological properties of the category of a-modules where the projective objects 

are relatively projective U(a0̄)-modules. Given a-modules, M, N , let Extn
(a,a0̄)(M, N)

denote the n-extension group defined by using a relatively projective U(a0̄)-resolution 
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for M . Under the conditions that either a1̄ is finitely semisimple over a0̄ or a = a0̄ ⊕a1̄ is 

a direct sum of a0̄-modules (cf. [19, 3.1.8 Corollary, 3.1.15 Remark]), there is a concrete 

realization for these extension groups via the relative Lie superalgebra cohomology for 

the pair (a, a0̄):

Extn
(a,a0̄)(M, N) ∼= Hn(a, a0̄; M∗ ⊗ N).

The later cohomology group can be computed using an explicit complex. For a de-

tailed discussion about the complex to compute relative Lie superalgebra cohomology 

the reader is referred to [4, Section 2.3]. Set

pa(t) =

∞∑

i=0

dim Hi(a, a0̄, C)ti. (2.1.1)

When a is a classical Lie superalgebra, let F(a,a0̄) be the full subcategory of finite-

dimensional a-modules which are finitely semisimple over a0̄ (a a0̄-module is finitely 

semisimple if it decomposes into a direct sum of finite-dimensional simple a0̄-modules). 

The projectives in the category F := F(a,a0̄) are the finite-dimensional relatively projec-

tive U(a0̄)-modules. Moreover, F(a,a0̄) is a Frobenius category (i.e., where injectivity is 

equivalent to projectivity) [6]. Given M, N in F , Extn
F (M, N) ∼= Extn

(a,a0̄)(M, N). Let R

be the cohomology ring

H•(a, a0̄; C) = S•(a∗
1̄)a0̄ ∼= S•(a∗

1̄)A0̄ .

The last isomorphism holds because A0̄ is reductive and acts semisimply on the sym-

metric algebra. Moreover, since A0̄ is reductive it follows that R is finitely generated.

2.2. Support varieties

We recall the definition of the support variety of a finite-dimensional a-supermodule 

M (cf. [4, Section 6.1]). Let a be a classical Lie superalgebra, R := H•(a, a0̄; C), and 

M1, M2 be in F := F(a,a0̄). According to [4, Theorem 2.5.3], Ext•
F (M1, M2) is a finitely 

generated R-module. Set J(a,a0̄)(M1, M2) = AnnR(Ext•
F (M1, M2)) (i.e., the annihilator 

ideal of this module). The relative support variety of the pair (M, N) is

V(a,a0̄)(M, N) = MaxSpec(R/J(a,a0̄)(M, N)) (2.2.1)

In the case when M = M1 = M2, set J(a,a0̄)(M) = J(a,a0̄)(M, M), and

V(a,a0̄)(M) := V(a,a0̄)(M, M).

The variety V(a,a0̄)(M) is called the support variety of M . In this situation, J(a,a0̄)(M) =

AnnR Id where Id is the identity morphism in Ext0
F (M, M).



D. Grantcharov et al. / Advances in Mathematics 381 (2021) 107647 7

2.3. Structure theory for the detecting subalgebras

The main ideas used in constructing the detecting subalgebras f and e for classical 

simple Lie superalgebras are summarized below.

Let g be a classical simple Lie superalgebra as described in [4, Section 8]. It was shown 

that the action of G0̄ on g1̄ admits a stable action. The reader is referred to [4, Section 

3.2] [21] for a detailed exposition on stable actions.

Fix a generic element x0 ∈ g1̄ (cf. [4, Section 8.9] for an explicit construction). Set

H = StabG0̄
x0 := G0̄,x0

,

and

f1̄ = gH
1̄ = {z ∈ g1̄ : h.z = z for all h ∈ H}.

Note that the roots of f1̄ are listed in Table 7.1.1. One can construct the detecting 

subalgebra f by letting f0̄ = [f1̄, f1̄] with f := f0̄ ⊕ f1̄.

Now let N = NG0̄
(H) and N0̄ be the connected component of the identity. Since x0

is semisimple, H is reductive as well as N . Set

W1̄ = Wf := NG0̄
(H)/N0̄.

The finite group W1̄ is a pseudo-reflection group.

The action of G0̄ on g1̄ is a polar representation (as in [10]). In particular,

dim ex0
= Kr. dim S•(g∗

1̄)G0̄

where

ex0
:= {x ∈ g1̄ : [g0̄, x] ⊆ [g0̄.x0]}.

Set e1̄ = ex0
, e = e0̄ ⊕ e1̄ with e0̄ = [e1̄, e1̄].

One can obtain a finite reflection group We by setting

We = NG0̄
(e1̄)/StabG0̄

(e1̄).

2.4. In this section, we compare the support varieties for the classical Lie superal-

gebras g, f, and e under the restriction maps. Assume that g is both stable and polar. 

Without the assumption that g is polar, the statements concerning cohomology and 

support varieties for g and f remain true. We recall the exposition given in [4, Section 

6.1].

First there are natural maps of rings given by restriction,

res : H•(g, g0̄; C) → H•(f, f0̄; C) → H•(e, e0̄, C),
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which induce isomorphisms

res : H•(g, g0̄; C) → H•(f, f0̄; C)N → H•(e, e0̄, C)We . (2.4.1)

The map on cohomology above induces a morphism of varieties:

res∗ : V(e,e0̄)(C) −→ V(f,f0̄)(C) → V(g,g0̄)(C)

and isomorphisms (by passing to quotient spaces)

res∗ : V(e,e0̄)(C)/We → V(f,f0̄)(C)/N −→ V(g,g0̄)(C). (2.4.2)

Let M be a finite-dimensional g-module. Then res∗ induces maps between support 

varieties:

V(e,e0̄)(M) → V(f,f0̄)(M) → V(g,g0̄)(M).

Since M is a g0̄-module, the first two varieties are stable under the action of We and 

N respectively. Consequently, we obtain the following induced maps of varieties using 

(2.4.2):

V(e,e0̄)(M)/We →֒ V(f,f0̄)(M)/N →֒ V(g,g0̄)(M).

These maps are embeddings because if x ∈ R annihilates the identity in H0(g, g0̄, M∗ ⊗

M) then it must annihilate the identity elements in H0(f, f0̄, M∗ ⊗M) and H0(e, e0̄, M∗ ⊗

M), and the restriction maps induce isomorphisms on the cohomology given in (2.4.1).

2.5. Support varieties for stable and polar detecting subalgebras

We record the result proved in [20, Theorem 4.5.1] that shows that the support vari-

eties for e and f coincide after taking the geometric quotient.

Theorem 2.5.1. Let g be a classical simple Lie superalgebra which is stable and polar. If 

M ∈ F(f,f0̄) then we have the following isomorphism of varieties:

res∗ : V(e,e0̄)(M)/We → V(f,f0̄)(M)/N.

3. Construction of b

3.1. Generalities on parabolic subalgebras

Let g be a classical simple Lie superalgebra with a fixed Cartan subalgebra h and root 

system Φ = Φ(g, h). For the definitions of ϵi, δj , ϵ we follow the convention of [17] with 
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the exception of the superalgebras D(2, 1, α), F (4), and G(3). For the latter we use the 

following notation: (ϵ, 0, 0), (0, ϵ, 0), (0, 0, ϵ) for ϵ1, ϵ2, ϵ3, respectively, if g = D(2, 1, α); 

(0, ϵ) for δ if g = G(3) or g = F (4).

In what follows we use the terminology and setting of [11]. A parabolic subalgebra of 

g is a subalgebra that contains a Borel subalgebra of g. We will consider only parabolic 

subalgebras that contain h. Every such parabolic subalgebra corresponds to a parabolic 

set of roots, as explained below.

Assume first that Φ is symmetric, i.e., Φ = −Φ. This is true for all classical Lie 

superalgebras g except for those of type P . We call a proper subset S of Φ a parabolic 

set in Φ if

Φ = S ∪ (−S), and α, β ∈ S with α + β ∈ Φ implies α + β ∈ S.

In the case when Φ ̸= −Φ, we call S ! Φ a parabolic subset if S = S̃ ∩ Φ for some 

parabolic subset S̃ of Φ ∪ (−Φ).

To assign a parabolic set of roots to a parabolic subalgebra p of g, we use the corre-

spondence p ,→ Φp, where Φp are the roots of p relative to (g, h). For the reverse direction 

we proceed as follows.

For a parabolic subset of roots S, we call S0 := S ∩ (−S) the Levi component of S, 

S− := S\(−S) the nilpotent component of S, and S = S0 ⊔ S− the Levi decomposition 

of S. Then pS = h ⊕
(⊕

µ∈S gµ
)

is a parabolic subalgebra of g containing h, and lS =

h ⊕
(⊕

µ∈S0 g
µ
)

and n−
S =

⊕
µ∈S− gµ are called the Levi subalgebra, and the nilradical

of pS , respectively.

Let VΦ be a real vector space such that Φ ⊂ VΦ \ {0}. An element H in V ∗
Φ

defines 

a parabolic subset of roots S = S(H) as follows. We define S0 (respectively, S−) to be 

the subset of Φ consisting of all roots α such that α(h) = 0 (respectively, α(h) < 0) for 

all h ∈ H. Note that we identify the elements of (V ∗
Φ

)∗ and VΦ. A parabolic subset of 

roots S that is of the form S(H) for some H is called principal parabolic subset. Note 

that ker H is a hyperplane in VΦ, and the roots in S0 (respectively, S−) can be treated 

as those that are on (respectively, “below”) the hyperplane ker H.

3.2. A parabolic subalgebra, b, that arises from taking a principal parabolic subset 

S = S(H) = S0 ⊔ S−, where H is listed in Table 7.1.2, will be called a BBW parabolic 

subalgebra. Later, in Theorem 4.10.1, it will be shown that these subalgebras have very 

special cohomological properties involving equality of various Poincaré series. There ex-

ists a natural triangular decomposition of g = u+ ⊕ f ⊕ u where the roots in u+
1̄

(resp. u) 

coincide with −(S−) (resp. S−). The BBW parabolic subalgebra identifies with b = f ⊕u. 

Even though b is a parabolic subalgebra and technically is not a Borel subalgebra, we 

will view b as being analogous to a Borel subalgebra for a complex simple Lie algebra, 

and the detecting subalgebra f like a maximal torus. In the cases when g = gl(n|n) or 

q(n), b can be realized as matrices of the form:
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b =

{[
A B

C D

]
∈ g : A, B, C, D ∈ Ln(C)

}

where Ln(C) are the set of n × n lower triangular matrices. We add that there exists 

a supergroup scheme B with Lie B = b that corresponds to the (super) Hopf algebra 

U(b) ∼= Dist(B).

For this paper, let Φ
−
1̄

(resp. Φ
+
1̄

) correspond with the roots in u1̄ (resp. u+
1̄

). One 

has Φ1̄ = Φ
+
1 ∪ Φ

−
1̄

and in the case when g ̸= p(n), Φ
−
1̄

= −(Φ+
1̄

). In particular, we 

will take the liberty of calling Φ−
1̄

the negative roots of f. The authors realize that this 

convention is not the standard practice in the literature. However, in Section 4.3, we will 

demonstrate that the dot action of W1̄ on Φ+
1̄

is compatible with the dot action of the 

Weyl group of G0̄ on Φ+
0̄

. This key observation entailing the compatibility of these even 

and odd roots allows us to successfully complete the computations in the paper.

In Table 7.1.3 we describe the odd negative roots of the principal parabolic subsets 

S = S0 ⊔ S− corresponding to the parabolic subalgebras b = f ⊕ u. The elements H

defining P are listed in Table 7.1.2. For g = gl(m|n), sl(m|n), osp(2m|2n), osp(2m +1|2n), 

we let VΦ = Span {ϵi, δj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} and fix Ei and Dj to be the basis 

vectors of V ∗
Φ

that are dual to ϵi and δj , respectively. Also, for these superalgebras, we let 

Ei = 0 and Dj = 0 whenever i > m and j > n. For all exceptional Lie superalgebras we 

choose VΦ = R ⊗Z (ZΦ). For g = D(2, 1, α) we let E1, E2, E3 to be the dual to (ϵ, 0, 0), 

(0, ϵ, 0), (0, 0, ϵ), respectively. Lastly, if g = G(3), F (4) we use Li for the vectors in V ∗
Φ

dual to the fundamental weights ωi of G2 (i = 1, 2), so(7) (i = 1, 2, 3), respectively, and 

E for the dual of (0, ϵ).

Note that xi are arbitrary real numbers subject to the conditions listed in the table. 

In all cases Φ−
1̄

corresponds to the odd part of S−.

3.3. For each classical simple Lie superalgebra g we can define a parabolic subalgebra 

b via the decomposition of odd roots given in Table 7.1.3 and in Section 5.2 for g = p(n)

that satisfies the following properties:

(a) b = b0̄ ⊕ b1̄ where b0̄ is a (negative) Borel subalgebra of g0̄ with maximal torus t0̄.

(b) t = t0̄ ⊕ t1̄ where t1̄ = f1̄ where f is the (stable) detecting subalgebra.

(c) f is a subalgebra of t.

(d) f1̄ is T0̄-stable where Lie T0̄ = t0̄.

(e) b = t ⊕ u where u is a nilpotent Lie superalgebra.

(f) u = u0̄ ⊕ u1̄ where u0̄ is the unipotent radical of b0̄.

In this setting one has a weight space decomposition u1̄ = ⊕λ∈t∗

0̄
(u1̄)λ where (u1̄)λ is a 

t0̄-module with composition factors of the form λ.
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3.4. Comparison of cohomology

We first compare the relative cohomology for (b, b0̄) and (f, f0̄).

Theorem 3.4.1. Let b = t ⊕ u be the parabolic subalgebra as defined in Section 3.3. Then

(a) H•(f, f0̄, C) ∼= S•(f∗
1̄
).

(b) The restriction map

H•(b, b0̄, C) → H•(f, f0̄, C)T0̄

is an isomorphism. Moreover, H•(f, f0̄, C)T0̄ ∼= H•(t, t0̄, C).

Proof. (a) Since [f0̄, f1̄] = 0 it follows that

H•(f, f0̄, C) ∼= S•(f∗1̄)F0̄ ∼= S•(f∗1̄). (3.4.1)

(b) Next observe that

Sn(b∗
1̄)F0̄ ∼= Sn(f∗1̄ ⊕ u∗

1̄)F0̄ ∼=
⊕

i+j=n

Si(f∗1̄) ⊗ Sj(u∗
1̄)F0̄ ∼= Sn(f∗1̄).

The last isomorphism holds since (i) S•(u∗
1̄
)F0̄ ⊆ S•(u∗

1̄
)T0̄ and (ii) the duals of roots in 

u∗
1̄

under the T0̄-grading are positive (see Section 3.1). It follows that

Sn(b∗
1̄)T0̄ ∼= Sn(f∗1̄)T0̄

and dim Sn(b∗
1̄
)B0̄ ≤ dim Sn(f∗

1̄
)T0̄ for n ≥ 0.

Since H•(b, b0̄, C) ∼= S•(b∗
1̄
)B0̄ , the restriction map H•(b, b0̄, C) → H•(t, t0̄, C) is given 

by the restriction map on functions:

S•(b∗
1̄)B0̄ → S•(t∗1̄)T0̄ . (3.4.2)

Finally, observe that as B0̄-module, one has a short exact sequence

0 → u1̄ → b1̄ → t1̄ → 0.

Therefore,

0 → t∗1̄ → b∗
1̄ → u∗

1̄ → 0

with B0̄-acting trivially on t∗
1̄
. This shows there exists a subring S ⊆ S•(b∗

1̄
)B0̄ such that 

the restriction map induces an isomorphism of S ∼= S•(t∗
1̄
)T0̄ = S•(f∗

1̄
)T0̄ . The statement 

of (b) now follows because dim Sn(b∗
1̄
)B0̄ ≤ dim Sn(t∗

1̄
)T0̄ for n ≥ 0. !
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3.5. We can now demonstrate how the relative cohomology for b is related to the 

relative cohomology for g and the dual of the group algebra of W1̄. One can view this 

result as a functorial interpretation of the harmonic decomposition for S•(f∗
1̄
).

Theorem 3.5.1. Let g be a classical simple Lie superalgebra. There exists a detecting 

subalgebra f = f0̄ ⊕ f1̄ obtained by using the stable action of G0̄ on g1̄ and a proper 

parabolic subalgebra b with the following properties

(a) b = b0̄ ⊕ b1̄ where b1̄
∼= f1̄ ⊕ u1̄ and b0̄ is a Borel subalgebra for g0̄.

(b) There exists a finite reflection group W1̄ isomorphic to N/N0̄ and a grading on the 

coordinate algebra, C[W1̄], such that as graded vector spaces,

H•(b, b0̄, C) ∼= H•(g, g0̄, C) ⊗ C[W1̄]•.

Proof. Let b be as in Section 3.3. One has the harmonic decomposition (cf. [4, Theorem 

3.5]):

S•(f∗1̄) ∼= S•(f∗1̄)N ⊗ [indN
HC]•, (3.5.1)

as graded S•(f∗
1̄
)N -modules. Applying T0̄ fixed points and using the fact that T0̄ ≤ N , 

one has

S•(f∗1̄)T0̄ ∼= S•(f∗1̄)N ⊗ [indN
HC]T0̄

• . (3.5.2)

From the definition of the induced module, one has

indN
HC ∼= [C[N ] ⊗ C]H

∼= HomH(C, C[N ])

Now by applying T0̄ fixed points and using the fact that N0 is generated by T0̄ and H:

[indN
HC]T0̄ ∼= [HomH(C, C[N ])]T0̄ ∼= HomN0

(C, C[N ]) ∼= C[W1̄].

Here C[W1̄] is the coordinate algebra of W1̄ which is dual to the group algebra of W1̄.

Next one can use the isomorphisms: H•(b, b0̄, C) ∼= S•(f∗
1̄
)T0̄ by Theorem 3.4.1(b), and 

H•(g, g0̄, C) ∼= S•(f∗
1̄
)N [4, Theorem 4.1]. One can now reinterpret (3.5.2) as

H•(b, b0̄, C) ∼= H•(g, g0̄, C) ⊗ C[W1̄]•. ! (3.5.3)

The reader should be made aware that the grading on C[W1̄]• is not always given 

by the Poincaré series for the finite reflection group W1̄. We will explore this important 

issue in the upcoming sections.
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3.6. Let W be a finite reflection group and consider the Poincaré polynomial (cf. 

[15, Section 1.11])

pW (t) =
∑

w∈W

tl(w). (3.6.1)

Note that the coefficient of tj is precisely |{w ∈ W : l(w) = j}|. In general one has the 

identity

pW (t) =

n∏

i=1

(1 + t + · · · + tei),

where ei are the exponents of W . Set

zb,g(t) = pb(t)/pg(t) (3.6.2)

We now provide some examples that show how to compute zb,g(t).

Example 3.6.1 (g = q(n) and gl(m|n)). Assume that m ≥ n. One has H•(b, b0̄, C) ∼=

S•(f∗
1̄
)T0̄ . This implies that

H•(b, b0̄, C) ∼= C[z1, z2, . . . , zn]

where the degree of zj (j = 1, 2, . . . , n) is 1 for q(n) and 2 for gl(m|n). Furthermore, by 

[4, Table 1],

H•(g, g0̄, C) ∼= C[z1, z2, . . . , zn]Σn .

Hence, H•(g, g0̄, C) is a polynomial algebra generated in degrees 1, 2, . . . , n. Therefore, 

zb,g(t) = pΣn
(tr) where r = 1 for q(n) and r = 2 for gl(m|n).

Example 3.6.2 (g = D(2, 1, α), G(3), F (4)). A direct computation shows that 

H•(b, b0̄, C) ∼= C[z] where z is of degree 2. From [4, Table 1], H•(g, g0̄, C) is a poly-

nomial algebra generated in degree 4. Therefore,

zb,g(t) =
1 − t4

1 − t2
= 1 + t2 = pΣ2

(t2).

One can compute zb,g(t) for the other classical simple Lie superalgebras by using the 

ideas presented in the preceding examples. Table 7.2.1 provides the relationship between 

zb,g(t) and the Poincaré polynomial for W1̄ for other classical simple Lie superalgebras. 

Note that the x’s, y’s, and z’s have degree one. We can summarize these results in the 

following theorem.
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Theorem 3.6.3. Let g be a classical simple Lie superalgebra. Assume that g is not iso-

morphic to P (n). There exists a detecting subalgebra f = f0̄ ⊕ f1̄ obtained by using the 

stable action of G0̄ on g1̄ and a parabolic subalgebra b such that zb,g(t) = pW1̄
(s), where 

s = t for Lie algebras g of type Q, and s = t2 otherwise.

4. Connections with the geometry of G/B

4.1. Supergroups and the induction functor

Let G be an affine supergroup scheme over C and Mod(G) be the category of rational 

modules for G. For a general overview and details about supergroup schemes, the reader 

is referred to work of Brundan and Kleshchev [8, Sections 2,4,5] [9, Section 2].

In the case when g is a classical Lie superalgebra and g = Lie G, the category Mod(G)

is equivalent to locally finite integral modules for Dist(G) = U(g) (cf. [8, Corollary 5.7]). 

In particular, if g is a classical Lie superalgebra, then Mod(G) is equivalent to C(g,g0̄)

(i.e., the category of g-supermodules that are completely reducible over g0̄).

Let H be a closed subgroup scheme of G and Rj indG
H(−) be the higher right derived 

functors of the induction functor indG
H(−). In the case when g = Lie G is a classical 

simple Lie superalgebra and H = P where P is a parabolic subgroup, the following two 

propositions provide information about R• indG
P M when restricted to G0̄.

Proposition 4.1.1. Let g = Lie G be a classical simple Lie superalgebra and P be a 

parabolic subgroup with M a P -module.

(a) Assume that Rn ind
G0̄

P0̄
[M ⊗ Λ

i((g1̄/p1̄)∗)] = 0 for n-odd, and n-even when n ̸= i. 

Then

(Rn indG
P M)|G0̄

∼= Rn ind
G0̄

P0̄
[M ⊗ Λ

•((g1̄/p1̄)∗)]

for n ≥ 0.

(b) Assume that M ∼= C and Rn ind
G0̄

P0̄
[Λi((g1̄/p1̄)∗)] = 0 for i ̸= n. Then

(Rn indG
P C)|G0̄

∼= Rn ind
G0̄

P0̄
[Λ•((g1̄/p1̄)∗)]

for n ≥ 0.

Proof. We will employ results provided in the exposition given in [9, Section 2]. Let 

X = G/P and M be a P -module, with L(M) being the associated quasi-coherent 

OXG-(super)module. First note that Hn(G/P, L(M)) ∼= RnindG
P M for all n ≥ 0. Now 

according to [9, (6)], one has

RnindG
P M |G0̄

∼= Hn(G/P, L(M))|G0̄
∼= Hn(G/P, resG

G0̄
(L(M))) (4.1.1)
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for all n ≥ 0. Next observe that by [9, (2), Theorem 2.7] there exists a canonical filtration 

of L(M):

J 0 = L(M) ⊇ J 1 ⊇ J 2 ⊇ . . . J t−1 ⊇ J t = {0}

with

J i/J i+1 ∼= Lev(M ⊗ Λ
i((g1̄/p1̄)∗)) (4.1.2)

Finally, by [9, equation after (2)] one has the following isomorphisms:

Hn(G/P, J i/J i+1) ∼= Hj(G0̄/P0̄, Lev(M ⊗Λ
i((g1̄/p1̄)∗)) ∼= Rnind

G0̄

P0̄
[M ⊗Λ

i((g1̄/p1̄)∗)].

(4.1.3)

(a) The filtration described above yields the short exact sequence:

0 → J i+1 → J i → J i/J i+1 → 0.

Next apply the long exact sequence in cohomology, and use the fact that Hn(G/P, J i/

J i+1) = 0 for n-odd and i ≥ 0 to obtain a five term exact sequences for (n − 1)-even:

0 → Hn−1(G/P, J i+1) → Hn−1(G/P, J i) → Hn−1(G/P, J i/J i+1)

→ Hn(G/P, J i+1) → Hn(G/P, J i) → 0.

Using these five term sequences, we first show that Hn(G/P, J i) = 0 for n-odd and 

all i ≥ 0. First consider the case when i + 1 = t. Then Hn(G/P, J i+1) = 0 for all n ≥ 0

and from the sequences above Hn(G/P, J t−1) = 0 for n-odd. Now apply the process 

again for i + 1 = t − 1, and the prior result to show that Hn(G/P, J t−2) = 0 for n-odd. 

Continuing this process proves that Hn(G/P, J i) = 0 for n-odd and i ≥ 0 and the 

statement of part (a) of the theorem in the case when n is odd.

Next we finish off the statement of part (a) when n is even. From the results in the 

prior paragraph, the five term exact sequences become short exact sequences of the form:

0 → Hn(G/P, J i+1) → Hn(G/P, J i) → Hn(G/P, J i/J i+1) → 0, (4.1.4)

for n ≥ 0 (here n can be either even or odd). Using these short exact sequences, we can 

conclude that for i ≤ n

Hn(G/P, J 0) = Hn(G/P, J i) (4.1.5)

and for n < i,

Hn(G/P, J i) = 0. (4.1.6)



16 D. Grantcharov et al. / Advances in Mathematics 381 (2021) 107647

Combining these equations and using the assumptions in the theorem, it follows that as 

G0̄-module,

Hn(G/P, J 0) = Hn(G/P, J n/J n+1) = Hn(G/P, ⊕i≥0J i/J i+1).

The result now follows by applying the identifications provided in the first paragraph.

(b) In order to prove the statement we need to consider the π-graded category of G-

(super)modules where π = Z2. In this category, the simple modules consist of the simple 

G-modules with their images under the parity change functor Π. In particular, one has 

the trivial module C with trivial π-action and the module ΠC with trivial G-action and 

the non-trivial element in π acting as (−1). Denote the graded category by π-(g, g0̄).

The short exact sequence

0 → J i+1 → J i → J i/J i+1 → 0,

along with the long exact sequence in cohomology and the fact that Hk(G/P, J i/J i+1) =

0 for i ̸= k yields the five term exact sequence:

0 → Hi(G/P, J i+1) → Hi(G/P, J i) → Hi(G/P, J i/J i+1)

→ Hi+1(G/P, J i+1) → Hi+1(G/P, J i) → 0.

Moreover, one obtains the following isomorphisms:

Hk(G/P, J i+1) ∼= Hk(G/P, J i) for k < i and k > i + 1. (4.1.7)

Now fix n ≥ 0. From the isomorphisms in (4.1.7),

Hn(G/P, J 0) ∼= Hn(G/P, J 1) ∼= . . . ∼= Hn(G/P, J n−1) ∼= Hn(G/P, J n), (4.1.8)

0 = Hn(G/P, J t) ∼= Hn(G/P, J t−1) ∼= . . . ∼= Hn(G/P, J n+2) ∼= Hn(G/P, J n+1).

(4.1.9)

One can use the five term sequence above along with (4.1.8) and (4.1.9) to obtain a four 

term exact sequence

0 → Hn(G/P, J 0) → Hn(G/P, J n/J n+1) → Hn+1(G/P, J n+1)

→ Hn+1(G/P, J n) → 0.

From the exact sequence and the isomorphism RnindG
P C|G0̄

∼= Hn(G/P, J 0), one has an 

injection:

fn : RnindG
P C|G0̄

→֒ Hn(G/P, J n/J n+1).

The statement of part (b) will now follow if we show that fn is an isomorphism for all 

n ≥ 0. Using the hypothesis and [9, Corollary 2.8], one has
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∑

n≥0

(−1)nRnindG
P C =

∑

n≥0

(−1)nHn(G/P, J n/J n+1).

Here the sum is taken in the Grothendieck group of π-graded G0̄-modules. Using the 

fact that fn is an injection, the simple modules appearing in Hn(G/P, J n/J n+1) and 

RnindG
P C have the same parity (depending on the parity of n, see [9, Lemma 4.4]).

It follows that

∑

n≥0

R2nindG
P C =

∑

n≥0

H2n(G/P, J 2n/J 2n+1),

∑

n≥0

R2n+1indG
P C =

∑

n≥0

H2n+1(G/P, J 2n+1/J 2n+2).

Hence,

∑

n≥0

dim RnindG
P C =

∑

n≥0

dim Hn(G/P, J n/J n+1).

This proves that fn is an isomorphism for all n. !

Proposition 4.1.2. Let g = Lie G be a classical simple Lie superalgebra and P be a 

parabolic subgroup with M a P -module. Assume that Rj ind
G0̄

P0̄
[M ⊗ Λ

•((g1̄/p1̄)∗)] = 0

for j > 0. Then

(Rj indG
P M)|G0̄

∼= Rj ind
G0̄

P0̄
[M ⊗ Λ

•((g1̄/p1̄)∗)]

for j ≥ 0.

Proof. We use the setting as described in Proposition 4.1.1. For j > 0, Hj(G/P, J i/J i+1)

= 0 for all i. It follows that Hj(G/P, J i) = 0 for all i, thus Rj indG
P M = 0 for j > 0.

Now consider the case when j = 0. For each i, one has the short exact sequence

0 → J i+1 → J i → J i/J i+1 → 0.

Applying the long exact sequence in cohomology and using the fact that H1(G/P, J i) =

0 yields a short exact sequence:

0 → H0(G/P, J i+1) → H0(G/P, J i) → H0(G/P, J i/J i+1) → 0.

For each i, this short exact sequence splits over G0̄ and one can deduce that

(R0 indG
P M)|G0̄

∼= H0(G/P, J 0) ∼= ⊕i H0(G/P, J i/J i+1)

∼= R0 ind
G0̄

P0̄
[M ⊗ Λ

•((g1̄/p1̄)∗]. !
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The theorem above justifies the statement of [7, Proposition 6.1.1] when the addi-

tional hypothesis is added. The results in [7, Proposition 6.5.3] can be justified by using 

Theorem 4.1.2.

Let P be a parabolic subgroup with P ⊆ G and let

pG,P (t) =
∞∑

i=0

dim RiindG
P C ti. (4.1.10)

The following proposition will be useful in making the transition from computing 

R• ind
G0̄

B0̄
Λ

•((g1̄/b1̄)∗) to computing pG,B(t) where B is the parabolic defined in Sec-

tion 3.2.

Proposition 4.1.3. Let j ≥ 0.

(a) If g ̸= q(n) and (Rj indG
B C)|G0̄

∼= C⊕t, then Rj indG
B C ∼= C⊕t as a G-module.

(b) If g = q(n) with (Rj indG
B C)|G0̄

∼= C⊕t and (Rj indG
B C)|G0̄

∼= Rj ind
G0̄

B0̄
Λ

k((g1̄/b1̄)∗)

for some k ≥ 0, then Rj indG
B C ∼= C⊕t as a G-module.

Proof. (a) The statement follows immediately if there are no self-extensions of the trivial 

module, that is, Ext1
(g,g0̄)(C, C) = 0. This space identifies with S1(g1̄)G0̄ . For all types 

other than g = q(n) this is always equal to zero (cf. [4, Table 1]).

(b) Let g = q(n). For j > 0, the simple modules appearing as G-composition factors 

in the π-G-module, Rj indG
B C, all have the same parity. (i.e., they are either all C or all 

ΠC). See [9, Lemma 4.4.].

Since

Ext1
π-(g, g0̄)(ΠC, ΠC) ∼= Ext1

π-(g, g0̄)(C, C) ∼= S1(g∗
1̄)π-G0̄ ⊆ (g1̄)π = 0,

it follows by using the hypothesis that Rj indG
B C as a π-G-module is isomorphic to 

C⊕t if j is even and ΠC⊕t if j is odd. Hence, as G-module (disregarding the grading), 

Rj indG
B C ∼= C⊕t. !

We remark that Proposition 4.1.3 is stated for the ungraded situation where one 

simply considers rational G-modules. One can also formulate a statement via the graded 

category π-G-modules where one distinguishes between C where π acts trivially and ΠC

where a non-trivial element of π acts as (−1). As rational G-modules, the grading is 

ignored and C ∼= ΠC.

4.2. Poincare series for exceptional Lie superalgebras

In the following theorem, we compute pG,B(t) for exceptional Lie superalgebras. 

Although pG,B(t) is a polynomial of degree 2, the verification extensively uses the rep-



D. Grantcharov et al. / Advances in Mathematics 381 (2021) 107647 19

resentation theory of sl2, G2 and so7 along with the classical Bott-Borel-Weil (BBW) 

theorem.

Theorem 4.2.1. Let g = D(2, 1, α), G(3) or F (4) and b be the parabolic subalgebra de-

scribed in Table 7.1.3. Then

pG,B(t) = 1 + t2 = zb,g(t) = pW1̄
(t2).

Proof. The last two equalities follow from Theorem 3.6.3. It remains to show that 

pG,B(t) = 1 + t2.

First consider g = D(2, 1, α). One has g0̄
∼= sl2 ×sl2 ×sl2 with g1̄

∼= V ⊠V ⊠V where V

is the 2-dimensional natural representation of sl2. Let G0̄ = G0̄,(1) ×G0̄,(2) ×G0̄,(3) denote 

the product of three copies of SL2 with Borel subgroup B0̄ = B0̄,(1) × B0̄,(2) × B0̄,(3)

(corresponding to the negative roots). For a given one-dimensional B0̄-module, µ =

(µ1, µ2, µ3), one has

Rnind
G0̄

B0̄
µ =

⊕

n1+n2+n3=n

Rn1 ind
G0̄,(1)

B0̄,(1)
µ1 ⊠ Rn2 ind

G0̄,(2)

B0̄,(2)
µ2 ⊠ Rn3 ind

G0̄,(3)

B0̄,(3)
µ3 (4.2.1)

by the Künneth Theorem. It follows that if any of the components vanish then 

R•ind
G0̄

B0̄
µ = 0.

The weights of Λ1((g1̄/b1̄)∗) are {(−ϵ, −ϵ, −ϵ), (−ϵ, −ϵ, ϵ), (ϵ, −ϵ, −ϵ)}. Let X(T0̄) be 

the integral weights of G0̄ and CZ be the closure of the bottom alcove in X(T0̄). Moreover, 

let X(T0̄)+ be the set of dominant integral weights. See [16, p. 571-572] for precise 

definitions.

By the BBW theorem, since all the weights of Λ
1((g1̄/b1̄)∗) are in CZ − X(T0̄)+, 

it follows that at least one component in the decomposition (4.2.1) vanishes, so 

R•ind
G0̄

B0̄
Λ

1((g1̄/b1̄)∗) = 0. Similarly, Λ
3((g1̄/b1̄)∗) is one-dimensional spanned by a 

vector of weight µ = (ϵ, −3ϵ, −ϵ). The last component vanishes in (4.2.1), thus 

R•ind
G0̄

B0̄
Λ

3((g1̄/b1̄)∗) = 0. Also, note that Λ0((g1̄/b1̄)∗) ∼= C, so Rj ind
G0̄

B0̄
Λ

0((g1̄/b1̄)∗) =

0 for j > 0 and is isomorphic to C for j = 0.

We need to analyze Λ2((g1̄/b1̄)∗). This will entail using two-dimensional B0̄-modules. 

Similar methods will also be employed for the G(3) and F (4)-cases. A direct computation 

shows that as a B0̄-module, Λ2((g1̄/b1̄)∗) has head isomorphic to (0, −2ϵ, 0) and two-

dimensional socle (0, −2ϵ, −2ϵ) ⊕(−2ϵ, −2ϵ, 0). Therefore, one has a short exact sequence:

0 → (−2ϵ, −2ϵ, 0) → Λ
2((g1̄/b1̄)∗) → N → 0 (4.2.2)

where N is a two-dimensional B0̄-module isomorphic as (B0̄,(1) × B0̄,(2)) × B0̄,(3)-module 

to (0, −2ϵ) ⊠ N ′ where N ′ is a two-dimensional B0̄,(3)-module with socle −2ϵ and head 

C.

As a B0̄,(3)-module, one has

0 → N ′ → L(2ϵ) → 2ϵ → 0 (4.2.3)
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where L(2ϵ) is the three-dimensional adjoint representation for G0̄,(3). Now by the tensor 

identity, Rj ind
G0̄,(3)

B0̄,(3)
L(2ϵ) ∼= [Rj ind

G0̄,(3)

B0̄,(3)
C] ⊗ L(2ϵ). This is zero for j > 0. Applying the 

long exact sequence in cohomology to (4.2.3) and the fact that Rj ind
G0̄,(3)

B0̄,(3)
2ϵ = 0 for 

j > 0 shows that Rj ind
G0̄,(3)

B0̄,(3)
N ′ = 0 for j > 0. It remains to look at the remaining part 

of the long exact sequence:

0 → ind
G0̄,(3)

B0̄,(3)
N ′ → L(2ϵ) → L(2ϵ) → R1ind

G0̄,(3)

B0̄,(3)
N ′ → 0.

The only dominant weight of N ′ is 0 so ind
G0̄,(3)

B0̄,(3)
N ′ is either 0 or C. This proves the 

arrow from L(2ϵ) to L(2ϵ) must be an isomorphism, thus R•ind
G0̄,(3)

B0̄,(3)
N ′ = 0.

Now apply the long exact sequence in cohomology (4.2.2) and use the fact that 

R•ind
G0̄,(3)

B0̄,(3)
N ′ = 0. This yields

Rj ind
G0̄

B0̄
(−2ϵ, −2ϵ, 0) ∼= Rj ind

G0̄

B0̄
Λ

2((g1̄/b1̄)∗)

for all j ≥ 0. Applying the Künneth theorem and the BBW theorem shows that 

Rj ind
G0̄

B0̄
Λ

2((g1̄/b1̄)∗) = 0 for j ̸= 2 and R2ind
G0̄

B0̄
Λ

2((g1̄/b1̄)∗) ∼= C. Consequently, 

pG,B(t) = 1 + t2.

For G(3) and F (4) the calculations are much more lengthy and involved to show 

that pG,B(t) = 1 + t2. First, G0̄
∼= G0̄,(1) × G0̄,(2) has two components and for any 

one-dimensional B0̄ = B0̄,(1) × B0̄,(2)-module µ = (µ1, µ2) one has

Rnind
G0̄

B0̄
µ =

⊕

n1+n2=n

Rn1 ind
G0̄,(1)

B0̄,(1)
µ1 ⊠ Rn2 ind

G0̄,(2)

B0̄,(2)
µ2 (4.2.4)

In these cases the last component G0̄,(2) is isomorphic to SL2, so to prove the vanishing, 

the focus will be more on the first component G0̄,(1) which is G2 (resp. so7) for G(3)

(resp. F (4)).

We will outline the ideas to handle G(3). The ideas are similar for F (4) and involve 

more verifications. In the case of G(3), one has dim g1̄/b1̄ = 6.

(1) Show that if k ̸= 0, 2 then R•ind
G0̄

B0̄
Λ

k((g1̄/b1̄)∗) = 0.

One of the main ideas to analyze Λk((g1̄/b1̄)∗) for k ̸= 0, 2 is to find a filtration of 

B0̄-modules whose subquotients are either one-dimensional or two-dimensional modules 

Nj such that R•ind
G0̄

B0̄
Nj = 0. For the one-dimensional modules, one shows that the 

weights are in CZ − X(T0̄)+. For the two dimensional modules, one uses the argument 

as given in D(2, 1, α) so that these modules are submodules of the adjoint modules for a 

parabolic subgroup in G0̄,(1) corresponding to an SL2. For example, in G(3), the weights 

for Λ1((g1̄/b1̄)∗) are

{(−ω1 + ω2, −ϵ), (2ω1 − ω2, −ϵ), (0, −ϵ), (ω1 − ω2, −ϵ), (−2ω1 + ω2, −ϵ), (−ω1, −ϵ)}.
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By the BBW theorem, all the weights except for (0, −ϵ) and (−2ω1 + ω2, −ϵ) = −α1

yield no cohomology. One can see the vectors of these weights form a subquotient with 

the desired properties.

(2) For k = 0, analyze Rj ind
G0̄

B0̄
Λ

0((g1̄/b1̄)∗) ∼= Rj ind
G0̄

B0̄
C.

From Kempf’s vanishing theorem, Rj ind
G0̄

B0̄
C = 0 for j > 0, and one has ind

G0̄

B0̄
C = C.

(3) For k = 2, show that Rj ind
G0̄

B0̄
Λ

2((g1̄/b1̄)∗) = 0 for j ̸= 2 and R2ind
G0̄

B0̄
Λ

2((g1̄/b1̄)∗) =

C.

A technique that is used in the verification of (3) is the existence of an embedding of 

Λ
2((g1̄/b1̄)∗) into Λ2(L) ⊠ (−2ϵ) where L is an irreducible G0̄,(1)-module. For example, 

when g = G(3), one has

0 → Λ
2((g1̄/b1̄)∗) → Λ

2(L(ω1)) ⊠ (−2ϵ) → M → 0. (4.2.5)

From the tensor identity, one has that Rjind
G0̄

B0̄
Λ

2(L(ω1)) ⊠ (−2ϵ) = 0 for j ≥ 0. This 

allows one to dimension shift via the long exact sequence in cohomology to concentrate 

on calculating Rj ind
G0̄

B0̄
M . In the case M is a 6-dimensional module. This makes the 

computations tractable to verify (3). A similar short exact sequence to (4.2.5) exists for 

F (4) via the spin representation L(ω3) for so7 and the same technique can be utilized 

in this case. !

4.3. Consider RnindG
BC ∼= Rnind

G0̄

B0̄
Λ

•((g1̄/b1̄)∗) as a G0̄-module for n ≥ 0. The 

weights of Λn((g1̄/b1̄)∗) are −ρ(J) where J ⊆ Φ
+
1̄

and |J | = n. Here ρ(J) =
∑

α∈J α. 

Set ρ1̄ = 1
2

∑
α∈Φ

+
1̄

α and let

w · λ = w(λ + ρ1̄) − ρ1̄

for w ∈ W1̄ and λ in the Q-span of Φ1̄. This will be referred to as the odd dot action of 

W1̄.

One has

ρ1̄ − ρ(J) =
1

2

∑

γ∈J ′

γ −
1

2

∑

α∈J

α (4.3.1)

where J ′ = Φ1̄ − J . Now w ∈ W1̄ permutes the set of odd roots Φ1̄. Under the condi-

tion that Φ−
1̄

= −Φ
+
1̄

, it follows that w(ρ1̄ − ρ(J)) = ρ1̄ − ρ(J1) where J1 ⊆ Φ
+
1̄

, and 

consequently

w · (−ρ(J)) = −ρ(J1) (4.3.2)

Let G0̄ be a reductive algebraic group, ∆ be the simple roots in Φ+
0̄

and W0̄ be the 

Weyl group for the corresponding root system, Φ0̄, for G0̄. Let ρΦ0̄ := ρ0̄ = 1
2

∑
α∈Φ

+
0̄

α

and denote the even dot action by w ◦ λ = w(λ + ρ0̄) − ρ0̄ where w ∈ W0̄ and λ ∈ X(T0̄).
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Table 4.3.1 provides the relationship between ρ1̄ and ρ0̄. Observe that in the case 

when g is A(n|n) or osp(2n + 1|2n), G0̄
∼= G0̄,(1) × G0̄,(2). In these cases ρ0̄ is a sum 

ρ0̄,(1) + ρ0̄,(2) where ρ0̄,(j) is the half sum of positive roots arising from G0̄,(j) where 

j = 1, 2.

Table 4.3.1

Sums of even and odd roots.

g

q(n) ρ1̄ = ρ0̄

psq(n) ρ1̄ = ρ0̄

A(n|n) ρ1̄ = ρ0̄ = ρ
An−1

0̄,(1)
+ ρ

An−1

0̄,(2)

osp(2n + 1|2n) ρ1̄ = ρ0̄ = ρ
Bn

0̄,(1)
+ ρ

Cn

0̄,(2)

A key idea to calculate R•indG
BC entails connecting the even and odd dot actions on 

weights of Λ•(u1̄) as shown in the next example.

Example 4.3.1. Let g = q(n) or psq(n). There exists a B0̄-isomorphism Λ
•(u−

0̄
) ∼=

Λ
•((g1̄/b1̄)∗). Furthermore, ρ1̄ = ρ0̄ and the even and odd dot actions coincide.

One can now directly apply [16, II 6.18, Proposition] to conclude that Rnind
G0̄

B0̄
Λ

•((g1̄/

b1̄)∗) ∼= C⊕tn where tn = |{w ∈ Σn : l(w) = n}|. The contributions in this cohomology 

group are given by weights in Λ
n((g1̄/b1̄)∗), so one can apply Proposition 4.1.3(b) to 

conclude that pG,B(t) = pW1̄
(t). This result generalizes the q(2) example computed by 

Brundan [9, Lemma 4.4] for all q(n), n ≥ 1.

4.4. Combinatorics with odd roots

We will start by focusing on the cases when g is of type A(n|n) or osp(2n + 1|2n).

In this setting G0̄ is a product of two reductive algebraic groups which is unlike the 

case for type Q. The dot action of the group W1̄ on Φ1̄ is more complicated in this setting, 

yet one still has a beautiful connection between w · 0 with natural subsets of roots in 

Φ
+
1̄

. We will consider the following set of even simple roots for g0̄ given in Table 4.4.1

(cf. [14, 12.1]).

Set I = {1, 2, . . . , n − 1} for A(n|n) (resp. I = {1, 2, . . . , n} for osp(2n + 1|2n)). Let 

sj,0̄,(1) (resp. sj,0̄,(2)) be the reflection corresponding to the jth root in ∆0̄,(1) (resp. 

∆0̄,(2)). For j ∈ I, set

sj := sj,0̄,(1)sj,0̄,(2).

Then sj is a simple reflection in W1̄ and W1̄ is generated by {sj : j ∈ I}.

Example 4.4.1. Let g = A(n|n). Observe that sj(ϵj − δj+1) = δj+1 − ϵj ∈ Φ
−
1̄

and 

sj(δj − ϵj+1) = ϵj+1 − δj ∈ Φ
−
1̄

. Furthermore,

sj(Φ+
1̄

− {ϵj − δj+1, δj − ϵj+1}) ⊂ Φ
+
1̄

.
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Table 4.4.1

Even simple roots.

g ∆̄0̄,(1) ∆̄0̄,(2)

A(n|n) {ϵ1 − ϵ2, . . . , ϵn−1 − ϵn} {δ1 − δ2, . . . , δn−1 − δn}
osp(2n + 1|2n) {ϵ1 − ϵ2, . . . , ϵn−1 − ϵn, ϵn} {δ1 − δ2, . . . , δn−1 − δn, 2δn}

That is, the only roots in Φ+
1̄

that are sent to Φ−
1̄

are ϵj − δj+1 and δj − ϵj+1.

From direct computations, one can show that Example 4.4.1 extends to the other 

algebras listed in Table 4.4.1. There are two sets of roots in Φ+
1̄

, ∆̄1̄,(1) = {βj : j ∈ I}

and ∆̄1̄,(2) = {γj : j ∈ I} with the property that

• sj({βj , γj}) ⊂ Φ
−
1̄

with sj(βj) = −βj and sj(γj) = −γj

• sj(Φ+
1̄

− {βj , γj}) ⊂ Φ
+
1̄

The following table gives this correspondence.

g ∆̄1̄,(1) ∆̄1̄,(2)

A(n|n) {ϵ1 − δ2, . . . , ϵn−1 − δn} {δ1 − ϵ2, . . . , δn−1 − ϵn}
osp(2n + 1|2n) {ϵ1 − δ2, . . . , ϵn−1 − δn, δn} {δ1 − ϵ2, . . . , δn−1 − ϵn, ϵn + δn}

For w ∈ W1̄ set

Φ(w) = −(wΦ
+
1̄

∩ Φ
−
1̄

) = wΦ
−
1̄

∩ Φ
+
1̄

⊂ Φ
+
1̄

. (4.4.1)

The following results establish some basic facts about Φ(w).

Proposition 4.4.2. Let w ∈ W1̄.

(a) |Φ(w)| = 2 · l(w).

(b) w · 0 = −ρ(Φ(w)).

(c) If w = sj1
. . . sjt

is a reduced expression, then

Φ(w) = {βj1
, sj1

βj2
, sj1

sj2
βj3

, . . . , sj1
sj2

. . . sjt−1
βjt

}

∪ {γj1
, sj1

γj2
, sj1

sj2
γj3

, . . . , sj1
sj2

. . . sjt−1
γjt

}.
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(d) If w · 0 = −ρ(J) for some J ⊂ Φ
+
1̄

then J = Φ(w).

Proof. (a) (b) and (c): One proves these statements using induction on l(w). When 

w = id (i.e., l(w) = 0), these statements are clear. Now suppose that w ∈ W1̄ and 

w = sjw′ where l(w) = l(w′) + 1. One has βj /∈ Φ(w′) and γj /∈ Φ(w′) due to the 

minimality of the expression w = sjw′. Since sj sends all roots in Φ+
1̄

other than βj and 

γj to Φ+
1̄

, one can express

Φ(w) = sj(Φ(w′)) ∪ {βj , γj}. (4.4.2)

This is a disjoint union of sets. This proves (a) and (c).

For (b), one observes that

w · 0 = sj · (w′ · 0) = sj · (−ρ(Φ(w′))) = −sjρ(Φ(w′)) + sj · 0

= −sjρ(Φ(w′)) − βj − γj = −ρ(Φ(w))

by using (4.4.2).

(d) We adapt the line of reasoning given in [28, Lemma 3.1.2(b)]. Statement (d) will 

be proved by induction on l(w). If w = id or equivalently l(w) = 0 then w · 0 = 0, so 

J = ∅ = Φ(id).

Let w ∈ W1̄ with l(w) > 0. One can write w = sjw′ with l(w) = l(w′) + 1. We have 

βj , γj ∈ Φ(w) and these elements are not in Φ(w′).

Let w · 0 = −ρ(J) where J = {σ1, σ2, . . . , σm} ∈ Φ
+
1̄

. Then

w′ · 0 = sj · (w · 0) = sj(w · 0) + sjρ − ρ = −(sjσ1 + · · · + sjσm + βj + γj).

There are two cases.

Case 1: σi ̸= βj or γj for all i. Without loss of generality we may assume that i = m

when there is equality. In this case, each of the three sets (that we will denote by J ′)

• {sjσ1, . . . , sjσm, βj , γj}

• {sjσ1, . . . , sjσm−1, βj}

• {sjσ1, . . . , sjσm−1, γj}

yields distinct elements in Φ+
1̄

whose sum equals −w′ · 0. Now by induction, −ρ(J ′) =

Φ(w′). This is a contradiction because βj /∈ Φ(w′) and γj /∈ Φ(w′).

Case 2: σi = βj and σk = γj for some i, k. We may assume that i = m and k = m − 1, so 

w′ ·0 = −(sjσ1+· · ·+sjσm−2). By induction, Φ(w′) = {sjσ1, . . . , sjσm−2}. Consequently, 

Φ(w) = Φ(w′) ∪ {βj , γj} = {σ1, . . . , σm}. !
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4.5. In this section we compute pG,B(t) for the algebras listed in Table 4.4.1. This 

will be accomplished in a series of steps. Recall that G0̄ = G0̄,(1) × G0̄,(2). It will be 

convenient to view a weight of G0̄,(1) × G0̄,(2) as a pair (σ1, σ2) that is expressed as 

σ1 + σ2 when considered as a weight of Λ•((g1̄/b1̄)∗).

When ρ0̄ = ρ1̄, the even dot action is compatible with the odd action for w ∈ W1̄. 

That is,

(w, w) ◦ µ = w · µ

for w ∈ W1̄ and for any weight µ (i.e., in the span of the ϵ’s and δ’s). This observation 

about the compatibility of the actions is central to making the computations in the 

paper.

(1) If σ = (σ1, σ2) is a weight of Λ
•((g1̄/b1̄)∗) and Rn ind

G0̄

B0̄
(σ1, σ2) ̸= 0 then σ =

(w1 ◦ 0, w2 ◦ 0) where w1, w2 ∈ W1̄. Here ◦ denotes the dot action of the Weyl group of 

G0̄,(1) × G0̄,(2).

First consider g = A(n|n). Then W1̄ can be identified as the diagonal embedding of 

∆ : Σm →֒ Σm × Σm with w ∈ W1̄ represented as (w, w). There exists λj ∈ X(T0̄,(j))+

and wj ∈ Σm for j = 1, 2 such that σ1 = w1 ◦ λ1 and σ2 = w2 ◦ λ2. We have

w1̄ ◦ λ1 + w2 ◦ λ2 = −ρ(J) (4.5.1)

for some J ⊆ Φ
+
1̄

. Since ρ0̄ = ρ0̄,(1) + ρ0̄,(2) = ρ1̄, applying (w−1
1 , w−1

1 ) ∈ W1̄ to this 

equation yields

λ1 + (w−1
1 w2) ◦ λ2 = w−1

1 · (−ρ(J)) = −ρ(J1) (4.5.2)

for some J1 ⊆ Φ
+
1̄

.

We claim that the dominance condition on λ1 forces λ1 = 0. One has

−ρ(J1) =
∑

i>j

mi,j(ϵi − δj) +
∑

i>j

ni,j(δi − ϵj) (4.5.3)

with 1 ≤ i, j ≤ n and mi,j , ni,j ≥ 0. In (4.5.2), the term (w−1
1 w2) ◦ λ2 only involves δj ’s. 

The term involving ϵ1 in (4.5.3) is less than or equal to zero, whereas the term involving 

ϵn is greater than or equal to zero. Since λ1 is dominant it follows that λ1 = 0. Therefore, 

w1 ◦ 0 + w2 ◦ λ2 = −ρ(J). Apply w−1
2 to both sides and repeat the argument above to 

get that λ2 = 0.

Next consider g = osp(2n +1|2n). Then W1̄ = ∆(Σm ⋉ (Z2)m). Given (4.5.1), one can 

use the same line of reasoning as in the preceding paragraph with a few modifications. 

One needs to add the additional term to (4.5.3): 
∑

i,j qi,j(ϵi +δj) +
∑

j rjδj with qi,j , rj ≤

0. The dominance condition for so(2n + 1) (resp. sp(2n)) entails that the coefficient 
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involving ϵn (resp. δn) is greater than or equal to zero. This allows us to show that 

λ1 = 0 and λ2 = 0.

(2) If Rn ind
G0̄

B0̄
(w1 ◦ 0, w2 ◦ 0) ̸= 0 for w1, w2 ∈ W1̄ then w1 = w2.

Suppose that w1 ◦ 0 + w2 ◦ 0 = −ρ(J) for some J ⊆ Φ
+
1̄

. Then (w−1
1 w2) ◦ 0 = −ρ(J1)

for some J1 ⊆ Φ
+
1̄

. Set w = w−1
1 w2, and note that −ρ(J1) consists of a negative sum of 

roots for G0̄,(2) (i.e., roots involving δ’s).

Let l(w) > 0 and w = si,0̄,(2)w
′ be a reduced expression. Then

si,0̄,(1) ◦ 0 + w′ ◦ 0 = si · (−ρ(J1)) = si(−ρ(J1)) + si · 0.

Now si,0̄,(1) · 0 = −(ϵi − ϵi+1) and si · 0 = −(ϵi − ϵi+1) − (δi − δi+1). Set ᾱ = δi − δi+1. 

It follows that

w′ · 0 = si(−ρ(J1)) − ᾱ

= −ρ(J1) + ⟨−ρ(J1), ᾱ∨⟩ᾱ − ᾱ

= w · 0 + [⟨−ρ(J1), ᾱ∨⟩ − 1]ᾱ.

Therefore,

w′ · 0 − w · 0 = −[⟨−ρ(J1), ᾱ∨⟩ + 1]ᾱ. (4.5.4)

From the explicit descriptions of the negative roots summing to w′ · 0 and w · 0, one can 

conclude that w′ ·0 −w ·0 = −(w′)−1(ᾱ). The equation (4.5.4) shows that (w′)−1(ᾱ) = ᾱ

and ⟨−ρ(J1), ᾱ∨⟩ = 0. Therefore,

0 = ⟨−ρ(J1), ᾱ∨⟩ = 0 = ⟨w · 0, ᾱ∨⟩ = ⟨wρ
(2)

0̄
− ρ

(2)

0̄
, ᾱ∨⟩.

Consequently, ⟨wρ
(2)

0̄
, ᾱ∨⟩ = 1. On the other hand,

⟨wρ
(2)

0̄
, ᾱ∨⟩ = ⟨si,0̄,(2)w

′ρ
(2)

0̄
, ᾱ∨⟩ = ⟨w′ρ

(2)

0̄
, −ᾱ∨⟩ = ⟨ρ

(2)

0̄
, −ᾱ∨⟩ = −1.

This is a contradiction, so l(w) = 0 and w1 = w2.

(3) dim Λ
•((g1̄/b1̄)∗)(w◦0,w◦0) = 1 for all w ∈ W1̄.

The statement (3) follows from Proposition 4.4.2.

Let n ≥ 0. According to the Künneth formula

Rnind
G0̄

B0̄
(w ◦ 0, w ◦ 0) =

⊕

n1+n2=n

Rn1 ind
G0̄,(1)

B0̄,(1)
w ◦ 0 ⊠ Rn2 ind

G0̄,(2)

B0̄,(2)
w ◦ 0. (4.5.5)
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This shows that

Rnind
G0̄

B0̄
(w · 0, w · 0) ∼=

{
C n = 2l(w)

0 otherwise.

From (1), (2) and (3), one can conclude that Rnind
G0̄

B0̄
Λ

•((g1̄/b1̄)∗) ∼= C⊕tn where 

tn = |{w ∈ W1̄ : n
2 = l(w)}| for n even and zero when n is odd. Consequently, by 

Proposition 4.1.3(a), one has that pG,B(t) = pW1̄
(t2).

4.6. Computing Poincaré series via spectral sequences

Let P be a parabolic subgroup such that B ⊆ P ⊆ G. The following result enables 

one to compute pG,B(t) from pG,P (t) and pP,B(t).

Proposition 4.6.1. Let P be a parabolic subgroup such that B ⊆ P ⊆ G. Suppose that

(a) R2• indP
B C ∼= C⊕s and R2•+1 indP

B C = 0;

(b) R2•+1 indG
P C = 0.

Then pG,B(t) = pG,P (t) · pP,B(t).

Proof. There exists a first quadrant spectral sequence

Ei,j
2 = RiindG

P Rj indP
BC ⇒ Ri+j indG

BC.

From (a), since the P -modules, R• indP
B C are either 0 or a direct sum of trivial modules, 

one can regard these modules as G-modules (i.e., the P -module structure lifts to G). 

Therefore, by the tensor identity, the E2-page can be expressed as a tensor product

Ei,j
2 = RiindG

P C ⊗ Rj indP
BC.

According to (b), Ei,j
2 = 0 has non-zero terms only if i and j are both even. The 

differentials in the spectral sequence have bidegree (r, 1 − r). Therefore, the spectral 

sequence must collapse and yields R•indG
BC ∼= R•indG

P C ⊗ R•indP
BC. This proves the 

statement of the proposition. !
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4.7. g = osp(2n|2n) for n ≥ 1

We begin by comparing the even and odd roots for g = osp(2n|2n) through the 

information below. (See Table 4.7.1.)

Table 4.7.1

Even simple roots.

g ∆̄0̄,(1) ∆̄0̄,(2)

osp(2n|2n) {ϵ1 − ϵ2, . . . , ϵn−1 − ϵn, ϵn−1 + ϵn} {δ1 − δ2, . . . , δn−1 − δn, 2δn}

In the case when g = osp(2n|2n) one has ρ0̄ ̸= ρ1̄. Instead,

ρ1̄ = ρDn + 2[ϵ1 + · · · + ϵn] + ρCn

This necessitates the use of different techniques than the ones used for A(n|n) and 

osp(2n + 1|2n) (when ρ0̄ = ρ1̄). The root system for type Dn embeds in the root system 

for type Cn and one also has the relationship ρCn = ρDn + [ϵ1 + · · · + ϵn].

Consider the subalgebra gl(n|n) in osp(2n|2n) and the parabolic subalgebra gener-

ated by gl(n|n) and the root vectors of weights {−ϵi − δj : 1 ≤ i, j ≤ n}, and let P

be the corresponding parabolic subgroup scheme. From our prior section, R•indP
BC is 

isomorphic to a direct sum of trivial modules and

∞∑

j=0

dim Rj indP
BC tj = pΣn

(t2).

It suffices to show that

∞∑

i=0

dim RiindG
P C ti = pW1̄/Σn

(t2) = (1 + t2)(1 + t4) . . . (1 + t2n) (4.7.1)

If this holds, then by Proposition 4.6.1, pG,B(t) = pW1̄
(t2).

For the case g = osp(2n|2n), one has W1̄
∼= Σn ⋉ (Z2)n−1. First observe that

RnindG
P C|G0̄

∼= Rnind
G0̄

P0̄
Λ

•((g1̄/p1̄)∗) ∼= Rnind
G0̄

B0̄
Λ

•((g1̄/p1̄)∗).

The weights of (g1̄/p1̄)∗ are the roots −Φ
+
p := {−ϵi − δj : 1 ≤ i, j ≤ n}. Suppose that 

w1 ◦ λ + w2 ◦ µ = −ρ(J) where J ⊆ Φ
+
p . Using the argument in Section 4.5(1), we can 

deduce that

1 ≥ λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ |λn| (4.7.2)

and

1 ≥ µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ µn ≥ 0. (4.7.3)
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From (4.7.3), µ = δ1 + δ2 + · · · + δs. Then

w2 ◦ µ = w2(µ + ρCn) − ρCn .

If s ≥ 1, then the first term in µ + ρCn is (n + 1)δ1 and must be sign changed to 

obtain a summand involving −δj’s in −ρ(J). However, if this term is sign changed to 

−(n +1) and possibly permuted, then the corresponding term in w2 ◦µ is at most −n −2

which less than −n. This leads to a contradiction, thus s = 0 and µ = 0. Consider 

w2 ◦ 0 = w2(ρCn) − ρCn with ρCn = nδ1 + (n − 1)δ2 + · · · + δn = (n, n − 1, . . . , 1). Using 

(4.7.4) shows that w2 must fix nδ1. This proves that w1 ◦ λ + w2 ◦ 0 = −ρ(J) where 

J ⊆ {−ϵi − δj : 1 ≤ i ≤ n, 2 ≤ j ≤ n}.

Next from (4.7.2), λ = ϵ1 + ϵ2 + · · ·+ ϵs ± ϵn and consider w1 ◦λ = w1(λ +ρDn) −ρDn . 

Now if s ≥ 1 then the term nϵ1 in λ + ρDn must change sign so there is an ϵ-coefficient 

in w1 ◦ λ less than or equal to −n. However, from the preceding paragraph, in −ρ(J)

the coefficient of ϵi is greater than −(n − 1). Therefore, s = 0 and by the dominance 

condition, λ = 0.

We will prove (4.7.1) by induction n. Assume for n − 1,

∞∑

i=0

dim RiindG
P C ti = (1 + t2)(1 + t4) . . . (1 + t2(n−1))

given via 2(n−1) solutions of w1 ◦0 +w2 ◦0 = −ρ(J), J ⊆ {ϵi −δj : 2 ≤ i ≤ n, 2 ≤ j ≤ n}

with l(w1) = l(w2). For osp(2|2) (i.e., n − 1 = 1), this can be verified directly.

Suppose for g = osp(2n|2n), one has

w1 ◦ 0 + w2 ◦ 0 = −ρ(J) (4.7.4)

with J ⊆ {ϵi − δj : 1 ≤ i ≤ n, 1 ≤ j ≤ n}. First consider w2 ◦ 0 = w2(ρCn) − ρCn with 

ρCn = nδ1 + (n − 1)δ2 + · · · + δn = (n, n − 1, . . . , 1). From (4.7.4) one can deduce that 

w2 must fix nδ1 and either (i) fix (n − 1)δ2 or (ii) permute and sign change (n − 1)δ2 to 

−(n − 1)δn. In the first case (i),

w2 ◦ 0 = (0, 0, ∗, ∗, . . . , ∗).

In the case (i) consider w1 ◦ 0 where ρDn = (n − 1)nϵ1 + (n − 2)δ2 + · · · + ϵn−1 =

(n −1, n −2, . . . , 1, 0). Under w1, either (n −1) is fixed or gets sign changed to −(n −1) and 

is permuted in the ϵn-position. The latter is not possible because w2◦0 = (0, 0, ∗, ∗, . . . , ∗)

(i.e., only ϵn + δj can occur for j = 3, . . . , n). Hence, in case (i), w1 ◦ 0 = (0, ∗, ∗, . . . , ∗). 

The conclusion is that in case (i), we are reduced to the 2(n−1) solutions of w1◦0 +w2◦0 =

−ρ(J) in osp(2(n − 1)|2(n − 1)).

Next we handle case (ii). We can reduce to the solutions of (4.7.4) in osp(2(n −

1)|2(n − 1)) by multiplying by an element with length 2n. In case (ii), w2 ◦ 0 =

(0, b1, b2, . . . , bn−2, −n) and w1 ◦ 0 = (a1, a2, . . . , an−1, −(n − 1)) with
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(a1, a2, . . . , an−1, −(n − 1)) + (0, b1, b2, . . . , bn−2, −n) = −ρ(J).

Note that ai, bj ≤ 0.

Set τ1 = sϵn
sn−1,0̄,(1)sn−2,0,(1) . . . s1,0̄,(1) where sϵn

(ϵj) = ϵj for j = 1, 2, . . . , n − 1 and 

sϵn
(ϵn) = −ϵn. Even though τ1 is not in the Weyl group for type Dn, it can be shown 

that τ−1
1 w1 ◦ 0 = w′

1 ◦ 0 for some w′
1 ∈ Σn ⋉ (Z2)n−1. By direct computation,

τ−1
1 w1 ◦ 0 = (0, 1 + a1, 1 + a2, . . . , 1 + an−1).

On the other hand, let τ2 = sn,0̄,(2)sn−1,0̄,(2) . . . s2,0̄,(2) ∈ Σn⋉(Z2)n. One can verify that

τ−1
2 w2 ◦ 0 = (0, 0, 1 + b1, 1 + b2, . . . , 1 + bn−2).

Next we need to show that

τ−1
1 w1 ◦ 0 + τ−1

2 w2 ◦ 0 = (0, 1 + a1, 1 + a2, . . . , 1 + an−1)

+ (0, 0, 1 + b1, 1 + b2, . . . , 1 + bn−2) = −ρ(J2),

for some J2 ⊆ {ϵi − δj : 2 ≤ i ≤ n, 2 ≤ j ≤ n}. From our assumption,

(a1, a2, . . . , an−1, −(n − 1)) + (0, b1, b2, . . . , bn−2, −n) = −ρ(J).

This implies that {ϵi + δn : 1 ≤ i ≤ n} ∪ {ϵn + δj : 2 ≤ j ≤ n − 1} ⊆ J , and

(a1 + 1, a2 + 1, . . . , an−1 + 1, 0) + (0, b1 + 1, b2 + 1, . . . , bn−2 + 1, 0) = −ρ(J1),

for some J1 ⊆ {ϵi − δj : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 1}. This claim now follows 

by applying a permutation of the coordinates. We can now conclude by the induction 

hypothesis that

τ−1
1 w1 ◦ 0 + τ−1

2 w2 ◦ 0 = w̃1 ◦ 0 + w̃2 ◦ 0 = −ρ(J2),

for unique w̃1, w̃2 ∈ Σn−1 ⋉ (Z2)n−2. Moreover, one can verify that l(τjw̃j) = n + l(w̃j)

for j = 1, 2. Consequently, in case (ii), we are reduced to the 2(n−1) solutions of w1 ◦ 0 +

w2 ◦ 0 = −ρ(J) in osp(2(n − 1)|2(n − 1)) by multiplying by τ−1 = τ−1
1 τ−1

2 whose total 

length is 2n. This proves (4.7.1).

4.8. g = osp(2(n + 1)|2n) for n ≥ 1

Consider the embedding osp(2n|2n) →֒ osp(2(n + 1)|2n), and let p be the parabolic 

subalgebra generated by osp(2n|2n) and the root vectors with weights of the form −ϵ1±δj

for j = 1, 2, . . . , n. Let P be the parabolic subgroup scheme with Lie P = p. One has 

B ⊆ P ⊆ G.
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Table 4.9.1

Embeddings.

g′ g Φ
+
1̄,P

[n ≤ m − 1]

A(n|m − 1) A(n|m) {ϵi − δm : 1 ≤ i ≤ n}
osp(2n + 1|2(m − 1)) osp(2n + 1|2m) {−ϵi + δ1 : 2 ≤ i ≤ n} ∪ {ϵi + δ1 : 1 ≤ i ≤ n} ∪ {δ1}
osp(2(m − 1) + 1|2n) osp(2m + 1|2n) {ϵ1 − δi : 1 ≤ i ≤ n} ∪ {ϵ1 + δi : 1 ≤ i ≤ n}
osp(2n|2(m − 1)) osp(2n|2m) {−ϵi + δ1 : 1 ≤ i ≤ n} ∪ {ϵi + δ1 : 1 ≤ i ≤ n}
osp(2(m − 1)|2n) osp(2m|2n) {ϵ1 − δi : 2 ≤ i ≤ n} ∪ {ϵ1 + δi : 1 ≤ i ≤ n}

In this case, we have W1̄
∼= Σn ⋉ (Z2)n for g = osp(2(n + 1)|2n). In order to show 

that pG,B(t) = pW1̄
(t2), we use Proposition 4.6.1 to reduce our computation to proving 

that pG,P (t) = 1 + t2n. Here we are using information about the Poincaré series for 

osp(2n|2n).

The weights of (g1̄/p1̄)∗ are −ϵ1 ± δj for j = 1, 2, . . . , n. Suppose we have a weight 

of the form w1 ◦ λ + w2 ◦ µ = −ρ(J) where J ⊆ {−ϵ1 ± δj : j = 1, 2, . . . , n}. 

Then w1 ◦ λ = −kϵ1 = −kω1. Therefore, ⟨w1 ◦ λ, α∨⟩ = 0 for α ∈ ∆0̄,(1). It follows 

that ⟨λ + ρ
(1)

0̄
, w−1

1 α∨⟩ = 1. Consequently, w−1
1 α ≥ 0 and w−1

1 α ∈ ∆0̄,(1). We have 

w−1
1 {α2, . . . , αn+1} ⊆ {α2, . . . , αn+1}, thus ⟨λ, αj⟩ = 0 for j = 2, 3, . . . , n + 1.

Now consider w1 ◦ sω1 = −kω1 or equivalently,

w1 ◦ sϵ1 = −kϵ1.

A direct computation using the dot action for Dn+1 shows that there are two solutions: 

(i) w1 = 1, s = 0, k = 0 and (ii) s = 0, k = 2n and l(w1) = 2n. This proves the assertion.

4.9. We now extend our computation for pG,B(t) when g = A(p|q) and when g =

osp(p|q). We consider the following embeddings of Lie superalgebras g′ ⊆ g and set of 

positive roots Φ+
1̄,P

. Set n ≤ m − 1.

Let p be the subalgebra generated by b and g′ and P be the corresponding parabolic 

subgroup scheme with p = Lie P .

Theorem 4.9.1. Let g′ = Lie G′ and g = Lie G be as in Table 4.9.1. Then pG,B(t) =

pG′,B′(t).

Proof. One has B ⊆ P ⊆ G. We prove the theorem by induction on m. One has R•indP
BC

as a G′-module identifies with R•indG′

B′C (cf. [16, I. 6.14(1)]). The cohomology in odd 

degree vanishes and cohomology in even degree is isomorphic to a direct sum of trivial 

modules. Therefore, by Proposition 4.6.1 it suffices to show that pG,P (t) = 1 to prove 

that pG,B(t) = pG′,B′(t).

One has

Rj indG
P C|G0̄

∼= Rj ind
G0̄

P0̄
Λ

•((g1̄/p1̄)∗) ∼= Rj ind
G0̄

B0̄
Λ

•((g1̄/p1̄)∗).
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The last isomorphism follows by using the spectral sequence relating the composition of 

induction functors [16, I. 4.5(c) Proposition] and the fact that Rtind
P0̄

B0̄
C = 0 for t > 0.

The weights of g1̄/p1̄ coincide with Φ
+
1̄,P

. Let σ be a weight of Λ
•((g1̄/p1̄)∗) with 

Rj ind
G0̄

B0̄
σ ̸= 0 for some j ≥ 0.

If g = A(n|m) then by the argument given in Section 4.5(1), σ = w1 ◦ λ1 + w2 ◦ 0. It 

follows that w2 ◦ 0 = c δm where c ≥ 0. This can only happen if c = 0, which implies 

that σ = 0. This proves the statement of the theorem for A(n|m).

In the other cases, the arguments given in Sections 4.5(1), and 4.7 show that σ =

w1 ◦ 0 + w2 ◦ 0. Consider the second case in Table 4.9.1. Then w2 ◦ 0 = −cδ1 = −cω1. In 

the root system Cm this means that c = 0 or c = 2m. However, c ≤ 2n ≤ 2(m − 1) < 2m

which implies that c = 0, thus σ = 0. The other three cases in the table are handled 

with a similar argument. !

4.10. The computation of R•indG
BC and pG,B(t)

The following theorem relates the sheaf theoretic Poincaré polynomial with the 

Poincaré polynomial for W1̄ when g is not of type P .

Theorem 4.10.1. Let g be a classical simple Lie superalgebra with g = Lie G. Assume that 

g is not isomorphic to P (n). Let B be the parabolic subgroup such that b = Lie B where 

b is the parabolic subalgebra defined in Table 7.1.3. Then

(a) R• indG
B C is a direct sum of trivial modules.

(b) The number of trivial modules in Rn indG
B C is given by

pG,B(t) = zb,g(t) = pW1̄
(s)

where s is the parameter defined in Table 7.2.1.

Proof. Parts (a) and (b) were proved for the various classical Lie superalgebras in the 

following way. First, it was established that R• ind
G0̄

B0̄
Λ

•((g1̄/b1̄)∗) is a direct sum of 

trivial modules. Now from Propositions 4.1.1 and 4.1.3, it follows that R• indG
B C is a 

direct sum of trivial modules. Part (b) was verified along the way via the calculation of 

R• ind
G0̄

B0̄
Λ

•((g1̄/b1̄)∗).

For the statements of (a) and (b) the cases when g = D(2, 1, α), G(3) and F (4) were 

proved in Theorem 4.2.1. For type Q the statements was verified in Example 4.3.1, and 

for the type A families and orthosymplectic Lie superalgebras in Section 4.9. !

4.11. The preceding theorem motivates the following definition.

Definition 4.11.1. Let G be an algebraic supergroup where g = Lie G is a classical simple 

Lie superalgebra and B be a parabolic subgroup with b = Lie B such that
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(a) b = b0̄ ⊕ b1̄ where b1̄
∼= f1̄ ⊕ u1̄ where b0̄ is a Borel subalgebra for g0̄.

(b) There exists a finite reflection group W1̄ such that as graded vector spaces,

H•(b, b0̄, C) ∼= H•(g, g0̄, C) ⊗ C[W1̄]•.

Then b is called an BBW parabolic subalgebra if and only if

pG,B(t) = zb,g(t) = pW1̄
(s)

where s = tr for some r ≥ 1.

5. Results for the Lie superalgebra p(n)

5.1. In this section we will present results for the Lie superalgebra p(n) and explain 

how the theory differs from the other classical simple Lie superalgebras. Let g be the Lie 

superalgebra p(n) where n ≥ 2. This Lie superalgebra embeds into gl(n|n) as 2n × 2n

matrices of the form

(
A B

C −At

)
, (5.1.1)

where A, B and C are n × n matrices over C with A ∈ sln(C), B symmetric, and C

skew-symmetric.

Let V be the n-dimensional natural representation for sln(C) with weights ϵj , j =

1, 2, . . . , n. One has

g0̄
∼= sln(C) and g1̄

∼= S2(V ) ⊕ Λ
2(V ∗).

The weights of g1̄ are given by

Φ1̄ = {ϵi + ϵj : 1 ≤ i ≤ j ≤ n} ∪ {−ϵi − ϵj : 1 ≤ i < j ≤ n}.

The Lie superalgebra p̃(n), which is an enlargement of p(n), is constructed by taking 

g0̄
∼= gln(C).

5.2. Cohomology and Hilbert series

For the sake of convenience, we will redefine the detecting subalgebra f as follows. The 

vector space f1̄ is the span of the root vectors in g1̄ whose weights are of the form

Φf1̄
=

{
{±(ϵ1+j + ϵ2l−j)} for j = 0, 1, . . . , l − 1, n = 2l

{±(ϵ1+j + ϵ2l+1−j), 2ϵl+1} for j = 0, 1, . . . , l − 1, n = 2l + 1.
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Set f0̄ = [f1̄, f1̄] and f = f0̄ ⊕ f1̄.

In both cases when n is even or odd, H is a torus of dimension l and N/N0̄
∼= Σl⋉(Z2)l. 

One can define a parabolic subalgebra b as follows. We have

Φ1̄ = {ϵi + ϵj : 1 ≤ i, j ≤ n} ∪ {−ϵi − ϵj : 1 ≤ i < j ≤ n}.

Set

Φ
−
1̄

= {ϵi + ϵj : n + 1 < i + j} ∪ {−ϵi − ϵj : i < j, i + j < n + 1}

and b be the parabolic subalgebra generated by the root vectors with roots in Φ−
0̄

∪Φf1̄
∪

Φ
−
1̄

and t0̄. The defining hyperplanes for the parabolic are given by

H =

{∑l
i=1 xi(Ei − E2l+1−i), x1 > x2 > · · · > xl > 0 n = 2l

∑l
i=1 xi(Ei − E2l+2−i), x1 > x2 > · · · > xl > 0 n = 2l + 1.

The computation of H•(b, b0̄, C) = S•(f∗
1̄
)T0̄ is given in Table 5.2.1.

Table 5.2.1

Cohomology and Hilbert series.

g W1̄ H•(b, b0̄, C)

p(n), n = 2l Σl ⋉ (Z2)l
C[x1y1, x2y2, . . . , xlyl, x1x2 . . . xl, y1y2 . . . yl]

p(n), n = 2l + 1 Σl ⋉ (Z2)l
C[x1y1, x2y2, . . . , xlyl, x2

1x2
2 . . . x2

l xl+1]

The goal for the remainder of this section is to compute zb,g(t) when n is even and 

when n is odd.

In the case when n = 2l is even, set

S = C[x1y1, x2y2, . . . , xlyl, x1x2 . . . xl, y1y2 . . . yl]

and

T = C[f1, f2, . . . , fl−1, x1x2 . . . xl, y1y2 . . . yl]

where fj is the jth symmetric polynomial in {x1y1, x2y2, . . . , xlyl}. Then as in the case 

for sl(l|l), S is free T -module of rank |Σl|. Furthermore, if pS(t) (resp. pT (t)) are the 

Poincaré polynomials of S (resp. T ) then

pΣl
(t2) = pS(t)/pT (t) = pb(t)/pT (t). (5.2.1)

Now we use the fact that T is a polynomial algebra generated in degrees 2, 4, . . . , 2l − 2, 

l and l. Therefore,

pb(t) = pΣl
(t2) · pT (t) =

(1 − t2l)

(1 − t2)l(1 − tl)2
. (5.2.2)
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From [4, Table 1] H•(g, g0̄, C) is a polynomial algebra generated in degrees 4, 8, . . . ,

4(l − 1), l, and n. Consequently,

zb,g(t) =
(1 − t4)(1 − t8) . . . (1 − t4(l−1))(1 − tn)(1 + tl)

(1 − t2)l
= pW ′

1̄
(t2)pZ2

(tl) (5.2.3)

where W ′
1̄

= Σl ⋉ (Z2)l−1.

In the case when n = 2l + 1 is odd, H•(b, b0̄, C) is a polynomial algebra with l

generators in degree 2 and one generator in degree n = 2l + 1. On the other hand, 

H•(g, g0̄, C) is a polynomial algebra with generators in degrees 4, 8, . . . , 4l and n (cf. [4, 

Table 1]). Therefore, for n odd,

zb,g(t) =
(1 − t4)(1 − t8) . . . (1 − t4l)

(1 − t2)l
= pW1̄

(t2). (5.2.4)

Note that after cancellation by the factors (1 − t2)l in (5.2.3) and (5.2.4), one obtains 

that

zb,g(1) = 2l · (l)! = |W1̄|.

5.3. p(2) and p(3)

First let g = p(2). Then Φ1̄ = {2ϵ2} = {−α} where α is the positive root in g0̄ = sl2. 

Therefore, one sees that

Rj ind
G0̄

B0̄
Λ

•((g1̄/b1̄)∗) =

{
C j = 0, 1

0 else.

It follows that

zb,g(t) =
(1 − t2)(1 + t)

(1 − t2)
= 1 + t = pW1̄

(t) = pG,B(t) (5.3.1)

and b is a BBW parabolic subalgebra.

Next, let g = p(3). It will be convenient to use the root basis and the fundamental 

weight basis for our calculations for Φ0̄ = A2. One has

Φ
−
1̄

= {2ϵ3, ϵ2 + ϵ3, −ϵ1 − ϵ2} = {2ω2, −ω1, −ω2}.

Now −ω1, −ω2 ∈ CZ, and

sα2
· (−2ω2) = −ω1 ∈ CZ − X(T0̄)+.

Therefore, R•ind
G0̄

B0̄
Λ

1((g1̄/b1̄)∗) = 0. Similarly,
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sα1
· (ω2 − 3ω1) = ω1 − ω2 ∈ CZ − X(T0̄)+,

thus, R•ind
G0̄

B0̄
Λ

3((g1̄/b1̄)∗) = 0.

The weights of Λ2((g1̄/b1̄)∗) are {2ω2 − ω1, −3ω2, −ω1 − ω2}. The weight −2ω2 − ω1

is conjugate to −ω2 by sα1
sα2

, and −ω1 − ω2 ∈ CZ − X(T0̄)+. So these weights do not 

contribute to give any cohomology. On the other hand,

(sα2
sα1

) · 0 = −3ω2. (5.3.2)

Consequently, R•ind
G0̄

B0̄
Λ

2((g1̄/b1̄)∗) = C.

In summary, one has

zb,g(t) = 1 + t2 = pW1̄
(t2) = pG,B(t) (5.3.3)

and b is again a BBW parabolic subalgebra.

5.4. p(4)

Next consider the Lie superalgebra g = p(4). One has

Φ
−
1̄

= {2ϵ4, 2ϵ3, ϵ3 + ϵ4, ϵ2 + ϵ4, −ϵ1 − ϵ2, −ϵ1 − ϵ2}

= {−2ω3, −2ω2 + 2ω3, −ω2, −ω1 + ω2 − ω3, −ω2, −ω1 + ω2 − ω3}.

It is useful to express the elements in Φ−
1̄

in terms of fundamental weights of g0̄ = sln. 

Note that −ω2 and −ω1 + ω2 − ω3 occur with multiplicity two.

The weights of Λ
1((g1̄/b1̄)∗) are precisely the ones in Φ

−
1̄

. All of these weights are 

conjugate to a weight in CZ − X(T0̄)+, thus R•ind
G0̄

B0̄
Λ

1((g1̄/b1̄)∗) = 0. Next observe 

that Λ6((g1̄/b1̄)∗) is one-dimensional and spanned by a vector of weight −2ρ0̄. Therefore, 

Λ
5((g1̄/b1̄)∗) ∼= Λ

1((g1̄/b1̄)∗)∗ ⊗ (−2ρ0̄). Let µ = −λ − 2ρ0̄ be a weight of Λ5((g1̄/b1̄)∗)

where λ is a weight of Λ1((g1̄/b1̄)∗). Then

w0 · µ = w0(−λ) = −w0λ.

The possible weights of the form w0 ·µ are {−2ω1, 2ω1 − 2ω2, −ω2, −ω1 + ω2 + ω3} which 

are all conjugate to a weight in CZ − X(T0̄)+. Consequently, R•ind
G0̄

B0̄
Λ

5((g1̄/b1̄)∗) = 0.

The distinct weights of Λ3((g1̄/b1̄)∗) are

{ − 3ω2, −ω1 − ω2 − ω3, −ω1 − 3ω3, −2ω2 − 2ω3, −2ω1 + 2ω2 − −4ω3,

− ω1 − 2ω2 + ω1, −2ω1 − 2ω1 + ω2 − 2ω3}.

A lengthy verification shows that all of the weights above are conjugate to a weight in 

CZ − X(T0̄)+, thus R•ind
G0̄

B0̄
Λ

3((g1̄/b1̄)∗) = 0.
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The distinct weights in Λ2((g1̄/b1̄)∗) that are conjugate to a weight in CZ − X(T0̄)+

are

{−2ω2, −ω2 − 2ω3, −ω1 + ω2 − 3ω3, −ω1 − ω2 + ω3, −ω1 − ω3}.

For the other two weights: −3ω2+2ω3 (multiplicity 2), and −2ω1+2ω2−2ω3 (multiplicity 

1), one has

(sα1
sα2

) · (−ω2 − 2ω3) = 0, (5.4.1)

(sα1
sα3

) · (−2ω1 + 2ω2 − 2ω3) = 0. (5.4.2)

Consequently, Rj ind
G0̄

B0̄
Λ

2((g1̄/b1̄)∗) = 0 for j ̸= 2 and R2ind
G0̄

B0̄
Λ

2((g1̄/b1̄)∗) ∼= C⊕3. By 

using duality this also holds for Λ4((g1̄/b1̄)∗).

Finally, w0(−2ρ0̄) = 0 and l(w0) = 6, thus Rj ind
G0̄

B0̄
Λ

6((g1̄/b1̄)∗) = 0 for j ̸= 6 and 

R6ind
G0̄

B0̄
Λ

6((g1̄/b1̄)∗) ∼= C. By gathering all this information, one can now conclude that

pG,B(t) = 1 + 3t2 + 3t4 + t6 = (1 + t2)3 = zb,g(t).

For g = p(4), one has W1̄ = Σ2 ⋉ (Z2)2. The Poincaré polynomial

pW1̄
(t) =

(1 − t2)(1 − t4)

(1 − t)2
= (1 + t)(1 + t + t2 + t3).

From this, it is clear that pG,B(t) ̸= pW1̄
(tr) for any r ≥ 1, and b is not a BBW parabolic.

5.5. Given our computations for g = p(n), we conclude this section with two open 

questions about the parabolic subalgebra b.

(5.5.1) Does pG,B(t) = zb,g(t)?

(5.5.2) Is there a natural subset of elements in Σn that describes the grading on C[W1̄]•
given by zb,g(t)?

6. Comparing cohomology and supports for (g, g
0̄
), (b, b

0̄
) and (f, f

0̄
)

In the section assume that g is a classical Lie superalgebra, b is the BBW parabolic 

subalgebra and f is the detecting subalgebra as defined in Section 3.3.

6.1. By using the finite generation of the cohomology ring H•(b, b0̄, C), one can 

define two types of support varieties. Let V(b,b0̄)(M) be the variety associated to the 

annihilator of H•(b, b0̄, C) on Ext•
(b,b0̄)(M, M). One has an injection of H•(g, g0̄, C) →֒

H•(b, b0̄, C) such that H•(b, b0̄, C) is finitely generated over H•(g, g0̄, C). Set V̂(b,b0̄)(M)

to be the variety associated to the annihilator of H•(g, g0̄, C) on Ext•
(b,b0̄)(M, M).
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The following theorem compares the support varieties for cohomology in (b, b0̄), (t, t0̄)

and (f, f0̄).

Theorem 6.1.1. Let M be a finite-dimensional b-module.

(a) V(b,b0̄)(M) ∼= V(t,t0̄)(M).

(b) V̂(b,b0̄)(M) ∼= V(t,t0̄)(M)/N .

(c) V(t,t0̄)(M) ∼= V(f,f0̄)(M)/T0̄.

(d) V(t,t0̄)(M)/N ∼= V(f,f0̄)(M)/N .

Proof. (a) First observe that by Theorem 3.4.1(b), the restriction map H•(b, b0̄, C) →

H•(t, t0̄, C) is an isomorphism. Therefore, V(t,t0̄)(M) ⊆ V(b,b0̄)(M) (cf. argument in [4, 

Section 6.1]).

Let M = ⊕λ∈t∗

0̄
Mλ be a weight space decomposition of M . Note that each Mλ is a 

t-module. Next observe one can construct a b-stable filtration of M :

M := M0 ⊇ M1 ⊇ M2 ⊇ · · · ⊇ Ms ⊇ {0}

such that Mi/Mi+1
∼= Mλi

for some λi ∈ t∗
0̄
.

The filtration above provides a short exact sequence 0 → Ms → M → M/Ms → 0. 

One can then use the long exact sequence in cohomology to show that

V(b,b0̄)(M, M ′) ⊆ V(b,b0̄)(Ms, M ′) ∪ V(b,b0̄)(M/Ms, M ′)

for all finite-dimensional b-modules N . Specializing M = M ′, one obtains

V(b,b0̄)(M) ⊆ V(b,b0̄)(Ms) ∪ V(b,b0̄)(M/Ms).

Applying this procedure inductively yields

V(b,b0̄)(M) ⊆
⋃

λ∈t∗

0̄

V(b,b0̄)(Mλ). (6.1.1)

Here Mλ is regarded as b-module with trivial u-action.

Next apply the LHS spectral sequence for Mλ:

Ei,j
2 = Exti

(t,t0̄)(C, Extj
(u,u0̄)(C, C) ⊗ M∗

λ ⊗ Mλ) ⇒ Exti+j
(b,b0̄)(Mλ, Mλ).

By using the identification of

R := H•(b, b0̄, C) ∼= H•(t, t0̄, C) ∼= S•(t∗1̄)T0̄

one has that R acts on the rows of E2 and the abutment. It follows that



D. Grantcharov et al. / Advances in Mathematics 381 (2021) 107647 39

V(b,b0̄)(Mλ) ⊆ V(t,t0̄)(Mλ).

Since V(t,t0̄)(M) = ∪λ∈t∗

0̄
V(t,t0̄)(Mλ), one has V(b,b0̄)(M) ⊆ V(t,t0̄)(M).

(b) The result can be obtained using the argument given in (a) and replacing 

(i) H•(b, b0̄, C) → H•(t, t0̄, C) by H•(g, g0̄, C) → H•(t, t0̄, C)N , (ii) V(t,t0̄)(−) by 

V(t,t0̄)(−)/N , and (iii) V(b,b0̄)(−) by V̂(b,b0̄)(−).

(c) We have f ! t, so one can apply the Lyndon-Hochschild-Serre spectral sequence 

for relative cohomology

Ei,j
2 = Hi(t/f, t0̄/f0̄, Hj(f, f0̄, M ′)) ⇒ Hi+j(t, t0̄, M ′)

for any t-module M ′. The spectral sequence collapses (t/t0̄
∼= f/f0̄) and yields:

H•(t, t0̄, M ′) ∼= H•(f, f0̄, M ′)T0̄ . (6.1.2)

This proves that the restriction map: H•(t, t0̄, M ′) →֒ H•(f, f0̄, M ′) is an injective map, 

so by [20, Theorem 4.4.1], V(t,t0̄)(M) ∼= V(f,f0̄)(M)/T0̄.

(d) One can obtain this part by using (c) and taking quotients with N . !

6.2. Geometric induction and spectral sequences

Let G (resp. B) be the supergroup (scheme) such that Lie G = g (resp. Lie B = b). 

If M is a G-module (resp. B-module) then one can consider M as a g-module (resp. b-

module) by differentiation. The following result provides a spectral sequence that relates 

the relative cohomology for g and b via the higher right derived functors of indG
B(−).

Proposition 6.2.1. Let M1 be a G-module and M2 be a B-module. Then there exists a 

first quadrant spectral sequence.

Ei,j
2 = Exti

(g,g0̄)(M1, Rj indG
B M2) ⇒ Exti+j

(b,b0̄)(M1, M2).

Proof. The spectral sequence is constructed via a composition of functors. Let F1(−) =

Hom(g,g0̄)(M, −) and F2(−) = indG
B(−). We are regarding F1 (resp. F2) on the relative 

category C(g,g0̄) (resp. C(b,b0̄)) where the injective objects are relatively projective over 

U(g0̄) (resp. U(b0̄)).

The functors F1 and F2 are left exact. Furthermore, an injective object in C(b,b0̄) is a 

direct summand of indB
B0̄

N for some B0̄-module N . Observe that

F2(indB
B0̄

N) ∼= indG
B [indB

B0̄
N ] ∼= indG

B0̄
N = indG

G0̄
[ind

G0̄

B0̄
N ].

Therefore, F2(indB
B0̄

N) is an injective module in C(g,g0̄). It follows that injective objects 

in C(b,b0̄) are taken to objects acyclic for F1. Finally, observe that
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F1 ◦ F2(−) = Hom(g,g0̄)(M, indG
B(−)) ∼= Hom(b,b0̄)(M, −).

The existence of the spectral sequence now follows by [16, I. 4.1 Proposition]. !

6.3. Restricting relative U(g0̄)-injectives to U(b)

We can use the spectral sequence to investigate what happens when an relative injec-

tive U(g0̄)-module restricts to b.

Theorem 6.3.1. Let I be a g-module that is a relatively injective U(g0̄)-module and M be 

any finite-dimensional g-module. Then

(a) Extj
(b,b0̄)(M, I) ∼= Hom(g,g0̄)(M, [Rj indG

B C] ⊗ I)

(b) Extj
(b,b0̄)(M, I) = 0 for j > dim G0̄/B0̄.

Proof. One can apply the spectral sequence given in Proposition 6.2.1:

Ei,j
2 = Exti

(g,g0̄)(M, [Rj indG
B C] ⊗ I) ⇒ Exti+j

(b,b0̄)(M, I). (6.3.1)

Since I is injective the spectral sequence collapses and yields (a). For part (b), one 

has Rj indG
B C = 0 for j ≥ dim G0̄/B0̄ by Proposition 4.1.1. !

The result above shows that I restricted to b need not be a relatively injective U(b0̄)-

module. However, the result does show that if I is a relatively injective U(g0̄)-module 

then {0} = V(g,g0̄)(I) = V(b,b0̄)(I).

6.4. Collapsing of the spectral sequence

The next result shows that the spectral sequence given in Proposition 6.2.1 collapses 

when M = C and b is a BBW parabolic subalgebra.

Theorem 6.4.1. Let g be a classical simple Lie superalgebra with g ̸= P (n). Then the 

following spectral sequence collapses:

Ei,j
2 = Exti

(g,g0̄)(C, [Rj indG
B C]) ⇒ Exti+j

(b,b0̄)(C, C). (6.4.1)

Proof. It suffices to show that

∑

i+j=n

dim Ei,j
2 = dim Hn(b, b0̄, C) (6.4.2)

for all n ≥ 0. This will insure that the differentials dr are zero for r ≥ 2.
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Since Rj indG
BC ∼= C⊕mj by Theorem 4.10.1(a), one has

⊕

i+j=n

Ei,j
2

∼=
⊕

i+j=n

Hi(g, g0̄, C) ⊗ Rj indG
BC (6.4.3)

for all n ≥ 0.

Now by Theorem 4.10.1(b), pb(t) = pg(t) ·pG,B(t). Therefore, by comparing coefficients 

of tn, one can conclude that (6.4.2) holds. !

6.5. We can now give conditions via the collapsing of the spectral sequence in Propo-

sition 6.2.1 for M1
∼= C and M2

∼= C to insure that V̂(b,b0̄)(M) ∼= V(g,g0̄)(M).

Theorem 6.5.1. Let M a finite-dimensional g-module. Suppose that

(a) Rj indG
B C ∼= C⊕mj for j > 0.

(b) The spectral sequence

Ei,j
2 = Exti

(g,g0̄)(C, [Rj indG
B C]) ⇒ Exti+j

(b,b0̄)(C, C) (6.5.1)

collapses and yields an isomorphism of R = H•(g, g0̄, C) = S•(g∗
1̄
)G0̄-modules.

Then res∗ : V̂(b,b0̄)(M) → V(g,g0̄)(M) is an isomorphism.

Proof. Let M be a finite-dimensional g-module. By assumption, Rj indG
B C ∼= C⊕mj for 

j > 0. Using the tensor identity, Rj indG
B M ∼= [Rj indG

B C] ⊗ M , one has two spectral 

sequences:

Ei,j
2 = Exti

(g,g0̄)(C, C⊕mj ) ⇒ Exti+j
(b,b0̄)(C, C), (6.5.2)

Ēi,j
2 = Exti

(g,g0̄)(C, [M∗ ⊗ M ]⊕mj ) ⇒ Exti+j
(b,b0̄)(M, M). (6.5.3)

The spectral sequence (6.5.2) acts on (6.5.3) in the following way. There exists a 

natural map of C-algebras ρ : H•(b, b0̄, C) → Ext•
(b,b0̄)(M, M) that is defined by 

taking an extension class in H•(b, b0̄, C) and tensoring the class by M . Set Ĵb,M =

AnnR Ext•
(b,b0̄)(M, M). Then one has an injective ring homomorphism

ρ : H•(b, b0̄, C)/Ĵb,M →֒ Ext•
(b,b0̄)(M, M). (6.5.4)

For j ≥ 0, there also exist maps on the direct sum of algebras:

ρj : H•(g, g0̄, C)⊕mj → Ext•
(g,g0̄)(M, M)⊕mj (6.5.5)

with
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ρj : [R/JM ]⊕mj →֒ Ext•
(g,g0̄)(M, M)⊕mj . (6.5.6)

Furthermore, there is a compatibility of differentials:

ρj(dr(x)) = d̄r(ρj(x)). (6.5.7)

Since (6.5.2) collapses, dr(x) = 0 for r ≥ 2, thus d̄r(ρj(x)) = 0 for r ≥ 2, j ≥ 0. Therefore, 

the differentials on [R/JM ]⊕mj in (6.5.3) are zero, and Ext•
(b,b0̄)(M, M) contains a copy 

of the module ⊕j≥0[R/JM ]⊕mj .

Now suppose that y ∈ R annihilates Ext•
(b,b0̄)(M, M). Then y annihilates R/JM so 

y ∈ JM . Consequently, AnnR Ext•
(b,b0̄)(M, M) ⊆ JM , and V(g,g0̄)(M) ⊆ V̂(b,b0̄)(M). The 

other inclusion holds by looking at the action of R on the spectral sequence (6.5.3) [e.g., if 

R annihilates Ē2, then it annihilates the abutment]. Hence, V(g,g0̄)(M) = V̂(b,b0̄)(M). !

6.6. Proof of Theorem 1.2.1

For g = p(n), the first isomorphism in Theorem 1.2.1(b) can be deduced from [20, 

Theorem 5.1.1(a)] since P (n) is type I. Now assume that g ̸= P (n), then the first 

isomorphism in Theorem 1.2.1(b) follows from Theorem 2.5.1. Therefore, it suffices to 

prove that res∗ : V(f,f0̄)(M)/N → V(g,g0̄)(M) is an isomorphism. From Theorem 6.5.1

res∗ : V̂(b,b0̄)(M) → V(g,g0̄)(M) is an isomorphism. The statement of the theorem now 

follows by applying Theorem 6.1.1(b)(d).

7. Tables for BBW parabolics and Poincaré series

7.1. BBW parabolics

The following tables provide a reference for the construction of BBW parabolic subal-

gebras. In these tables, the roots for the detecting subalgebras and the BBW parabolics 

are given as well as the defining hyperplanes. One should note that although Φf1̄
= ∅

for g = q(n), psq(n) in Table 7.1.1, the algebra f1̄ is not trivial, and it equals the odd 

part of the Cartan subalgebra of g. Also, for convenience, the obvious restrictions for the 

indexes are not included in some cases. For example, in Table 7.1.3, the restrictions of 

Table 7.1.1

Roots for the detecting subalgebras.

g Φf1̄

gl(m|n), sl(m|n) [m ≤ n] {± (ϵi − δi) | 1 ≤ i ≤ m}
osp(2m|2n) {± (ϵi − δi) | 1 ≤ i ≤ min(m, n)}
osp(2m + 1|2n) [m ≥ n] {± (ϵi − δi) | 1 ≤ i ≤ n}
osp(2m + 1|2n) [m < n] {± (ϵi − δi) | 1 ≤ i ≤ m}
q(n), psq(n) ∅
D(2, 1, α) {± (ϵ, −ϵ, ϵ)}
G(3) {± (ω1, −ϵ)}
F (4) {± (ω3, −ϵ)}
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Table 7.1.2

Hyperplanes of BBW parabolics.

g H

gl(m|n), sl(m|n) [m ≤ n]
∑n

i=1 xi(Ei + Di), x1 > x2 > · · · > xn

osp(2m|2n)
∑r

i=1 xi(Ei + Di), x1 > x2 > · · · > xr > 0 [r = max(m, n)]
osp(2m + 1|2n)

∑r
i=1 xi(Ei + Di), x1 > x2 > · · · > xr > 0 [r = max(m, n)]

q(n), psq(n)
∑n

i=1 xiEi, x1 > x2 > · · · > xn

D(2, 1, α) x1E1 + (x1 + x3)E2 + x3E3, x1 > x3 > 0
G(3) x1L1 + x2L2 + x1E, 2x1 > x2 > x1 > 0
F (4) x1L1 + x2L2 + x3L3 + x3E, 2x1 > x3 > x2 > x1 > 0

Table 7.1.3

Roots of BBW parabolics.

g Φ
−

1̄

gl(m|n), sl(m|n) [m ≤ n] {−ϵi + δj , −δi + ϵj | i < j}
osp(2m|2n) {−ϵi + δj , −δi + ϵj , −ϵk − δℓ, | i < j}
osp(2m + 1|2n) [m ≥ n] {−ϵi + δj , −δi + ϵj , −ϵk − δℓ, −δt | i < j}
osp(2m + 1|2n) [m < n] {−ϵi + δj , −δi + ϵj , −ϵk − δℓ, −δt | i < j, t ≤ m}
q(n), psq(n) {−ϵi + ϵj | i < j}
D(2, 1, α) {(−ϵ, −ϵ, −ϵ), (−ϵ, −ϵ, ϵ), (ϵ, −ϵ, −ϵ)}
G(3) {(−ω1 + ω2, −ϵ), (2ω1 − ω2, −ϵ), (0, −ϵ), (ω1 − ω2, −ϵ),

(−2ω1 + ω2, −ϵ), (−ω1, −ϵ)}
F (4) {(ω2 − ω3, −ϵ), (ω1 − ω2 + ω3, −ϵ), (ω1 − ω3, −ϵ),

(−ω2 + ω3, −ϵ), (−ω1 + ω2 − ω3, −ϵ), (−ω1 + ω3, −ϵ), (−ω3, −ϵ)}

the indexes for Φf1̄
when g = osp(2m|2n) should be i < j, 1 ≤ i, k ≤ m, 1 ≤ j, ℓ ≤ n, 

but we just write i < j.

7.2. Poincaré series

For the parabolic subalgebras b given in Section 7.1, the table below provides gives a 

description of the cohomology H•(b, b0̄, C) and relationship between zb,g(t) with pW1̄
(t).

Table 7.2.1

Cohomology and Hilbert series.

g W1̄ H•(b, b0̄, C) zb,g(t)

gl(m|n) [m ≥ n] Σn C[x1y1, x2y2, . . . , xnyn] pW1̄
(t2)

sl(m|n) [m > n] Σn C[x1y1, x2y2, . . . , xnyn] pW1̄
(t2)

sl(n|n) Σn C[x1y1, x2y2, . . . , xnyn, x1x2 . . . xn, y1y2 . . . yn] pW1̄
(t2)

psl(n|n) Σn C[x1y1, x2y2, . . . , xnyn, x1x2 . . . xn, y1y2 . . . yn] pW1̄
(t2)

q(n) Σn C[z1, z2, . . . , zn] pW1̄
(t)

psq(n) Σn C[z1, z2, . . . , zn, z1z2 . . . zn]/(z1 + z2 + · · · + zn) pW1̄
(t)

osp(2m + 1|2n) Σr ⋉ (Z2)r
C[x1y1, x2y2, . . . , xryr] [r = min(m, n)] pW1̄

(t2)
osp(2m|2n) [m > n] Σn ⋉ (Z2)n

C[x1y1, x2y2, . . . , xnyn] pW1̄
(t2)

osp(2m|2n) [m ≤ n] Σm ⋉ (Z2)m−1
C[x1y1, x2y2, . . . , xmym] pW1̄

(t2)
D(2, 1, α) Σ2 C[xy] pW1̄

(t2)
G(3) Σ2 C[xy] pW1̄

(t2)
F (4) Σ2 C[xy] pW1̄

(t2)
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