Reliable Memristive Neural Network Accelerators Based on Early
Denoising and Sparsity Induction

Anlan Yu, Ning Lyu, Wujie Wen, Zhiyuan Yan
Department of Electrical and Computer Engineering
Lehigh University
{any218, nil418, wuw219, zhy6}Qlehigh.edu

Abstract— Implementing deep neural networks
(DNNs) in hardware is challenging due to the require-
ments of huge memory and computation associated
with DNNs’ primary operation—matrix-vector multi-
plications (MVMs). Memristive crossbar shows great
potential to accelerate M VMs by leveraging its capa-
bility of in-memory computation. However, one crit-
ical obstacle to such a technique is potentially signif-
icant inference accuracy degradation caused by two
primary sources of errors—the variations during com-
putation and stuck-at-faults (SAFs). To overcome this
obstacle, we propose a set of dedicated schemes to
significantly enhance its tolerance against these er-
rors. First, a minimum mean square error (MMSE)
based denoising scheme is proposed to diminish the
impact of variations during computation in the inter-
mediate layers. To the best of our knowledge, this is
the first work considering denoising in the intermedi-
ate layers without extra crossbar resources. Further-
more, MMSE early denoising not only stabilizes the
crossbar computation results but also mitigates errors
caused by low resolution analog-to-digital converters.
Second, we propose a weights-to-crossbar mapping
scheme by inverting bits to mitigate the impact of
SAFs. The effectiveness of the proposed bit inversion
scheme is analyzed theoretically and demonstrated ex-
perimentally. Finally, we propose to use L1 regular-
ization to increase the network sparsity, as a greater
sparsity not only further enhances the effectiveness of
the proposed bit inversion scheme, but also facilitates
other early denoising mechanisms. Experimental re-
sults show that our schemes can achieve 40%—78% ac-
curacy improvement, for the MNIST and CIFARI10
classification tasks under different networks.

I. INTRODUCTION

Deep neural networks (DNNs) have shown great suc-
cess in a wide range of tasks due to their strong repre-
senting capability and outstanding performance. As the
volume of data increases and tasks become more difficult,
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the scales of DNNs often grow very large, resulting in
increasing demand on computation resources. Despite re-
cent efforts on accelerating DNNs using CPUs and GPUs,
overwhelming computations needed by DNNs remain one
of the primary obstacles to their widespread applications.
Thus, fast and efficient DNN accelerating is still one sig-
nificant research challenge.

Among different types of proposed DNN accelerators,
memristive crossbar is one of the most promising tech-
niques due to its fast reactions and low energy costs [1].
Matrix-vector multiplications (MVMs), which account for
a significant fraction of DNN computation, are highly ac-
celerated by mapping multiplications and additions to
the relationships among voltages, resisters and currents
in memristive crossbars. Hence, a memristive crossbar
based implementation of MVMs simultaneously provides
a high density storage as well as computation in memory
[2] and diminishes data movements [3].

Despite the aforementioned advantages, memristive
crossbars suffer from some non-ideal effects such as fabri-
cation imperfection, programming imperfection, and con-
ductance variations, all of which result in computational
errors and performance degradation of DNNs when per-
forming inferences [4][5]. To combat these errors, one
option is to use error correction codes (ECCs) in mem-
ristive crossbars. For instance, error correction output
codes (ECOCs), which replace one hot representations
with specially designed codewords at the decision layer in
classification tasks, have been proposed [6][7]. However,
when neural networks become deep, ECOCs have limited
effectiveness due to error propagation and accumulation
from layer to layer. While using ECCs on all intermediate
layers in addition to the decision layer can reduce error
propagation [8][9], more crossbar resources are needed for
redundancy bits in ECCs. For example, implementing a
rate-2/3 code will add a redundant resistance for every 2
resistances [8]. To avoid the additional costs from redun-
dancy introduced by using ECCs, in this paper we take
a very different approach to combating these errors, that
is, redundancy-free denoising at early layers. The main
contributions of this paper are:

e We propose a minimum mean square error (MMSE)
based intermediate layer denoising scheme, which
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Fig. 1. Structure of crossbar-based memristive DNN accelerator.
T1-T4 represent different timing.

uses MMSE estimates of the accurate outputs from
intermediate layers to reduce the impact of variations
and quantization errors introduced by low resolution
analog-to-digital converters (ADCs). To the best
knowledge of the authors, this is the first redundancy-
free denoising scheme for intermediate layers.

e While previous works compensate for stuck-at-faults
(SAFs) by assuming the knowledge of the defect map
[10][11], which requires extra effort, a bit inversion
scheme is proposed to mitigate the impact of SAFs
without the knowledge of the defect map by taking
advantage of the imbalance between stuck-at-1 (SA1)
and stuck-at-0 (SAQ) errors.

e We also propose a sparsity induction scheme so that
training will result in more sparse weights. The in-
creased sparsity of the network will enhance the effec-
tiveness of the bit inversion scheme discussed above.
Furthermore, we propose another early denoising
mechanism by removing noisy multiply-accumulate
(MACQ) results of hidden nodes connected with all
zero weights during inference.

e The effectiveness of both the sparsity induction and
the bit inversion schemes is analyzed theoretically
and demonstrated experimentally.

We present the experimental evaluations of our pro-
posed schemes on the MNIST and CIFAR10 datasets us-
ing multilayer perceptron (MLP), Lenet 5 and Alexnet.
Results show that the proposed schemes offer 40%-78%
accuracy improvements. Our proposed scheme also shows
20%-70% accuracy improvements compared with the
ECOC scheme in [7].

II. BACKGROUND

A. Model of memristive DNN accelerator

We define the MVM operation in DNNs as

y = Wk, (1)

where W € RV*M ig the weight matrix, x € R¥*! is the
input and y € RM*! is the output.

In this work, two-level memristor cell crossbars are con-
sidered, in which each cell has only two states, namely
high conductance state and low conductance state. Us-
ing a two-level memristor cell to represent one single
bit of weights leads to negligible quantization error and
higher robustness against variations, compared with us-
ing a multi-level memristor cell to represent one weight
element. Furthermore, our proposed schemes in this pa-
per can be extended to multi-level memristor crossbars.
In each crossbar, binary representations of entries in W
are mapped to conductances: ‘0’s are mapped to low con-
ductance states, and ‘1’s are mapped to high conductance
states. To implement the MVM in (1), two such crossbars
are needed to deal with positive and negative values sepa-
rately. Denote conductance matrices on positive crossbar
and negative crossbar as G, G_ € {0, 1}V*MNw respec-
tively, where a conductance unit is chosen such that high
and low conductances are 1 and 0, respectively, without
loss of generality. Then, traditional weights-to-crossbar
mapping is given by

Q(Jwi ), if wi; >0
0, otherwise

Q(|wi ), if wi; <0
G (4, Nu:(j+1) Nu—1) = 0

G (i, Nw:(j+1) N —1) = {
(2)

otherwise

where Q(|w; ;]) is the N,,-bit binary representation of the
(i,7)-th element in W.

Entries of the input x are represented in a binary for-
mat, and then mapped to a matrix of voltages through
1-bit digital-to-analog converters (DACs) [3]. We denote
the voltage matrix as V € {0, 1}V*N where a voltage
unit is chosen such that high voltage equals 1, and low
voltage equals 0, without loss of generality. Then the
output currents J; € NVixMNw and J € NVixXMNu gre
Ji+ = VG, and J_ = VG_, respectively. After that,
the currents J; and J_ are quantized by ADCs (with ap-
propriate unit), and the quantized outputs are assembled
by shifters and adders to give the digital output at each
crossbar. The final output y is obtained by subtracting
the results of negative crossbar from the results of the
positive crossbar:

y=rfJ4) = fJ-), 3)

where f(x) represents the shift-and-add process. The
structure of the memristive crossbar is shown in Fig. 1.

B. Types of errors for memristive crossbars
B.1 Variations

In memristive crossbar structure, dynamic errors usually
come from conductance variation, sensing current vari-
ation, or resistance drifting. In this paper, we model



these errors as additive white Gaussian noise (AWGN)
on the current output at each column on the crossbar.
Errors added on to the MVM results can be considered
as a summation of Gaussian noise, which is also Gaus-
sian. Hence the distorted currents J, , and J_, are
given by Jy , =J4 +n, and J_, = J_ +n_, where
n.,n_ ~ N(0,021) are independent AWGN vectors.

B.2 Stuck-at-faults (SAFSs)

SAFs happen when memristor cells are stuck at certain
conductance levels and cannot be programmed, and they
usually result from fabrication imperfection and aging.
SAFs at the memristor cells can cause errors in crossbar-
based MVM implementation during the DNN inference.
SAFs are usually unbalanced, i.e. ratio of SA1 is much
higher than that of SAQ. We note that SAFs are not
necessarily errors. For example, if a cell is stuck at 0, the
cell is in error only if the correct state of the cell is 1. Since
the cells considered in this work have binary states and
are subject to SAO and SA1 simultaneously, we model a
cell as a random variable with three possible outcomes—
SA0, SA1, and not stuck—with probabilities eg, e1, and
1 — eg — e, respectively.

III. RELIABLE CROSSBAR COMPUTING SCHEMES

A. Crossbar output denoising scheme based on MMSE

In this subsection, a crossbar output denoising scheme
is proposed to relieve the distortion caused by variations
in the intermediate layers based on linear minimum mean
squared error estimation. According to MMSE, the out-
put current for positive crossbar J is estimated by

2 2

~ ; g
J.=—" 3. .+ E3,, 4
+ 0]2+0%+’+0]2+U?L[+] (4)

where o2 and 032- are the variances of ny and J,, respec-
tively, and E[J] is the mean of J,. After that, each
element in J + is assigned to its closest natural number to
get the final hard decision output J; ;. J_, for negative
crossbar is obtained in the same fashion.

Three parameters in Eq. (4) need to be determined: o2,
O’? and E[J]. Since o2 is independent from both input
and crossbar data, it can be measured via a one-time noise
estimation process offline. sz and E[J] shall be charac-
terized online as they are determined by the percentage of
‘1I’s and ‘0’s on the crossbar and input data. In practice,
we estimate these two values by directly using a batch of
training data offline, as our results in Section IV show.

We denote the number of rows on each crossbar, per-
centage of ‘1I’s in V and percentage of ‘1’s in G4 as r,
p1,v and pq g, respectively. j represents a single element
in J4, which is the MAC result for one single column. v
is an element in V and ¢ is an element in G;. We also
assume the bit value on memristor cells and inputs are

independent. Then random variable j can be obtained by
J =21 Ukgr. Accordingly, E[j] is

E[J} = E[Z /ngk] = TP1,vP1,g- (5)
k=1

07 can be calculated by

0F = E[j°] = E*[j] = r’prup1g(1 = proprg).  (6)
Based on Egs. (5) and (6), E[J;] and o7 can be es-
timated and substituted in Eq. (4). Once the coeffi-
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cients -’ and are calculated before the infer-
J n

3
U?-{-U%
ence, these two coefficients are constants and used for all
the images during inference. Thus, the division opera-
tions in Eq. (4) are carried out offline and hence their

complexity is negligible.
B. Bit inversion (BI) mapping scheme

In the conventional weights-to-crossbar mapping shown
in Eq. (2), positions of negative/positive weights are set
to 0 on positive/negative crossbars ideally, which results
in a lot more ‘0’s than ‘1’s on crossbars, and SA1 will be
more likely to cause errors.

For the above reason, and consider the fact that SAQ
ratio is much smaller than SA1 ratio, we propose the fol-
lowing mapping rules to diminish the impact of SAFs:

1, if Wy, > 0

G 4,7 Nuw:(j - =Y~
+ (6 Nw: (j+1)Nw—1) {Q(|wi,j|)7 otherwise

7
1, if Ws, j < 0 ( )

G (i Ny D= YA
1(1: N (§+1) Noy —1) {Q(wi,j|)7 otherwise

where Q(|w; ;|) is the one’s complement of Q(|w; ;|). This
mapping does not change the results of Eq. (3) and leads
to more ‘1’s on crossbars after the mapping.
Next we will evaluate the effectiveness of our proposed
bit inversion (BI) mapping scheme theoretically. Let (a, b)
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Fig. 2. State transition diagram with SAFs.
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= (60 — €1 — 263 + 6061)P(111),b +e1 +eg—ereg

denote the state of two corresponding conductances on
positive and negative crossbars, where a and b are values
of the conductances on positive and negative crossbars,
respectively. SAFs can cause transitions of states and
lead to errors, as illustrated in Fig. 2. For both mapping
schemes, states in blue are valid starting states and states
in grey are invalid starting states, e.g. state (1,1) is in-
valid for traditional mapping scheme in Eq. (2) because
at least one of the state is 0 according to Eq. (2). Black
solid arrows are safe transitions that no error occurs on
the final subtraction result, while red, blue and purple
dash arrows represent transitions that cause errors. For
instance, transitions from (0,0) to (1,1) and from (1,1)
to (0,0) do not cause errors on the subtraction result.

Let us denote the prior probability of (a,b) using tradi-
tional mapping scheme and BI mapping scheme as P, 3) ¢
and P, p) 5, respectively. The probability of state transi-
tions is denoted as P, p)—(a’,pr)- A cell suffers from SA1
and SAQ with probability e; and eq, respectively. The ef-
fective error rates of the traditional mapping scheme P, ;
and the proposed BI mapping scheme P, ; are calculated
in Eq. (8) and Eq. (9), respectively.

From Eq. (2) and Eq. (7), we observe that Py )+ =
P(1,1),» because the positions of (0,0) states using tradi-
tional mapping scheme are exactly the same as the posi-
tions of (1, 1) states using proposed BI mapping scheme.
Then the difference of P,,,; and P, is calculated as

Perr,diff = Perr,t - Pe'rr,b

(10)
= 2P(0,0)7t(61 — 60)(1 —e1 — 60).

Note that 1 —e; — ey > 0 is the probability of a cell
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Fig. 3. Error rate comparison for the traditional mapping scheme
and the proposed bit inversion mapping scheme.

not being stuck, therefore P, 4;sy > 0 and the proposed
BI mapping scheme works no worse than the traditional
mapping scheme as long as e; > ep (SA1 ratio is higher
than SAO ratio). Additionally, we observe that the higher
Po,0),; is, the higher the improvement is. Fig. 3 shows
the error rates of the two mapping schemes and their dif-
ference versus P(g),,- In the figure, it is assumed that
e1 = 0.0904 and eq = 0.0175 [4][10].

C. Sparsity induction (SI) scheme

From both Fig. 3 and Eq. (10) we observe that a greater
Po,0),t leads to a greater impact for the BI scheme. In-
spired by this, we use L1 regularization to improve the
network sparsity during training to help reduce error rate
caused by SAFs. Due to L1 regularization, training will
result in more sparse weights and hence a greater P o) ;-
We refer to this scheme as sparsity induction (SI).

With greater sparsity in the network, some internal
nodes in the fully connected layers and some feature maps
in the convolutional layers are all zero because of the
weights connected to them are all zero. With the knowl-
edge of accurate weight in advance, we simply remove the
MVM results of these nodes or feature maps:

M
O, if |U}j)i| =0
2 )

f(Ten)i— f(I_ )i, otherwise

Yi =

where y; is the i-th element in MVM output y. We note
that this constitutes another early denoising mechanism,
as this will eliminate the propagation of all types of errors
through these outputs.

IV. EVALUATION

A. Experimental setting

To evaluate the performance of our proposed comput-
ing schemes, we simulated the memristive crossbar model
as explained in Section II with 3 NNs: multilayer percep-
tron (MLP), Lenet 5 and Alexnet to learn MNIST and CI-
FARI10 datasets. MNIST dataset is a 10-class handwrit-
ten digit dataset with 60,000 training images and 10, 000
testing images. CIFAR10 is a 10-class color image dataset
with 50,000 training images and 10,000 testing images.
Table I shows the test accuracy without any error as well



TABLE I
EXPERIMENTAL SETTINGS

Network  Dataset  Accuracy Configuration
MLP MNIST 98.81% 784 — 256 — 256 — 256 — 10
Lenet 5 MNIST 99.19% 28 x 28 — 6¢b — 25 — 16¢5 — 2s — 120 — 84 — 10
Alexnet CIFAR10  71.77% 32 x 32 — 64cll — 25 — 192¢5 — 25 — 384¢3 — 256¢3 — 256¢3 — 25 — 10

—-A— BI+ SI+ MMSE —« BI+ SI

- BI+ MMSE —— BI

—-©&- MMSE —$— Hamming —— BL

MLP, MNIST

Lenet 5, MNIST

Alexnet, CIFAR10

60 |

Accuracy (%)
Accuracy (%)
s

[\
=)
T

Accuracy (%)

Fig. 4. Accuracy comparison with SAFs and variations.

as the dataset used, network configuration of these 3 net-
works. The default crossbar size is 128 x 128 and weights
and inputs are represented as N,, = 16 bits and N; = 8
bits, respectively. SAFs and variations are considered in
the experiments. SA1 ratio and SAQ ratio are chosen as
0.0904 and 0.0175 [10]. Variations are modeled as AWGN
n ~ N(0,02I) and o2 represents the variance of noise
added on each column of MAC result considering binary
representation on the crossbar.

B. Performance evaluation
B.1 Performance with both SAFs and variations

Taking both SAFs and variations into consideration dur-
ing inference, seven different settings are compared for all
three NNs: 1) use proposed BI mapping, SI, and MMSE
in the intermediate layers, 2) only use proposed BI map-
ping and SI, 3) only use proposed BI mapping and MMSE,
4) only use proposed BI mapping, 5) only use proposed
MMSE, 6) use Hamming ECOC on the decision layer and
7) baseline (BL), i.e., no mechanisms are used to combat
the errors during inference. Fig. 4 shows the accuracy
comparison. Among the seven settings, using Bl mapping,
SI, and MMSE simultaneously achieves the best accuracy
and achieves 51%—78%, 46%—70% and 40%—50% accuracy
improvements compared with the baseline for MLP, Lenet
5 and Alexnet, respectively. Using Hamming code on the
decision layer increases the fault tolerant capability for
MLP, but it does not provide enough protection for Lenet
5 and Alexnet. Due to the depth of both Lenet 5 and
Alexnet, error propagation and accumulation are more
pronounced and hence adding redundancy in the decision
layer alone is not enough.

B.2 Evaluation with ADC resolution

Though MMSE shows limited accuracy improvement for
simpler tasks and smaller networks, i.e. MLP and Lenet
5 for MNIST, MMSE also helps reduce ADC resolution
while maintaining the inference accuracy. Fig. 5 shows
the accuracy of MLP learning MNIST versus ADC reso-
lution with and without variations. Theoretically a 7-bit
ADC is enough to represent MAC results with crossbar
size 128 x 128. However, from Fig. 5(a) we observe that 3-
bit ADCs are sufficient for MLP due to the sparse nature
of weights without considering variations. As ADC reso-
lution decreases to just 1 bit, baseline accuracy (without
MMSE) decreases to 89.8%. With the help of MMSE,
the inference accuracy recovers to 96.2%, which is even
higher than the baseline accuracy with 2-bit ADC res-
olution. Considering variations, MMSE is able to cope
with both variations and ADC resolution errors. When
02 = 0.4608, as shown in Fig. 5(b), the baseline accuracy
shows a different trend compared with the case without
variations, i.e. baseline accuracy first increases and then
decreases as ADC resolution becomes better. This is be-
cause with the same noise level, coarsely grained ADCs
help filter out small noise while finer grained ADCs in-
clude those small noise at the output of ADCs. We also
observe that with the help of MMSE, 1-bit ADC suffers
only less than 2% accuracy degradation compared with
baseline accuracy for 3-bit ADCs, leading to smaller ar-
eas and lower energy costs.

C. Overhead discussions

In this subsection, we discuss the overhead introduced
by the three proposed schemes. Since BI only changes
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the weights-to-crossbar mapping, no additional hardware
overhead is required. As for the SI scheme, efforts are
focused on sparse training and removing internal MAC
results, extra computation is not needed, either. Accord-
ing to Eq. (4), MMSE computation only needs two mul-
tipliers and an adder, since coefficients 0% /(07 + 07) and
on/(cF + o) are pre-computed constants as discussed
in Section III. In addition to combating the variations
of memristive crossbar, MMSE can also filter out noise
incurred by ADC quantization. This leads to a lower
ADC resolution requirement without degrading the infer-
ence accuracy. With a lower ADC resolution, the cost of
MMSE can be further reduced. Given the low bit-width
multipliers and adders used in MMSE, the hardware im-
plementation can be simplified as a few AND/XOR gates.
Moreover, the overhead can be even smaller by selec-
tively applying MMSE to important layers/nodes and us-
ing power 2 to approximate the parameters.

V. CONCLUSIONS

In this paper, we propose a set of schemes that can
diminish the impact of both variations and SAF's for two-
level memristive crossbar. To prevent variation propa-
gation in the flow of inference and combat error caused
by low ADC resolution, an MMSE based crossbar output
denoising scheme is proposed. The BI mapping scheme
is proposed to combat the asymmetric SAFs, and the ef-
fective error rate caused by SAFs is analyzed. By con-
straining the weight to increase sparsity in the network,
internal output suppression can be applied to further mit-
igate error propagation. Experimental results show our
schemes deliver 40%-78% accuracy improvements. The
proposed schemes are adaptable to multi-level memris-
tive crossbars. Future works will focus on extending the
proposed schemes to more general scenarios.
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