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Abstract—Object detection plays an important role in self-
driving cars for security development. However, mobile systems
on self-driving cars with limited computation resources lead to
difficulties for object detection. To facilitate this, we propose
a compiler-aware neural pruning search framework to achieve
high-speed inference on autonomous vehicles for 2D and 3D ob-
ject detection. The framework automatically searches the pruning
scheme and rate for each layer to find a best-suited pruning
for optimizing detection accuracy and speed performance under
compiler optimization. Our experiments demonstrate that for
the first time, the proposed method achieves (close-to) real-time,
55ms and 97ms inference times for YOLOv4 based 2D object
detection and PointPillars based 3D detection, respectively, on
an off-the-shelf mobile phone with minor (or no) accuracy loss.

Index Terms—real-time, object detection, autonomous driving

I. INTRODUCTION

As the rapid development of the autonomous vehicles,
which attempts to navigate roadways without human interven-
tion, the environment sensing (known as perception) serves
as a fundamental building block. Among various subtasks of
perception, the object detection including 2D and 3D detection
is one of the most important prerequisites to autonomous
navigation. 2D and 3D detection makes use of the 2D image
and 3D point clouds information from camera and LiDAR
sensors, respectively, to detect objects in the environments,
thus providing the autonomous navigation with the desirable
knowledge about its environment and enabling high-level
navigation computations and optimizations.

It is essential to implement real-time object detection for
both 2D and 3D detection on autonomous vehicles as they
need to interact with the environment instantaneously to avoid
potential accidents. However, as 2D and 3D object detections
are implemented with deep neural networks (DNNs) such as
YOLO [1] and PointPillars [2], respectively, with tremendous
memory and computation requirements, it is challenging to
achieve real-time on autonomous vehicles with limited mem-
ory and computation resources. The more powerful high-
end GPUs are usually too costly and power-hungry to be
deployed on vehicles. Thus, it is desirable to satisfy the real-
time requirement within the limited memory and computation
constraints for detection models.

DNN weight pruning [3], [4] has been proved as an effective
model compression technique to remove redundant weights,

thereby reducing computations and accelerating inference.
Existing work mainly focus on unstructured pruning [4]–[6]
where arbitrary weight can be removed, and (coarse-grained)
structured pruning [3], [6]–[10] to eliminate whole filters.
The former results in high accuracy but limited hardware
parallelism (and acceleration), while the latter is the opposite.

Recent work [11]–[13] proposed the novel concept of fine-
grained structured pruning scheme: Pattern-based pruning
[11], [12] assigns potentially different patterns to convolutional
(CONV) kernels, while block-based pruning [13] divides the
weight matrix into equal-sized blocks and performs indepen-
dent row/column pruning in each block. High accuracy can
be achieved as a result of intra-kernel (or intra-block) flexi-
bility, while high hardware parallelism (and mobile inference
acceleration) can be achieved with the assist of compiler-level
code generation techniques [12]. Despite the promising results,
pattern-based pruning [11], [12] is only applied to 3×3 CONV
layers, while block-based pruning [13] is only suitable for
fully-connected (FC) layers, which limit their applicability.

As the first contribution, we generalize the concept of
fine-grained structured pruning to cover all types of CONV
and FC layers, which is necessary for both 2D and 3D real-
time object detection of autodriving. In this way, we can fully
leverage the new opportunity to achieve high accuracy and
high acceleration simultaneously with the aid of advanced
compiler optimizations. Block-based pruning scheme can be
naturally extended to 1×1 CONV layers. We extend pattern-
based pruning to larger kernel sizes beyond 3×3, overcoming
the limitation of increased computation overhead with an
increasing number of pattern types. We develop a compre-
hensive, compiler-based automatic code generation framework
supporting different (proposed and existing) pruning schemes
in a unified manner, and different rates for different layers.

While our compiler optimizations provide notable mobile
acceleration and support of various sparsity schemes, it in-
troduces a larger model optimization space beyond the scope
of prior work: Different sparsity schemes result in different
accuracy performances, and different accelerations under com-
piler optimizations. Motivated by the recent idea of Neural
Architecture Search (NAS) [14], [15], we propose to perform
a novel compiler-aware neural pruning search, automatically
determining the pruning scheme and rate (including bypass)
for each individual layer. The objective is to maximize ac-
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Fig. 1. The PointPillars data flow for 3D detection and YOLOv4 data
flow for 2D object detection with computation distributions.

curacy satisfying an inference latency constraint on the target
mobile device. The DNN latency will be actually measured on
target device, thanks to the fast auto-tuning capability of our
compiler for efficient inference on different mobile devices.

Our framework employs pre-trained DNN models as starting
point, which are already optimized for high detection accuracy
in autodriving tasks to accelerate the pruning search. The
overall latency constraint is satisfied through the synergic
efforts of (i) incorporating overall DNN latency constraint into
automatic search process, and (ii) effective pruning algorithm
to perform weight training/pruning accordingly. To perform
efficient search under a large search space, we propose a meta-
modeling procedure with Bayesian optimization (BO). We can
achieve (close-to) real-time, 55ms and 97ms inference times
for YOLOv4 based 2D detection and PointPillars based 3D
detection, respectively, on a mobile phone with minor (or no)
accuracy loss. Our method on 2D detection outperforms other
acceleration frameworks such as TVM [16] and MNN [17],
while we are the first to support 3D detection on mobile.

II. BACKGROUND AND RELATED WORK

2D object detection detects various objects including pedes-
trians, cyclists and cars from 2D camera images. Similarly,
3D object detection detects objects in the environment from
3D LiDAR images with point clouds. They are crucial for
autodriving perception to gain basic knowledge about its en-
vironment and almost all of the navigation decisions are built
on the detection information. YOLOv4 [1] and PointPillars
[2] are two popular DNN models for 2D and 3D object
detection, respectively. YOLOv4 has a backbone and a head
to detect and regress 2D boxes. Similarly, a PointPillar model
consists of three main stages: (1) A feature encoder network
to convert a point cloud to a sparse pseudo-image; (2) a
2D CONV backbone to process the pseudo-image into high-
level representation; and (3) a detection head to regress 3D
boxes. We show the data flow and computation distribution
for YOLOv4 and PointPillars in Fig. 1. We observe that (1)
there are various kinds of CONV operations in the model such
as 1× 1, 3× 3 and 4× 4, and (2) the CONV operations take
up most of the computations in models.
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Fig. 2. Different weight pruning schemes for CONV layers using 4D tensor
and 2D matrix representation.

A. Weight Pruning: Schemes and Algorithms

Existing weight pruning research can be categorized accord-
ing to pruning schemes and pruning algorithms.

Pruning Scheme: Previous weight pruning work can be
categorized according to the pruning scheme: unstructured
pruning [4], [5], [18], coarse-grained structured pruning [3],
[6]–[8], and fine-grained structured pruning schemes including
pattern-based [11], [12] and block-based [13] pruning.

Unstructured pruning (Fig. 2 (a) and (b)) removes weights
at arbitrary position. Despite the large compression rate, the ir-
regular sparse weight matrix with indices damages the parallel
implementations, leading to limited acceleration on hardware.

To overcome this, many work [3], [7]–[9] studied coarse-
grained structured pruning at the level of filters as shown in
Fig. 2 (c) and (d). With the elimination of filters, the pruned
model still maintains the network structure with high regularity
which can be parallelized on hardware. The downside is the
obvious accuracy degradation, limiting compression rate.

Fig. 2 (e) and (f) show pattern-based pruning [11], [12]
and block-based pruning [13], respectively, as representative
fine-grained structured pruning schemes. The former is applied
to 3×3 CONV layers, and the latter to FC layers, in the
original papers. Pattern-based pruning assigns a pattern (from
a predefined library) to each CONV kernel, maintaining a
fixed number of weights in each kernel. As shown in the
figure, each kernel reserves 4 non-zero weights (on a pattern)
out of the original 3×3 kernels. Besides being assigned a
pattern, a kernel can be completely removed to achieve higher
compression rate. On the other hand, block-based pruning
divides the FC weight matrix into equal-sized blocks and
performs independent row/column pruning in each block.

For these fine-grained structured pruning schemes, high
accuracy can be achieved as a result of intra-kernel (or intra-
block) flexibility, while high hardware parallelism (and mobile
acceleration) can be achieved with the assist of compiler-based
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code generation. For pattern-based pruning [12], compiler can
perform filter reorder to group kernels with the same pattern,
and allocate a thread to each group, thereby achieving high
hardware parallelism. For block-based pruning [13], thanks to
the large weight matrices, the remaining computation in each
block still achieves high parallelism on mobile CPU/GPU with
computation overhead eliminated by compiler.

Our goal is to overcome the limited application of pattern-
based and block-based pruning, and generalize to all types
of CONV and FC layers. 1×1 CONV layers do not exhibit
intra-kernel flexibility and thus are not suitable for pattern-
based pruning, but we found that block-based pruning can
be naturally extended to 1×1 layers because such CONV
layers are also computed as matrix multiplication [19], [20].
On the other hand, there is a key difficulty in generalizing
pattern-based pruning to larger kernel sizes beyond 3×3: It
results in a large number of pattern types, which incurs notable
computation overhead in compiler-generated executable codes.

Pruning Algorithm: Two main categories exist: heuristic
pruning algorithm [4], [5], [8], [9] and regularization-based
pruning algorithm [3], [6], [7], [21]. Heuristic pruning was
firstly performed in an iterative, magnitude-based manner on
unstructured pruning [5], and gets improved in later work [4]
and incorporated into coarse-grained structured pruning [8],
[9], [22]. Regularization-based algorithm uses mathematics-
oriented method to deal with pruning problem. Early work [3],
[7] incorporates `1 or `2 regularization in loss function to
solve filter/channel pruning problems. In [21], an advanced
optimization solution framework ADMM (Alternating Direc-
tion Methods of Multipliers) is utilized to achieve dynamic
regularization penalty which notably reduces accuracy loss.

III. EXTENDING PATTERN-BASED PRUNING TO LARGE
KERNEL SIZES

There are two requirements in order for pattern-based
pruning to deliver its promise in hardware acceleration with
the assist of compiler code generation. First, different patterns
should have the same number of remaining weights (and com-
putations) to achieve load balancing among threads at compiler
level. This is satisfied in prior work on 3×3 kernels (only
focusing on 4-entry patterns) and can be well generalized to
larger kernel sizes. Second and more importantly, the number
of pattern types needs to be restricted to below 20 to limit the
computation overhead in compiler-generated executable codes.
This can be a major difficulty for larger kernel sizes beyond
3×3. Using 4×4 kernels as an example that is necessary in
3D object detection, and consider only 6-entry patterns. Then
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pattern types if no restriction is enforced, which

is much beyond the capability of compiler.
To overcome this difficulty, we propose a systematic way of

generalizing pattern-based pruning with restriction on pattern
types. We use 4×4 kernels as example, but can be generalized
to larger kernels like 5 × 5 or 7 × 7. As Fig. 3 shows,
we limit to intra-kernel row and column pruning in each
kernel for defining patterns, further restricting to removing two
consecutive rows and one column. In this way, each pattern
has 6 remaining weights free for training, and there are 12
patterns in total. Compiler code generation uses filter/channel
reorder similar to [12], with tolerable computation overhead
thanks to the limited number of pattern types.

Compiler Optimizations: We develop a comprehensive,
compiler-based automatic code generation framework support-
ing the pattern-based pruning schemes for various CONV
kernel sizes in a unified manner. It also supports other prun-
ing schemes such as unstructured, coarse-grained structured,
block-based pruning. Fast auto-tuning capability is incorpo-
rated for efficient end-to-end inference on different mobile
CPU/GPU. We achieve superior inference acceleration on both
dense (before pruning) and sparse DNN models, as to be
shown in the experimental results.

IV. MOTIVATION OF NEURAL PRUNING SEARCH

A key observation is that different sparsity schemes
(pattern-based, block-based, coarse-grained, etc.) have differ-
ent accuracy and acceleration performances under compiler
optimizations (when computation (MACs) is the same).

Different Pruning Schemes: Fig. 4 (a) shows the computa-
tion speedup vs. pruning rate of a 3×3 CONV layer with dif-
ferent pruning schemes, measured on mobile CPU (Qualcomm
Snapdragon 865 Octa-core CPU) of a Samsung Galaxy S20
phone. We choose the input feature map size of 56×56 and 256
input and output channels. We can observe that, with compiler
optimizations, pattern-based pruning consistently outperforms
the unstructured pruning and achieves comparable accelera-
tion as coarse-grained structured pruning below 5× pruning.
Since, under reasonable pruning rate of fine-grained structured
pruning schemes, the remaining weights in each layer are still
sufficient to fully utilize hardware parallelism.

Fig. 4 (b) shows the Top-1 accuracy performance of ResNet-
50 with different pruning schemes, applying uniform pruning
rate to all CONV layers (ADMM-based pruning algorithm).
The fine-grained pruning case applies pattern-based pruning
to 3×3 CONV layers and block-based pruning to 1×1 CONV
layers. We can observe that fine-grained pruning can preserve
high accuracy, only slightly lower than unstructured pruning.
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Impact of Number of Layers: The number of computation
layers is another critical factor that affects inference latency.
To show the impact, we make a narrower-but-deeper version
of ResNet-50 by doubling the number of layers, while keeping
computation MACs the same as the original ResNet-50. And
the inference speed of the narrower-but-deeper version is
1.22× slower than the original one using mobile GPU (44ms
vs. 36ms). This is because a larger number of layers introduce
more intermediate results and hence more frequent data access
to the main memory. And mobile CPU/GPU cannot be fully
utilized due to a large number of memory-intensive layers.

Based on the above observations, it is desirable to per-
form a compiler-aware neural pruning search, automatically
determining the pruning scheme and rate for each individual
layer. The objective is to maximize DNN accuracy satisfying
an inference latency constraint when actually executing on the
target mobile device, accounting for compiler optimizations.

V. AUTOMATIC NEURAL PRUNING SEARCH

As shown in Fig. 5, the framework consists of two basic
components: a controller and an evaluator. The controller first
generates various pruning proposals from the search space.
Then the evaluator evaluates their detection accuracy and
speed performance. Based on the performance, the evalua-
tor provides guidance for controller about what a satisfying
pruning proposal looks like. Next the controller generates
new pruning proposals with the guidance. After iterations, the
controller outputs the best pruning proposal with desirable de-
tection performance while satisfying the real-time requirement.

With the derived best pruning proposal, it achieves real-time
inference with compiler optimization. Besides the satisfying
speed performance, to further improve detection performance,
we choose to adopt ADMM pruning [21] to perform an
enhanced pruning following the best proposal, after comparing
multiple pruning algorithms. It supports different sparsity
schemes with the help of group-Lasso regularization [3].

A. Controller

The controller generates pruning proposals from the search
space. Each pruning proposal is a directed graph consisting
of the pruning scheme and pruning rate for each layer of the
model. For example, it has 10 nodes for a 5-layer DNN model.

1) Search Space: Each pruning proposal contains layer-
wise pruning scheme and pruning rate, as shown in Tab. I.

Per-layer pruning schemes: The controller can choose
from filter (channel) pruning [23], pattern-based pruning (in-
cluding our extension to larger kernel sizes) and block-based

TABLE I
SEARCH SPACE FOR EACH DNN LAYER

Pruning scheme {Filter [23], Pattern-based, Block-based [13]}
Pruning rate { 1×, 2×, 2.5×, 3×, 5×, 7×, 10×, skip }

pruning [13] for each layer. As different layers may have
different best-suited pruning schemes, we allow the controller
the flexibility to choose different pruning schemes for different
layers, also supported by our compiler code generation.

Per-layer pruning rate: We can choose from the list
{1×, 2×, 2.5×, 3×, 5×, 7×, 10×, skip}, where 1× means the
layer is not pruned, and “skip” means bypassing this layer.

2) Pruning Proposal Updating: The evaluator provides
the gradients guidance specified in Sec. V-B2 to guide the
controller for generating new pruning proposals. The gradi-
ents guidance contains a currently best pruning proposal and
its corresponding replacement probability obtained from its
gradients. The controller determines whether to replace each
node in the proposal according to the replacement probability.
Next if replaced, the controller chooses randomly from two
nodes with the lowest probabilities as its replacement.

B. Evaluator
The evaluator needs to evaluate pruning proposal perfor-

mance. We define the performance measurement (reward) as:

r = V − α ·max(0, t− T ), (1)

where V is the validation mean average precision (mAP) of
the model, t is the model inference speed or latency, which
is actually measured on a mobile device1. T is the latency
requirement threshold. Generally, r is high when it satisfies
real-time requirement (t < T ) with high mAP. Otherwise r is
small if the real-time latency requirement is violated.

1) Evaluation with BO: As evaluating each proposal needs
to prune and retrain the model with multiple epochs, incurring
large time cost, we use Bayesian optimization (BO) [24]
to accelerate evaluation. The controller generates a proposal
pool with K pruning proposals. We first use BO to select B
(B < K) proposals with potentially better performance. Then
the selected proposals are evaluated to derive the accurate
detection and speed performance while the rest (K − B)
potentially weak proposals are not evaluated. Thus, we reduce
the number of actual evaluated proposals.

To deal with the graph-like pruning proposals, we build
a Gaussian process (GP) for BO with a Weisfeiler-Lehman
(WL) graph kernel [25]. We select proposals according to the
acquisition function values (we employ Expected Improvement
[26]). Algorithm 1 provides a summary.

We illustrate the WL graph kernel in Fig. 6. More specif-
ically, the WL kernel compares two directed graphs in itera-
tions. In the m-th WL iteration, it first obtains the graph feature
vectors φm(g) and φm(g′) for two graphs. Then it compares
the two graphs with kbase

(
φm(g), φm(g′)

)
where we employ

1The compiler code generation is much faster than DNN training thanks to
the auto-tuning capability, and can be performed in parallel with the pruning
as measuring inference speed does not need accurate weight values.
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dot product as kbase here. The iterative procedure stops until
m = M and the resultant WL kernel is

kMWL(g, g′) =

M∑
m=0

wmkbase
(
φm(g), φm(g′)

)
. (2)

where wm contains the weights for each WL iteration m,
which is set to equal for all m following [25].

After selecting B pruning proposals from the pool, we
evaluate their performance using magnitude based framework
[5] following their pruning proposals for each layer.

2) Gradients Guidance: To guide the proposal updating, we
employ the derivatives of the GP predictive mean. Formally,
the derivative with respect to the j-th element of φt = φ(Gt)
is also Gaussian with an expected value:

Ep(r|Gt,Dt−1)

[ ∂r

∂[φt]j

]
=

∂µ

∂[φt]j
=
∂〈φt,Φ1:t−1〉

∂[φt]j
L−1

1:t−1r1:t−1

(3)
where Φ1:t−1, L1:t−1 and r1:t−1 are the stacked feature matrix,
kernel values and rewards from previous observations.

Following Eq. (3), we can obtain E
[

∂r
∂[φt

0]j

]
where φt0 is the

list of the number of each node. Positive gradients show that
the node is beneficial to improve the reward, while negative
gradients mean that the node decreases the performance and
it should be replaced. To make the gradients more illustrative,
we transform the gradients into a probability distribution
(replacement probability) using a sigmoid transformation on
the negative of the gradients and then normalize them. Thus,
negative gradients lead to high replacement probabilities.

To summarize, the evaluator provides the gradient guidance
including the best evaluated pruning proposal and its corre-
sponding replacement probability obtained from its gradients.

VI. EXPERIMENTAL RESULTS

A. Experiment Setup

For 2D object detection, we use a YOLOv4 [1] model as
starting point and test on COCO dataset [27]. For 3D detection,
we employ the PointPillars as starting point [2] and test on
KITTI dataset [28]. We use 50 GPUs for parallel training
and pruning search and it takes about 12 days to find the

Algorithm 1 Evaluation with BO
Input: Data D, BO batch size B, BO acquisition function α(·)
Output: The best pruning proposal g
for steps do

Generate a pool of candidate pruning proposals Gc;
Select {ĝi}Bi=1 = arg maxg∈Gc α(g|D);
Evaluate the proposal and obtain reward {ri}Bi=1 of {ĝi}Bi=1;
Obtain the gradients guidance information;
D ← D ∪ ({ĝi}Bi=1, {ri}Bi=1);
Update GP of BO with D;

end for

TABLE II
COMPARISON OF VARIOUS PRUNING METHODS ON YOLOV4

Pruning
Methods Parameter # Computation #

(MACs) mAP Mobile GPU
Speed (ms)

Original 64.36M 17.9G 56.5 285.7
Pattern [11] 16.09M 5.58G 47.6 114.9
Filter [29] 4.33M 1.87G 25.2 47.6

Unstructured [21] 4.33M 1.87G 49.9 98.6
Ours 4.33M 1.87G 49.3 55.2

best pruning proposal in each experiment. In Eq. (1), we
set α to 0.01 and the mobile inference time is measured in
milliseconds. We set wm = 1 in Eq. (2). The pool size K is
set to 50 and the Bayesian batch size B is set to 10. All the
acceleration results are tested on the mobile GPU (Qualcomm
Adreno 640) of a Samsung Galaxy S20 smartphone.

B. Performance on 2D Object Detection

As shown in Table II, we applied our proposed method
to YOLOv4 and compared it with other pruning methods in
terms of accuracy (mAP) and end-to-end inference latency
on mobile GPU, with our compiler framework. Our method
reduces the original computation from 17.9G MACs to 1.87G
MACs and achieves 5.18× inference acceleration (285.7ms
vs. 55.2ms). We also adopt the same pruning rate to YOLOv4
using other pruning schemes except pattern-based pruning,
because there are 17% weights that come from 1×1 CONV
layer cannot be pruned using pattern-based pruning and hence
a lower overall pruning rate. Under the same pruning rate, our
method is 16% slower than structured pruning on mobile GPU
but achieves much higher accuracy (49.3 vs. 25.2 in mAP).
With slightly lower accuracy, our method is 1.79× faster
than unstructured pruning. And our method outperforms the
pattern-based pruning in both accuracy and inference speed.

Fig. 7 shows the accuracy vs. latency comparison results
of our method with other DNN inference frameworks and
using other object detectors. The rectangular shapes show the
comparison results of dense (unpruned) YOLOv4, as general
sparsity is not supported in other frameworks. By leveraging
our compiler optimizations, our method outperforms other rep-
resentative DNN inference frameworks, including TensorFlow-
Lite, TVM, and MNN. All the red star shapes represent our
pruned models with different latency constraints and using
YOLOv4 as the starting point. And our method achieves near
Pareto-optimality considering both accuracy and latency. The
results clearly show the effectiveness of our proposed method.
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TABLE III
COMPARISON OF VARIOUS PRUNING METHODS FOR POINTPILLARS

Methods
(grid size)

Para.
#

Comp. #
(MACs)

Speed
(ms)

Car 3D detection
Easy Moderate Hard

PointPillars (0.16) 5.8M 60G 542 84.99 74.11 69.53
Ours (0.16) 1.1M 10.7G 189 85.50 76.58 70.23

PointPillars (0.24) 5.8M 28G 257 84.05 74.99 68.30
Filter [29] (0.24) 0.8M 4.0G 81 81.54 68.10 65.90

Pattern [11] (0.24) 0.8M 3.9G 111 80.97 73.77 68.05
Ours (0.24) 0.8M 3.9G 97 85.20 75.57 68.37

C. Performance on 3D Object Detection

We show the performance of the original unpruned PointPil-
lars model and the model derived by our method with different
grid sizes (0.16m and 0.24m, where large grid size means
small input size for the model) in Tab. III. The real-time
requirements are set to 200ms for 0.16m and 100ms for 0.24m.
We can observe that increasing grid size reduces the pseudo-
image input size, leading to smaller parameter and compu-
tation numbers, and faster inference speed on mobile GPUs.
For the same grid size, our method can significantly reduce the
parameter count and computation, thus satisfying the real-time
requirement with state-of-the-art detection performance.

For a grid size of 0.24m, the pruning ratio of other pruning
schemes are set to the same with the overall pruning ratio of
our pruned model (86%). As observed, the proposed method
can achieve the best detection performance compared with
other methods where all the layers share the same pruning
scheme, demonstrating the advantages of flexible pruning
scheme for each layer. Besides with compiler optimization,
filter pruning is the fastest but suffers from obvious detection
performance degradation.

The proposed method can process one LiDAR image within
97ms with the highest precision, demonstrating the superior
performance of the proposed method to achieve (close-to)
real-time inference on mobile with state-of-the-art detection
performance. Although other DNN inference frameworks exist
such as Tensorflow-Lite [19], TVM [16] and MNN [17], we
are the first to support 3D object detection on mobile device.

VII. CONCLUSION

We propose neural pruning search to achieve real-time
2D and 3D object detection on mobile for autonomous ve-
hicles. Our experiments demonstrate that for the first time,
the proposed method achieves (close-to) real-time, 55ms and
97ms inference times for YOLOv4 based 2D detection and

PointPillars based 3D detection, respectively, on an off-the-
shelf mobile phone with minor (or no) accuracy loss.
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