
Efficient Implementation of Finite Field Arithmetic
for Binary Ring-LWE Post-Quantum Cryptography

Through a Novel Lookup-Table-Like Method
Jiafeng Xie1 (corresponding author), Pengzhou He1, Wujie Wen2

1: Department of Electrical & Computer Engineering, Villanova University (jiafeng.xie;phe@villanova.edu);
2: Department of Electrical & Computer Engineering, Leigh University (wuw219@leigh.edu);

Abstract—The recent advance in the post-quantum cryptog-
raphy (PQC) field has gradually shifted from the theory to the
implementation of the cryptosystem, especially on the hardware
platforms. Following this trend, in this paper, we aim to present
efficient implementations of the finite field arithmetic (key com-
ponent) for the binary Ring-Learning-with-Errors (Ring-LWE)
PQC through a novel lookup-table (LUT)-like method. In total,
we have carried out four stages of interdependent efforts: (i) an
algorithm-hardware co-design driven derivation of the proposed
LUT-like method is provided detailedly for the key arithmetic
of the BRLWE scheme; (ii) the proposed hardware architecture
is then presented along with the internal structural description;
(iii) we have also presented a novel hybrid size structure suitable
for flexible operation, which is the first report in the literature;
(iv) the final implementation and comparison processes have
also been given, demonstrating that our proposed structures
deliver significant improved performance over the state-of-the-
art solutions. The proposed designs are highly efficient and are
expected to be employed in many emerging applications.

Index Terms—BRLWE based scheme, finite field arithmetic,
hybrid size structure, lookup table, post-quantum cryptography

I. INTRODUCTION

Post-quantum cryptography (PQC) related research has
reached an all time high due to the proof from the research
community that the existing public-key cryptosystems are
vulnerable to the quantum attacks [1], [2]. Many types of
cryptosystems so far are under the consideration for PQC
candidates [2]: the lattice-based cryptography, the code-based
scheme, the isogeny-based cryptosystem, etc. Overall, the
lattice-based cryptography has gained substantial attentions
from research community due to its strong security proof and
low computational complexity [3], [4].

Ring-Learning-with-Errors (Ring-LWE) based PQC is a
very important variant of the LWE scheme (lattice-based),
and is also currently under the consideration of the National
Institute of Standards and Technology (NIST) PQC standard-
ization process [4]–[6]. Apart from that, a new variant of the
Ring-LWE scheme, i.e., binary Ring-LWE (BRLWE), where
the binary errors are used to replace the regular Gaussian
distributed errors, is proposed recently to achieve smaller
implementation complexity for emerging applications [7], [8].

Since the original introduction of the BRLWE scheme in
[7] with thorough security analysis, there are only a small

number of reports released on the actual implementation of
this scheme. In [9], the authors have introduced a novel side-
channel attack resistant hardware architecture of the BRL-
WE scheme. After that, a pair of BRLWE cryptoprocessors
are introduced in [10] to obtain low-complexity and high
performance, respectively. These designs [9], [10], however,
suffer from limited hardware efficiency as their architectures
are directly built upon original algorithms and no dedicated
algorithm-architecture co-optimization has been performed.
Apart from that, the fault detection and fault resistant designs
related to this scheme are recently released in [11], [12], where
[11] uses the same structure of [10] and [12] is software based
(due to their specific focus, we here do not include them as
general hardware implementations).

Noticing the facts that: (i) the BRLWE scheme can be
employed in lightweight applications and hence low resource
occupation is desirable (even at the cost of extra timing a
little bit); (ii) there is no hybrid size structure (suitable for
flexible applications such as standard computation core and
security level upgrading) ever reported in the literature, in this
paper, we endeavor to propose an efficient implementation of
the key arithmetic component of the BRLWE scheme through
a novel lookup-table (LUT)-like method. Unlike the existing
designs, the proposed work covers all the essential aspects
related to the algorithm-architecture co-design. Overall, the
main contributions of this paper can be summarized as:

• We have (for the first time) presented a novel algorithm-
architecture co-design strategy to obtain the proposed
LUT-like method as well as the corresponding algorith-
mic derivation process for the key arithmetic of the BRL-
WE scheme to match the proposed LUT-like approach.

• We have also introduced the algorithmic strategy for the
hybrid size operation of the key arithmetic operation of
the BRLWE scheme.

• We have introduced the corresponding hardware architec-
ture with thorough internal structural description as well
as the first hybrid size structure.

• We have given the final implementation and comparison
to demonstrate the superior performance of the proposed
designs over the existing ones.

The rest of the paper is organized as follows. Section II978-1-6654-3274-0/21/$31.00 2021 IEEE

TABLE I
STAGES & OPERATIONS OF THE BRLWE SCHEME

stage major operations

key generation

a: public parameter (Alice and Bob);
r1, r2: polynomials with binary coefficients;
Alice: p = r1 − a · r2 → Bob;
(p: public key; r2: secret key)

encryption

e1, e2, e3: three binary polynomials (errors);
m: message; m̃: encoded message;
Bob: c1 = a · e1 + e2 → Alice;
Bob: c2 = p · e1 + e3 + m̃ → Alice;

decryption Alice: m =thresh-decoder(c1 · r2 + c2);

TABLE II
ARITHMETIC OPERATIONS OF THE BRLWE SCHEME

stage major arithmetic operations
key generation PM→PA→p;
encryption PM→PA→c1; PM→PA→PA→c2
decryption PM→PA→output;

focuses on the preliminary knowledge. Section III presents
the proposed method and the related algorithm. Section IV in-
troduces the proposed structures. The comparison is provided
in Section V and the conclusion is given in Section VI.

II. PRELIMINARY KNOWLEDGE

The BRLWE scheme is built on the finite field operations
over the ring Rq = Zq[x]/〈xn + 1〉. The major operations of
the BRLWE scheme can be seen at Table I, where there are
three stages of operations involved (key generation, encryp-
tion, and decryption) [7], [9], [10]. The detailed operations
within each stage are described as follows:
• Key generation. In this stage, a is set as a public

parameter (polynomial of integer coefficients) known by
both Alice and Bob. Then, for the selected two binary
polynomials r1 and r2, Alice does the operation of
p = r1 − a · r2 and then send it to Bob. Note that r1
is discarded after this stage, r2 is the secret key (n-bit),
and the public key is p (nlog2q-bit).

• Encryption. In this stage, the targeted n-bit message m
is firstly coded to m̃ following: each coefficient of m (a
binary polynomial) is multiplied with q/2 and then added
with (q + n/2− 1− i) (i is the coefficient degree of the
related polynomial). Then, Bob uses three binary errors
(polynomials) e1, e2, and e3 to deliver the ciphertext
(2nlog2q-bit) c1 and c2 to Alice.

• Decryption. This stage involves a threshold decoder
function, as shown in Table I, where Alice obtains the de-
sired message m through thresh-decoder(c1r2 + c2). The
decoder produces ‘1’ if the coefficient of the (c1r2 + c2)
is in the range of (q/4, 3q/4), otherwise it is ‘0’.

As summarized in Table II, one can see that the main
arithmetic operation involved within each stage of the BRLWE
scheme is actually the polynomial multiplication (PM) over
ring (i.e., one polynomial has integer coefficients and the other
is the binary polynomial) and a polynomial addition (PA) [9].
In this paper, we will focus on the efficient implementation of
this finite field arithmetic for the BRLWE scheme.

v0

v1

w

0

u0

u1

u0+u1

input
v1v0

output
w

00 0

01 u0

10 u1

11 u0+u1

LUT setup truth table

Fig. 1. The setup of the LUT and the truth table.

v0v1

w

0

u0

u1

+

4-to-1 MUX

Fig. 2. The proposed method to realize (1), which functions exactly according
to the truth table of Fig. 1.

Besides that, we will use the inverted range representation
(−b q2c, b

q
2c−1) to denote the coefficient of the integer polyno-

mial such that the involved modular addition/subtraction can
be performed without any reduction (under the two’s comple-
ment representation). This strategy is originally proposed in
[10], and following this denotation, all the major operations
of Table II are still exactly the same though there are signs
inverted on the encode and final decode operations [10].

III. PROPOSED METHOD & ALGORITHMIC OPERATION

Motivation & Consideration. It is noted the main operation
of the BRLWE scheme, the PM (one integer polynomial and
one binary polynomial) over ring Rq = Zq[x]/〈xn + 1〉,
involves the operations of the accumulations of point-to-
point multiplications (one point is integer and the other is
binary value), we can thus use this property to derive efficient
hardware structure specifically for this type of calculations.

Let us consider a small scale point-to-point multiplications:

w = u0v0 + u1v1, (1)

where w and ui (0 ≤ i ≤ 1) are log2q-bit integers over Zqand
vi ∈ {0, 1} (0 ≤ i ≤ 1). The calculation of (1) can actually be
realized by a LUT, as seen in Fig. 1 (where the vi is the input
to the LUT and the content of the LUT covers four values as
’0’, u0, u1, and (u0 + u1)). It is clear that the 2-input LUT
of Fig. 1 functions exactly as the operation in (1).

Proposed LUT-like method. The main feature of the LUT-
based design (for equations (1) and (2)) is that the values of
ui (or uj) are pre-calculated and then stored in the LUT to be
read out when the matched input is fed. This strategy, however,
only works when ui (or uj) are constant values. When ui (or
uj) are uncertain inputs, an alternative solution is needed.

We thus use the structure of Fig. 2 to implement the
operation of (1), where a 4-to-1 multiplexer (MUX) is used to
replace the original 2-input LUT of Fig. 1 as well as an extra
adder (to obtain (u0 + u1) as the fourth value for the MUX).
The key benefit of this type of design is that it allows the values
(originally stored in the LUT) to be the variables/uncertain
inputs, which facilitates the computation of (1).

v0
v1 w'

0 u0

v2
v3

u1 u1+u0
u2 u2+u0 u2+u1 u2+u1+u0
u3 u3+u0 u3+u1 u3+u1+u0
u3+u2 u3+u2+u0 u3+u2+u1 u3+u2+u1+u0

Fig. 3. The content of the 4-input LUT for (2).

0
u0

u1

+
u2

+
+
+

u3

+
+

+
+
+
+

w'

v0 v1 v2 v3

1
6

-t
o-

1
 M

U
X

+

u3+u2+
u1+u0

u3+u2+u1

u3+u2+u0

u3+u2

u3+u1+u0

u3+u1

u3+u0

u2+u1+u0

u2+u1

u2+u0

u1+u0

Fig. 4. The direct LUT-like method for Fig. 3 requires two many resources.

TABLE III
FPGA IMPLEMENTATION RESULTS (log2q = 8-BIT) TO IMPLEMENT (2)

design style #ALMs area reduction
based on Fig. 4 94 -

equivalent form based on Fig. 2 28 70.2%

Remark. Note that the size of the LUT-like based design
is limited. For example, if we extend the calculation of (1) to

w′ = u0v0 + u1v1 + u2v2 + u3v3, (2)

where w′ and uj (0 ≤ j ≤ 3) are log2q-bit integers over Zq

and vj ∈ {0, 1} (0 ≤ j ≤ 3). We can then use a 4-input LUT
to represent the corresponding function (Fig. 3).

Similarly, the 4-input LUT can be realized by the structure
shown in Fig. 4, which consists of a 16-to-1 MUX and 11
adders to deliver the proper output, which requires signifi-
cantly higher resource usage than the one of Fig. 2 (using the
structure of Fig. 2 to realize Fig. 3 only requires two 4-to-1
MUXex, two related adders, and one final adder to add the
two MUXes’ outputs together).

Confirmation from the hardware implementation. We
have also implemented the structures of Fig. 4 and also
the equivalent form of that based on Fig. 2 (two 4-to-1
MUXex, two related adders, and one final adder) with VHDL
(log2q = 8, following [9], [10]) and obtained the number of
adaptive logic modules (ALMs) usage through Intel Quartus
Prime 17.0 based on the Stratix-V 5SGXMA9N1F45C2 Field-
Programmable Gate Array (FPGA) device.

It is clear that (Table III) the proposed 2-input method of
Fig. 2 achieves better performance than the equivalent form
based on Fig. 4 for longer term computations. We thus set the
design of Fig. 2 as our basic structure for further design.

Algorithmic process. Following the above strategy, we thus
plan to derive the major arithmetic operation of the BRLWE
scheme into a form to match the proposed LUT-like approach
of Fig. 2. Without loss of generality, we can define the PM
and PA of the BRLWE scheme (Table II) into a format of:

K = BD mod f(x) +G, (3)

where B =
∑n−1

i=0 bix
i (bi ∈ {0, 1}), D =

∑n−1
i=0 dix

i, G =∑n−1
i=0 gix

i, K =
∑n−1

i=0 kix
i (di, gi, and ki are log2q-bit

integers over Zq), and f(x) = xn + 1. Then, we have K =
b0D + b1xD + · · ·+ bn−1x

n−1D mod f(x) +G and

K =b0(d0 + d1x+ · · ·+ dn−1x
n−1) mod f(x)

+b1x(d0 + d1x+ · · ·+ dn−1x
n−1) mod f(x)

+ · · · · · · · · ·
+bn−1x

n−1(d0 + · · ·+ dn−1x
n−1) mod f(x) +G,

(4)

which can be substituted with xn ≡ −1 (xn + 1 = 0) to have

K =b0d0 + b0d1x+ · · ·+ b0dn−1x
n−1

−b1dn−1 + b1d0x+ · · ·+ b1dn−2x
n−1

· · · · · · · · ·
−bn−1d1 − bn−1d2x− · · ·+ bn−1d0x

n−1 +G,

(5)

from which we can have

k0 =b0d0 + b1(−dn−1) + · · ·+ bn−1(−d1) + g0

k1 =b0d1 + b1d0 + · · ·+ bn−1(−d2) + g1

· · · · · · · · ·
kn−2 =b0dn−2 + b1dn−3 · · ·+ bn−1(−dn−1) + gn−2,

kn−1 =b0dn−1 + b1dn−2 + · · ·+ bn−1d0 + gn−1,

(6)

where one can find that for any neighboring ki and ki+1, the
bits from input B stays the same while the values from input
D are circularly shifted by one position with one value’s sign
changed (particularly, these values of D are circularly left-
shifted for one position with the most left value’s sign changed
from kn−1 to kn−2, ..., until k0).

If n = st (s and t are integers), we can have

k0 = b0d0 + · · ·+ bs−1(−dn−s+1)︸ ︷︷ ︸
1st group

+ bs(−dn−s) + · · ·+ b2s−1(−dn−2s+1)︸ ︷︷ ︸
2nd group

+ · · · · · · · · ·
+ bn−s(−ds) + · · ·+ bn−1(−d1)︸ ︷︷ ︸

tth group

+g0

= k0,0 + k0,1 + · · ·+ k0,t−1 + g0,

(7)

where k0,0 = b0d0 + · · · + bs−1(−dn−s+1), ..., k0,t−1 =
bn−s(−ds) + · · ·+ bn−1(−d1). When s is set as s = 2, then

each k0,j (0 ≤ j ≤ t−1) of (7) can be realized by the structure
introduced in Fig. 2. Similarly, we can have

k1 =

t−1∑
j=0

k1,j + g1,

· · · · · · · · ·

kn−1 =

t−1∑
j=0

kn−1,j + gn−1,

(8)

where each ki,j (0 ≤ i ≤ n−1 and 0 ≤ j ≤ t−1) follows the
same definition of (7), which greatly facilitates the employing
of the structure of Fig. 2 as we set s = 2 and t = n/2.

We thus derive the proposed algorithmic operation as

Algorithm 1 Algorithmic process for K = BD mod f(x)+G

Inputs: B, D, and G from the BRLWE (D and G are polyno-
mials with integer coefficients and B is a binary polynomial).
Outputs: K = BD mod f(x) +G.
1. Initialization step
1.1. get ready for the input operands B, D, and G.
2. Main step
2.1. for i = 0 to n− 1.
2.2. kn−1−i =

∑t−1
j=0 kn−1−i,j+gn−1−i. //each ki,j is realized

by the proposed method of Fig. 2, for s = 2.
2.3. circularly left-shifting the coefficients of D by one posi-
tion with one value’s sign inverted. //following (6).
2.4. end for.
3. Final step
3.1. deliver K.

Note that in the proposed algorithmic operation, we start the
calculation of kn−1, and then kn−2, ..., k0, such that the n
coefficients of D can directly used. Of course, we can begin
the computation from k0 to kn−1, but there need preparing
operations on the signs of the coefficients of D (see (6)).

Besides that, when connecting the proposed algorithmic
process to the actual operations within the BRLWE scheme,
especially the decryption stage (following the existing design
of [10]), a final thresh-decoder is required (Table I), which can
be easily realized by an XOR gate connecting with the two
most significant bits (MSBs) of ki [9].

Hybrid size operation. As indicated in (6), each ki (0 ≤
i ≤ n− 1) involves the multiplication of the identical bits of
B with rotated coefficients of D (with sign changed once per
ki). Following this processing pattern, we can actually extend
the proposed algorithm into a format of hybrid size operation.

Let us define a smaller size of the BRLWE scheme as n′.
According to Algorithm 1, we can firstly calculate kn′−1 as

kn′−1 = b0dn′−1 + b1dn′−2 + · · ·+ bn′−1d0 + gn′−1. (9)

When comparing with the kn−1 of (6), we can define

DH = d0+· · ·+dn′−1x
n′−1+H(dn′xn′

+· · ·+xn−1), (10)

dn-1 dn-2 dn-3 dn-4 ... d1 d0

IC

circular shift-register

2-input LLC

b0
b1

b2
b3

2-input LLC bn-2
bn-1

adder tree (with one layer of registers) gn-1-i

two MSBs

final output (decryption)

kn-1-i

...log2q log2q

log2q

2-input LLC

log2q

...

...

register layer

Fig. 5. The proposed BRLWE structure based on 2-input LLC (0 ≤ i ≤
n − 1), where the values in the circular shift-register are the initial values.
IC: inverter cell; LLC: LUT-like cell; MSB: most significant bit.

...
IC

input D

output to the LLCs

clk clk clk clk

0

1

0

1

0

1

0

1

ctrlctrlctrlctrl

Fig. 6. The internal structure of the circular shift-register.

where DH is the hybrid size representation of D, which can
be switched from size n to n′ as

H =

{
1, size n
0, size n′

(11)

Similarly, we can have the corresponding definitions of KH ,
BH , and GH . It is clear that such setup facilitates the hybrid
size operation: as seen from (6) and (9), we can use the value
of H to determine the actual size for the BRLWE scheme,
and then based on the selected size to compute kn−1/kn′−1, as
well as the following ki/ki′ (0 ≤ i ≤ n−1 or 0 ≤ i′ ≤ n′−1)
based on Algorithm 1. In the following section, we will also
present the corresponding hardware to realize this hybrid size
operation, especially on the realization of size switching.

IV. PROPOSED STRUCTURES FOR THE BRLWE SCHEME

Based on the algorithmic process we proposed, we can have
the proposed BRLWE structure as shown in Fig. 5.

The structure of Fig. 5 mainly consists of three components,
namely the circularly shift-register, the LUT-like cells (LLCs),
and the adder tree (as well as an extra XOR gate to deliver
the final output according to the decryption stage of Table I).
The detailed functions of these components are listed below:

output

‘1’

carry_out

HAD
sum

input

... ...

1

1

1

1

1

HAD

1
HAD

......

carry_out

sum

sum

Fig. 7. The internal structure of the IC.

Circular shift-register. As indicated in (6), the calcu-
lation of kn−1 involves all the bits of B multiplied with
the corresponding bits from D, e.g., there are coefficients
{dn−1, dn−2, . . . , d0} involved within the calculation of kn−1
and then turn into {dn−2, dn−3, . . . , d0,−dn−1} in the compu-
tation of kn−2, which requires one position circularly shifting
plus the change of sign for one coefficient (dn−1). The circular
shift-register of Fig. 5 works exactly according to this signal
flow pattern to deliver the required signals for the calculation
of kn−1−i (0 ≤ i ≤ n − 1, based on (6)). As shown in
Fig. 6, the initiation of values to the circular shift-register
is carried out through the multiplexers (MUXes) attached to
the registers such that all the input values of the operand D
can be loaded into the registers through the switching of the
control signal to the MUXes (ctrl) from ’0’ to ’1’. After the
registers in the circular shift-register are initiated with values
of {dn−1, dn−2, . . . , d0}, respectively, as shown in Fig. 5, the
values stored in each register can be circularly shifted by one
position to deliver the desired output to the connected LLCs
in the following cycles.

The inverter cell (IC) consists of log2q number of 1-bit in-
verters and half adders (HADs) to invert the sign of the related
coefficient (based on the two’s complement representation, an
extra ’1’ is added as the carry-in), as shown in Fig. 7. All the
sum bits from the HADs are used as the output of the IC.

LUT-like cell (LLC). We have used the 2-input LLC for
the proposed structure, where each LLC has the same internal
structure of Fig. 2 (the two input bits from B are used as the
selection signals, while two output signals from the circular
shift-register are used for the values attached to the MUX and
the adder). There are in total n/2 LLCs involved (Fig. 5) to
produce n/2 number of log2q-bit signals to the adder tree.

Adder tree. The adder tree adds the n/2 input signals
along with the corresponding gi (0 ≤ i ≤ n − 1) to produce
the corresponding ki according to (7) and (8). In total, there
are n/2 number of adders involved within the adder tree.
Following the decoding setup of Table I [10], an extra XOR
gate can be attached to the two MSBs of ki to produce the
final output in a serial format. Note that gi is delivered to the
adder tree through a serial-in serial-out shift-register.

Pipelining setup. We have also insert the registers into the
structure of Fig. 5 to facilitate the pipelined processing: (i) the
signals from all the LLCs are pipelined through the registers,
as indicated in Fig. 5; (ii) the adder tree is inserted with one
layer of registers in the middle (or nearly) of the whole delay

...
IC

input D (size n)

output to the LLCs (size n)

clk clk clk

0

1

0

1

0

1

ctrlctrlctrl

...

clk

0

1

ctrl

0

1

sw

size n’

size n’

Fig. 8. Re-designed circular shift-register suitable for hybrid size operation.

duration of the adder tree.
Hybrid size structure. Following the algorithmic dis-

cussion about the hybrid size operation of the finite field
arithmetic for the BRLWE scheme ((9)-(11)), we can directly
use the proposed structure of Fig. 5 for hybrid operation except
a slight change in the circular shift-register.

As shown in Fig. 8, an extra MUX (red color) is inserted in
the circular shift-register, where one input is connected with
the output of the IC and another input is connected with the
output of the (n′ + 1)th register from left (the output of the
MUX is connected with the input to the n′th register) such
that the original n-size circular shift-register turns into a n′-
size circular shift-register when the selection signal of the
MUX (sw) is set as ’0’ (the circular shift-register recovers
to its original n-size when sw=’1’), which functions exactly
the same as the H of (11).

When used in the actual small size (n′) operation (sw=’0’),
the rest part of the inputs (from length n′ + 1 to n, Fig. 8)
will not be used, i.e., the related LLCs will only produce
zero results and thus the following adder tree will deliver
the accurate results according to the small size arithmetic
operation of the BRLWE scheme.

V. IMPLEMENTATION AND COMPARISON

Complexity. The proposed structure (Fig. 5) has a circular
shift-register (n number of log2q-bit registers and MUXes,
an IC consists of log2q number of inverters and HADs), n/2
number of 2-input LLCs (n/2 number of 4-to-1 MUXes and
log2q-bit adders), an adder tree (n number of log2q-bit adders),
a final XOR gate, one layer of registers (n/2 number of log2q-
bit registers), and another layer of registers in the adder tree.
While the proposed hybrid size design has the almost the same
area-complexity as Fig. 5 except an extra MUX. Finally, both
the two proposed structures have a latency of (n+ 2) cycles.

We have then coded the proposed designs and then obtained
the corresponding performance on the related FPGA device
after place & route as well as the existing two designs of
[10]. It is shown that [10] has higher efficiency than [9], we
thus only compare our designs with the designs of [10] (while
[11] uses the same hardware structure from [9] and [12] is a
software based design, we do not compare with them here).

Overall experimental setup. The overall condition of the
experimental setup is as follows: (i) we have coded both the
proposed designs (with function verified) and the existing ones
of [10] with VHDL and have used the Intel Quartus Prime

TABLE IV
COMPARISON OF THE AREA-TIME COMPLEXITIES FOR THE PROPOSED

AND COMPETING DESIGNS (FPGA PLATFORM)

design ALMs Fmax latency delay ADP∗

n = 256

[10]1 3,472 201.25 65,792 326,917 1,135,055,824
[10]2 5,734 369.14 257 696 3,990,834
Fig. 5 4,495 321.03 258 804 3,613,980

n = 512

[10]1 6,901 171.32 262,656 1,533,131 10,580,137,031
[10]2 11,470 336.36 513 1,525 17,491,750
Fig. 5 9,038 317.06 514 1,621 14,650,598

Proposed hybrid size structure n = 512 and n′ = 256

Hybrid 8,944 319.9 514 1,607 14,373,008

Unit for Fmax: MHz. Unit for delay: ns. ∗: ADP=#ALM×delay.
1: low-complexity design (Fig. 5 of [10]). 2: high-speed one (Fig.4 of [10]).
Latency cycles do not include the shift-register’s loading time.

17.0 to obtain the synthesized results based on the Stratix-V
5SGXMA9N1F45C2 device; (ii) we have selected n = 256,
n = 512 and q = 128 for the proposed and competing designs,
which follows the same parameter setting in [7], [9], [10]
(n = 512 and n = 256 can provide equivalent 190/140 and
84/73 bits of class and quantum securities, respectively [8]);
(iii) the adder used in the proposed and competing designs is
the 8-bit ripple carry adder; (iv) we have used the MUXes
in the circular shift-register to initiate the values stored in
the shift-register (proposed designs); (v) the gi is delivered to
the proposed design through a serial-in serial-out shift-register
(similarly for the design of [10]); (vi) we have used two layers
of registers in the proposed structures; (vii) we have also
coded and synthesized our hybrid size structure for n = 512
and n′ = 256; (viii) The obtained area-time complexities of
the proposed and the competing designs, namely the number
of ALM, maximum frequency (MHz), latency cycles (not
counting the loading time of the serial-in serial-out shift-
register), delay (critical-path×latency cycles), and area-delay
product (ADP), are all listed in Table IV.

As seen from Table IV, the proposed design has significantly
better area-time complexities than the competing ones of [10].
The proposed design has 9.44% and 16.2% less ADP (21.6%
and 21.2% smaller area occupation) than the existing high-
speed one for the cases of n = 256 and n = 512, respectively,
which is very desirable for lightweight applications. Besides
that, the proposed structure has significantly smaller ADP than
the existing low-complexity one of [10]. The proposed hybrid
size structure has better mapping efficiency of the circuits on
the FPGA device (due to the hybrid size design setup), and
thus is similarly much more efficient than the existing designs.

Discussion. The proposed design (Fig. 5) is desirable for ap-
plications such as computing server or similar where demands
relatively high-speed processing. While the hybrid size one can
be used as a standard IP core in various environments (require
different security levels) as well as for the applications where
demand the upgrading of security level of the cryptosystem
(from n′ to n) without replacing the actual hardware device.

As the main focus of this paper is on the efficient imple-

mentation of arithmetic operation for the BRLWE scheme, we
thus only compare our proposed designs with the same type
of structure/scheme in the literature, for the sake of a fair
comparison (we thus do not compare with the existing reports
of [13-17] as they are based on Gaussian distributed errors).
Besides, though the major purpose of this paper is to obtain
efficient implementation for the key arithmetic of the BRLWE
scheme, we still believe the techniques proposed in [9], [18]
against the side-channel attacks are applicable to the structures
proposed here for practical implementations & applications.

VI. CONCLUSION

This paper presents an efficient implementation of the key
arithmetic operation for the BRLWE scheme based on a novel
LUT-like method. We have firstly presented the proposed LUT-
like method and the related arithmetic process to facilitate the
using of the LUT-like technique. The proposed hardware struc-
ture is then detailed given along with a hybrid size design (the
first report in the literature). The following implementation and
comparison have fully demonstrated that the proposed designs
have better performance over the competing ones.

ACKNOWLEDGMENT

J. Xie’s work is supported by NSF CNS-2020625 and NIST
60NANB20D203. W. Jie is supported by NSF CNS-2011260.

REFERENCES

[1] W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. Symp. Founda. of Computer Science, pp. 124-134, 1994.

[2] Post-Quantum Cryptography. https://en.wikipedia.org/wiki/Post-quant
um cryptography.

[3] D. Micciancio. Lattice-based cryptography. Encyclopedia of Cryptogra-
phy & Security, 2011.

[4] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” Journal of the ACM, vol. 56, no. 6, 34, 2009.

[5] V. Lyubashevsky et al., “On ideal lattices and learning with errors over
rings,” Int. Conf. Theory & Appl. of Crypto. Tech., pp. 1-23, 2010.

[6] Post-quantum cryptography round 3 submissions. https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions

[7] J. Buchmann et al., “High-performance and lightweight lattice-based
public-key encryption,” ACM IoTPTS, pp. 1-8, 2016.

[8] J. Buchmann et al., “On the hardness of LWE with binary error: Re-
visiting the hybrid lattice-reduction and meet-in-the-middle attack,” Int.
Conf. on Cryptology in Africa, pp. 24-43, 2016.

[9] A. Aysu et al., “Binary Ring-LWE hardware with power side-channel
countermeasures,” DATE, pp. 1253-1258, 2018.

[10] S. Ebrahimi et al., “Post-quantum cryptoprocessors optimized for edge
and resource-constrained devices in IoT,” IEEE IoT-J, vol. 6, no. 3, pp.
5500-5507, 2019.

[11] A. Sarker et al., “Fault detection architectures for inverted binary Ring-
LWE construction benchmarked on FPGA,” IEEE TCAS-II, accepted.

[12] S. Ebrahimi et al., “Lightweight and fault-resilient implementations of
binary Ring-LWE for IoT devices,” IEEE IoT-J, vol. 7, no. 8, pp. 6970-
6978, 2020.

[13] T. Pöppelmann et al., “Area optimization of lightweight lattice-based
encryption on reconfigurable hardware,” ISCAS, pp. 2796-2799, 2014.

[14] S.S. Roy et al., “Compact Ring-LWE cryptoprocessor,” CHES, pp. 371-
391, 2014.

[15] C. R.-Mejia and J. V.-Medina, “High-throughput Ring-LWE cryptopro-
cessors,” IEEE Trans. VLSI Syst., vol. 25, no. 8, pp. 2332-2345, 2017.

[16] J. Howe et al., “Lattice-based encryption over standard lattices in
hardware,” DAC, pp. 1-6, 2016.

[17] Y. Zhang et al., “An Efficient and Parallel R-LWE Cryptoprocessor,” in
IEEE TCAS-II, vol. 67, no. 5, pp. 886-890, 2020.

[18] T. Schneider et al., “Part I Towards combined hardware countermeasures
against side-channel and fault-injection attacks,” Crypto, pp. 302-332,
2016.

