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Abstract—As Deep Neural Networks (DNNs) are widely
adopted in many real-world applications, their integrity
becomes critical. Unfortunately, DNN models are not
resilient to fault injection attacks. In particular, recent
work has shown that Bit-Flip Attack (BFA) can completely
destroy the intelligence of DNNs with a few carefully
injected bit-flips. To defend against this threat, we propose
Light-weight Integrity MArks (LIMA) framework which
protects the integrity of the most significant bits (MSBs)
of DNN weights — the main target of BFA. Such protection
is enabled by embedding specific property into a trained
DNN model’s weights before deploying it in hardware.
LIMA outperforms existing BFA countermeasures as it
requires no retraining, imposes no storage overhead, of-
fers full-coverage of all DNN layers, and can be easily
verified with Multiply-Accumulate (MAC) operations to
detect BFA. Our comprehensive study demonstrates 100 %
effectiveness in detecting chains of bit-flips and near-zero
accuracy loss for embedding LIMA. The eresults also show
that even when the attacker has complete knowledge of
the proposed defense plan, attacking DNNs with built-in
LIMA is extremely difficult, if not completely impossible.

I. INTRODUCTION

With tremendous success in solving a variety of ma-
chine learning tasks, Deep Neural Networks (DNNs)
have gained ever-increasing popularity across many ap-
plication domains. Meanwhile, their integrity has turned
into a major concern, especially when deployed in
mission-critical applications such as autonomous driving
and medical diagnosis [1]-[4]. Unfortunately, DNNs are
not resilient to faults in the inputs or in the network
structure. Both adversarial examples (i.e., maliciously
crafted inputs) [5]-[10] and fault injection attacks (i.e.,
maliciously altered DNN parameters) [11]-[13] can lead
to severe accuracy drop.
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Recently, a new type of fault injection attacks called
Bit-Flip Attacks (BFAs) [14] dedicated to hardware-
friendly quantized DNN models has been developed.
BFAs can crash DNN models deployed in hardware to
near-random guessing by injecting a chain of precisely
selected bit-flips into model parameters, e.g., by flip-
ping only 13 bits out of million parameters of an 8-
bit quantized Resnet-18 model, its accuracy drops from
69.8% to 0.1% [14]. A follow-up work demonstrated the
feasibility of launching BFAs in Intel i17-3770 CPU with
DDR3 memory via a new type of precise rowhammer
attacks designed for BFA [15]. Most recently, a stealthy
and probably more dangerous variation of BFAs called
Targeted Bit-Flip Attack (T-BFA) [16] was proposed,
which can go unnoticed for a long time as it only alters
the classification of some inputs and only causes a slight
drop in the model’s overall accuracy. These works turn
BFAs into a real and serious security threat, especially to
machine-learning-as-a-service (MLaaS) platforms [17]
that offer inference services to multiple users.

Among the existing countermeasures, input-based test-
ing methods [18]-[20] and general Rowhammer mitiga-
tion techniques [21]-[28] seem to be applicable to BFAs,
at first sight. The first category uses a small set of sensi-
tive images to detect accuracy drop. However, no single
image can be sensitive enough to detect bit-flips that may
occur in any of the millions (or even billions) of weights
in a DNN. Input-based testing is especially ineffective for
detecting stealthy T-BFAs or even an early terminated
BFA, as both schemes only cause small drop in overall
model accuracy which would require a large set of test
images to detect, as confirmed by [18], [20]. The second
category, i.e., general rowhammer mitigation, is not well-
suited to BFAs either. Standard Error Correcting Code
(ECC) and Intel Software Guard Extensions (SGX) can
be broken by the new type of Rowhammer attacks as
shown in [21], [22], not to mention that these defenses
require non-trivial hardware modifications such as addi-
tional/probabilistic refreshes, extra row write counters,



and redesign of the memory controller. Recently, several
BFA-specific countermeasures have been proposed [29]-
[31]. However, as what will be shown in Section II, they
either alter the DNN weight distribution, thus affecting
inference accuracy and making the defense easily de-
tectable by an attacker [29], [30], or are designed to
protect only a subset of network layers and hence can
be easily bypassed by an attacker with knowledge of the
defense [31].

Given the severity of BFAs and the inability of existing
approaches to fully address it, we propose Light-weight
Integrity MArks (LIMA), the first comprehensive de-
fense against BFAs. LIMA is designed based on the
observation that BFAs typically flip the Most Significant
Bits (MSBs) of weights to create largest value deviation,
while the Least Significant Bits (LSBs) remain intact.
Accordingly, LIMA’s integrity marks are embedded by
adjusting the LSBs to establish an equality relation
between MSBs and LSBs of the sum value of a group
of weights, allowing for quick run-time verification.
Embedding LIMA’s integrity marks into a DNN causes
near-zero accuracy drop and requires no extra storage or
special hardware support. Verifying the integrity marks
requires only Multiply-Accumulate (MAC) operations
which are commonly available in DNN accelerators
and software implementations. We will show, through
a thorough study of multiple DNN models, that LIMA
is not only capable of detecting every single chain of
bit-flips chosen by BFAs and T-BFAs, but also inducing
no noticeable drop to the model’s original accuracy.

The rest of this paper is organized as follows: Sec-
tion II introduces BFA and its variations. Section III out-
lines the threat model. Section IV describes the defense
paradigm and the technical details for embedding the
integrity marks in DNN and verifying them at runtime.
Section V experimentally evaluates LIMA in terms of
BFA detection, while Section VI presents an in-depth
discussion on LIMA’s ability to detect stealthy T-BFAs,
its impact on weight distribution and robustness against
bypassing, and possible recovery methods. Finally, Sec-
tion VII concludes the paper.

II. PRELIMINARIES ON BFA

Fault injection attacks compromise neural network
integrity by injecting errors into DNN parameters (i.e.,
weights), causing sizable accuracy drop. Early attacks on
DNNs with floating-point weights tend to flip the most
significant bits (MSBs) of the exponent to cause a huge
deviation in the weight values [11]-[13]. Recently, a new
type of Bit-Flip Attack (BFA) was shown to be able to
significantly degrade the accuracy of a quantized DNN

models with a tiny set of bit-flips [14]. A following work
developed a stealthy 1-to-1 Targeted Bit-Flip Attack (T-
BFA) wherein only the inputs from one source class are
hijacked to one target class [16].

The main differences between BFA and T-BFA lie in
their objectives. Within minimum number of bit-flips,
BFA aims at maximizing the inference loss w.r.t true
labels so as to crash the DNN, while T-BFA aims to
classify inputs from a specific source class p (X,) as a
target class ¢ without affecting the classification of the
remaining inputs. The objectives of BFA and TBFA are
respectively formulated in Eqns (1) and (2):
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where {B } is the quantized representation of the DNN’s
weights in 2’s complements form after fault injection, x
and ¢ are respectively the input data and corresponding
ground-truth label, f(z,{B}) computes the DNN out-
put for input z, L (.,.) denotes the cross-entropy loss
between the DNN output and the ground-truth label, j
is a class other than the source class p.

Despite their different objectives, both BFA and T-
BFA follow the same iterative gradient-based Progressive
Bit Search (PBS) process with subtle distinctions. In
each iteration, PBS randomly selects a small set of
training images and uses them to identify one bit to flip
in two steps: intra-layer search wherein one candidate
weight bit is identified for each layer of the target DNN,
and inter-layer selection which compares candidate bits
across all layers and flips the best one. In the kth
iteration, the intra-layer search ranks a bit b; by the
absolute value of its gradient w.r.t. loss (i.e., |0L/0b;|)
and selects the top n bits with highest gradients. It then
flips these n bits one at a time and records the loss
increment. To meet the objectives of BFA/T-BFA, bits
are flipped in the opposite/same direction of gradient to
respectively maximize/minimize the loss. Subsequently,
the inter-layer search of BFA/T-BFA identifies, across
all L layers, the bit with max/min loss from the loss
set {L£k £k . £k} and flips it. This iterative search
process terminates when the attack goal is achieved.
BFA in real platforms: The work in [15] demonstrates
the feasibility of launching bit-flip attacks in Ivy Bridge-
based Intel i7-3770 CPU with two memory channels
via performing precise rowhammer attacks named Deep-
Hammer. Unlike standard rowhammer attacks that flip
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Fig. 1. LIMA overview

bits probabilistically, DeepHammer needs to flip the
chain of target bits identified by BFA precisely without
altering the remaining bits. This is achieved via a precise
double-sided hammering using targeted column-page-
stripe. The preciseness is guaranteed by allowing only
one bit-flip per memory page [15].

Countermeasures against BFAs: As BFA is a new type
of fault injection attacks, very few countermeasures have
been proposed. One idea is to design a binarization-
aware DNN and its relaxation (called piece-wise cluster-
ing) of the DNN weight parameters [29], which retrains
the DNN to reduce the number of close-to-zero weights
(which are most vulnerable to BFA). Another retraining-
based work [30] reconstructs DNN weights in a way that
the amount of weight perturbation caused by BFA is min-
imized or diffused to neighboring weights. While these
two techniques provide full coverage to all the layers of
a target DNN, they require expensive retraining. They
also cause noticeable change to the weight distribution
which not only make the defense easily detectable by the
attacker, but also induce non-trivial accuracy drop and
thus are only effective for small networks and datasets.
As for large and complicated networks and datasets (e.g.
ImageNet), it is difficult to balance the improvement
in resilience and the accuracy drop caused by these
countermeasures [31].

Recently, a BFA detection approach is presented
in [31] whose fundamental goal is to differentiate BFAs
from random bit errors. The work observes that most of
the bit-flips selected by BFA are clustered within a few
layers, and therefore proposes to embed, in those layers,
certain watermarks sensitive to BFAs but not to random
errors. Unfortunately, this work makes an unrealistic
assumption of random bit errors only occurring in the
lower-order bits of weights. Furthermore, an attacker
with knowledge of this countermeasure can bypass it by
simply injecting faults into those unprotected layers.

III. THREAT MODEL

We follow the same threat model used by the previous
BFA-related work [15], [16], [31] for compromising the
integrity of a quantized DNN model. BFA is a white-
box attack, i.e., the attacker is assumed to have complete

knowledge of the target DNN structure, weights, and
gradients, and partial knowledge of the training data
set. Such knowledge of the model can be obtained via
side channel attacks, as have been demonstrated in [32],
[33]. The attacker program and the victim DNN model
are assumed to co-locate on a machine equipped with
DRAM memory, a typical setting in machine-learning-
as-a-service (MLaaS) platforms. The victim DNN model
is quantized into 2’s complement form and all of its
weights, bias, and batch normalization parameters are
stored in the DRAM memory of the target platform
where it runs. The attacker pre-selects target bit-flip loca-
tions by performing gradient-based BFA technique [14],
and performs DeepHammer attack (i.e., precise double-
sided hamming) to flip the chain of bits selected by
BFA [15]. The defender is assumed to have access to
the target DNN structure and weights (which are trained
and quantized already) but not to any part of the training
dataset.

IV. LIMA FRAMEWORK

A. Framework Overview

Figure 1 illustrates an overview of LIMA’s two-step
BFA mitigation process: (1) embedding integrity marks
into DNN weights before its deployment, and (2) veri-
fying them at the inference stage to capture BFAs at a
testing period chosen by the user.

LIMA’s integrity marks are embedded into every sin-
gle DNN layers by establishing certain property between
the layer’s weights via slightly modifying DNN weight
values (41 difference), without causing any noticeable
accuracy loss. Verifying these integrity marks in the
computed intermediate feature maps makes the faults
injection attacks observable in the output of all DNN
layers, including hidden layers which are not supported
by testing-based schemes. This is done without the need
for saving any intermediate feature maps, a significant
benefit as the size of feature maps could be much larger
than that of model parameters [34]. Meanwhile, LIMA
achieves full controllability of the hidden layers with a
special Read-Check-Write (RCW) process (Fig. 2), added
in between two consecutive layers [; and /;;1 to read
the content of the intermediate data (h;), check the
integrity property to capture BFA, and write the test
inputs for checking the integrity of the next layer. RCW
is implemented in software, and is only activated in the
BFA detection mode, thus imposing zero overhead to
the original inference process. Last but not the least, the
integrity marks allow for not only the detection but also
the location of BFAs within a group of weights and a
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Fig. 2. LIMA’s defense paradigm. Light-weight integrity properties
are embedded into every DNN layer (/;), a Read-Check-Write(RCW)
process is added in between layers to read the intermediate data (h;),
check the integrity property, and prepare test inputs for the next layer.

subsequent cost-effective run-time recovery from BFA,
as will be shown later.

B. Integrity Marks Embedding

A high quality integrity mark should be easy to
establish and verify, and sensitive enough to capture
BFAs while inducing no inference accuracy drop. Instead
of using traditional fault detection properties (such as
ECC, parity bits, and checksums) that uniformly cover
all bit positions and hence impose non-trivial overhead,
our fundamental idea is to protect each weight, but
only the bits that are most vulnerable to BFAs. Our
extensive studies on BFA show that most of the time the
attack flips the Most Significant Bits (MSBs) of weight
values while Least Significant Bits (LSBs) are almost
never selected!. Accordingly, we propose to establish
a property between the LSBs and MSBs. As LSBs are
much less critical, slightly modifying them will not cause
unacceptable accuracy drop. To further minimize the
potential accuracy drop, we propose to establish the
property in the sum of a group of DNN weights in
each layer. This also means that without the exact group
information, an attacker cannot verify the property or flip
two bits in a group to bypass the verification.

Definition IV.1 (LIMA’s integrity property). Each DNN
layer is partitioned into groups of size n, and the K-bit
MSBs and LSBs of the sum of the n weights in each
group should be identical.

If the sum of a group of weights does not satisfy this
condition, the property can be established by slightly
modifying the weight’s LSBs. Fig. 3 illustrates an exam-
ple of embedding a K=2-bit integrity marks in a 4x4
weight matrix where every four weights in a row are
grouped together. Fig. 3(a) shows the row-wise sum of

!This observation is in line with findings in [29], [31], and is also
expected since faults in MSBs cause the largest deviations in weight
values and hence degrade DNN accuracy most severely.
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Go| 78 2. 10___ 2| -68(10111100),-2 ]
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a) Original weights
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Fig. 3. Embed 2-bit integrity property in four groups of weights.

the original weight matrix. Only (1 has identical 2-bit
MSBs and LSBs of its sum value, while the sum of
Go, G, and (3 should be changed by 1, -2, and 1,
respectively, to form this property. In Fig. 3(b), after
incrementing/decrementing the marked weight values,
the property holds for all four groups.

Algorithm 1 shows how the K-bit integrity property
is embedded into a DNN layer with weight matrix W
under a specific grouping and candidate selection policy.
The process starts by finding all the groups G inside
the layer, calculating the sum S of all the weights in
G, and finding the difference D between K-bit MSBs
and LSBs of S (lines 1-5). The remaining steps of the
algorithm reduce this difference to zero via inserting a
minimal deviation of +1 into a set of | D| weights that are
chosen according to the selection policy (lines 6— 13). To
further reduce the number of weights to be modified, our
algorithm reverses the direction of weight adjustment if
the difference between LSBs and MSBs is bigger than
2K=1 (lines 8-10). This is shown in the case of G35 in
Fig. 3(b), where the value of D is set to —3+422 =1, the
direction of modification is changed from add to sub, and
one (instead of three) weight is modified. Note that this
modification also generates a carry of -1, which changes
the four middle bits of sum of Gg from 1000 to 0111.
If this carry propagates to the MSBs and causes MSBs
# LSBs, an extra +1 is made to one more weight in the
group (lines 12 — 13). In sum, the maximum number of

bits modified to establish a K-bit property is limited to
oK=L,



Algorithm 1 Integrity property establishment
Require:
weight-matrix W, property-width K,
grouping-policy G P, selection-policy SP
1: groups <+ GP(W)
2: for all G in groups do
3: S« sum(G)

4: M,L + K MSBs and LSBs of S
5: D+—L-M
6: reversed < False
7: if D # 0 then
8: if |D| > 2(5K=1) then
K
o Do D +2%, %fD<0
D—-2X ifD>0
10: reversed < True
11: Subtract D/|D| from SP(G,|D)|)
12: if reversed and property does not hold then
13: Subtract D/|D| from SP(G,1)

C. Integrity Marks Design Space

Design space of the proposed integrity property in-
volves configuring three input parameters of Algo-
rithm 1, namely, the property width K, the candidate
weight selection strategy, and the grouping policy.

If the property width is minimum (/X = 1), only the
MSB (i.e., the sign bit) is protected. Flipping the sign
bit of an integer does not necessarily cause the largest
gradient w.r.t. loss and hence is not always selected by
BFA. Enlarging the property width, on the other hand,
protects more bits but induces higher accuracy drop
potentially. To select the best value of K, we ran BFA
on three 8-bit DNN models: Googlenet and Resnet-18
on Imagenet dataset, and VGG-16 on CIFAR-10 dataset,
and collected the positions of bit-flips. Our statistics
show that more than 95% of bit-flips are in the two
MSBs (b7 and bg). Hence, K = 2 seems to be a viable
option for most DNNs to balance the level of security
enhancement and potential accuracy drop.

There are multiple possible ways to select the candi-
date weights for modification, such as always selecting
weights with the largest (or smallest) absolute values,
or selecting them randomly. Our study shows that their
impact on the DNN accuracy is negligible, which stems
from the fact that the weight modification for embedding
the proposed integrity property is already minimal. As
a result, LIMA adopts a random selection strategy as it
reduces the complexity of the weight selection process
while at the same time adding an extra level of pro-
tection since the locations of the modified weights are
unpredictable and hence unknown to the attacker.

In terms of the grouping policy, LIMA offers the flex-
ibility of grouping weights in different granularities and
also across various dimensions. The group granularity
is expected to affect inference accuracy: the smaller the
group size is, the more the ratio of weights that need to
be modified to establish the integrity property, and hence
a more noticeable accuracy drop is expected. Enlarging
the group size, on the other hand, reduces the impact
on DNN accuracy but may increase the chance of false
negatives, which may occur if the attacker flips two bits
of different weights in one group.

Under the same granularity, various grouping meth-
ods across multiple dimensions can be adopted. These
different grouping methods are not expected to have a
noticeable impact on the DNN accuracy or the ability
to detect BFAs, but rather add another level of security
protection. Specifically, if a skilled attacker wants to
bypass LIMA defense by injecting pair-wise bit-flips
within a group, the attacker needs to find out the exact
grouping method. Assuming that G and W respectively
denote the group granularity and the total number of
weights in a DNN layer, LIMA’s groups can be formed
with weights [i,i 4.5, ..., (i +mS)%W] where S is the
grouping stride, and there are W-1 possible strides and
G possible starting points for a group with GG elements.
To find the exact grouping method, the attacker has to
brute force a search space of G x (W — 1) for every
possible G values that divides W.

D. Integrity Marks Verification

One advantage of the proposed integrity property is
that it can be verified for online BFA detection with stan-
dard convolution operations, requiring no extra hardware
support. Specifically, the sum of the group of weights
can be calculated by setting a region of inputs that
will be convolved with the target group of weights to
1. As an example, Fig. 4 illustrates how the inputs of
a convolution layer is modified to compute the sum of
weights in filter A. The inputs are in three channels: red,
green, and blue, which are convolved with a 3-D 3x3x3
kernel. By setting 9 inputs in the red channel to 1 and
all inputs in the green and blue channels to 0, the sum
of all weights in filter A can be calculated. This process
is marked with (1) in Fig. 4. As the location of the target
sum in the output feature map is known beforehand
(3>~ A in Fig. 4), the RCW procedure shown in Fig. 2
can read it and verify if the integrity property holds or
not. If a large group size is adopted such that one group
contains multiple filters (e.g., A and B), the sum can be
computed by setting the inputs of multiple channels (e.g.,
red and green) to 1. On the other hand, if the group size
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Fig. 4. Verifying integrity property with convolution operations

is smaller than the filter size, the convolution stride can
be leveraged to compute a partial sum of weights. For
example, shifting filter A two steps to the right computes
the sum of the leftmost column of A, and shifting A two
steps down computes the sum of its top row which is
marked with (2) in Fig. 4.

For each convolutional layer, RCM writes test inputs
in a way that the output feature map contains different
partial sum values, while the RCW procedure at the
layer’s output can selectively verify only the target
integrity property (e.g., > A or Y A[0] in Fig. 4). For
fully connected layers, since the computation of output
neuron values (a special type of output feature maps) can
be treated as 1 x 1 convolution operations, by directly
leveraging MAC operations, one can follow the same
approach for property verification.

With the verification process outlined above, LIMA
can quickly detect and locate BFAs in each layer within
a group of weights. Unlike inference, there is no de-
pendency between the current layer’s output and the
next layer’s input when verifying the integrity marks,
implying that checking of all DNN layers can be done in
parallel. Overall, a BFA detection procedure is involved
in between two inference runs. Faults injected into the to-
be-checked groups will be detected immediately, while
faults injected into the already-checked groups will be
captured in the next round of detection.

E. BFA Detection Accuracy Analysis

The proposed integrity property always holds if there
is no bit-flip in the weight values, and thus, it does not
have any false positives (unless a non-malicious random
fault has occurred in the LSBs or MSBs, which is outside
of the scope of this work). However, there are a few
possible cases that may lead to false negatives. First, if
the attacker chooses to flip an unprotected bit not located
in the K-bit MSBs, the bit-flip will be detected only if
it generates a carry and propagates to the K-bit MSBs
in the group sum. Second, if the attacker flips bit b; of
two weights in the same group but in opposite directions

TABLE 1

DATASETS AND DNN MODELS’ SPECIFICATIONS

Dataset DNN Layer # | Weight # | Accuracy
Imagenet | Googlenet 22 6.6M | 69.30%
Imagenet | Resnetl8 18 11M | 69.22%
CIFAR-10 | VGG-16 16 15M 90.88%
TABLE II
SAMPLE WEIGHT GROUPING POLICIES EVALUATED
Kernel Group size (# weights)
size Small | Medium | Large
7Tx7 7 49 147
3x3 9 36 144
1 x 1 (FC) 8 32 128

(one 1—0 and the other 0—1), the sum will not change,
and the bit-flips will not be detected. Likewise, if the
attacker flips bit b; of 2" weights in the same group in
the same direction, it is equivalent to flipping bit b;,,, in
one weight. If 1 +n > ¢ (q is the quantization level), the
bit-flips will not alter the g-bit sum and hence will not
be detected. Finally, if the attacker flips an MSB b; and
a corresponding LSB (b; + K — Q) in the same group in
the same direction (e.g., bits by and b;), the sum value
changes but the integrity property still holds and thus,
the attack will not be detected. Although theoretically
possible, this case practically has never happened as the
PBS process of BFA never selects LSBs to flip.

The aforementioned false negative cases are rare un-
less an attacker modifies the BFA procedure to intention-
ally bypass LIMA. Furthermore, although it is possible
for a few bit flips to escape detection, as BFA needs
to inject a chain of bit-flips to crash a network, it is
extremely unlikely to have all the bit-flips in the chain
be false negatives and the BFA undetected.

V. EXPERIMENTAL EVALUATION
A. Experimental Setup

LIMA is evaluated on two well-known image recog-
nition datasets: CIFAR-10 [35] containing 60K color
images in 10 classes, and Imagenet [36] containing
1.35M color images in 1000 classes. These datasets are
trained with three popular DNN models: Googlenet [37],
Resnet-18 [38], and VGG-16 [39]. Table I shows the
number of layers, weight count, and the original accuracy
of the 8-bit quantized implementations of these models.

BFA was performed on the selected DNNs with attack
sample size of 128 images, and terminated when DNN’s
accuracy drops to the random guess level, i.e., 10%
for CIFAR-10 and 0.1% for Imagenet. For each set of
experiments, 20 instances of BFAs (identified with 20



TABLE IIT
IMPACT ON DNN INFERENCE ACCURACY
w/ LIMA

DNN w/o LIMA Small | Medium | Large
Googlenet 69.30% 68.88% | 69.15% | 69.19%
Resnet-18 69.22% 69.12% | 69.13% | 69.16%
VGG-16 90.88% 90.91% | 90.85% | 90.90%

TABLE IV

AVERAGE NUMBER OF BIT-FLIPS SELECTED BY BFA, BEFORE
AND AFTER EMBEDDING INTEGRITY MARKS

w/ LIMA
DNN wlo LIMA Small | Medium | Large
Googlenet 6.0 6.6 6.7 6.9
Resnet-18 12.0 10.9 11.1 12.9
VGG-16 40.0 54.8 47.6 38.0

different random seeds) were executed. The same seeds
were used across all the experiments conducted under
different configurations to ensure fairness in comparison.

LIMA was implemented as a reconfigurable extension
to the BFA tool [14] in PyTorch. For all the experi-
ments, the property width was set to K=2 and candidate
weights for modification are selected randomly. A row-
wise grouping strategy was adopted, and three sample
grouping granularities (small, medium, and large) were
evaluated as test cases. Table II shows the group sizes for
different kernel shapes used by all three DNN models.
Note that policy in the last row is applied on both kernel
size 1 x 1 and fully connected (FC) layers.

LIMA was run on a Google Colab Pro server with
25GB memory and T4/P100 GPUs. Embedding the pro-
posed integrity marks in the entire network only causes
a one-time overhead of 15-150 seconds, confirming that
it can be easily added to a trained and quantized DNN.

B. Impact on DNN Accuracy

Tables III reports the impact of embedding the pro-
posed integrity property on DNNs’ inference accuracy,
which is close-to-zero across all cases. The maximum
accuracy drop for Googlenet, Resnet-18, and VGG-16
are 0.42%, 0.1%, and 0.03%, respectively. For Googlenet
and Resnet-18, Large group size causes the least accu-
racy drop and small group size causes the most, which
is consistent with the theoretical discussion in Sec-
tion IV-C. However, this trend does not hold for VGG-
16 which, trained on small-scale CIFAR-10 dataset con-
taining only 10 classes, has very high original accuracy.
As a result, the accuracy change caused by the integrity
property is so small that the impact of randomness in
seed selection becomes dominant. Overall, the results

TABLE V
LIMA’S DETECTION CAPABILITY FOR BFA CHAINS AND
INDIVIDUAL BIT-FLIPS

Small group Medium group Large group

DNN Chain | Single | Chain | Single | Chain | Single
Googlenet | 100% | 99.5% | 100% | 87.7% | 100% | 86.8%
Resnet-18 | 100% | 902% | 100% | 77.5% | 100% | 70.5%
VGG-16 | 100% | 783% | 100% | 78.0% | 100% | 73.2%
Average | 100% | 89.3% | 100% | 81.1% | 100% | 76.8%

demonstrate that the grouping policy does not have a
remarkable impact on inference accuracy.

Table IV reports the number of bit-flips required by
BFA to crash the selected DNN models. For Googlenet
and Resnet-18 which are trained on Imagenet, BFA can
crash the original model with only 6 and 12 bit-flips,
respectively. In comparison, VGG-16, as it is the largest
network and is used to classify small-scale CIFAR-10
images, carries much more redundancy hence is more
resilient to BFA. The same experiments are repeated on
models embedded with LIMA (since it slightly adjusts
weight values). As shown, increasing the group size
makes the models trained on Imagenet slightly less sus-
ceptible to BFA but for CIFAR-10 the trend is opposite.
Overall, the results confirm that the impact of LIMA on
a model’s behavior against BFA is insignificant.

C. BFA Detection Capability

Since BFA requires flipping a chain of pre-selected
bit-flips, it can be detected if any of the flipped bits are
captured. Based on this observation, Table V reports the
detection rates of both BFA chains and individual bit-
flips. The results show that LIMA can detect, with 100%
accuracy, all the bit-flip chains inserted in DNNs under
all the grouping configurations. In terms of individual
bit-flips, it is able to detect 70.5%-99.5% of them.
As expected, the smaller the group size, the lower the
false negative rate of detecting individual bit-flips. On
average, 10.7%, 18.9%, and 23.2% of bit-flips in Small,
Medium, and Large grouping policies end up becoming
false negatives. The three possible false negative cases
are discussed in Section IV-E.

Overall, our experiments confirm that LIMA can
100% detect bit-flip attacks. If the defender aims to not
only detect the attack but also precisely locate individual
bit-flips, a smaller group size is preferred.

VI. DISCUSSION

To evaluate whether LIMA qualifies to be a high-
quality defense scheme, this section presents an in-
depth study on LIMA’s capability to detect more stealthy
attacks as well as its stealthiness, robustness against



TABLE VI
AVERAGE NUMBER OF BIT-FLIPS SELECTED BY T-BFA AND
LIMA’S DETECTION CAPABILITY

Scheme Number of l?etectgd
bit flips Chain | Single
w/o LIMA 11.0 - -
w/ LIMA-Small 11.7 100% | 98.3%
w/ LIMA-Medium 11.7 100% | 94.4%
w/ LIMA-Large 11.9 100% | 81.9%

bypassing attempts, and potential for guiding recovery
process. The experiments are performed on Resnet-18 —
the largest DNN model evaluated on the larger Imagenet
dataset.

A. Robustness against Stealthy BFA Attacks

While LIMA’s detection capability against BFA has
been demonstrated, one question remaining open is
whether it can detect stealthy variations of BFA attacks
that can escape input-based testing [18], [20], including
both T-BFA and early termination of BFA (before the
DNN accuracy drops to random guess), which disrupts
the DNN’s functionality with fewer bit-flips and poten-
tially has a higher chance of escape detection.

First, we implemented the T-BFA attack [16] which
alters the output of a source class p to a target class ¢
while retaining the classification of other classes as much
as possible. Using the same seeds as the ones used for
BFA, 20 instances of T-BFAs were executed for each of
the three group sizes. Then the number of bit flips was
collected for both the original (unprotected) network and
the ones with LIMA embedded. Classes p and g were
randomly selected in each run. Each run was terminated
when at least 98% of images in class p’s were changed
to class ¢g. At that time, the accuracy of the network
slightly dropped (minimum of 50%).

Table VI shows the impact of LIMA on the number
of bit-flips selected by T-BFA, as well as its detection
capability. Same as what was observed for BFAs, embed-
ding LIMA does not cause any remarkable impact on the
total number of bit-flips required to conduct the attack.
Meanwhile, LIMA can successfully detect 100% of T-
BFA attack chains and at least 81.9% of single bit-flips.
This strong detection capability stems from the fact that
despite having different loss functions and goals, both
BFA and T-BFA follow a grandient-based approach to
select vulnerable bits. MSBs which typically show higher
gradient values are most likely to be selected in both
attacks. A closer look into the positions of the injected
bit-flips confirms this observation: almost all faults in
T-BFAs are injected into the two highest-order bits.
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Fig. 5. Impact of attack termination accuracy on the number of bit-
flips needed by BFA and LIMA’s chain and single bit-flip detection
rates under Large grouping policy.

Second, to study LIMA’s robustness against early
terminated BFAs, we evaluated the impact of various
attack termination criteria on the number of BFA bit-
flips as well as LIMA’s detection rate. Figure 5 shows
the results under the Large group size which offers the
lowest detection capability, which confirm the excellent
detection capability of LIMA. First, it is able to 100%
detect BFA chains even under a very early termination
accuracy of 50%. Furthermore, the higher the attack
termination accuracy, the shorter the length of BFA
chain, the higher the detection rate of individual bit-
flips. The majority of false negative cases occur when
the termination accuracy is dropped below 20%. This is
because BFA follows a greedy algorithm to find the most
vulnerable bits in DNNs. Hence, the first few bit-flips are
usually injected into weights scattered across different
groups, making them 100% detectable by LIMA.

Overall, the results confirm LIMA as an effective
and extensive defense mechanism against the stealthy
variations of BFA attacks.

B. Impact on DNN Weight Distribution

A high-quality defense scheme should not leave any
observable footprint on the DNN model. As LIMA
requires slight modifications to the weight values, we
evaluated whether LIMA causes a noticeable change to
the weight distribution that an attacker can tell. Fig. 6
compares the weight distribution of Resnet-18 before
and after embedding LIMA. The comparison is between
the original model and the LIMA version with Small
grouping policy as it modifies the largest ratio of weights
(our statistics show that the Small, Medium, and Large
group sizes modify 11%, 2.8%, and 0.7% of weights,
respectively). As shown, because the modifications to
weight values are minimum (+£1), there is no noticeable
change in the DNN weight distribution even when 11%
of weights are adjusted. This also ensures that LIMA
incurs very marginal accuracy change to the original
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Fig. 6. Negligible impact of LIMA on DNN weight distribution of
Resnet-18

model as shown in Tables III. Therefore, attackers cannot
easily tell whether LIMA is embedded in a DNN model.

C. Robustness against Bypassing

Regardless of its level of stealthiness, there is always
a chance for the attacker to know the countermeasure
precisely. For this reason, we evaluated LIMA’s ro-
bustness against bypassing attempts under a possible
(but highly unlikely) scenario where the attacker has
prior knowledge of LIMA and its major design features
including the property width K, the group size G, and
even the exact group partition. Under this assumption,
the attacker may take three routes to bypass LIMA,
denoted as BI, B2, and B3. Bl avoids injecting bit-flips
in the protected K-bit MSBs and targets the unprotected
lower-order bit positions. As flipping the lower-order
bits causes smaller value deviations, more bit-flips are
required to crash the DNN. In comparison, B2 and B3
inject bit-flips in pair so as to maintain the integrity
property. Specifically, for a most vulnerable bit flipped
in position b;, B2 flips an extra bit in the same MSB
position of another weight in the same group but in
the opposite direction, while B3 flips the corresponding
LSB (position b; + K — )) of a weight in the same
group in the same direction. These approaches double
the complexity of BFA and require knowledge of the
exact grouping strategy, which is difficult to obtain given
the high number of grouping possibilities described in
Section IV-C.

The aforementioned bypassing methods were imple-
mented and evaluated under two extreme grouping poli-
cies: Small and Large. Meanwhile, to compare with
previous work, we also implemented the watermark-
based BFA detection [31] and a straightforward bypass-
ing technique that injects bit-flips only in layers not
protected with watermarks. All schemes were evaluated
under the constraint imposed by DeepHammer [15], the
work that demonstrated feasible BFAs in real platforms
by restricting only one precise bit-flip per page (without

altering other bits). As this strict constraint sometimes
prevents us finding a valid attack, we relaxed it by allow-
ing up to two precise bit-flips per page in experiments.
Furthermore, to prevent the BFA algorithm from being
stuck in an endless loop, we added two extra termination
conditions: (1) if the total number of bit-flips injected is
100x what was required for breaking the original model
(i.e., more than 12 x 100 = 1200 bit-flips for Resnet-18);
(2) if, for five consecutive iterations with different sets
of image samples, the attacker was not able to find a bit
to flip. Attacks terminating in these two conditions are
marked as unsuccessful.

Table VII presents the ratio of successful attacks, their
number of bit-flips required to break Resnet-18, and
their ability to bypass the underlying countermeasure.
Baseline denotes the Rowhammer-based BFA attack on
an unprotected DNN, while /-layer and 2-layers are two
versions of the watermark scheme [31] which protects
only one and two DNN layers.

The results reveal several interesting points. First, the
number of bit-flips in the baseline confirms that the
strict DeepHammer constraint makes it more difficult to
launch a BFA. With 1 and 2 bit-flips permitted per page,
BFA requires an average of 22.6 and 14.2 bit-flips, both
of which are higher than the 12 bit-flips needed under
no constraint (reported in Table IV). These numbers
are used as the reference for computing the complexity
of bypassing techniques, e.g., an unsuccessful attack
that requires more than 1200 bit-flips has a complexity
of 1200/22.6= 53.10x and 1200/14.2=84.51x when
respectively 1 and 2 bit-flips per page are allowed.
Second, the watermarking scheme cannot effectively
prevent bypassing attempts or increase the complexity
of BFA; by injecting faults in the unprotected layers,
the model crashes almost within the same number of
bit-flips. Protecting two layers only slightly increases
the attack complexity by 1.02-1.03x. In comparison,
LIMA can completely counteract all the BI, B2, and
B3 attempts (0% success rate) when only one bit-flip
per page is allowed. When the constraint is relaxed to
two bit-flips per page, LIMA still counteracts B2 and B3
attempts for Small group size. The fundamental reason
for these unsuccessful attempts is that they require more
bit-flips to bring the DNN accuracy down to random
guess, while the DeepHammer constraint only allows
very limited number of bit-flips per page. A further
examination shows that at the time of termination, the
unsuccessful B, B2, and B3 attempts were able to reduce
the DNN accuracy to around 0.39%, 22.69%, and 0.5%
respectively, indicating that it is relatively easier for
Bl and B3 to find a qualified bit to flip. In case of



TABLE VII
ROBUSTNESS OF LIMA AND WATERMARKING [31] AGAINST BYPASSING TECHNIQUES

Scheme 1 bit-flip per page 2 bit-flip per page
Success rate | bit-flips | Complexity | Bypassed? | Success rate | bit-flips | Complexity | Bypassed?

Baseline 100% 22.6 1.00x - 100% 14.2 1.00x -
Watermark 1-layer 100% 22.8 1.01x 100% 100% 14.5 1.02x 100%
Watermark 2-layers 100% 23.0 1.02x 100% 100% 14.6 1.03x 100%
LIMA-B1-Small 0% > 1200 > 53.10x 0% 100% 250.2 17.62x 0%
LIMA-B1-Large 0% > 1200 > 53.10% 0% 100% 215.2 15.16 % 0%
LIMA-B2-Small 0% > 1200 > 53.10% 0% 0% > 1200 > 84.51x 0%
LIMA-B2-Large 0% > 1200 > 53.10% 0% 100% 251.5 17.71x 100%
LIMA-B3-Small 0% > 1200 > 53.10% 0% 0% > 1200 > 84.51x% 0%
LIMA-B3-Large 0% > 1200 > 53.10% 0% 100% 104.5 7.36% 100%

the successful B/ attempts, LIMA is still capable of
detecting them. This is because faults injected into the
lower-order unprotected bits may cause the generation of
a carry in the sum value that propagates to the protected
MSBs and is caught by LIMA. Overall, B2 and B3 are
the only effective approach for successfully launching
BFA and bypassing LIMA, which is only possible under
relaxed constraints, i.e., the Large group partitions are
used and two bit-flips per page are allowed. Even in that
case, the attacker’s effort increases at least by 17.71x
and 7.36x for B2 and B3, respectively. If the defender
aims to prevent B2 attempts, using a smaller group size
is a viable solution.

Compared with related work, LIMA’s ability in in-
creasing BFA attack complexity is significantly higher
than the previous weight-clustering approach [29], which
increases the number of bit-flips only by 2x, at the cost
of performing expensive retraining and imposing more
than 2% accuracy drop.

D. Recovery from BFA

Once LIMA captures BFAs, a recovery process can be
initiated to rescue DNN accuracy. The ultimate recovery
solution is to reload all DNN weights. As LIMA pro-
vides precise faulty group information, it significantly
reduces recovery overhead since only the groups of
faulty weights (instead of the entire model) need to be
reloaded.

For real-time systems such as autonomous vehicles
where an important decision must be made in time,
costly model transmitting and reloading may cause the
system to miss the deadline. In this case, LIMA’s precise
faulty group information enables rapid on-line recovery
as a temporary damage control mechanism. The ideal on-
line recovery is to cancel out the effect of the injected
faults by finding the exact locations of bit-flips and flip
them back. However, as LIMA detects faults in the
granularity of a group, neither the faulty weight nor
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the faulty bit position is known. While it is possible to
develop heuristics to guess such information based on
the differences between MSBs and LSBs of the faulty
group’s sum value, such a guess could lead to more
adverse impact if it is incorrect. As an alternative, a
conservative recovery strategy is to set all weights within
the faulty group to zero to eliminate the impact of faulty
weights. This approach is motivated by the observation
that most DNN weight values are close to zero, and is in-
line with the approach used in [40] which detects faults
at the granularity of neurons and corrects them by setting
the neuron output to zero. Clearly, this recovery scheme
is expected to be more effective for smaller group sizes.
More precisely, our experiments show that for Resnet-
18, this approach can successfully rescue the accuracy
up to 68.96% when Small group size is used. Hence, if
the accuracy of on-line recovery process is important to
the defender, small group sizes are more favorable.

VII. CONCLUSIONS

This paper presented a LIMA, a light-weight counter-
measure against Bit-Flip Attacks (BFAs), which protects
DNN integrity by embedding integrity properties into the
sum of a group of weights. The countermeasure can be
applied to a trained and quantized DNN model without
demanding any extra hardware or storage support, and
can be easily verified during the inference stage to
capture potential BFAs. Our comprehensive experimental
study shows that LIMA is capable of detecting 100%
of BFA and T-BFA bit-flip chains while causing near-
zero accuracy loss. It is undetectable by attackers and
is extremely difficult to bypass. LIMA also offers a
rich design space for the defender. Without affecting its
detection capability, the grouping configuration of LIMA
can be tuned to lower the implementation overhead or
increase bypassing difficulty and recovery accuracy.
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