
Learning Physical Constraints with

Neural Projections

Shuqi Yang1∗, Xingzhe He1, Bo Zhu1

1Dartmouth College, Computer Science Department
∗shuqi.yang.gr@dartmouth.edu

Abstract

We propose a new family of neural networks to predict the behaviors of physical sys-
tems by learning their underpinning constraints. A neural projection operator lies
at the heart of our approach, composed of a lightweight network with an embedded
recursive architecture that interactively enforces learned underpinning constraints
and predicts the various governed behaviors of different physical systems. Our
neural projection operator is motivated by the position-based dynamics model that
has been used widely in game and visual effects industries to unify the various
fast physics simulators. Our method can automatically and effectively uncover
a broad range of constraints from observation point data, such as length, angle,
bending, collision, boundary effects, and their arbitrary combinations, without any
connectivity priors. We provide a multi-group point representation in conjunction
with a configurable network connection mechanism to incorporate prior inputs
for processing complex physical systems. We demonstrated the efficacy of our
approach by learning a set of challenging physical systems all in a unified and
simple fashion including: rigid bodies with complex geometries, ropes with varying
length and bending, articulated soft and rigid bodies, and multi-object collisions
with complex boundaries.

1 Introduction

How does a human being distinguish the motions of a piece of paper and a piece of cloth? A
high-school physics teacher might answer that they are both tangentially inextensible but cloth
cannot resist any bending force from the normal direction. This raises a further general question
for machine perception – what is the most effective representation to characterize a physical system
computationally? The answer to this question is fundamental for the design of better neural physics
engines [1, 2, 3, 4, 5] to predict the dynamics of various real-world Newtonian systems based on
limited observations. In general, a capable neural physics simulator needs to capture the essential
features of a dynamic system with a unified computational model, simple network architectures,
small training data, and the minimum human inputs for priors. To this end, a vast literature has been
devoted into building neural-network models to reason and predict physics. Two of the main areas
include to reason the underlying physics by learning local interactions (e.g., the gravitational force
between two planets [1]) or by enforcing global energy conservation (e.g., the sum of potential and
kinematic energies of a pendulum [6]).

This paper proposes to investigate a third category of approaches to characterize classical physical
systems, by establishing neural predictors to learn and enforce underlying physical constraints.
The term “physical constraints” broadly defines the various intuitive criteria that the motion of a
physical system must satisfy, e.g., a constant length between particles, a fixed angle between two
segment pieces, the overlap of joint positions, the non-penetrating geometries for collisions, etc. Such
constraints can be either hard or soft, with forms of both equality and inequality. Mathematically, a

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

set of equality constraints can be expressed as a non-linear equation system C(x) = 0 with each row
Ci(x) = 0 corresponding to a single constraint exerted on the system. To enforce these constraints
over the temporal evolution, a common idea established in the physics simulation communities is
to define a projection operator to map the system’s current states to a low-dimensional constraint
manifold satisfying C(x) = 0 (e.g., see [7, 8, 9, 10, 11, 12]). By augmenting the dynamics with a
Lagrangian multiplier, the projection amounts to the minimization of the following energy form [11]:

min
x

g(x) =
1

∆t2
(x− x̂)TM(x− x̂) + λT C(x), (1)

with x̂ and x as the system’s states before and after enforcing the constraints, M as the mass matrix,
and λ as a Lagrangian multiplier. The intuition behind Equation 1 is to find the closest point on the
constraint manifold to modify the current prediction, e.g., by following the direction of −∇C with
a fixed small step in the gradient descent search. The optimization of the energy form in Equation
1 along with its various variations serve as the algorithmic foundation to accommodate a broad
spectrum of constraint physics simulators, including articulated rigid bodies [10], collisions [9],
contacts [13], inextensible cloth [11], soft bodies [14], and the various position-based dynamics
techniques [12, 15, 16, 17], which have recently emerged in gaming industry. Such simulators
have also been used to generate datasets for machine learning applications [18, 2]. Meanwhile,
the mathematical properties of neural projections have been investigated in the machine learning
community (see [19] for examples).

Motivated by the physics intuition behind Equation 1, we devise a new neural physics simulator to
unify the prediction of the various dynamic systems by learning their underlying physical constraints.
Our main idea is simple: we express the mixed dynamic effects due to all the constraints by one
neural network and enforce these constraints by recursively employing the network to correct the
system’s time-independent states (position). The centerpiece of our learning framework is a neural
projection operator that enables the mapping from a current state to a constraint state on the target
manifold. The parameters of the operator are trained in an end-to-end fashion by observing the
positional states of the system for a certain range of time frames.

Our design philosophy to learn the physics constraints exhibits several inherent computational
merits compared with learning relations or energy conservation. First, constraints directly relate to
human’s physical perception. The various physical intuitions, such as length, angle, volume, position,
penetration, etc., can be encoded automatically and learned straightforwardly in our neural networks to
describe constraints. In contrast, the expression of energy, albeit essential for computational physics,
lacks its intuitive counterparts (e.g., many systems do not conserve energy due to their dissipative
environments). Second, our neural constraint expression describes a system-level relation without
requiring any connectivity priors (e.g., it does not need a graph network to specify the relations).
This connectivity-free implementation is essential when describing complicated interactions with
an uncertain number of primitives. For example, to express the bending effects of a piece of cloth,
it requires at least three particles to describe a planar angle in 2D and four particles to describe a
bilateral angle in 3D. Such case-by-case priors require expertise in physics simulation and are difficult
to obtain beforehand for normal users. Third, constraints are a time-independent state variable that
can be reasoned with position information only. This alleviates the data requirement to train an
expressive neural-network model. Also, the complexity for a neural expression of constraints is
low. In our implementation, a small-scale fully-connected network in conjunction with our iterative
projection scheme can uncover mixed constraints governing complicated physical interactions. Last,
from a numerical perspective, enforcing constraints in a numerical simulator essentially amounts to
building an implicit time integrator, which is inherently stable and allows for large time steps. This
further lowers the training data requirements and enables reliable long-term predictions.

2 Related Work

Neural physics simulators Many recent works on learning physics are based on building networks
to describe interactions among objects or components (see [20] for a survey). The pioneering works
done by Battaglia et al. [1] and Chang et al. [4] predict different particle dynamics such as N-body by
learning the pairwise interactions. Following this, the interaction networks are enhanced by a graph
network (e.g., [21] [22]) for different applications. Specialized hierarchical representations [18, 2],
residual corrections [23], propagation mechanisms [24], linear transitions [25] were employed to
reason various physial systems. Besides directly working on particles, there are also many other

2

3.1 Linear prediction

In the prediction step, we calculate the predicted positions x̂n+1 by a linear extrapolation from xn−1

and xn, i.e., x̂n+1 = 2xn − xn−1. This amounts to a linear approximation of the velocity vn as
(xn −xn−1)/∆t followed by an explicit Euler time integration x̂n+1 = xn +vn∆t. The body force
such as gravity is exerted as a prior in the prediction step.

3.2 Iterative neural projection

Network The mapping from a predicted state x̂n+1 to a constraint state xn+1 is enabled by an
iterative neural projection step. The essential component of the projection step is a neural network
Cnet(·) to learn the mixed hidden constraints by observing its positional states. These constraints
range from the constant length (e.g., rod), relative positions (e.g., rigid body), non-penetration (e.g.,
collision and contact), bending (e.g., cloth), etc. Instead of devising k independent networks to
process k constraints, where k could be a prior input, we use a single network to learn the mixed
effects of all the constraints employed on the system simultaneously. The input of the network is the
values of x and the output of the network is a single scalar evaluating the satisfaction of all constraints
as a whole. In particular, a zero output indicates that all the constraints are satisfied.

Iterative projection The network Cnet(·) is embedded in an outer loop to recursively enforce
the learned constraints on the input x during the learning process. The iterative projection proce-
dure is motivated by the step of fast projection (SAP) algorithm proposed in [11] and applied in

Algorithm 1: Iterative Neural Projection

Input: Constraint network Cnet(·),
predicted positions x̂.

1 x̃
1 = x̂ ;

2 for i = 1 → N do

3 λ = Cnet(x̃
i)/|∇Cnet(x̃

i)|2 ;

4 δx̃ = −λ∇Cnet(x̃
i) ;

5 x̃
i+1 = x̃

i + δx̃ ;

6 end

Output: Projected positions x = x̃
i+1

many position-based dynamics simulators [12] to
minimize the projection energy given in Equation 1.
The three steps to update the positions are shown
in Algorithm 1. Specifically, in each iteration i,
the update for x̃i+1 for the next iteration is con-
ducted by finding a δx̂ based on the current x̃i

and Cnet(x̃
i) to minimize the projection energy

in Equation 1. By assuming an identity mass ma-
trix that absorbs ∆t (implying each particle has
an equal contribution), the objective in Equation 1
can be simplified as g(x̃) = 1

2
δx̃T δx̃ + λTC(x̃),

with δx̃ = x − x̃ as the error term between the
optimized solution x and the current prediction x̃.

To obtain the local minimum, we can set the gradient of g to be zero along the search direction to
obtain:

∂g

∂δx̃
= δx̃+ (∇Cnet(x̃))

Tλ = 0. (2)

Also, we employ the Taylor expansion around x̃ to get

Cnet(x) = Cnet(x̃+ δx̃) ≈ Cnet(x̃) + (∇Cnet(x̃))
T δx̃ = 0 (3)

Substituting Equation 3 into Equation 2, we obtain the expression λ = Cnet(x̃)/|∇Cnet(x̃)|
2, which

is the step size coefficient of δx̂. The direction of δx̂ is the negative gradient of the constraint
evaluation calculated by the automatic differentiation on the network.

3.3 Constraints

Our neural projection method can handle different types of constraints with a single embedded
network, including multiple constraints, inequality constraints, and soft constraints. The examples
demonstrating these types of constraints are in Section 5. First, our neural projection model can
handle multiple constraints automatically by evaluating a mixed objective for all potential constraints
underpinning a dynamic system. Second, our neural projection method can directly handle inequality
constraints automatically without any further modification. The network can detect the situations
when an inequality constraint is activated and needs to be enforced. A typical example for learning
inequality constraints is to handle collision (see Section 5.1). Last, some constraints in physical
systems are soft, meaning that they cannot be fully satisfied in an equilibrium state. For example, the
bending constraints of an elastic rod or a piece of paper is a type of soft constraints, which means that

4

Broader Impact

This research constitutes a technical advance by employing constraint projection operations to
enhance the prediction capability of physical systems with unknown dynamics. It opens up new
possibilities to effectively and intuitively represent complicated physical systems from direct and
limited observation. This research blend the borders among the communities of machine learning and
fast physics simulations in computer graphics and gaming industry. Our model does not necessarily
bring about any significant ethical considerations.

Acknowledgement

We acknowledge the anonymous NeurIPS reviewers for their insightful feedback. This project is
support in part by Dartmouth Neukom Institute CompX Faculty Grant, Burke Research Initiation
Award, and NSF MRI 1919647.

References

[1] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks for
learning about objects, relations and physics. In Advances in neural information processing systems, pages
4502–4510, 2016.

[2] Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, and Antonio Torralba. Learning particle
dynamics for manipulating rigid bodies, deformable objects, and fluids. In International Conference on
Learning Representations, 2019.

[3] Auralee Edelen and Nicole Neveu. Machine learning models for optimization and control of x-ray free
electron lasers. In InNeurIPS Machine Learning for the Physical Sciences Workshop 2019.

[4] Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A compositional object-
based approach to learning physical dynamics. International Conference on Learning Representations,
2017.

[5] Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu, and Andrea Tacchetti.
Visual interaction networks: Learning a physics simulator from video. In Advances in neural information
processing systems, pages 4539–4547, 2017.

[6] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In Advances in
Neural Information Processing Systems, pages 15353–15363, 2019.

[7] David Baraff. An introduction to physically based modeling: rigid body simulation ii—nonpenetration
constraints. SIGGRAPH course notes, pages D31–D68, 1997.

[8] David Baraff and Andrew Witkin. Large steps in cloth simulation. In Proceedings of the 25th annual
conference on Computer graphics and interactive techniques, pages 43–54, 1998.

[9] Eran Guendelman, Robert Bridson, and Ronald Fedkiw. Nonconvex rigid bodies with stacking. ACM
Transactions on Graphics (TOG), 22(3):871–878, 2003.

[10] Rachel Weinstein, Joseph Teran, and Ronald Fedkiw. Dynamic simulation of articulated rigid bodies with
contact and collision. IEEE Transactions on Visualization and Computer Graphics, 12(3):365–374, 2006.

[11] Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and Eitan Grinspun. Efficient
simulation of inextensible cloth. In ACM SIGGRAPH 2007 papers, pages 49–es. 2007.

[12] Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. Position based dynamics. Journal
of Visual Communication and Image Representation, 18(2):109–118, 2007.

[13] Robert Bridson, Ronald Fedkiw, and John Anderson. Robust treatment of collisions, contact and friction
for cloth animation. In Proceedings of the 29th annual conference on Computer graphics and interactive
techniques, pages 594–603, 2002.

[14] Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. Meshless deformations based
on shape matching. ACM transactions on graphics (TOG), 24(3):471–478, 2005.

[15] Miles Macklin and Matthias Müller. Position based fluids. ACM Transactions on Graphics (TOG),
32(4):1–12, 2013.

[16] Jan Bender, Matthias Müller, Miguel A Otaduy, Matthias Teschner, and Miles Macklin. A survey on
position-based simulation methods in computer graphics. In Computer graphics forum, volume 33, pages
228–251. Wiley Online Library, 2014.

10

[17] Jan Bender, Matthias Müller, and Miles Macklin. Position-based simulation methods in computer graphics.
In Eurographics (tutorials), 2015.

[18] Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li F Fei-Fei, Josh Tenenbaum, and Daniel L
Yamins. Flexible neural representation for physics prediction. In Advances in neural information processing
systems, pages 8799–8810, 2018.

[19] Youshen Xia, Henry Leung, and Jun Wang. A projection neural network and its application to con-
strained optimization problems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, 49(4):447–458, 2002.

[20] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational inductive
biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

[21] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. International Conference on Learning Representations, 2017.

[22] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller, Raia
Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference and control. In
International Conference on Machine Learning, pages 4470–4479, 2018.

[23] Anurag Ajay, Jiajun Wu, Nima Fazeli, Maria Bauza, Leslie P Kaelbling, Joshua B Tenenbaum, and Alberto
Rodriguez. Augmenting physical simulators with stochastic neural networks: Case study of planar pushing
and bouncing. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3066–3073. IEEE, 2018.

[24] Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B Tenenbaum, Antonio Torralba, and Russ Tedrake. Propaga-
tion networks for model-based control under partial observation. In 2019 International Conference on
Robotics and Automation (ICRA), pages 1205–1211. IEEE, 2019.

[25] Yunzhu Li, Hao He, Jiajun Wu, Dina Katabi, and Antonio Torralba. Learning compositional koopman
operators for model-based control. In International Conference on Learning Representations, 2020.

[26] Yedid Hoshen. Vain: Attentional multi-agent predictive modeling. In Advances in Neural Information
Processing Systems, pages 2701–2711, 2017.

[27] David Raposo, Adam Santoro, David Barrett, Razvan Pascanu, Timothy Lillicrap, and Peter Battaglia. Dis-
covering objects and their relations from entangled scene representations. arXiv preprint arXiv:1702.05068,
2017.

[28] Michael Janner, Sergey Levine, William T Freeman, Joshua B Tenenbaum, Chelsea Finn, and Jiajun
Wu. Reasoning about physical interactions with object-oriented prediction and planning. arXiv preprint
arXiv:1812.10972, 2018.

[29] Zhenjia Xu, Zhijian Liu, Chen Sun, Kevin Murphy, William T Freeman, Joshua B Tenenbaum, and Jiajun
Wu. Unsupervised discovery of parts, structure, and dynamics. arXiv preprint arXiv:1903.05136, 2019.

[30] Kexin Yi*, Chuang Gan*, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba, and Joshua B.
Tenenbaum. Clevrer: Collision events for video representation and reasoning. In International Conference
on Learning Representations, 2020.

[31] Z. Chen, J. Zhang, M. Arjovsky, and L. Bottou. Symplectic recurrent neural networks. In International
Conference on Learning Representations, 2020.

[32] Danilo Jimenez Rezende, Sébastien Racanière, Irina Higgins, and Peter Toth. Equivariant hamiltonian
flows. arXiv preprint arXiv:1909.13739, 2019.

[33] Peter Toth, Danilo Jimenez Rezende, Andrew Jaegle, Sébastien Racanière, Aleksandar Botev, and Irina
Higgins. Hamiltonian generative networks. arXiv preprint arXiv:1909.13789, 2019.

[34] P. Jin, A. Zhu, G. E. Karniadakis, and Y. Tang. Symplectic networks: intrinsic structure-preserving
networks for identifying Hamiltonian systems. arXiv:2001.03750, 2020.

[35] Alvaro Sanchez-Gonzalez, Victor Bapst, Kyle Cranmer, and Peter Battaglia. Hamiltonian graph networks
with ode integrators. arXiv preprint arXiv:1909.12790, 2019.

[36] Jun Wang, Qingni Hu, and Danchi Jiang. A lagrangian network for kinematic control of redundant robot
manipulators. IEEE Transactions on Neural Networks, 10(5):1123–1132, 1999.

[37] Deep Learning von Inversen Dynamik Modellen. Deep learning of inverse dynamic models. 2018.

[38] Michael Lutter, Christian Ritter, and Jan Peters. Deep lagrangian networks: Using physics as model prior
for deep learning. In International Conference on Learning Representations, 2019.

[39] Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho. La-
grangian neural networks. In ICLR 2020 Workshop on Integration of Deep Neural Models and Differential
Equations, 2020.

11

[40] Julia Ling, Reese Jones, and Jeremy Templeton. Machine learning strategies for systems with invariance
properties. J. Comput. Phys., 318:22–35, 2016.

[41] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen Koltun, and
Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science Robotics, 4(26):eaau5872,
2019.

[42] Auralee Edelen, Nicole Neveu, Matthias Frey, Yannick Huber, Christopher Mayes, and Andreas Adelmann.
Machine learning for orders of magnitude speedup in multiobjective optimization of particle accelerator
systems. Phys. Rev. Accel. Beams, 23:044601, Apr 2020.

[43] Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B Tenenbaum, William T Freeman, Jiajun Wu,
Daniela Rus, and Wojciech Matusik. Chainqueen: A real-time differentiable physical simulator for soft
robotics. In 2019 International Conference on Robotics and Automation (ICRA), pages 6265–6271. IEEE,
2019.

[44] Connor Schenck and Dieter Fox. Spnets: Differentiable fluid dynamics for deep neural networks. In
Conference on Robot Learning, pages 317–335, 2018.

[45] Philipp Holl, Vladlen Koltun, and Nils Thuerey. Learning to control pdes with differentiable physics. arXiv
preprint arXiv:2001.07457, 2020.

[46] Junbang Liang, Ming Lin, and Vladlen Koltun. Differentiable cloth simulation for inverse problems. In
Advances in Neural Information Processing Systems, pages 771–780, 2019.

[47] Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. Unified particle physics for
real-time applications. ACM Transactions on Graphics (TOG), 33(4):1–12, 2014.

[48] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv:1412.6980, 2014.

12

	Introduction
	Related Work
	Methodology
	Linear prediction
	Iterative neural projection
	Constraints
	Hierarchical representations

	Implementation
	Experiments
	Examples
	Comparison to other approaches
	The learned constraints

	Conclusion

