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Abstract

We propose a new family of neural networks to predict the behaviors of physical sys-
tems by learning their underpinning constraints. A neural projection operator lies
at the heart of our approach, composed of a lightweight network with an embedded
recursive architecture that interactively enforces learned underpinning constraints
and predicts the various governed behaviors of different physical systems. Our
neural projection operator is motivated by the position-based dynamics model that
has been used widely in game and visual effects industries to unify the various
fast physics simulators. Our method can automatically and effectively uncover
a broad range of constraints from observation point data, such as length, angle,
bending, collision, boundary effects, and their arbitrary combinations, without any
connectivity priors. We provide a multi-group point representation in conjunction
with a configurable network connection mechanism to incorporate prior inputs
for processing complex physical systems. We demonstrated the efficacy of our
approach by learning a set of challenging physical systems all in a unified and
simple fashion including: rigid bodies with complex geometries, ropes with varying
length and bending, articulated soft and rigid bodies, and multi-object collisions
with complex boundaries.

1 Introduction

How does a human being distinguish the motions of a piece of paper and a piece of cloth? A
high-school physics teacher might answer that they are both tangentially inextensible but cloth
cannot resist any bending force from the normal direction. This raises a further general question
for machine perception – what is the most effective representation to characterize a physical system
computationally? The answer to this question is fundamental for the design of better neural physics
engines [1, 2, 3, 4, 5] to predict the dynamics of various real-world Newtonian systems based on
limited observations. In general, a capable neural physics simulator needs to capture the essential
features of a dynamic system with a unified computational model, simple network architectures,
small training data, and the minimum human inputs for priors. To this end, a vast literature has been
devoted into building neural-network models to reason and predict physics. Two of the main areas
include to reason the underlying physics by learning local interactions (e.g., the gravitational force
between two planets [1]) or by enforcing global energy conservation (e.g., the sum of potential and
kinematic energies of a pendulum [6]).

This paper proposes to investigate a third category of approaches to characterize classical physical
systems, by establishing neural predictors to learn and enforce underlying physical constraints.
The term “physical constraints” broadly defines the various intuitive criteria that the motion of a
physical system must satisfy, e.g., a constant length between particles, a fixed angle between two
segment pieces, the overlap of joint positions, the non-penetrating geometries for collisions, etc. Such
constraints can be either hard or soft, with forms of both equality and inequality. Mathematically, a
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set of equality constraints can be expressed as a non-linear equation system C(x) = 0 with each row
Ci(x) = 0 corresponding to a single constraint exerted on the system. To enforce these constraints
over the temporal evolution, a common idea established in the physics simulation communities is
to define a projection operator to map the system’s current states to a low-dimensional constraint
manifold satisfying C(x) = 0 (e.g., see [7, 8, 9, 10, 11, 12]). By augmenting the dynamics with a
Lagrangian multiplier, the projection amounts to the minimization of the following energy form [11]:

min
x

g(x) =
1

∆t2
(x− x̂)TM(x− x̂) + λT C(x), (1)

with x̂ and x as the system’s states before and after enforcing the constraints, M as the mass matrix,
and λ as a Lagrangian multiplier. The intuition behind Equation 1 is to find the closest point on the
constraint manifold to modify the current prediction, e.g., by following the direction of −∇C with
a fixed small step in the gradient descent search. The optimization of the energy form in Equation
1 along with its various variations serve as the algorithmic foundation to accommodate a broad
spectrum of constraint physics simulators, including articulated rigid bodies [10], collisions [9],
contacts [13], inextensible cloth [11], soft bodies [14], and the various position-based dynamics
techniques [12, 15, 16, 17], which have recently emerged in gaming industry. Such simulators
have also been used to generate datasets for machine learning applications [18, 2]. Meanwhile,
the mathematical properties of neural projections have been investigated in the machine learning
community (see [19] for examples).

Motivated by the physics intuition behind Equation 1, we devise a new neural physics simulator to
unify the prediction of the various dynamic systems by learning their underlying physical constraints.
Our main idea is simple: we express the mixed dynamic effects due to all the constraints by one
neural network and enforce these constraints by recursively employing the network to correct the
system’s time-independent states (position). The centerpiece of our learning framework is a neural
projection operator that enables the mapping from a current state to a constraint state on the target
manifold. The parameters of the operator are trained in an end-to-end fashion by observing the
positional states of the system for a certain range of time frames.

Our design philosophy to learn the physics constraints exhibits several inherent computational
merits compared with learning relations or energy conservation. First, constraints directly relate to
human’s physical perception. The various physical intuitions, such as length, angle, volume, position,
penetration, etc., can be encoded automatically and learned straightforwardly in our neural networks to
describe constraints. In contrast, the expression of energy, albeit essential for computational physics,
lacks its intuitive counterparts (e.g., many systems do not conserve energy due to their dissipative
environments). Second, our neural constraint expression describes a system-level relation without
requiring any connectivity priors (e.g., it does not need a graph network to specify the relations).
This connectivity-free implementation is essential when describing complicated interactions with
an uncertain number of primitives. For example, to express the bending effects of a piece of cloth,
it requires at least three particles to describe a planar angle in 2D and four particles to describe a
bilateral angle in 3D. Such case-by-case priors require expertise in physics simulation and are difficult
to obtain beforehand for normal users. Third, constraints are a time-independent state variable that
can be reasoned with position information only. This alleviates the data requirement to train an
expressive neural-network model. Also, the complexity for a neural expression of constraints is
low. In our implementation, a small-scale fully-connected network in conjunction with our iterative
projection scheme can uncover mixed constraints governing complicated physical interactions. Last,
from a numerical perspective, enforcing constraints in a numerical simulator essentially amounts to
building an implicit time integrator, which is inherently stable and allows for large time steps. This
further lowers the training data requirements and enables reliable long-term predictions.

2 Related Work

Neural physics simulators Many recent works on learning physics are based on building networks
to describe interactions among objects or components (see [20] for a survey). The pioneering works
done by Battaglia et al. [1] and Chang et al. [4] predict different particle dynamics such as N-body by
learning the pairwise interactions. Following this, the interaction networks are enhanced by a graph
network (e.g., [21] [22]) for different applications. Specialized hierarchical representations [18, 2],
residual corrections [23], propagation mechanisms [24], linear transitions [25] were employed to
reason various physial systems. Besides directly working on particles, there are also many other
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3.1 Linear prediction

In the prediction step, we calculate the predicted positions x̂n+1 by a linear extrapolation from xn−1

and xn, i.e., x̂n+1 = 2xn − xn−1. This amounts to a linear approximation of the velocity vn as
(xn −xn−1)/∆t followed by an explicit Euler time integration x̂n+1 = xn +vn∆t. The body force
such as gravity is exerted as a prior in the prediction step.

3.2 Iterative neural projection

Network The mapping from a predicted state x̂n+1 to a constraint state xn+1 is enabled by an
iterative neural projection step. The essential component of the projection step is a neural network
Cnet(·) to learn the mixed hidden constraints by observing its positional states. These constraints
range from the constant length (e.g., rod), relative positions (e.g., rigid body), non-penetration (e.g.,
collision and contact), bending (e.g., cloth), etc. Instead of devising k independent networks to
process k constraints, where k could be a prior input, we use a single network to learn the mixed
effects of all the constraints employed on the system simultaneously. The input of the network is the
values of x and the output of the network is a single scalar evaluating the satisfaction of all constraints
as a whole. In particular, a zero output indicates that all the constraints are satisfied.

Iterative projection The network Cnet(·) is embedded in an outer loop to recursively enforce
the learned constraints on the input x during the learning process. The iterative projection proce-
dure is motivated by the step of fast projection (SAP) algorithm proposed in [11] and applied in

Algorithm 1: Iterative Neural Projection

Input: Constraint network Cnet(·),
predicted positions x̂.

1 x̃
1 = x̂ ;

2 for i = 1 → N do

3 λ = Cnet(x̃
i)/|∇Cnet(x̃

i)|2 ;

4 δx̃ = −λ∇Cnet(x̃
i) ;

5 x̃
i+1 = x̃

i + δx̃ ;

6 end

Output: Projected positions x = x̃
i+1

many position-based dynamics simulators [12] to
minimize the projection energy given in Equation 1.
The three steps to update the positions are shown
in Algorithm 1. Specifically, in each iteration i,
the update for x̃i+1 for the next iteration is con-
ducted by finding a δx̂ based on the current x̃i

and Cnet(x̃
i) to minimize the projection energy

in Equation 1. By assuming an identity mass ma-
trix that absorbs ∆t (implying each particle has
an equal contribution), the objective in Equation 1
can be simplified as g(x̃) = 1

2
δx̃T δx̃ + λTC(x̃),

with δx̃ = x − x̃ as the error term between the
optimized solution x and the current prediction x̃.

To obtain the local minimum, we can set the gradient of g to be zero along the search direction to
obtain:

∂g

∂δx̃
= δx̃+ (∇Cnet(x̃))

Tλ = 0. (2)

Also, we employ the Taylor expansion around x̃ to get

Cnet(x) = Cnet(x̃+ δx̃) ≈ Cnet(x̃) + (∇Cnet(x̃))
T δx̃ = 0 (3)

Substituting Equation 3 into Equation 2, we obtain the expression λ = Cnet(x̃)/|∇Cnet(x̃)|
2, which

is the step size coefficient of δx̂. The direction of δx̂ is the negative gradient of the constraint
evaluation calculated by the automatic differentiation on the network.

3.3 Constraints

Our neural projection method can handle different types of constraints with a single embedded
network, including multiple constraints, inequality constraints, and soft constraints. The examples
demonstrating these types of constraints are in Section 5. First, our neural projection model can
handle multiple constraints automatically by evaluating a mixed objective for all potential constraints
underpinning a dynamic system. Second, our neural projection method can directly handle inequality
constraints automatically without any further modification. The network can detect the situations
when an inequality constraint is activated and needs to be enforced. A typical example for learning
inequality constraints is to handle collision (see Section 5.1). Last, some constraints in physical
systems are soft, meaning that they cannot be fully satisfied in an equilibrium state. For example, the
bending constraints of an elastic rod or a piece of paper is a type of soft constraints, which means that
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Broader Impact

This research constitutes a technical advance by employing constraint projection operations to
enhance the prediction capability of physical systems with unknown dynamics. It opens up new
possibilities to effectively and intuitively represent complicated physical systems from direct and
limited observation. This research blend the borders among the communities of machine learning and
fast physics simulations in computer graphics and gaming industry. Our model does not necessarily
bring about any significant ethical considerations.
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