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Abstract: We propose a data-driven method to automatically generate feedback
controllers for soft multicopters featuring deformable materials, non-conventional
geometries, and asymmetric rotor layouts, to deliver compliant deformation and
agile locomotion. Our approach coordinates two sub-systems: a physics-inspired
network ensemble that simulates the soft drone dynamics and a custom LQR con-
trol loop enhanced by a novel online-relinearization scheme to control the neural
dynamics. Harnessing the insights from deformation mechanics, we design a de-
composed state formulation whose modularity and compactness facilitate the dy-
namics learning while its measurability readies it for real-world adaptation. Our
method is painless to implement, and requires only conventional, low-cost gadgets
for fabrication. In a high-fidelity simulation environment, we demonstrate the ef-
ficacy of our approach by controlling a variety of customized soft multicopters to
perform hovering, target reaching, velocity tracking, and active deformation.

Keywords: Soft Robotics, Deformation Mechanics, Data-driven control, LQR,
Physics-informed Machine Learning

1 Introduction

Making a drone’s body soft opens up brand new horizons to advance its maneuverability, safety, and
functionalities. The intrinsic property of soft materials to deform and absorb energy during collision
allows safe human-machine interactions [1, 2, 3]. In circumscribed environments, soft drones can
naturally deform their bodies to travel through gaps and holes, making them effective for emergency
rescues. Moreover, the ability to perform controlled deformation enables soft drones to perform
secondary functionalities apart from aerial locomotion, such as flapping wings, grasping objects,
and even operating machines, any additional mechanical parts.

Despite the various advantages that this promises, to date a reliable and practical algorithm that
controls soft drones to fly and deform has been lacking, due to multifaceted challenges. Unlike how
it is for rigid drones, which are fully defined by 12-dimensional state vectors, describing the state of
soft drones is far from trivial. Since a continuum body deforms in infinite DOFs, one needs to design
discrete representations both compact —— so that the underactuated control problem is feasible, and
measurable —— so that the controller can adjust to unmodelled errors. Even if such discretizations
are obtained, the dynamic interplay of these state variables cannot be derived analytically in closed-
form, as the dynamics in the full space is governed by complex PDEs. Finally, if one is to adopt
machine-learning methods to model the dynamics, a problem is posed by the complexity of soft body
simulation, which inevitably leads to scarce data, making brute-force learning an ill-fated avenue.

Bridging the deformation mechanics, deep learning, and optimal control, our method is so designed
to successfully overcome the abovementioned challenges. First, we adopt the polar decomposition
theorem to build a low-dimensional decomposed state space consisting of three geometric, latent
variables each representing rotation, translation, and deformation, which can be synthesized from
the readings of a set of onboard Inertial Measurement Units (IMUs). We define the interdependen-
cies of these three variables and learn them with lightweight neural networks, thereby learning a
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Figure 1: The 5-stage pipeline of our contorller generation system

neural simulator in a latent space on which the controller will be based. With automatic differen-
tiation, we then extract the numeric gradients of the learned system to be controlled with a Linear
Quadratic Regulator (LQR). Due to the fact that LQR requires the system to be linearized around
fixed points that are inaccessible, we extend it with a novel online-relinearization scheme that itera-
tively converges to the desired target, bringing robustness and convenience for human piloting.

As shown in Figure. 1, our system takes soft drone geometries as input, and returns functionals
that compute control matrices based on the drone’s current state. To the best of our knowledge, the
proposed approach is the first to control soft drones that are meant to deform significantly in flight;
we show that we can not only regulate such deformation for balanced locomotion, but also capitalize
on the deforming ability to perform various feats in the air.

2 Related Work

Multicopter Over the last few years, quadcopters have virtually dominated the commercial UAV
industry, thanks to their simple mechanical structures, optimized efficiency for hovering, and easy-
to-control dynamics that has been extensively studied by [4, 5] and many more. Various methods
have been successfully developed to control quadcopters, including PD/PID [6], LQR [7, 8], differ-
ential flatness [9], sliding mode [10], and MPC [11] methods. Recent research explores the control
of non-conventional multicopter designs, including ones with extra rotors [12], asymmetric struc-
tures [7], articulated linkage [13], or with gliding wings [14]. The problem of controlling drones
fabricated with soft materials is still understudied.

Aerial Deformation Recent works have explored the potential of drones to actively deform in
flight [15]. [13, 16] achieve impressive results with their multi-linked drones in passing through
small openings or grasping objects, but the added mechanical components in their designs imply
additional cost, fabrication complexity, energy consumption, and maladroitness. [17] proposes a
lightweight, planar folding mechanism actuated by servo motors that is effective in controlling the
drones to travel through confined spaces, but the simplified mechanism limits the ability to perform
extra functionalities such as grasping. [18] propose the incorporation of a cable-actuated soft gripper
with a rigid quadcopter to achieve load manipulation. While previous works add additional actuators
to control deformation, we control deformation jointly with locomotion using rotors only.

Data-driven Soft Robot Control The modeling and control of soft robots is a challenging
problem due to the high DOFs and the non-linear dynamics [1], which together make closed-form
solutions unfeasible to be derived [19], and therefore making data-driven approaches favorable.
[20, 21, 22], and many more, use deep reinforcement learning to train neural network controllers
for soft robots. [23, 24] marries machine learning with control theory, applying MPC or PD control
methods on models learned from data. [19] propose the possibility of end-to-end supervised learning
with a differentiable soft-body simulator, although their current design does not facilitate feedback
mechanism in real-life due to the assumption of full state measurement.

3 Methodology

Overview The workflow of our proposed system is given in Figure. 2. We start with the IMU
sensor readings, which are position, orientation and their rates of change at multiple locations of
the drone’s body, which will be processed to form the current state vector x as the concatenation of
the three decomposed latent variables s, e, and p. This vector, along with the previously applied
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The translational and rotational invariance of fstress and fdamping is based on the principle of
material frame-indifference in continuum mechanics, which states that the behavior of a material is
independent of the reference frame [29]. Combining the symmetry with the equality z = RS(ẑ)+p,
and ignoring the Coriolis forces resulting from the evolving R, we get that:

mz̈ ≈ Rfactuation(S(ẑ),u) +Rfstress(S(ẑ)) +Rfdamping( ˙S(ẑ)) +mg. (3)

Since ẑ is constant, S(ẑ) is a function of s, and we know R is a function of e, then the dynamics
coupling of s, e, and p are as follows. Since p̈ is the average of z̈, it depends on u, e, ė, s and ṡ.
Since R is measured in the local geometric center of z, ë depends on u, e, ė, s and ṡ as well. For s̈,
since it is measured by projecting z onto the local frame by left-multiplying R−1, the R component
in z̈ cancels out for s̈ and s̈ depends on u, s and ṡ only.

These interdependencies will be modelled by learned neural networks, in particular, we train net-
works {d,g,h} such that ṡnext= d(s, ṡ,u), ėnext= g(s, ṡ, e, ė,u), and ṗnext= h(s, ṡ, e, ė, ṗ,u).

Learning the Dynamics Training the networks d, g and h can be done in a relatively
straightforward fashion. The three networks share the same lightweight architecture consisting
of four residual blocks [30] featuring linear layers as previously explored by [31, 32]. The
three networks will be trained separately using the same reservoir of data samples of the form
{s, e,p, ṡ, ė, ṗ,u, ṡnext, ėnext, ṗnext} generated from Finite Element Method (FEM) simulation.
We use Adam optimizer and L1 loss for optimization, with hyperparameter details given in the sup-
plement. There are two techniques that we adopt that are worth reporting. First, for data generation,
we would apply a constant random thrust uniformly sampled in the range [−T max, T max], where
T max denotes a rotor’s max output thrust, to the drone’s rotors for 1s, before a new random thrust
is applied. The soft drone would be dancing and twisting in the air, but despite that, this method
leads to successful trainings, while generating data from a guiding controller, or switching random
control signals at every instant, would fail. Secondly, we’ve found that trainings converge much bet-
ter when we predict the next frame’s velocity using the current one, instead of directly predicting the
acceleration. Although this approach can lead to local minima for settling at the input, current veloc-
ity, that does not happen in our experiments and the acceleration can be convincingly reconstructed
from the two velocities, as we shall elaborate in the results section.

Controlling the Learned Dynamics Once the networks d, g and h are trained, the dynamics can
be expressed as

ẋ = f(x,u) =
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To control such learned dynamics, we summon the Linear Quadratic Regulator (LQR), a well-proven
method for controlling rigid drones. Since LQR requires a linear system, we will perform first-
order Taylor expansion around an operating point (x∗,u∗) with Jacobian matrices from automatic
differentiation which can be done with PyTorch. In particular, we write:

ẋ = f(x,u) ≈ f(x∗,u∗) +A(x− x∗) +B(u− u∗), (5)

where A = ∂f
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, as shown in Equation 6:
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If we make the assumption that for (x∗,u∗) and (x,u) close enough to each other,
f(x,u)− f(x∗,u∗) ≈ f(x− x∗,u− u∗), then we have:

˙(x− x∗) = f(x− x∗,u− u∗) ≈ A(x− x∗) +B(u− u∗). (7)
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Figure 4: 3D models used in our experiments

Once the linear system is obtained, LQR outputs the control matrix K and the control policy
u− u∗ = −K(x− x∗) that drives x to x∗ while keeping u close to u∗ by minimizing the cost

function
∫

∞

0
(x− x∗)TQ(x− x∗) + (u− u∗)TR(u− u∗)dt. The Q and R matrices are cost ma-

trices used to manage the tradeoff between the two objectives. The optimization is done by solving
the Continuous-time Algebraic Riccati Equation with SciPy.

Online Relinearization Traditionally, the operating point, which is the state-actuation pair
(x∗,u∗) is chosen to be a fixed point such that f(x∗,u∗) = 0. For typical rigid drones, such
fixed points can be obtained trivially, and yet, for deformable drones, without iteratively testing
and optimizing with the neural dynamic system, it is generally not possible to know beforehand
which set of rotor input would exactly balance the internal stress, viscous damping, and exter-
nal gravity, or if such a balance exists. We see the fixed-point assumption as being overly strict
and seek to circumvent it. The purpose of assuming f(x∗,u∗) = 0 is to turn the affine Equa-
tion. 5 into a linear one which LQR recognizes. In that case, (x∗,u∗) is time-invariant and

indeed ẋ = ( ˙x− x∗) ≈ 0 + A(x− x∗) +B(u− u∗). Since in our case we cannot guarantee

f(x∗,u∗) = 0, then ( ˙x− x∗) 6= A(x− x∗) +B(u− u∗), so directly running LQR with A and B
would typically fail. However, by making the proximity assumption as in Equation. 7, we can obtain
the linear form locally. In other words, with (x∗,u∗) not being fixed points, we can still regulate
close-enough neighbor states to it.

Algorithm 1 Online Relinearizing LQR

Input: xcurr, xgoal, kp, kd, n, Q, R

1: ucurr ← 0
2: iter ← 0
3: while running do
4: update xcurr, ẋcurr

5: iter ← iter + 1
6: if iter mod n = 0 then
7: xwp ← kp·(xgoal−xcurr)+kd·ẋcurr

8: A,B← J (d,g,h,xcurr,ucurr)
9: K = LQR(A,B,Q,R)

10: uoper ← ucurr

11: end if
12: ucurr ← −K(xcurr − xwp) + uoper

13: end while

As in Algorithm. 1, our solution is built upon
this observation. We initialize our drone with
arbitrary x, and u = 0. At each instant, we
will linearize around the current (x,u). We
run LQR with the linear system to obtain K.
In practice, we don’t want to attract neigh-
boring state to current state, but rather drive
the current state to our goal state. Our strat-
egy is that if we want to reach a state xwp

from xcurr, then we will pretent to be at
(xcurr − xwp) trying to reach xcurr, and
compute u = −K((xcurr−xwp)−xcurr) =
−K(−xwp). Given the current state xcurr

and the goal state xgoal, we calculate xwp

using a PD control: xwp = kp · (xgoal −
xcurr) + kd · ẋcurr. The control matrix will
be used for n timesteps before updated again.

4 Experiments and Evaluation

To test the efficacy of our method, we design a number of soft drone models in 2D and 3D featuring
asymmetrical structures and odd numbers of rotors, as depicted in Figure. 4. We conduct training on
each model individually and use the generated controllers to direct the models to perform hovering,
target reaching, velocity tracking, and active deformation.

Testing the Linearized Networks To verify the quality of our learned dynamics, we focus on two
aspects. First, since our model predicts the next frame’s velocity with the current velocity, rather
than the acceleration (which is what we ultimately want), we need to make sure that the network ac-
tually learns how the velocity evolves, instead of reproducing the current velocity. As seen in the left
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