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Abstract

The increasing ubiquity of low-cost wireless sensors has en-
abled users to easily deploy systems to remotely monitor and
control their environments. However, this raises privacy con-
cerns for third-party occupants, such as a hotel room guest
who may be unaware of deployed clandestine sensors. Previ-
ous methods focused on specific modalities such as detecting
cameras, but do not provide a generalized and comprehensive
method to capture arbitrary sensors which may be “spying” on
a user. In this work, we propose SNOOPDOG, a framework to
not only detect common Wi-Fi based wireless sensors that are
actively monitoring a user, but also classify and localize each
device. SNOOPDOG works by establishing causality between
patterns in observable wireless traffic and a trusted sensor in
the same space, e.g., an inertial measurement unit (IMU) that
captures a user’s movement. Once causality is established,
SNOOPDOG performs packet inspection to inform the user
about the monitoring device. Finally, SNOOPDOG localizes
the clandestine device in a 2D plane using a novel trial-based
localization technique. We evaluated SNOOPDOG across sev-
eral devices and various modalities, and were able to detect
causality for snooping devices 95.2% of the time, and localize
devices to a sufficiently reduced sub-space.

1 Introduction

The proliferation of low-cost wireless sensors has facilitated
increased adoption into smart home, building, and city deploy-
ments [1, 2]. Although there are profound positive impacts
that ubiquitous sensor-rich environments can have on soci-
ety, there is an inherent risk in enabling users access to such
pervasive sensing, particularly when these environments host
occupants oblivious to the presence of these sensors.

An individual’s privacy in these contexts is entirely at the
discretion of the owner. Regulation is unclear in informal set-
tings, such as a guest residing in a homestay lodging. There
have been reported instances where a hosting owner has at-
tempted to spy on homestay occupants [3], motel lodgings [4],

and rooms aboard cruise ships [5]. There are even instances in
well-established hotel chains and mall restrooms when a ma-
licious employee or customer has bugged several rooms [6].
Beyond commercial applications, Southworth et al. report that
domestic abusers may use such sensors for intimate partner
stalking [7]. Thus, potential victims with privacy concerns
must take a proactive approach to detect clandestine sensors.

The prevalent method to detect bugs relies on an RF re-
ceiver that senses if the received power in a particular fre-
quency range is above a certain threshold. However, as bug
detectors work on the principle of sensing surrounding RF
signals, they can easily be triggered by legitimate RF devices
such as mobile phones, radios, smart TVs, and other smart
devices, thus limiting the practicality of these detectors. An
alternate method has emerged to detect the presence of [oT
devices based on network traffic statistics [8]. However, these
methods only ascertain the presence of a device without se-
mantic information regarding device information, location, or
whether the device is actually monitoring a user.

More sophisticated solutions have since emerged target-
ing wireless cameras specifically. Wampler et al. [9] showed
that changing lighting conditions causes notable variations
to appear in a wireless camera’s video traffic; that is, video
encoding leaks sensitive environmental information. Flick-
ering a light source for a short period of time can then be
used in correlation with network traffic changes to identify
hidden cameras [10, 11]. Similarly, an approach has been pre-
sented that correlates the Wi-Fi traffic patterns of a trusted
camera with Wi-Fi traffic patterns of other hidden cameras on
a network to detect whether they are simultaneously observ-
ing the same space [12]. Unfortunately, these camera-specific
approaches fail to generalize across modalities. For example,
varying lighting conditions would be ineffective for detecting
a hidden microphone or an RF sensor. In recent work, hu-
man motion was used to detect a hidden camera with coarse
localization (i.e., indoors or outdoors) [13]. We argue that
human motion is an emblematic event to generalize across
modalities, as the objective in revealing bugs is typically to
determine if the user is being observed.
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In this paper, we propose SNOOPDOG, a generalized frame-
work to detect clandestine wireless sensors monitoring a user
in a private space. SNOOPDOG leverages the notion of causal-
ity to determine if the values of a trusted sensor cause patterns
in Wi-Fi traffic stemming from other devices. In particular,
SNOOPDOG works by having the user perturb the trusted sen-
sor values to observe if there is a causal pattern in the Wi-Fi
traffic for a different device. For instance, if a wireless camera
or a motion detector is monitoring a user who is wearing an
inertial measurement unit (IMU), the IMU values will indicate
a causal relationship with the camera’s Wi-Fi traffic. SNOOP-
DOG utilizes encoding scheme models of different wireless
sensing modalities to classify the sensor type, and then cross-
references packet headers with publicly available information
of manufacturers to identify the specific device model. We
further introduce a novel fine-grained localization approach
that leverages sensor coverage techniques to locate a detected
sensor. We implemented SNOOPDOG using a user’s mobile
phone for ground truth sensors and a laptop for sniffing Wi-Fi
traffic patterns. In the future, we envision SNOOPDOG to be
implemented entirely as an app on either a smartwatch or a
smartphone, both of which have sufficient sensing capabilities,
but currently require Wi-Fi card improvements to allow for
channel hopping in monitor mode, thus making SNOOPDOG
easily accessible to non-technical users.

SNOOPDOG operates in two stages. SNOOPDOG begins in
a passive monitoring phase that searches for suspicious causal
patterns between the wireless traffic and the user’s normal
activity with their smartphone or wearable device. If a device
is flagged as potentially monitoring the user, an active phase
is engaged, and the user is instructed to perform a series of
specific actions to detect the sensor with high accuracy. Dur-
ing the active phase, localization can optionally be engaged
to find the clandestine sensor. The user can either skip the
background or the active phase as per their convenience.

We evaluate SNOOPDOG over a representative set of wire-
less sensors following a taxonomy of popular sensing devices
that may be used for surveillance. The framework had a de-
tection rate of 96.6% and a device classification rate of 100%
when the injected multi-modal event was human motion. We
show that the location of the bug can be narrowed down to
a sufficiently reduced region that easily facilitates a user’s
search. This feature is a notable improvement over existing
approaches that only localize devices as either indoors or out-
doors. While SNOOPDOG cannot detect any wireless sensor
monitoring the user (Section 9), it can detect a broad set of
commonly used wireless sensors [14-16].

Contributions: Our contributions are summarized as follows:

* We propose SNOOPDOG, the first generalized framework
to detect hidden clandestine sensors, including video,
audio, motion, and RE. SNOOPDOG leverages the cause-
effect relationship between a trusted set of sensor values
and Wi-Fi traffic patterns when observing a multi-modal
injected event.

* We present a novel technique that leverages the notion
of directional sensor coverage to provide state-of-the-art
localization for clandestine devices.

* We show how SNOOPDOG can reveal device informa-
tion by cross-referencing packet inspection with publicly
available device manufacturer information.

* We evaluate SNOOPDOG with a mobile phone and a
Wi-Fi packet sniffer on a representative set of clandes-
tine sensors and show a detection rate of 95.2% and
device classification rate of 100% when the injected
multi-modal event is human motion.

2 Background

We provide an overview of that state-of-the-art approaches
to detecting the presence of wireless sensors in spaces. We
then formalize the notion of detecting whether a sensor is
monitoring a particular area.

2.1 Detecting Wireless Sensors in Spaces

The general approach to detecting wireless sensors relies on
the notion that a device’s wireless communication unintention-
ally leaks information in some out-of-band channel. Recent
works exploited these leaks to detect the presence of wireless,
transmitting bugs' in a space [17, 18]. The received power
threshold and frequency range can be set according to a tar-
get set of wireless devices. For instance, to detect sensors
that communicate over Wi-Fi, a device would scan frequency
ranges around 2.4 GHz or 5 GHz. In tuning the received
power threshold, there is a direct trade-off between detection
accuracy and false positives [17]. If the threshold is too low,
one may falsely attribute wireless signals from other devices
in the space, like mobile phones, to bugs. On the other hand, a
high threshold risks ignoring wireless bugs that are not within
close proximity of the detector. As these detectors provide
no semantic information about the detected signals, it is dif-
ficult to assume whether or not the observed signal is truly
originating from a hidden bug [18].

As wireless sensors transmit their information via packets,
another technique to detect them uses packet sniffing. Ap-
proaches like DewiCam [13] sniff wireless packets and use
their characteristics to train a classifier to identify whether or
not a particular device is a camera. However, even if the type
of device is determined, it may or may not be monitoring the
user. If there is a camera monitoring the door of a house, it
does not pose the same threat to a user’s privacy as a camera
that is monitoring the bedroom. Hence, even if we are able to
detect what type of device is present in the space, it is difficult
to characterize if its intention is adversarial. A direct way to

' A bug in this context refers to a hidden device spying on the user.
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identify whether a device poses a potential privacy threat is
to determine whether or not it is actively monitoring the user.

2.2 Detecting Sensors Monitoring a Space

If a wireless sensor is monitoring someone in a physical space,
the data that it captures is a function of the person’s interaction
with the space. For example, if someone moves into a space
monitored by a motion detector, the sensor’s control mecha-
nism may be triggered and begin uploading relevant informa-
tion to the cloud to be processed and forwarded (e.g., an alert
to the device owner or downstream actuation). Similarly, the
information recorded by a video camera captures variations
due to motion within the captured scene—a characteristic ex-
ploited by prior research on detecting hidden cameras [10-12].
To generalize across sensor modalities, we formalize the no-
tion that if an auxiliary sensor observes and measures a user’s
interaction with their surroundings, we can identify whether
the user’s actions indicate a causal relationship with the hid-
den sensor’s wireless traffic. If such a relationship is found,
then the sensor must be monitoring the user.

Detecting causality across sensor modalities. Given a tar-
get hidden sensor and access to its sensor data, we aim to
establish causality between its time-series data and another
sensor capturing the private space. A popular method to study
causal relationships between two series is Granger Causal-
ity [19]. According to Granger Causality, if a series X Granger-
causes series Y, then past values of X should contain informa-
tion that helps predict ¥ above and beyond the information
contained in past values of ¥ alone. Formally, if we have a
series ¥ as:

Ye=ap+ar*y—1+ax*y;2+....+ap*Yt_n, (1)
and we augment this series with the series X as follows:

Ye =00+ A1 %Yy 1+ * Ve ntb1¥X 1 F o DR X
(2)
then X Granger-causes Y if and only if Equation 2 gives a
better prediction of y, than Equation 1. Here, y,;_ are called
lags of y and x;_y are called lags of x where k € [1,n].
In the following section, we discuss the system model and
the design of SNOOPDOG.

3 SNooPrDOG Overview

We present the SNOOPDOG’s threat model assumptions prior
to enumerating the system design.

3.1 System Model

We consider a system model for SNOOPDOG where a user has
access to a laptop or smartphone device with a network card
that can enter monitor mode to sniff wireless packets over the
same channel as one or more clandestine sensors. The system

should further be equipped with a trusted set of ground truth
sensors to establish causality between the sensor values and
the associated Wi-Fi patterns from the clandestine wireless
sensor(s)”. These capabilities entail a set of assumptions.
Wi-Fi sniffing assumptions. We assume that the Wi-Fi snif-
fer on the user’s device can monitor the encrypted traffic
streaming from the clandestine device. SNOOPDOG does not
require any form of granted access to a particular network,
i.e., SNOOPDOG should be able to sniff the device regardless
of whether or not the network is closed or hidden. Unlike
previous solutions, this implies that the user does not need to
know the SSID or password of the network.

Causality assumptions. We assume that the user has a suf-
ficient set of trusted ground truth sensors whose modalities
are sensing any of the user’s activities that would exhibit a
causality with the Wi-Fi encoding patterns of any clandes-
tine wireless sensors. The notion of sufficient causality was
formalized in Section 2.

3.2 Adversary Model

We focus on adversaries whose goal is to remotely spy on
a third-party occupant of a private space in real-time. This
model is consistent with other state-of-the-art methods for
detecting hidden cameras [9-11, 13], and is supported anec-
dotally by several cases where owners were live-streaming
guests in private spaces, e.g., [3,4]. Further, many commer-
cially available devices do not offer a local storage option for
reasons of size, weight, power, and cost — such is the case
with six out of the popular thirteen devices we examined.
Moreover, live-streaming offers a more practical and scalable
solution from a management perspective. Thus, we assume
the adversary uses an arbitrary set of wireless, commercial-
off-the-shelf (COTS) sensors that are tailored for clandestine
placement. The communication between the attacker and sen-
sor may be encrypted and placed on an arbitrary wireless fre-
quency band. We further assume the adversary has deployed
these clandestine sensors in a manner that is not apparently
visible to the user within the space. We focus on an attacker
utilizing devices that communicate over Wi-Fi, as this is the
most prevalent method of wireless communication for remote
monitoring using commercial and consumer equ:ipment"‘. An
adversary may use one of the several techniques mentioned in
Section 8 to fool SNOOPDOG, for example with cover traffic
or local storage. Implementing these techniques can require
modifying the device firmware or physically interfacing with
a proxy device (e.g., RPi), thereby increasing the barrier-to-
entry for potential attackers. Moreover, techniques such as

2We assume there may be additional, non-clandestine sensors that are
monitoring the user. Such superfluous information is still informative, as the
goal of this work is to detect all wireless sensors monitoring a user.

2‘Alﬂwugh SnoorDoG focuses on Wi-Fi-connected devices, we discuss
in Section 9 how such a system could be generalized to other wireless com-
munication standards and protocols.
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Figure 1: Overview of SnoopDog framework. o The SNOOPDOG framework first identifies if a user is being monitored based
on the cause-effect relationship between the values of a trusted sensor, e.g., an IMU, and Wi-Fi traffic patterns. It then inspects
the associated packets and identifies the possible devices based on the physical (MAC) address. @) Finally, SNOOPDOG localizes

each device by leveraging directionality and sensor coverage.

cover traffic can add significant and undesirable network over-
head, particularly for a large number of sensors.

3.3 Design Overview

As depicted in Figure 1, SNOOPDOG detects and localizes
a wireless sensor given access to a trusted sensor that can
measure and quantify the ground truth in the modality that we
are trying to detect. SNOOPDOG works in two phases. ) De-
tecting and identifying snooping wireless sensors. When a
user first enters a new space, SNOOPDOG operates in a back-
ground mode to determine whether a user is being monitored
based on the cause-effect relationship between the values
of a trusted sensor (e.g., an on-body IMU) and Wi-Fi traffic
patterns. If the user wants to scan a room immediately, the
background phase may be optionally skipped; alternatively,
the background phase offers a low-overhead solution to bug
detection. If a clandestine sensor is discovered, SNOOPDOG
asks the user to perform a unique perturbation in the space
to further ascertain the presence of a snooping sensor. The
associated packets are then inspected to identify the possible
device type based on the physical (MAC) address. @ Snoop-
ing sensor localization. In the second phase, SNOOPDOG
utilizes a trial-based localization technique to identify the spe-
cific placement of the monitoring device. With the appropriate
selection of ground truth sensor, that is, a device which can
semantically capture at least a subset of the events captured
by the snooping device, SNOOPDOG can detect clandestine
wireless sensors of arbitrary modality.

4 Detecting and Identifying Snooping Wire-
less Sensors

This section outlines the ability of SNOOPDOG to detect
whether a clandestine sensor is actively snooping on a user.

We describe the search space for wireless sensors, how to
establish causality, how to generalize across modalities, and
how to understand various sensors’ wireless transmission.

4.1 Searching for Wireless Sensors

The adversary can create a Wi-Fi network and connect the
snooping device to it. As a result, the hidden device can be
present in any of the possible Wi-Fi channels. Even though
SNOOPDOG does not need access to these networks, it still
needs to scan all Wi-Fi frequencies and look for any de-
vices transmitting on them. 2.4 GHz and 5 GHz are the
most popular bands for Wi-Fi networks, and as such, we fo-
cus on those particular bands, even though the SNOOPDOG
scan region can be easily extended to include other ranges.
During discovery, the Wi-Fi Network Interface Card (NIC)
scans through all channels sequentially to find available ac-
cess points (APs) [20,21]. Similarly, SNOOPDOG also scans
through all the Wi-Fi channels in monitor mode, but instead of
looking for available APs, it looks for transmissions in those
channels and creates a list of devices using the MAC address
present in packet headers. As a result, SNOOPDOG does not
need to be connected to any specific AP to operate. Even if a
network is hidden, its transmissions can still be observed by
monitoring the Wi-Fi channel. Thus SNOOPDOG can detect
devices on any Wi-Fi network. Because devices may transmit
data intermittently, SNOOPDOG continuously scans all Wi-Fi
channels and actively maintains an aggregate set of traffic
data. Once the list of devices has been populated, SNOOP-
DOG then seeks to detect causality between user activity and
data being transmitted from each device.

4.2 Detecting Causality with User Activity

Detecting the cause-effect relationship between the action
of a user in a space and the data captured by a clandestine,

1832 30th USENIX Security Symposium

USENIX Association



wireless sensor requires access to two essential components:
1) a ground truth sensor to capture information about the user
in the space and 2) a representation of the data collected by
the clandestine sensor. While data packets transmitted by
wireless sensors may be encrypted, the header information
is not. This header information provides us with the MAC
address and payload size of each transmitted packet. This data
can be grouped and aggregated for all the packets within a
time window and provide information as to how much data
was transmitted by each device within that period. Given a
ground truth sensor, one can then identify causality between
the ground truth sensor values and the patterns in the volume
of data transmitted by each device in the space. In contrast
to machine learning techniques, a causality approach allows
SNOOPDOG to find the cause-effect relationship of arbitrary
modality across any device that is transmitting causal data.
Because we are interested in the causality between two sen-
sors, SNOOPDOG will utilize Granger Causality (described
in Section 2).

4.3 Characterizing a Representative Set of
Snooping Sensors

In order to choose a set of ground truth sensors that can cap-
ture causality across any modality, we focus on generalizing
across a representative set, including cameras, RF, and arbi-
trary sensors that report inferred (as opposed to raw) events.
Visual sensors. Wireless cameras are typically encoded with
a codec that recognizes underlying patterns in the frames
of the video and utilizes this information for compression.
One such codec is H.264 [22]. An encoder first encodes the
video using the standard, and a decoder then reconstructs the
original video with minor information loss.

Standard temporal compression algorithms compress the
video with 3 key frame-types, denoted I, P, and B frames. I
frames (Intra-coded picture) hold complete image informa-
tion, whereas P and B frames contain fractional image infor-
mation, i.e., scene differences. As I frames are a complete
image, they do not require any other frames to be decoded.
P frames (Predicted picture) only contain changes in the im-
age from previous frames. The information in a P frame is
combined with the information of the I frame preceding it
to obtain the resulting image. B (Bi-directionally predicted
pictures) frames can construct the image from either direc-
tion using either changes from the I or P frames before them,
changes from I and P frames after them, or interpolation be-
tween the I/P frames before and after them. B frames are most
compressible, followed by P frames, and finally, I frames.

Hence, with increasing motion in the scene recorded by
an IP camera, there will be an increase in the data that must
be transmitted due to the increase in the number of P and B
frames sent. Camera traffic will increase as the number of
pixels being perturbed in the scene increases; similarly, traffic
will decrease if the scene transitions to a stationary one. As

such, if a human subject were to perform some motion in
the scene, stop for enough time to let the camera traffic settle
down, and then move again, it will result in a unique camera
traffic pattern that corresponds to the user’s motion. This
cause-effect relationship between human motion and camera
traffic can then be used to discover if a wireless IP camera
is present in an occupied space. If there is no relationship
between the camera traffic and user motion, then the camera
is not monitoring the user.

RF sensors. Low cost, off-the-shelf millimeter-wave
(mmWave) RF sensors are available that record the scene in
the form of point-clouds. Recent works [23,24] have shown
that these point clouds can be used to infer human activity.
However, unlike a camera, a radar device is a point scatterer.
Thus, at any given time, only certain points in the scene reflect
back. Hence, with motion in the scene, the number of points
captured in every frame by the sensor (radar) vary consider-
ably. In an empty scene, the number of points captured by
these sensors is fairly constant but varies as subjects move
about the space. If such a sensor live-streams point-cloud data
over Wi-Fi, the payload size will vary over time with changes
in the number of points captured in the scene by the sensor.
Hence, the network traffic will fluctuate with the number of
points that are being captured in the frame. As such, there
exists a cause-effect relationship between the subject’s motion
and the device’s traffic.

Acoustic sensors. Another common type of bug used to
snoop on people is a microphone. With the growth in per-
sonal home assistant devices such as the Google Home or
Amazon Echo (Alexa) [25], it is trivial for someone to buy
and install such listening devices in their homes. Although
they are typically triggered by a keyphrase such as “Okay
Google" or “Alexa", there are “Drop In" features that facili-
tate remote snooping. An adversary can also change the wake
word of these devices to enable recording conversations of
interest. Due to their compact form factor, they can be eas-
ily hidden. In such cases, these devices will also work like
event-based clandestine sensors. Hence, services like SNOOP-
DOG that monitor traffic for change in network patterns and
either correlate them with another sensor recording of the
same modality or find a cause-effect relationship with the
ground-truth can detect their presence using network sniff-
ing [26,27]. Here, instead of the IMU, we use the microphone
on the user’s smartphone as the trusted ground-truth sensor.
In section 10-Q4, we discuss why it is challenging to detect
and localize acoustic sensors that are continuously streaming.
Wireless sensors that encode inferred events. Motion sen-
sors do not transmit a continuous stream of information. Most
off-the-shelf motion sensors are passive infrared (PIR) based.
They measure the infrared (IR) light from objects in their field
of view. Any change in this incoming IR light is inferred as
motion. Instead of continuously transmitting, they send data
to their cloud service for processing once triggered by motion.
Thus, if a user moves around the room, stops, and moves again,
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there will be a unique cause-effect relationship between user
motion and device traffic. Additionally, a camera can be pro-
grammed to continuously record video but only upload when
a certain event occurs in the scene. These cameras behave like
motion sensors and hence can be treated similarly. Virtual
assistants also wait for trigger words to transmit a request to
the associated cloud service, e.g., a user uttering the device
name to activate it [25].

4.4 Device Identification via MAC Address

A MAC address is a universally unique ID assigned to the
Network Interface Controller (NIC) for every networked de-
vice. It consists of 48 bits which are typically represented as
12 hexadecimal characters, i.e., xx:xx:Xx:xx:xx:xx. The
first 24 bits are the OUI (Organizationally Unique Identifier),
which can uniquely identify a manufacturer or a vendor.

The MAC address of the sender and the receiver are con-
tained within each exchanged Wi-Fi packet. More importantly,
this information is not encrypted. As a result, SNOOPDOG
can obtain the MAC address to look up the device vendor.
While we acknowledge that the MAC address can be spoofed,
this technique can still prove useful in the many cases where
the adversary is a non-expert and thus has not spoofed the
MAC address. Traffic fingerprinting techniques [28-34] can
also be used to overcome the shortcomings of MAC-based
identification. Additionally, in case of MAC randomization or
MAC spoofing, techniques such as the ones described in [35]
can be used to first track the traffic from a particular device
and then perform cause-effect analysis on it.

SNOOPDOG contains a database with names and MAC
addresses of known vendors that manufacture surveillance
devices. As SNOOPDOG detects more sensors, we add them
to the database.

5 Snooping Sensor Localization

Algorithm | details the trial-based localization used by
SNOOPDOG to infer sensor location. In the case of multiple
active sensors, this process can be repeated for each device.

Setup. Localization requires two input parameters: a region-
of-interest to search over, and the snooping sensor’s MAC
address. To define the region-of-interest, we leverage Dead
Reckoning [36-38] for indoor user localization. A dead reck-
oning mobile application [36] on a user’s phone instructs the
user to walk the perimeter and capture the region boundary.
Aside from identifying Granger causality in traffic patterns,
the MAC address is also used to ensure an appropriate trial
method for localization (e.g., via techniques discussed in Sec-
tion 4.4 and [8]).

Algorithm 1: LOCALIZE identifies the location of
a particular snooping sensor in a defined region-of-
interest

Input: The sensor’s MAC address

The region of interest

Output: The sensor’s location within the region
1 BBox + 0
2 traversing < BeginTraversingRegion(region)
3 while traversing do
4 userloc + DeadReckoningLocation()
inView + GrangerCausality(MAC)
if inView then
| BBox < BBoxU {userloc}

8 traversing +— SparseBBox(BBox)

-] =

9 Loop

10 MLE +
MostLikelySensorLocation(region, BBox)
11 if SufficientBBox(region, BBox) then

12 | return (BBox,MLE)

13 trialRegion = GenerateTrial(MLE, BBox)

14 inView = PerformTrial(trial Region)
15 if inView then

16 | BBox < trialRegion

17 else

18 | BBox < BBox \ trialRegion

5.1 Identifying Sensor Coverage

Although the malicious sensor is known to monitor some-
where within the region-of-interest, it is unlikely to cover the
entire region. Lines (1)-(8) narrow down the full search space
into a bounding box BBox of the sensor’s field-of-view. To
begin, a user is instructed to traverse the region (line 2). At
regular time intervals, the user’s location is captured, and the
snooping sensor’s traffic is monitored for causality. Using
the Granger Causality technique described in Section 4, a
particular location is identified as either within or outside
sensor coverage. This process continues until the bounding
box is determined to have sufficient density for performing
trial-based localization, depending on the coverage area size.

The remainder of Algorithm 1 (lines 9-18) reduces the
BBox scope of sensor coverage via directional elimination.
Repeated trials are performed to specifically target high-
probability origins in order to either identify or eliminate
likely sensor locations. Each round begins by solving for the
most likely origin MLE for the sensor (line 10). While this
process could be performed randomly, utilizing physical in-
formation about the current bounding box can significantly
reduce the number of necessary trial rounds. For example, if
the bounding box shape can be reasonably fitted to a trian-
gle, then the sensor is likely horizontal-facing and placed on
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a wall. On the other hand, an ellipsoid coverage area likely
indicates a sensor placed on the ceiling or floor.

An iterative process then proceeds to reduce the area of
possible sensor locations to a pre-defined threshold (e.g., 10%
of the region), upon which the bounding box and MLE are
returned (line 11). In each iteration, a directional trial is con-
ducted. GenerateTrial identifies a suitable position and head-
ing for the trial by selecting a point near the center of the
bounding box and facing the MPE (line 12). In our evalu-
ation, we found distances of approximately 3 meters to be
the maximum applicable distance for a trial. The trial takes
one of many forms; for an inertial sensor, a user faces the
designated direction and waves an object (e.g., hand or shoe)
closely in front of their chest while shielding this activity with
their body from any sensor present behind them. To trigger
a camera sensor, a laptop plays a video clip that randomly
flashes the screen with different colors. For audio, a trigger
sound is played, and so on. If the trial results increased the
device traffic, the bounding box is reduced to areas within
visible range (line 16); otherwise, those areas are removed
(line 18), and the next iteration begins.

5.2 Ensuring Sufficiently Reduced Region

In order to provide a guarantee that this localization method
will always result in a minimal bounding box that is suffi-
ciently small (e.g., 10% of the search region), a key assump-
tion must be made: for any arbitrary bounding box, a trial
can be identified which will eliminate a proper subset of the
bounding box. In the case of Algorithm 1, this assumption
can be reformed such that one can always construct a trial
that eliminates at least a single point contained within the
bounding box set. Due to the directional nature of each trial,
this can be achieved simply by conducting a trial that is posi-
tioned directly between two points within the bounding box,
and facing directly towards one of the two points such that
the other is obstructed. In the case of two points with large
intermediate distances, a two-phase trial must be performed
facing towards (and away from) each point, respectively.
Given the assumption that every trial can eliminate at least
a single point from the bounding box set, guaranteeing that
Algorithm 1 will always reduce the region to a certain size is
trivial. In the worst case, for a bounding box of n points, n-1
trials must be performed. In practice, each trial can eliminate
many points contained within the bounding box. Furthermore,
by leveraging the most likely sensor location, one can reduce
the search space significantly and with relatively few trials.

6 Implementation
This section presents the implementation details of SNOOP-

DOG. We use readily available tools that are likely to be in a
user’s possession.

6.1 Experimental Setup

Wi-Fi Packet Sniffing: The laptop’s (Lenovo Thinkpad) net-
work card enters monitor mode and uses Wireshark to capture
all transmitted packets in the Wi-Fi frequency band to ag-
gregate traffic statistics for analysis. As it is not necessary to
connect to a specific Wi-Fi network to monitor traffic, SNOOP-
DOG can capture and identify clandestine wireless sensors
across all Wi-Fi traffic, even if they reside on a closed or
hidden network. A smartphone can also be used instead of a
laptop, but requires a rooted [39] phone.

Collecting User’s Motion Data: User’s motion data is col-
lected via the IMU present on the smartphone (Google Pixel
3). The smartphone is placed either in the user’s hand or inside
the user’s pocket. 50 Hz accelerometer data is collected and
used to study the cause-effect relationship between motion
and sensor traffic. We collect data along each of the 3 axes
and use them separately as if motion is present in only one di-
rection, the other 2 axes contribute minimally to the analysis,
and may instead serve as noise. The smartphone is also used
to collect audio and localize the user in his/her surroundings.

6.2 Detecting the Cause-Effect Relationship
between User Motion and Hidden Devices

While sniffing the network, SNOOPDOG classifies the net-
worked devices present into two categories: devices that trans-
mit data continuously, and devices that have periodic or event-
based transmission.

6.2.1 Wireless Sensors that Encode Raw Data

Some representative sensors that continuously transmit vari-
ably encoded raw data include camera and RF sensors.
Camera: When a camera is monitoring a static scene, its
traffic is fairly constant, as shown in Figure 2. As the scene
is perturbed by human motion, the traffic changes rapidly.
However, it is yet unclear whether human motion causes this
variation. As soon as the user enters a new space, he or she
can turn on SNOOPDOG, which works in the background
to correlate IMU data with Wi-Fi traffic of the transmitting
devices. As users walk in a space, the starting and stopping
patterns of their motion are unique. This unique pattern cre-
ates a fingerprint on the camera traffic. Once SNOOPDOG is
able to determine a cause-effect relationship between device
traffic and user’s motion, it alerts the user. To definitively
ascertain the presence of a camera, SNOOPDOG asks the user
to perform a stop-start-stop-start-stop (S5) motion as follows:
1) the user stays stationary for some time to allow the device
traffic to stabilize. 2) The user performs jumping jacks at the
current position. 3) The user stops again and waits for the
device traffic to settle. 4) The user performs jumping jacks.
5) The user stops. The S5 motion causes a unique pattern to
appear in the Wi-Fi traffic as shown in Figure 3 (Cam. 2).
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The entire detection phase requires 35 — 45 seconds. While
the user is performing the above S5 motion, SNOOPDOG
sniffs the Wi-Fi packets on the network and records the user’s
IMU acceleration. Figure 3 plots the camera traffic after I-
frame suppression and user accelerometer data while perform-
ing the S5 motion. We observe that camera traffic is a func-
tion of human motion. When the human is static, the traffic is
small, but when the human begins performing jumping jacks,
the traffic rate increases. To prove that the accelerometer se-
ries indeed has an effect on the camera traffic, we leverage
Granger Causality using the statsmodel package in Python.
The null hypothesis of the Granger Causality Test is that the
IMU series does not granger-causes the camera traffic series.
Hence, if the p-value of our test is below the threshold of 0.08,
we can reject the null hypothesis and claim that the IMU se-
ries granger-causes the camera traffic series. We selected this
p-value using the results obtained from the first camera. How-
ever, we evaluate our detection for all the other cameras and
show that this p-value threshold is optimal for all the cameras.
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Figure 2: Wi-Fi traffic captured from a camera for a static
scene and a scene where a human is walking around.
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Figure 3: Wi-Fi traffic of a snooping camera placed in the
same space as the user (Cam. 2) and a non-snooping camera
placed in a different space (Cam. 1) and its comparison with
IMU data of the user being monitored in the scene.

RF sensor: The detection process remains the same for RF
as that of a camera. We use an off-the-shelf mmWave RF
sensor from Texas Instruments, as shown in [23]. We model
the information obtained from the sensor as Wi-Fi traffic.
The modeled Wi-Fi traffic from the RF sensor due to human
motion is shown in Figure 4. Unlike a camera, RF sensors
respond to a change in RF reflections from the scene.

As soon as motion occurs within the space, the traffic

changes rapidly in response. This is because the points cap-
tured by the RF sensor vary with motion. If the traffic of
some device which was static when there was no motion but
changes rapidly when there is motion and goes back to being
static when motion stops, it is an indicator that the device is
monitoring user movement. To detect such devices, SNOOP-
DOG first monitors the traffic when the scene is static. It then
asks the user to perform the S5 motion in the space while
SNOOPDOG monitors the traffic. As soon as the user is fin-
ished, the user should leave the space so that SNOOPDOG
can monitor the traffic again and conclude the presence or
absence of an RF sensor.

Cynamic Scene
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Figure 4: Modeled Wi-Fi traffic for an RF sensor in a static
scene and one where a user performs our detection trial.

6.2.2 Wireless Sensors that Encode Inferred Events

Sensors that encode inferred events transmit upon event detec-
tion. By examining network traffic, it is difficult to ascertain
if the device is transmitting periodic data, like a temperature
sensor, or transmitting inferred events like a motion sensor.

Motion Sensor: Typical off-the-shelf motion sensors have
a timeout to prevent continuous alerts. The motion sensor
sends motion information to a cloud server, which in turn
sends an alert to the snooping user’s smartphone or performs
an action like turning on lights. After sending an alert, the
sensor waits for the timeout period before it looks for more
events. This period is between 30 seconds and 3 minutes for
most motion sensors. Similarly, there can be other sensors
in the scene that have a timeout period between uploading
events. To discover a device’s timeout period, SNOOPDOG
correlates user movements with device traffic. If two events
are detected in the traffic of a device and the user was in
motion during the time between the two events, this time is
noted as the timeout period. SNOOPDOG uses its active phase
to further improve the timeout estimation by asking the user
to move around the space until two events are detected in the
device’s network traffic. SNOOPDOG asks the user to move
around the space, leave the space for the timeout period, and
then move around the space again. After that, the user moves
out from the space and then waits for the timeout period to
end. If SNOOPDOG detects traffic by the device around the
same time the user moved and none when the user is not
moving, it concludes that the traffic of the device is caused
by user movement. This process can be repeated to increase
the confidence of detection. In Figure 5, we move around
the room and notice that the Wi-Fi traffic from the motion
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Figure 5: (a) Wi-Fi traffic of a motion sensor. The red-dotted
line represents a motion event. (b) Wi-Fi traffic of an Alexa
device for the user repeating the same phrase 4 times.

sensor responds to these motion events. Since this traffic is
discrete, we cannot perform time-series Granger causality
analysis. Instead, we perform an activity and track network
response. To detect the presence of a motion sensor, we ask
the user to move around the room, wait for the timeout period,
and move around again. SNOOPDOG scans all device traffic
within a period of 5 seconds after the motion to determine
which device responds to user motion. If the device has traffic
activity after the user moved, then the device is inferring
events from the user motion.
Audio snooping: SNOOPDOG records user conversations
in the background and monitors the network traffic. If the
occurrence of a certain phrase or a word causes the traffic of a
device to change, SNOOPDOG asks the user to repeat it until it
can establish a causality between the occurrence of that phrase
and the traffic of the device. Once SNOOPDOG knows the
“wake word" for the acoustic home-assistant device, it repeats
the recording several times while monitoring the device traffic
to increase the confidence level of detection.

In our implementation, we used an Amazon Echo and Echo
Dot whose wake word was “Alexa" and “Computer” and a
Google Home Mini with the wake phrase “Hey Google".

6.2.3 Device ID via MAC Address Lookup

SNOOPDOG checks its database for a match of OUI in the
device’s MAC address. If present, SNOOPDOG can inform
the user with higher confidence that the device is indeed a
surveillance device. Otherwise, it is added to the database and
identified as a clandestine sensor.

6.3 Device Localization

SNOOPDOG uses dead reckoning [40] and asks the user to
walk around the perimeter of the room to create rough map of
the room. Next, the user performs a detection trial at various
locations in the room. More trials lead to better localization.
Atevery location, SNOOPDOG tries to establish a cause-effect
relationship with the device traffic. Regions with no cause-
effect relationship are eliminated.

IP Camera: The traffic generated by a camera monitoring
a scene will increase when the scene is dynamic. To exploit

this, we first monitor the traffic of the device identified as a
camera for 30 seconds over a static scene. Each trial consists
of standing in a particular location (e.g., the middle of the
scene), pointing a laptop in a particular direction, and playing
a video that rapidly changes the colors on the screen of the
laptop for 30 seconds. This process is then repeated in dif-
ferent directions. If the camera is able to monitor the laptop
screen, its data rate during that period will be higher. On the
other hand, if the laptop screen is not visible, the camera’s
traffic rate will be similar to the static scene. We can eliminate
a fraction of the space where no activity is detected and repeat
the process for the remaining region. In this way, we narrow
down the possible region where a camera is located. We give
a step by step walk-through of this process in section 7.

RF sensor: RF sensor localization is similar to that of a cam-
era. However, since RF sensors cannot detect the flickering
screen of the laptop, we use human movement. SNOOPDOG
asks the user to stand in the middle of the space and wave their
arm up and down rapidly in front of them while shielding this
motion from the other side of the space with their back. If
the RF device traffic does not respond to these stimuli when
performed on one side but responds to it on the other side, we
can eliminate that space.

Motion Sensor: Motion sensors are triggered by motion in
front of them. SNOOPDOG first identifies the motion detector
timeout (refer section 6.2.2), and then asks the user to stand
in the middle of the room before the timeout expires. After
timeout expiry, they are asked to move their hand in front of
them while shielding it from the other side with their body.
Acoustic (Audio) sensors: SNOOPDOG records the wake
word of the device and asks the user to move around the
room while this sound is repeatedly played from the smart-
phone app. If the user walks around the room but does not find
any place where there the traffic of the device changes, we
increase the volume and repeat the experiment. On the other
hand, if the sound played at every point in the room causes
the traffic of the device to vary, we decrease the volume and
repeat the experiment. Finally, we identify areas where the
sound causes network response and areas where it does not.
We continue to reduce the volume of the device until the
search space has been sufficiently reduced”.

7 Evaluation

We evaluated SNOOPDOG on a set of sensors from well-
known brands as well as best-selling sensors on Amazon.
These are listed below in Table 1.

7.1 Sensors that Encode Raw Data

Wireless IP Cameras. For Granger causality analysis, we
lag the first series by one element at a time and observe what
value of the lag results in the lowest p-value. Cameras have

4 A walk-through of this process is provided in section A of the Appendix.
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Name Type Cost
Kamtron Camera $39.99
Panasonic (HomeHawk) | Camera $77.64
Wansview Camera $29.99
Arlo (NetGear) Camera $107.50
Victure Camera $35.99
Foscam Camera $49.99
Ring (Amazon) Camera $59.99
Amazon Echo Dot Home Assistant | $29.99
Amazon Echo Home Assistant | $99.99
Google Home Mini Home Assistant | $39.99
Kangaroo Home Motion Sensor | $12.95
Samsung Smart Things | Motion Sensor | $24.99
TIIWR1443 RF Sensor $299.99

Table 1: List of snooping sensors evaluated upon

a delay between when the scene changes and when the data
is visible to the adversary. We found that this delay can vary
between a few milliseconds to up to 4 seconds. If the adver-
sary is using a tape delay in transmission, we can perform this
analysis over a longer delay period. Assuming symmetrical
delay, SNOOPDOG sniffs the packets during the first half of
the transmission; we choose a lag value of 2 seconds.

We evaluated our detection on 7 cameras. All of them use
H.264/MPEG-4 codecs which are the most popular codecs
used for IP cameras. We performed 131 trials on 2 different
users’ to evaluate the detection accuracy. The results of our
experiments are presented in table 2. To improve the detection
accuracy and confidence of detection, a user can perform the
detection trial several times and take a majority vote. The
detection works well even when a portion of the human body
is occluded by objects such as a table.

Camera Trials | Successful | Accuracy
Panasonic 15 14 93.33%
Arlo (Netgear) 10 10 100%
Ring (Amazon) 10 9 90%
Foscam 15 15 100%
Wansview 30 29 96.6%
Kamtron 25 21 84%
Victure 26 26 100%
Total 131 124 94.65 %

Table 2: Evaluation results for camera detection

RF sensors. We use a TI mmWave IWR 1443 to evaluate the
performance of SNOOPDOG. In 20 experiments, SNOOPDOG
was able to detect RF sensor’s presence every time.

9The data is collected from the authors and hence does not require IRB
approval.

7.2 Sensors Encoding Inferred Events

Motion Sensors. We evaluated on an off-the-shelf motion
sensor from Kangaroo Security and a smart-things motion
sensor from Samsung. The smart-things sensors are a special
case as these sensors use Z-Wave and ZigBee to communicate
with a smart-things hub which in turn sends the information
over Wi-Fi. As a result, SNOOPDOG can sniff the traffic of
this hub and establish causality. However, if there are multiple
devices connected to the same hub, SNOOPDOG will not be
able to detect them. We performed 25 trials, and SNOOPDOG
was able to detect the motion sensors every time except for
3 trials. We suspect that this was caused because the devices
send some sort of “status” messages to their respective cloud
service which result in events in the sniffed traffic that throw
the detection off.

Smart-home Assistants (Audio Sensors). In Figure 5, we
say the phrase “Alexa, what’s the time right now?" four times
and observe four distinct events in the device traffic. In 35
trials with different phrases, SNOOPDOG was able to detect
causality 100% of the time. Additionally, we show the vari-
ations in device traffic for Alexa Drop-In features when the
Drop-In is active and when it is not active in Appendix B.

7.3 Quantifying False Positives and Negatives

Overall false positive rate. We perform false positive anal-
ysis for two separate cases. In case one, we run cause-effect
analysis for every device whose traffic has been captured (a
network can have devices such as phones, laptops, and other
sensors in addition to snooping devices) and find out if a de-
vice is falsely classified to be snooping on the user. In case
two, we perform our cause-effect analysis on a camera that is
not looking at the scene to see whether it will produce a false
positive.

For case one, our experimental test-bed consists of devices
monitoring the user such as a camera, motion sensor, home
assistant and RF-sensor. We also include innocuous devices
usually present in a scene such as smartphones, laptops, Wi-Fi-
routers, smart-lights, and embedded devices such as raspberry-
pi. We ran this analysis for 50 trials. We found 2 false positives
for Active Phase and 9 false positives for Background Phase.

We divide case 2 into two separate parts. In the first part, a
camera is placed in another room (where the user who’s run-
ning SNOOPDOG is not present). Another person is moving
freely in the room. In the second part, the person in the other
room is sitting on a desk and working while the camera is
monitoring them. We show the results of our experiments in
Table 3. We perform these trial for both background detection
and active detection. The one detection for background phase
is because the walking patterns of the user and the person in
the other room were similar. In such cases, a user can turn
off the light in their room and see if the traffic of the device
drops. If it does, it means the camera is in their room.
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Case ‘ Total Trials

False Positives
Background | Active(S5) ‘
(1) User moving 15 1 (6.66%) | 0(0.00%)

(2) User working on a desk ‘ 10 ‘ 0 (0.00%) ‘ 0 (0.00%) ‘

Table 3: False-positives for a camera in a separate room.

False negatives for background detection. SNOOPDOG’s
background detection mechanism is most susceptible to false
negatives since it relies on natural human motion rather than
active command and response patterns. Figure 6 shows cam-
era traffic and IMU data for a user walking randomly in a
room. As long as the user stops at some point within the de-
tection period, SNOOPDOG is able to detect hidden devices.
However, if the user is continuously stationary or continu-
ously in motion, SNOOPDOG fails to detect the presence of
clandestine sensors.
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Figure 6: Camera traffic and its comparison with IMU data

7.4 Snooping Sensor Localization

We evaluated SNOOPDOG for 4 different spaces with differ-
ent sensor placements. The accuracy of localization in all of
these cases depends on the user’s requirements. The user can
perform more trials to reduce the probable region where the
sensor is placed. We use an example to demonstrate how the
SNOOPDOG localization algorithm works. To perform our
localization, we chose a room as shown in Figure 7. The cam-
era is placed at a corner of the room. We begin by performing
our S5 detection trials in different parts of the room. The
location and results of our trials are shown. Based on these
observations, we know that the camera is present somewhere
in the square region of the room and hence, we eliminate the
other part and start our trial-based localization.

Toem - Causality not found
/" - Causality found
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Figure 7: Lab dimensions and results of the detection trials.

We stand in the middle of the probable space and hold a
laptop such that the screen is pointing in one direction. Then
we turn to the other side and repeat the same experiment. We
observe that there is a significant (>150%) increase in the
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Figure 8: A walk-through of the trial-based localization algo-
rithm in the laboratory environment in Figure 7. The arrows
represent the direction the laptop screen was facing.

camera data rate when the laptop is pointed towards the left
side. When pointed to the right, the data rate remains similar
to that of an empty room. Thus we eliminate the right portion
of the room from the probable area. We again stand in the
middle of the leftover space and repeat the experiments until
we achieve a sufficiently reduced space.

Audio-based localization: A similar elimination-based local-
ization for audio sensors is described in Appendix A.

7.5 Overhead Analysis

Time: Sensor detection can happen in the background with
minimal user intervention. However, this will take some time.
In situations where a user wants to immediately know if he/she
is being spied on by a sensor (such as when entering a chang-
ing room), they can directly begin the active phase where they
will perform the S5 motion. It takes about 40 seconds to per-
form active detection. For localization, each trial can take 30
seconds. Since the localization space reduction is determined
by the user, he/she can perform the trial any number of times.
If the total number of trials is n, the overhead will be about
30n seconds.

User effort: If the detection occurs in the background, there
is no overhead in terms of user involvement. However, both
active phase and localization require user effort. In case the
user is suffering from physical disabilities, he/she may find it
hard to follow through these steps.

Wi-Fi Channel Hopping: In detection mode, SNOOPDOG
must hop channels across all frequencies as an adversary may
have configured devices on different Wi-Fi frequency bands.
A transmitting device might inadvertently evade detection
if it is hopping while SNOOPDOG is scanning. Hence, we
perform multiple scans of the entire Wi-Fi spectrum to reduce
misdetections. We would ideally monitor all Wi-Fi channels
simultaneously, but this is infeasible with a single WiFi radio.
Multiple Wi-Fi radios will reduce the search space per radio
at additional cost and degraded portability.
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7.6 Effects of Range on Detection

Detection depends on the range of a sensor. The camera range
is the depth which it can record meaningful information from
the scene. If the user stands too far from the camera, their
motion may not produce a significant variation in its traffic.
For motion sensors and RF sensors, the range is specified by
the vendor. The motion sensor that we used has a range of
15 feet (4.6 m) and the RF sensor we used had a range of 4
m. For Amazon Echo, the range is a function of the loudness
of sound. For cameras, we perform our detection trials at
different distances to find out the range.

We perform the S5 motion in front of a camera at 1 m and
gradually increase the distance. We find that as we move away
from the camera, the changes in its traffic decrease. For the
Wansview camera, the distance at which traffic changes are
not enough to establish causality is the smallest at about 3 m.

7.7 Failure Analysis

During our evaluation, SNOOPDOG’s detection failed dur-
ing some trials for both cameras and motion sensors. In this
section, we will describe and discuss those cases.

Camera. SNOOPDOG failed to detect hidden cameras when
the camera video froze (no transmission) for a small duration
during our detection trial. Another cause of miss-detection
were additional users in the scene since the network traffic
due to their motion cannot be filtered out. Also, when the user
was present far from the camera (refer Section 7.6), the traffic
changes due to the motion of the user were not enough to
establish Granger causality.

Motion Sensor. Motion sensors sometimes send status mes-
sages to the cloud service that they are connected to. These
transmissions happen in the form of a short burst. Since
there was no motion before these transmissions, they result in
SNOOPDOG failing to establish causality. While we cannot
say with certainty what each of these transmissions are, we
saw multiple such transmissions when the sensor was started,
during update, and sometimes even in between two motion
events. A user can also query the sensor status from their
phone to which the sensor has to respond. SNOOPDOG failed
to detect causality when these transmissions were present in
the network traffic of the motion sensor.

8 Techniques to fool SNOOPDOG

In this section, we discuss how an adversary can fool SNOOP-
DOG.

8.1 No Encoding or Data Padding

SNOOPDOG uses the relationship between encoding schemes
and ground truth to find out if there is a device which is
monitoring the user. Hence, to fool SNOOPDOG, the sensors
can either send un-encoded raw data or they can pad the
encoded data to make the data rate constant. Cameras can

either pad their traffic or they can send un-encoded images
frames. Since sending images will put a large overhead on the
network bandwidth, padding the traffic [30] is a better idea.
We pad the camera traffic with random payload in Figure 9.
Since SNOOPDOG cannot see what’s inside the payload, it can
be anything. The device can even send labels in the payload
that help the server decide if this is a valid packet or fake
data generated to fool detection. Also in Figure 9, we pad the
traffic of a motion sensor to make it appear like a constantly
transmitting device with no variation in traffic in response to
user’s motion.

For RF sensors, one can find out the maximum number
of points it can output and then always pad the information
so that we are transmitting the maximum number of points
allowed. These extra points could all be zeros which would
make it easier to filter them out on the server side.
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Figure 9: Padding the motion sensor and the camera traffic

8.2 Adding Random Noise to the Data

Another way to fool SNOOPDOG is by injecting noise into the
device’s wireless traffic at random intervals for some time win-
dow. Since SNOOPDOG utilizes the change in device traffic
to ascertain a cause-effect relationship, the variations caused
by injecting random noise are able to fool the detection.

Devices that do not transmit continuously can randomly
send information that creates a pattern similar to their inferred
event traffic. This way they can keep sending their information
which is hidden within random traffic. We add random noise
which appears like regular traffic for a motion sensor in Figure
10.

8.3 Constantly Vary the Resolution of the
Data Being Transmitted

For devices like camera, there are several video resolutions
that an adversary can choose. The higher the resolution, the
better the video quality is. However, if an adversary chooses
a scheme where the video resolution is constantly varying,
it will cause random changes in the network traffic. Hence,
even if the user’s motion is causing changes to the traffic, it
is overpowered by the changes in network traffic due to a
variation in resolution.

For RF sensors, they can vary the number of maximum
points that they transmit continuously to achieve a similar
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Figure 10: Injecting noise in the traffic of a motion sensor to
fool SNOOPDOG
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effect.

8.4 Adding a tape/broadcast delay to the
transmissions

An adversary can add a tape delay to the sensor transmissions,
i.e. intentionally adding a delay between when something
was recorded and when it was transmitted. Since, we are
only looking for causality within a small time window, a
high tape delay will be able to fool SNOOPDOG . However,
given enough storage capacity and time, it is possible for
SNOOPDOG to scan the entire recording to look for cause-
effect relationship with user motion. But for large tape delays,
this is not practical.

9 Limitations

1: Only limited to VBR devices. Although SNOOPDOG can
detect a wide variety of commonly available sensors, it cannot
detect any wireless sensor monitoring the user. For a sensor to
be detectable by SNOOPDOG, the traffic must be encoded with
a Variable Bit Rate (VBR) algorithm and the data recorded
by the sensor must change in response to user perturbation
which can be recorded by a ground truth sensor. That said,
most surveillance devices such as cameras, motion sensors
and smart-home assistants today fall into this category, and
thus we believe SNOOPDOG can serve as a valid defense.

2: A technically capable adversary can fool SNOOPDOG
if they know about its existence. If the adversary suspects
SNOOPDOG is in use, they can use one of the techniques
listed in Section 8. They can also use channel hopping or
MAC randomization. We have not evaluated SNOOPDOG for
any of the above techniques.

3: Evaluation is limited to Wi-Fi devices and devices who
route their traffic through a Wi-Fi-hub only. We have eval-
uated SNOOPDOG for Wi-Fi-connected devices only. For fu-
ture work, this framework can be evaluated for other popular
wireless communication standards. SNOOPDOG can be ex-
tended to standards like Zigbee [41], Z-Wave [42], and Blue-

tooth [43,44] as long as we have the following: 1) A receiver
that can scan their probable frequencies and sniff their packets
to find if any devices are transmitting and 2) the ability to
find unique device IDs from packet headers and distinguish-
ing header information from payload size. While capturing
Zigbee/Z-Wave packets will require additional hardware, re-
cent works have shown that it is possible for a Wi-Fi radio to
perform cross-technology communication. [45,46]

10 Discussion

QI: What is the usability of SNOOPDOG? We envision
SNOOPDOG to be implemented as an app on either a smart-
phone or a smartwatch (or a combination of the two). This
means an end-user will not need any prior knowledge about
causality and coverage of a device to use it. SNOOPDOG will
continuously work in the background to look for a cause-
effect relationship between a user’s actions and device traffic.
It will then guide a user step-by-step through the entire lo-
calization procedure. Since an adversary can place a sensor
at any time (e.g.,when a user checks in a room, searches for
devices, finds none and then leaves for dinner after which the
adversary places the spying device), SNOOPDOG will still
find it because it continuously works in the background. This
will not cause any overhead in terms of user involvement.
Q2: How can false positives be reduced? For false positive
to occur during active detection, the device’s traffic needs to
map directly to the S5 motion during the active phase and
user’s motion during the background phase, which is unlikely.
If there happens to be another camera in an adjacent space
monitoring another user who is performing the detection trial
within the same time window as the first user, it will trigger
a false detection. However, the probability of this happening
is low. Nevertheless, it remains a possibility, and mitigating
such instances are highly desirable.

Simple strategies can significantly reduce the chances of
false positives. First, during the initial monitoring phase for
wireless devices, any periodic trends in traffic patterns can
be noted; the detector trial should ensure its periods are not
synchronous with such periodicity. Furthermore, the detection
process can be done multiple times with varying and erratic
period lengths. This will drastically decrease the chances of
a false positive, as a device would have to coincidentally fol-
low this effectively random traffic pattern. Finally, the entire
process itself can be performed repeatedly; each iteration
compounds the decrease in false positive rate, such that it
eventually reduces to a statistical impossibility.

Q3: Are there alternative approaches to causality? One al-
ternative approach to detecting snooping sensors is correla-
tion. However, correlation does not imply causation. If we
have a sensor that measures the ground truth in the modal-
ity we want to detect, we need to use causality analysis. For
example, it takes the camera some time to process the infor-
mation and send it over to the server. So if we capture human
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motion with an IMU, the camera traffic will lag the IMU time
series. This is correctly captured by causality analysis but not
by correlation. However, if instead of using a sensor to mea-
sure the ground truth, we use another sensor that can capture
the same modality that we are trying to detect, we can use
correlation because if both the devices are capturing the same
event, their traffic should show similar trends. Future work
can also explore the efficacy of data-driven approaches such
as deep learning for time series classification.

Q4: Can we detect continuously streaming audio bugs?
There are two ways to encode audio, either constant bit rate
(CBR) or variable bit rate (VBR). VBR techniques make use
of similarity in sound, such as prolonged silence, to reduce
the amount of data required for encoding. In contrast, CBR
always encodes with the same number of bits. Many off-the-
shelf audio recorders and audio streaming apps use CBR.
Since SNOOPDOG only has access to the payload size of a
packet, there must be variation in the payload to determine
causality. Hence, SNOOPDOG cannot detect CBR audio bugs.
Q5: What is the impact of a ground-truth sensor? Qualita-
tively, the ground-truth sensor enables the detection of causal-
ity between human action and hidden sensors. Even if all hid-
den devices were connected to an accessible Wi-Fi network
(which is the same system model used by loTInspector [8]),
one would only be able to detect the presence of a device on
the network and not whether it is monitoring a user. To quanti-
tatively demonstrate and evaluate the impact of a ground-truth
sensor, Figure 3 illustrates an example where an IMU enables
SNOOPDOG to identify between a hidden sensor monitoring
a user and disregard a camera in a separate room. Moreover,
one may argue that an application can actively instruct the
user to move and establish causality between the period of
instruction and the Wi-Fi traffic patterns. First, such an ap-
proach relies on a general user motion model to establish
causality during these time frames. Second, this approach is
not capable of background detection as it would rely on active
command and response patterns. In Table 3 case 1, without
a ground truth sensor, the false positive rate is 100%. With a
ground truth sensor, this decreases to 6.66%.

11 Related Work

This section presents the most relevant and related works.

Detecting hidden devices using RF signals. A popular tool
to detect hidden devices is called a bug detector [47] — an RF
receiver that can sense if the received power in a frequency
range is above a threshold. The problem with such devices is
that they can produce false alarms when used near other RF
sources such as mobile phones or laptops [17, 18]. Also, they
give no additional information about the type of device or
where it is located. After detection, the onus lies completely
on the user to physically find the device and verify if it is
a surveillance device or not. The host may have a wireless
device to monitor the power consumption of his property, but

to the bug detector, it would seem similar to an IP camera.
Classifying devices on the network using wireless traffic
sniffing. While services like Princeton [oT Inspector [8] col-
lect traffic statistics to identify the types of devices present on
the network, they fail to identify if those devices are indeed
spying on the user or not. Just ascertaining the presence of a
surveillance device is not enough. The device may be present
outside the house or it may be monitoring some part of the
house which was already disclosed by the home owner. In
cases like this, just identifying such a device exists is not
enough, we also need to determine two important facets — is
the device spying on the user and is it located in an area of the
house that has the potential to violate user privacy. Moreover,
tools like this need to have access to the network in order to
be effective. If the snooping devices are placed in a hidden
network or on a password protected network, the use cases of
such a tool are limited.

Other network traffic analysis tools [48,49] utilize traffic

data to find which devices are consuming high bandwidth.
Such techniques can be used to classify audio and video data
streams present in the wireless networks. However, with an
increase in streaming services [50,51], it is difficult to distin-
guish camera video and audio flows with those of streaming
services based on just their bandwidth usage.
Detecting cameras on the network using wireless traffic
sniffing. Wampler et al. [9] and others [10, 11] show that in-
formation leakage occurs in camera traffic due to how videos
are encoded. They observe that changing lighting conditions
cause noticeable variations in the network traffic. Though
these techniques perform well, their performance degrades
when the environment lighting changes naturally. Addition-
ally, while these techniques work well for a camera, they do
not generalize to other types of snooping devices, like RF
sensors or motion detectors. Finally, in order to be able to
change the lighting conditions of a space, the user requires
either specialized hardware (like an LED board or a bulb) or
access to lighting controls, which is not guaranteed.

Approaches like DewiCam [13] exploit the correlation be-
tween human motion and camera data flows to determine if
the camera is indoors or outdoors.

In[12], Wu et al. use their own camera to record a scene
while simultaneously sniffing the network traffic. They com-
pare the data rate and pattern of their camera with other de-
vices in the network to look for any similarities. If a similarity
exists, there is a high probability that the device is a camera.
Localizing wireless devices using RSSI. Received Signal
Strength Indicator (RSSI) is the estimate of the power re-
ceived at the receiver from the transmitting device. The power
received drops with distance, and so does the RSSI. This
property is leveraged to localize devices using RSSI [52-55].
However, due to phenomenon like multipath and shadowing,
the accuracy varies from space to space [56]. The error is very
high (several meters). For small rooms, such a result will be
meaningless, as the snooping device can be effectively hidden
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anywhere.

12 Conclusion

In this paper, we presented SNOOPDOG, a framework to de-
tect, identify, and localize Wi-Fi based sensors monitoring
a person in an arbitrary space. SNOOPDOG works by es-
tablishing causality between a set of ground truth sensors
monitoring a user and the transmitted information of wireless
devices on a Wi-Fi network. It then uses this causality to
perform trial-based localization. We implement SNOOPDOG
on a set of commonly available devices such as a smartphone
and a laptop and evaluate our solution on a set of represen-
tative clandestine sensors. The framework had a detection
rate of 95.2% when the injected multi-modal event was hu-
man motion or sound. SNOOPDOG leverages directionality
of snooping sensors to reduce the total search area.
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Appendix A Audio-based Localization for
Personal Home Assistants

In this section, we describe the audio localization technique
step-by-step. First, we place the source of the sound (smart-
phone playing a phrase containing the wake word of the de-
vice) at different points in the room and see how it affects the
device traffic. Then we go around the room while SNOOP-
DOG repeats that sound continuously and checks them for
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causality with device traffic as shown in Figure 11. Sound
played at the points marked as green produces cause-effect
relationship with the device traffic. We eliminate the regions
where we detect no causality. Next, we reduce the volume by
1 level and repeat our experiment in the left-over space till we
are left with a region of desirable size.

Figure 11: Trial-based localization for acoustic sensors.

Appendix B Traffic Variation of a Personal
Home Assistant During Drop-In
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Figure 12: Traffic variation of Amazon Echo Dot while
dropping-in

As discussed in the previous sections, Amazon Echo de-
vices allow the user to drop into any of their Alexa devices
and remotely listen to the audio in the room that they are
placed in. This does not require any authentication on the
device side during the drop-in. We perform 3 drop-ins on an
Amazon Echo Device and show the traffic variation in Figure
12. From the traffic variation, it is clear when the drop-ins
start and when they end.

Appendix C Aggregation of Traffic Statistics

Each device’s traffic is grouped by MAC address, windowed,
and processed to compute device traffic volume and variation.
SNOOPDOG monitors packet sequence number in the WLAN
layer to isolate and remove duplicate or redundant packets.
As large images are sent over multiple fixed-length packets,
a sufficiently large window size must be used. We chose a
100 ms window to group all packets with the same image
within one interval. Cameras require a frame rate higher than
10 Hz to satisfy the flicker fusion (i.e., persistence of vision)
threshold of the human eye [11,57].

For camera encodings, we discard I-frames (through averag-
ing), as they do not encode differences in a scene and require
higher bandwidth, thereby adversely affecting the causality
analysis.
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