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Abstract—Runtime exceptions are inevitable parts of software
systems. While developers often write exception handling code to
avoid the severe outcomes of these exceptions, such code is most
effective if accompanied by accurate runtime exception types.
Predicting the runtime exceptions that may occur in a program,
however, is difficult as the situations that lead to these exceptions
are complex. We propose D-REX (Deep Runtime EXception
detector), as an approach for predicting runtime exceptions of
Java methods based on the static properties of code.

The core of D-REX is a machine learning model that leverages
the representation learning ability of neural networks to infer
a set of signals from code to predict the related runtime
exception types. This model, which we call Location Aware
Transformer, adapts a state-of-the-art language model, Trans-
former, to provide accurate predictions for the exception types,
as well as interpretable recommendations for the exception prone
elements of code. We curate a benchmark dataset of 200,000 Java
projects from GitHub to train and evaluate D-REX. Experiments
demonstrate that D-REX predicts runtime exception types with
81% of Top 1 accuracy, outperforming multiple non-Transformer
baselines by a margin of at least 12%. Furthermore, it can predict
the exception prone elements of code with 75% Top 1 precision.

Index Terms—exception prediction, runtime exceptions, soft-
ware code modeling

I. INTRODUCTION

Exception handling is a crucial part of developing robust
and reliable software systems. Exceptions can be defined as
events (or errors) that happen during the runtime of a software
system and result in the deviation of the execution of the
program from its normal and expected behavior [1], [2], which
subsequently can result in serious issues such as crashing the
system [3]. In order to control the execution of the program
in the event of exceptions, developers develop code specific to
the occurrence of each exception, also referred to as exception
handling. For instance, in Java, exception handling can be done
by implementing try-catch blocks.

Most languages that support exceptions, treat all exceptions
the same way. Java, however, has two categories of exceptions:
checked and unchecked. The conceptual difference between
the two is subtle: checked exceptions are meant to capture
errors that can be recovered from, while unchecked exceptions
capture unrecoverable errors. Examples of the former include
problems with the file system such as file not found; examples
of the latter include problems arising from fatally wrong inputs,
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such as division by a zero value and the dereferencing of null
objects [4]. Operationally, Java treats checked and unchecked
exceptions differently: the declaration and handling of checked
exceptions is enforced by the Java compiler, while unchecked
exceptions are left for the runtime to handle.

Predicting the types of exceptions that will happen during
the runtime of a program, however, can be difficult and
developers may not always come up with an inclusive set.
Hence, they may ignore handling such exceptions, or simply
resort to handling the most generic type of exception. Studies
of the Java ecosystem have shown that the Exception class,
which is at the top of the exception hierarchy, has a high
frequency of appearance in try-catch blocks [5]. Handling the
Exception class is considered a bad practice as it hides the real
causes of problems [6], [7], [8]. Previous studies reveal that
bad exception handling practices are prevalent [9], and that
unchecked exceptions have a heavy toll with respect to bugs [9],
[3]. Therefore, it is crucial to handle, or avoid, unchecked
exceptions (which are also referred to as runtime exceptions).

In order to prevent such exceptions from happening, de-
velopers typically investigate their code, along with the
documentation of the APIs it uses. However, rather than solely
relying on the developers’ knowledge of which exceptions
to handle, it will be useful to develop techniques that make
recommendations based on the concrete code at hand. A state-
of-the-art tool in this context is FuzzyCatch [2], [10], developed
for the Android ecosystem. In the absence of the runtime
information before executing programs, FuzzyCatch makes
predictions based on the co-occurrences of API method calls
and runtime exceptions in the Android apps. However, by
only considering pairs of method calls and exception types, it
fails to account for the complex interplay between multiple
code elements (such as method calls, numerical operations,
or structural code constructs) and the exception types; this is
important because often there are multiple method calls and
the use of certain operations and classes in a certain order that
result in a runtime exception. Moreover, by only relying on
API method calls, methods lacking API method calls (that are
possibly exception prone) are totally missed.

In order to be able to estimate the probability of various
runtime exception types based on the interplay of different code
elements, we need an approach that can infer these relationships
from code. A simple statistical model or human developed
heuristics may not work well here since the existence of various



code elements can lead to various scenarios of exceptions
occurrence, making it infeasible to derive an inclusive set of
rules. To address this challenge, we present D-REX (Deep
Runtime Exception detector), a deep learning based approach
that captures the correlations between certain code elements
and a set of Java runtime exception types to predict the possible
runtime exceptions. D-REX is also able to make predictions
for the exception prone code elements. ‘Code elements’, here,
refer to various code constructs, such as method calls, type
castings, or numerical operations that are captured by D-REX
in the form of special tokens (described in Section IV-A). By
being informed about the part of the code that is causing an
exception, developers can make more informed decisions on
how to handle the exception.

The workflow of D-REX is divided into two stages: 1)
building a special token sequence for each method which we
call Action-Context Token Sequence (ACTS), containing tokens
representing different code elements, and 2) joint training
of a feature extractor model which produces a semantically
meaningful representation of the input ACTS, and two neural
network classifiers which take the learned representation as
input and predict the relevant runtime exception types, as well
as the exception prone ACTS tokens. For the second stage,
we propose a deep neural network model, Location Aware
Transformer (LA-Transformer), which adapts Transformer [11],
a state-of-the-art language model, for predicting the possible
exception types and exception prone tokens. LA-Transformer
is location aware in the sense that given a method’s ACTS
tokens, it leverages the information of which tokens are located
inside the try block in its training phase. This extra piece
of information helps it in predicting the exception prone
ACTS tokens and also, making more accurate exception type
predictions. While during training, we utilize the existing
information about the tokens inside the try block, during
inference, such information is not needed and the model
predicts the tokens which it finds to be exception prone.

We chose Transformer as the feature extractor model of D-
REX since its self-attention mechanism allows every element
of the input sequence to directly communicate with all other
elements in each layer in constant time and space complex-
ity [11], alleviating the issue of forgetting in modeling longer
sequence data compared to the recurrent neural networks [12],
[13]. We found this particularly useful in learning meaningful
representations from code as the lengths of methods can
vary both within and across the projects. We demonstrate
its effectiveness in our experiments by showing that D-REX
outperforms the Bidirectional LSTM [13] in exception type
prediction by a considerable margin.

Overall, our contributions can be summarized as follows.
1) We present D-REX, a novel approach for the recommen-

dation of unchecked (runtime) exceptions in Java, which
outperforms multiple baselines.

2) We present an application of Transformer model for
predicting runtime exceptions. To leverage the information
about the parts of the code located inside the try blocks
during training, our main contribution, in this respect, is

Location Aware Transformer that produces more accurate
results and identifies exception prone tokens.

3) We curate a dataset of 200K Java projects with more
than ≈442K try-catch blocks handling runtime exceptions
available at mondego.ics.uci.edu/projects/d-rex/.

The remainder of this paper is structured as follows. Sec-
tion II builds the motivation for our task by providing concrete
examples and explains our ultimate goal in detail. Section III
describes the dataset that we curated for training and evaluation
of D-REX, and Section IV discusses our proposed approach by
explaining the architecture of D-REX, capturing ACTS and the
details of LA-Transformer. Section V presents the results of
the experiments conducted to evaluate D-REX’s effectiveness
in predicting exception types and exception prone tokens on
two separate datasets. Finally, we present the related work in
Section VI followed by a discussion on threats to validity in
Section VII, and conclusions and future work in Section VIII.

II. MOTIVATION AND GOAL

Runtime exceptions frequently occur in Java programs [9];
a study [3] on 246 Android exception related bugs found the
majority of them to be runtime ones. Another study on 656 Java
libraries found handling of API runtime exceptions to be more
frequent than the checked ones [14]. Runtime exceptions are
prevalent and can cause serious issues at the program runtime
(e.g., complete crash of program) if not properly tackled or
handled. For example, NullPointerException, which frequently
happens in Java programs, serves as a major cause of crashes in
software systems [15] and is typically not caught during testing,
making it likely to propagate to the program runtime [16]. These
findings demonstrate the importance of addressing runtime
exceptions before they cause major issues.

In its simplest form, the problem of runtime or unchecked
exception handling is seen in the howManyTimes() method at
lines 2 to 8 of Listing 1. In this method, if the second parameter
has a value of zero, a division by zero happens, leading to
an ArithmeticException. This may not catch the developer’s
attention and they may miss to handle this exception. A possible
fix to this issue is shown in the method starting from line 10 and
ending at line 16 of Listing 1. In this fix, the developer deals
with the ArithmeticException by implementing a pre-condition
on the argument in their if statement.

Another example of a scenario susceptible to runtime
exceptions is depicted in Listing 2 from line 2 to 10. At
runtime, this method will throw a NumberFormatException on
parsing the string values to integer values at lines 4 and 5 if
a value in the input array does not represent an integer. Even
if all the values in the input array are valid representations
of integers, and the parsing is safely done, this method is
yet susceptible to ArrayIndexOutOfBoundsException. The for
loop traverses the array to its last element while inside the for
loop, accessing the i + 1th index of the array can result in
ArrayIndexOutOfBoundsException if i == params.length−1.
The method starting from line 12 of Listing 2 tries to tackle
both problems. NumberFormatException is being handled by
a try/catch block to alert the user about the proper input,
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1 // Before fix
2 private int howManyTimes(int a , int b){
3 int result =0;
4 if (a > b) {
5 result = a / b;
6 }
7 return result ;
8 }
9 // After fix

10 private int howManyTimes(int a , int b){
11 int result =0;
12 if (b!=0 && a > b) {
13 result = a / b;
14 }
15 return result ;
16 }

Listing 1: Example 1: Method prone to RuntimeException

1 // Before fix
2 public static String [] findMax(String [] params){
3 for ( int i = 0; i < params. length ; i++) {
4 if ( Integer . parseInt (params[i ])>Integer . parseInt (params[i + 1]) ) {
5 params[i + 1] = params[i ];
6 }
7 }
8 return params;
9 }

10 // After fix
11 public static String [] findMax(String [] params){
12 try {
13 for ( int i = 0; i < params. length−1; i++) {
14 if ( Integer . parseInt (params[i ])>Integer . parseInt (params[i + 1]) ){
15 params[i + 1] = params[i ];
16 }
17 }
18 }
19 catch (NumberFormatException e){
20 System.out . println ("Input array may only contain integer values") ;
21 }
22 return params;
23 }

Listing 2: Example 2: Method prone to RuntimeException

and ArrayIndexOutOfBoundsException has been controlled
by changing the upper bound of the loop counter from
params.length to params.length− 1.

As the two examples show, knowledge about the relevance
of runtime exceptions can help the developer take the necessary
actions. These actions need not necessarily be implementing
an exception handler; valid actions include the addition
of pre-conditions, changing the parameters types, and even
rearchitecting the code. A trivial way of reminding developers
about possible runtime problems would be to always remind
them of all runtime exception types. However, that would
have a very high rate of false positives, which would make
developers ignore the reminders. Another simple solution can
be to only remind about the RuntimeException class (the super
class of all runtime exceptions in Java) which can result in
ignoring important runtime exception types that may happen in
different situations and result in unexpected program behaviour.

Our goal is to design and implement an approach that can
predict relevant runtime exception types and exception prone
code elements for each method. Unlike previous approaches [2],
[10], [1], [17], [18], [19], our work does not focus on
recommending exception handling code. Rather, we aim to
inform the developer about the possible incidence of such
exceptions and possible causes, but delegate the needed action

to the developer, as wrapping runtime exceptions in a try/catch
block is not always the best solution; sometimes fixing the
code to prevent the exception from happening in the first place
can be a better approach (as observed in the above examples).

In the absence of runtime information and user input prior to
executing the program, we make use of the static signals from
code to find clues pertaining to the relevance of certain runtime
exceptions. For example, in Listing 1, the divide operator serves
as a clue about the ArithmeticException. This is an example
where a runtime exception is possible to happen while there is
no API method call present in the code related to it. In Listing 2,
the invocation of parseInt() on the method parameter value
gives a clue about NumberFormatException and accessing the
array indexes by doing an arithmetic operation (i+1) inside a
for loop gives a clue about ArrayIndexOutOfBoundsException.
This demonstrates how the complex interplay of various code
elements can contribute to a runtime exception. Inferring the
relationships between the code elements and predicting relevant
exception types accordingly using heuristics or statistical
methods may not work well here, and a machine learning based
method such as D-REX can help us by automatically learning
the relevant patterns based on a large dataset of examples.

In addition to recommending relevant exception types, by
identifying exception-prone elements of code, D-REX can help
the developer find the issues in their program or implement the
suitable try/catch block, as most of the time the developer is
not aware which part of their code is possibly going to throw
an exception. For example, the Top 1 exception prediction of
D-REX for the example in Listing 1 is ArithmeticException and
the divide operator on line 5 is predicted as the most probable
cause for it. For Listing 2, D-REX predicts both NumberFor-
matException and ArrayIndexOutOfBoundsException as its top
2 predicted exception types, and the invocations of parseInt()
and accessing the array inside the loop as the exception prone
parts of code. An interesting observation here is that D-REX
predicted NullPointerException as its third exception type for
this method; a closer look shows that this exception is possible
to be thrown if the input array (params) has a Null value.

D-REX operates on Java methods and its core is a deep
learning model. This model predicts the relevant exception
types and exception-prone elements of code by learning from a
dataset of over 350k developer-implemented try blocks handling
runtime exceptions. For training, we use the information from
the try/catch blocks; for evaluation, the try/catch blocks are
removed from the methods to provide the model with the raw
method source code that it receives from a developer.

III. DATASET

We used the Java dataset used in the GitHub study by Lopes
et al. [20] to prepare our dataset. The benefit of this dataset is
that it includes the Java projects present in GitHub until the
time of paper’s publication with forked projects excluded and
a mapping of cloning among the projects provided. This is
particularly helpful in a machine learning task like ours as we
could use it to remove the repetitions among projects to reduce
the duplications in training and testing datasets and train a



more generalized model. Their whole Java dataset contains

1,481,468 projects and 72,880,615 files. From these projects,

we only considered those that have more than 10 files (to

narrow our focus to bigger and meaningful projects), leaving

us with 670,429 projects. We then filtered out projects that

are 50% or more clones of other projects; giving us 544,513

projects. We then drew a 200,000 random sample of these

projects, which we name 200k dataset. Using the file level

mapping of clones [20], we also filtered out the files that are

total duplicates of each other; i.e., the Type-1 clones [21].

Prior to parsing the projects, we collected the list of Java

SDK runtime exceptions from its documentation1. We collected

all subclasses of the RuntimeException (including this class

itself), a set of 169 exceptions. To curate a labeled dataset

of methods that may have runtime exceptions, we looked for

methods that have a try-catch block where one of the 169

collected runtime exceptions is caught in their catch statement.

We modified JavaParser [22] to parse the projects and fetch

methods and the try-catch blocks within them and the tokens

needed for the Action-Context Token Sequence. In this step,

we found 577,067 examples of try-catch blocks catching a

Java runtime exception. From these, we removed the ones

that were catching the RuntimeException itself since it is the

superclass of all of the target exceptions and including it as

a label can confuse the model. This left us with 470,376

examples. By analyzing the exceptions’ frequencies, we found

some rare exception types: for example, 35 exceptions appear

less than 10 times. We decided to exclude the examples

with very rare exceptions (the ones appearing <100 times) to

focus on the most frequent exception types. We also removed

methods with inner classes in their bodies since their structure

is different from conventional methods and can introduce

noise to the dataset. After these two steps, we were left with

442,446 samples and 52 exception types. Figure 1 shows the

frequencies for the top 10 frequent runtime exceptions. The

three most frequent exceptions are the NumberFormatException
(142,800 times), the IllegalArgumentException (89,193 times)

and the NullPointerException (46,575 times). For the rest of the

exceptions not shown here, twelve appeared between 10,000

and 1,000 times, and the rest appeared less than 1,000 times.

We split the dataset into train, validation and test sets by

dedicating 80% of samples to the train set, 10% to the validation

set and 10% to the test set. As a result, the train set has 353,956

samples and test and validation each have 44,245 samples.

We perform the training on the train set, determine all the

hyperparameters and early stopping steps using the validation

set, and benchmark the accuracy of D-REX and other baselines

using the hold out test set.

IV. PROPOSED APPROACH

Figure 2 shows an overview of the D-REX prediction

pipeline. The prediction starts by receiving a Java method and

parsing it to retrieve a token sequence which we call Action-
Context Token Sequence (ACTS). The goal here is to capture the

1https://docs.oracle.com/javase/7/docs/api/java/lang/RuntimeException.html
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Fig. 2: Overview of the D-REX Prediction Pipeline

key elements of the code that represent the main actions carried

out in the method while decreasing the language vocabulary.

This sequence is then fed to a deep learning model, called LA-

Transformer, that applies transformations on its input to build

a high-level semantic representation, and predicts two outputs:

(i) top K runtime exception types possible to happen ranked

by their occurrence probabilities, and (ii) top N exception

prone tokens, which are tokens from the ACTS that are most

likely responsible for the predicted exceptions. The two main

components of this pipeline, Action-Context Token Sequence
and LA-Transformer, are discussed in this section.

A. Action-Context Token Sequence

In order to provide the input method to the prediction

pipeline, we derive a token sequence from it providing the

key information helpful in predicting the runtime exceptions.

Previous research has explored the correlations of API method

calls with the occurrence of runtime exceptions [2], [10],

however, method calls alone may not be sufficient to estimate

the probability of runtime exceptions. For instance, in the Before
fix situation of the example depicted in Listing 2, the occurrence

of ArrayIndexOutOfBoundsException is not recognizable if we

only look at the method calls; it is accessing the indexes of

the input array that causes this exception. Moreover, a single

access to an array may not introduce a high probability of

exception occurrence compared to when it is accessed inside

a loop. Therefore, one may find it useful to feed all method

tokens to the deep learning model and let the model perform

https://docs.oracle.com/javase/7/docs/api/java/lang/RuntimeException.html


its inference and make the predictions. However, source code
vocabulary has been shown to be unlimited as new identifier
names get introduced constantly [23], [24]; such increase in
vocabulary can make it difficult for the deep learning model to
infer meaningful representations from the input and hampers
the model convergence. Therefore, we need to derive a set
of tokens from the methods that can decrease the vocabulary
by removing unnecessary elements while capturing the key
elements of code that can contribute to the occurrence of
runtime exceptions. As the examples in Section II showed, it
is often an interplay of different code elements that ultimately
result in a runtime exception; in other words, it is a specific
action (such as a method call or a mathematical operation) in a
specific context (for example a for loop or a special condition in
a nested if statement) that causes a specific runtime exception.
The names of the variables, for example, may not introduce
relevant and useful information here.

To address these needs, we build a special token sequence for
each method, called Action-Context Token Sequence (ACTS),
capturing two important aspects from each method: actions
carried out in it and the context in which these actions are
performed. Hence, we have two categories of tokens: tokens
capturing actions and tokens capturing contextual information.
These tokens may have identical correspondence with the
tokens in code (e.g., method calls), or may be derived from
code and presented by a literal value (e.g., ‘Cast’ to show type
casting). Details of ACTS are as follows:

1) Tokens capturing method’s actions: One set of captured
tokens are the method calls invoked in the method body.
As the example in Listing 2 showed, method calls (e.g.,
parseInt()) can serve as causes for throwing a runtime exception
(NumberFormatException). FuzzyCatch [2], [10] heavily relies
on API method calls and Barbosa et. al [1] use method calls
to recommend exception handling code. Saini et al. [25] refer
to method calls as ‘Action Tokens’ and introduce two other
action tokens as well: ArrayAccess for accessing the index of
an array and ArrayAccessBinary for accessing the index using
an arithmetic operation (such as i+ 1). We consider these two
tokens in the ACTS as well, since as we saw in Listing 2, such
tokens can signal for runtime exceptions. Another set of tokens
that convey actions are the Binary and Unary operations. A
simple example is Listing 1 where divide operator signals for
an ArithmeticException. Finally, we capture a set of special
tokens to cover the actions that were not covered by the tokens
explained so far. These tokens capture variable declarations,
type-casts, object instantiations, using the Null literal, accessing
objects’ fields and returning methods’ results.

2) Tokens capturing contextual information: One aspect
of the contextual information are the code blocks that define
the sequence of actions and therefore, can contribute to the
occurrences of exceptions; for example, consider invoking the
subString() method on a string value or accessing an array
indexes; both of these actions may be more exception prone
if done inside a loop. We define a set of special tokens to
capture these blocks in a high-level manner. For example,
the beginning of a loop is captured with BeginLoop and its

TABLE I: Tokens in Action-Context Token Sequence

Tokens Capturing Actions Tokens Capturing Context

1. Method calls 10. BeginLoop, EndLoop (any loop block)
2. ArrayAccess, ArrayAccessBinary 11. BeginIf, Else, EndIf (if block)
3. Binary and unary operations 12. BeginSwitch, EndSwitch (switch block)
4. VarDec (variable declaration) 13. BeginTry, EndTry (try block)
5. Cast (act of type casting) 14. BeginCatch (catch in a try block)
6. New (object instantiation) 15. BeginFinally (finally in a try block)
7. Null (referencing "Null" literal) 16. Array
8. FieldAccess (access an object field) 17. Primitive data types
9. Return (method’s return) 18. Class names

ending is captured by EndLoop. Similarly, the beginning and
ending of if-else blocks, try-catch-finally blocks (for checked
exceptions) and switch-case blocks are captured. The other
set of relevant tokens are the data types. Barbosa et al. [1]
use variable types for recommending exception handling code
and discuss that methods using variables of the same types
are likely to implement more similar tasks. Other than this,
certain data types can correlate with certain runtime exceptions
occurrence (such as the use of numerical data types correlating
with mathematical runtime exceptions). Class types also give
context to actions and can correlate with exceptions relevance;
for example, class Integer can correlate with the occurrence
of NullPointerException while the primitive type int will not.
Hence, we capture all primitive types and class names as tokens.
The Array token is used to capture array types.

Table I provides a summary of the ACTS tokens, where
literal tokens (e.g. Null) are expressed in regular font, and
tokens that take values from the code are expressed in italics.

B. LA-Transformer Model

Figure 3 shows the high-level architecture of LA-
Transformer, the deep learning model of D-REX. First, the
trained Transformer layers extract a high-level representation
of the given ACTS tokens. This representation is fed into two
networks at the same time: a location prediction network (to
predict the exception prone tokens) and an exception prediction
network (to predict the exception types), both of which consist
of several fully connected layers. The Transformer layers and
the two prediction networks are trained jointly in an end-to-
end fashion. In this section, we first give an introduction to
Transformer [11], the feature extractor of D-REX, and discuss
its difference with other deep neural network models that can be
used for this purpose. Then we explain the location awareness
concept in LA-Transformer and its training paradigm.

1) Transformer vs. Recurrent Neural Network: Recent
advances in natural language modeling [26], [27], [11] have
seen great success in modeling sequence data. Among them,
Transformer is the state-of-the-art attention-based deep neural
network model, specially designed for extracting high-level
representations from sequence data. In contrast to other neural
network models designed for modeling sequence data, such as
recurrent neural networks (RNN) [12], Transformer does not
rely on a recurrent structure which suffers from known issues
such as catastrophic forgetting [28], [29] when modeling long
sequences, where the network fails to model the representation



Fig. 3: Architecture of LA-Transformer Model
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of the whole sequence due to forgetting. This is due to the fact

that in Transformer, between every two layers, every output

unit is directly connected with every input unit through the

self-attention mechanism. This is useful when learning long

method token sequences.

The structure of the self-attention mechanism is shown in

Figure 4. Every input element (input token in the first layer, or

the output of previous layer in the other layers) possesses three

different feature vectors: a key, a value and a query vector,

all learned during the training. The i-th attention vector is

produced by the dot product between the i-th query vector

and all key vectors. This attention vector is used as a weight

to get a weighted average of the value vectors of all input

elements, producing the i-th output element (shown as output

in the figure). Therefore the i-th output element is directly

connected with every input element in the self-attention layer.

This connection is restricted in RNN layers as the i-th output

unit can only connect with the j-th input unit if j ≤ i. Further,

the connection between the i-th output unit and the j-th input

unit becomes weaker and weaker as the number of units

between them increases in RNN layers.

2) Location Awareness: In the problem of exception type

prediction, there is an extra piece of information in training data

that we can exploit to provide more accurate recommendations:

tokens located inside the associated try block. The exception

types handled in a try-catch block of a method are strongly

correlated with the tokens appearing in the try block. Such

information is present in our training data; hence, given a

try-catch block handling a runtime exception in a method, in

the training phase, we augment the input ACTS tokens with

location indices of tokens belonging to the try block, and use

it as label information for location prediction layer during joint

training. Note that this information is not necessary for the

location prediction layers during inference.
Since training is done with an objective function to optimize

these two prediction networks as well as the Transformer layers

simultaneously, it forces the learned high-level representation

to be location aware, hence, more expressive than a model

without the location prediction network, which we refer to as

the plain Transformer model. The plain Transformer model

can only predict exception types (and not the exception prone

tokens) and we compare D-REX using LA-Transformer with

a version of it using plain Transformer in Section V-A
3) Training: During training, the loss function takes into

account both the error from predicting the exception type and

the error from predicting the tokens that belong to the try

block. L, the joint objective function of exception prediction

and location prediction, is formulated as follows:

L = Lexcep + λLtryloc (1)

In this equation, Lexcep denotes the cross entropy loss

resulting from the exception type prediction, and Ltryloc denotes

the mean value of the loss of every token in the input,

where each individual token uses a binary cross entropy loss

[30]. λ is a tuning parameter between [0, 1] balancing the

magnitude of the two losses. In practice, we treated λ as a

hyper parameter and conducted a grid search in a list of values:

[10−2, 5 · 10−2, 10−1, 5 · 10−1], where we found that 10−2

yields the best performance. Note that the weight parameters in

Transformer layers and in the two prediction layers are trained

jointly using equation (1).
The number of Transformer layers and other layer specifica-

tions such as the number of units in each layer were treated as

hyperparameters, tuned through grid search. The best resulting

architecture consists of 10 Transformer layers with a hidden

dimension of 512 and an embedding size of 512. Both try

location prediction and exception type prediction networks are

parameterized by a two-layer fully connected neural network of

width 100. With the output of these two networks, equation 1 is

used to calculate the overall loss. Adaptive moment estimation

(Adam) [31] optimizer with learning rate 3× 10−3 was used

to minimize equation 1. Both plain Transformer and LA-

Transformer models were trained for 100 epochs and the top

k (1, 2, 3, 5, 10) accuracies converged (stopped improving).

V. EVALUATION

In this section, we present the results of evaluating D-REX’s

exception type and exception prone token predictions. The

ground truth exception types in these experiments are the

runtime exceptions handled by developers in try blocks. For

the exception prone token predictions, we present quantitative

and qualitative analyses by looking at the top-k predictions

by D-REX. In quantitative analysis, the ground truth for the

exception prone tokens are the tokens inside each try block. In

all experiments, for each try block of interest in each method,

we removed the keyword try and the exception handling code.

This way we ensured that the input to our model does not

contain any tokens related to the exception handling code.



A. Exception Type Prediction

1) Baselines: In order to compare D-REX with the existing
methods of exception type prediction, we searched for available
tools in this area. Although there has been much work in
recommending exception handling strategies, the only approach
we found that predicts runtime exceptions is FuzzyCatch [10],
[2]. The core of FuzzyCatch is a statistical model based on the
co-occurrences of the API method calls and exception types,
trained and tested using a set of Android projects. Hence, there
are two issues that make a direct comparison between D-REX
and FuzzyCatch not valid: (1) The FuzzyCatch model was
trained exclusively on Android code, while the dataset used for
training our D-REX model is based on randomly selected Java
projects and does not focus on Android projects. This matters,
because there is considerable divergence of vocabulary between
Android APIs and regular Java APIs: a model trained on one
vocabulary may not do well on the other. (2) FuzzyCatch is
offered as IntelliJIdea and AndroidStudio plugins, and expects
a human in the loop; unlike D-REX, it is not possible to run
FuzzyCatch headless on a large source code dataset. Since a
direct comparison with this tool is not feasible, we developed
a baseline inspired by their technique that works based on the
co-occurrences of method calls and the exception types and
we trained it on the 200k train set. We name this baseline
Method-Exception-Frequency (M-E-F). For each method, M-E-
F collects all method calls in it and then queries the train dataset
for the co-occurrences of each method call and all exception
types. Using a fuzzy union formula (presented in [10], [2]), it
then aggregates the results for all method calls and recommends
the possible exceptions sorted by their predicted probability.

As we discussed in Section III, the proportion of the
runtime exceptions in our dataset is imbalanced. While
NumberFormatException, for example, has appeared more
than 140,000 times, there are exceptions that have appeared
only a few hundred times. As a result, one may wonder
how a model that recommends runtime exceptions randomly
with a chance proportional to their occurrences would work.
To answer this question, we developed a model, which we
call Random baseline, that recommends runtime exceptions
randomly according to the frequency of the exception types in
the train dataset. In particular, an exception that has appeared
N times in the train dataset gets N times the chance of being
predicted, compared to the exception that has appeared only
once. In order to have reproducible results and gain a broader
perspective, for this baseline, each time a set of five seeds
are generated randomly and using these seeds, the Random
baseline generates five different results. The accuracy numbers
represent the average across all these runs.

Moreover, to compare the LA-Transformer component of D-
REX with other potentially suitable deep learning models,
we trained two other models: (1) a bidirectional LSTM
model [13] (Bi-LSTM), a variant of RNN models, and (2) a
plain Transformer model (P-Trans) (described in Section IV-B).
For each of these, LA-Transformer in D-REX is replaced with
the corresponding model and the top k predictions are collected.

All baselines are trained on the 200k training dataset, and
their accuracy is compared with D-REX’s accuracy on 200k
test dataset as well as a separate set of unseen java projects.

2) Accuracy Comparison on 200k Test Set: We first evaluate
D-REX and other baselines on the test portion of the 200k
dataset (44,245 samples). Table II shows the accuracy of each
approach on its Top 1, Top 2, Top 3, Top 5 and Top 10
recommendations. Top 1 accuracy, for example, presents the
proportion of the Top 1 recommendations by each approach
that matches the set of true runtime exceptions present in the
dataset. More formally, if m is a method and Em is the set of
runtime exceptions caught by a try block in m, and ÊK,m is
the list of top K runtime exceptions predicted by an approach
for m, sorted based on the descending order of the predicted
scores, then TopK accuracy over N samples is defined as:

1

N

N∑
m=1

1(Em∩ÊK,m 6=∅) (2)

where 1(Em∩ÊK,m 6=∅) is an indicator function that equals 1
when Em ∩ ÊK,m 6= ∅ and 0 otherwise. This measurement is
similar to the accuracy measurement used by FuzzyCatch and
as they have also pointed out, we are not able to evaluate the
results using Precision due to the lack of negative examples:
given a piece of code, it is almost impossible to determine
that a specific runtime exception will never happen for it. As
for the recall number, the top k recall depends on the number
of the true exceptions in a method, which varies method by
method. However, if there is only one exception in the method,
then our top 1 accuracy is equivalent to recall.

As the table shows, D-REX has been able to achieve the
highest accuracy across all categories of Top K predictions.
The difference, however, is mostly notable in the Top 1 results
which is of utmost importance as the Top 1 prediction is the
one that developers pay more attention to. In particular, D-REX
has ≈81% accuracy in its Top 1 predictions, compared to Plain
Transformer which is the second best one with ≈79% Top 1
accuracy. This indicates that the extra information about the
tokens inside the try block helps D-REX to achieve better
results in the exception type prediction. It also implies that
the exception prone token prediction loss, Ltryloc in equation 1,
has a regularization effect for the LA-Transformer model
to alleviate the over-fitting during training, leading to an
improvement in exception type prediction on the test set. M-E-
F has the third rank in Top 1 accuracy with ≈12% of difference
with D-REX. The Bi-LSTM model was not able to achieve
comparable results which can attest the effectiveness of LA-
Transformer model over it. The Random model achieved poor
results compared to other approaches showing that a random
approach purely based on the observed frequency of exceptions
cannot serve as a viable solution to our problem.

3) Accuracy on Unseen Projects: To understand the effec-
tiveness of D-REX on a variety of projects and those that were
not included in the 200k dataset, we downloaded a separate
set of Java projects from GitHub, shown in Table III. For these
projects, we downloaded their default branch’s version. In the



TABLE II: Exception Prediction Accuracy on 200k Test Set

Top 1 Top 2 Top 3 Top 5 Top 10

M-E-F 69.67% 81.37% 86.30% 92.38% 96.46%
Random 16.75% 31.36% 43.39% 61.08% 82.33%
Bi-LSTM 59.32% 71.71% 78.56% 85.76% 93.12%
Plain Transformer 79.39% 87.49% 90.67% 93.74% 96.68%
D-REX 81.09% 88.91% 91.70% 94.52% 97.08%

TABLE III: Downloaded Java Projects Summary

Project URL Last commit LOC #Samp.

Batik apache/xmlgraphics-batik Jan 12, 2021 190,597 172
Lucene apache/lucene-solr Jan 29, 2021 1,350,727 411
Xalan apache/xalan-j May 23, 2019 170,574 218
Cassandra apache/cassandra Jan 29, 2021 464,594 211
SonarQube SonarSource/sonarqube Feb 17, 2021 516,101 203
Camel apache/camel Feb 17, 2021 1,539,888 213
IntelliJ IDEA CE JetBrains/intellij-community Feb 17, 2021 4,095,728 789
Hibernate ORM hibernate/hibernate-orm Feb 17, 2021 779,538 333
Object Teams eclipse/objectteams Jan 14, 2021 1,868,449 371
MPS JetBrains/MPS Feb 17, 2021 1,872,299 162
Ignite apache/ignite Feb 16, 2021 1,170,332 333
CloudStack apache/cloudstack Feb 12, 2021 661,128 283

table, we show the GitHub URL, the last commit date when we
downloaded the repository, number of source code lines (LOC)
calculated with IntellijIdea’s Statistic plugin 2 and the number
of samples (try-catch blocks with runtime exceptions) fetched
from the project. To select these projects, we first downloaded
and processed the set of Java projects used by Hindle et al. [32],
and included the ones with 100 or more samples to make sure
that the evaluation is done on large enough datasets (first 4
rows of Table III). Then, to expand the comparison to more
projects, we queried the database provided by Lopes et al. [20]
for projects that are not included in 200k dataset and have
more than 5,000 files, and selected 8 more projects. The rest
of the projects listed in Table III were selected in this step.

Table IV shows the the exception prediction accuracy of D-
REX and other baselines on each of these projects, and overall
on all of them, for the Top 1 to 3 predictions. In general, we
see that D-REX is achieving the highest accuracy compared
to all other baselines in Top 1 predictions, except for two
projects: Hibernate ORM and MPS. For MPS, M-E-F achieves
a better accuracy, with a difference of ≈3%, and for Hibernate
ORM, M-E-F performs better by a margin of ≈6%. On other
projects, D-REX has an accuracy improvement over P-Trans in
a range of ≈0.2% to ≈8%, and an improvement over M-E-F
in a range of ≈3% to ≈30%. We see a similar trend of D-REX
performing better than other baselines in Top-2 and Top-3
predictions for the majority of projects. In the overall results,
D-REX is performing the best in Top 1 and Top 2 predictions,
while in Top 3 predictions, P-Trans has slightly better accuracy
by a margin of less than 0.5%.

B. Exception Prone Tokens Prediction

The other output of D-REX is the set of tokens that can
be responsible for the predicted exceptions, in the order of
their predicted probability. We evaluate the correctness of these

2https://plugins.jetbrains.com/plugin/4509-statistic

predictions in two ways: a quantitative analysis to measure
the precision of these predictions with respect to the tokens in
the ground truth try blocks, and a qualitative analysis aimed
at investigating the relevance of predictions with the possible
exceptions through a manual analysis.

1) Quantitative Analysis: For each try-catch block present
in the dataset that handles a runtime exception, we consider
the method’s ACTS tokens that are inside the try block as the
true tokens responsible for the exception. The reason is that
when developers implement try-catch blocks, they form the try
block around the portion of code that they believe can cause
the exception being handled. We evaluate the correctness of
theses predictions with precision: for each sample, we measure
the percentage of the top k predictions that are included in the
ground truth try block. We do this evaluation for k = 1, 2, 3
and report the mean value precision (MeanPrecision) across
all of the samples in the 200k test set as well as the samples
from the unseen projects dataset explained in Section V-A3.
For each value of k, we evaluate D-REX on the samples that
have a try block consisting of more than k tokens and a method
body length of more than than 2 ∗ k tokens. The former is
done since it is not meaningful to look at top k predictions if
the true try block has less than k tokens. The latter is done to
eliminate the cases where the number of tokens in method is
close to k and hence, D-REX has a high a chance of having
its top k predictions to be true predictions.

Table V shows the results of evaluating the top k predictions
(where k = 1, 2, 3) on the two datasets. On the 200k test set,
MeanPrecision of top 1 predictions (k = 1) is 75%, suggesting
that 75% of the times, the top 1 predicted token has actually
been located in the try block. This value is 57% for the unseen
projects dataset. The MeanPrecision values for k = 2 and
k = 3 are also very close to the values reported for k = 1.
This is promising as it can help developers to identify the
source of exceptions by looking at the top 3 predictions.

It is worth mentioning that we did not measure recall here
since while the length of try blocks can vary, D-REX always
produces top k predictions. Therefore, when a method has
a long try block, recall will be dominated by the length of
try block no matter how accurate the prediction is. Also, in
predicting the exception prone tokens, it is the precision of
top K predictions that matters most to the developer, not the
fraction of all tokens in the true try block that are captured.
There can be tokens in the true try block that are not directly
related to the exception but has been placed in the try block
because they form a code construct.

2) Qualitative Analysis: To gain a deeper insight on the
usability of D-REX’s predicted exception prone tokens in real
coding scenarios, we manually investigated its predictions for a
number of methods from the 200k test dataset. Figure 5 shows
three of these methods, where in each example, the left part
shows the method with its predicted exception prone ACTS
tokens circled, and the right half shows the predicted exception
types and exception prone tokens with their probability scores.

The example in Figure 5(a) shows a method that can throw
ArrayIndexOutOfBoundsException. The top 3 token predictions



TABLE IV: Exception Prediction Accuracy Comparison on Unseen Java Projects

Project
Top 1 Top 2 Top 3

D-REX P-Trans Bi-LSTM M-E-F Rand D-REX P-Trans Bi-LSTM M-E-F Rand D-REX P-Trans Bi-LSTM M-E-F Rand

Batik 81.40% 73.26% 51.74% 51.79% 16.51% 84.88% 82.56% 58.72% 54.17% 32.33% 87.21% 84.88% 65.70% 57.14% 41.98%
Lucene 64.08% 60.44% 45.50% 52.27% 16.06% 73.06% 73.03% 59.12% 70.20% 30.41% 76.70% 77.43% 69.83% 75.00% 41.75%
Xalan 88.53% 88.07% 28.90% 76.70% 6.79% 92.20% 91.74% 45.87% 80.10% 13.03% 94.04% 93.58% 87.16% 81.55% 19.08%
Cassandra 60.38% 54.72% 54.03% 48.82% 15.45% 71.70% 71.23% 66.35% 59.24% 29.76% 77.36% 75.00% 74.41% 65.88% 43.03%
SonarQube 69.46% 62.56% 45.81% 53.20% 14.19% 76.85% 71.43% 70.44% 70.44% 26.90% 83.74% 79.31% 82.27% 82.76% 39.11%
Camel 61.03% 53.05% 47.89% 49.29% 13.05% 74.18% 73.71% 68.54% 72.99% 25.44% 84.04% 78.87% 75.12% 77.73% 36.53%
IntelliJ IDEA CE 60.71% 60.58% 49.68% 51.39% 18.80% 71.23% 71.48% 60.58% 69.25% 33.41% 75.41% 76.30% 69.33% 73.47% 44.92%
Hibernate ORM 36.94% 39.34% 38.44% 43.37% 12.01% 68.47% 61.86% 63.66% 59.04% 23.66% 74.77% 78.38% 81.68% 71.69% 34.17%
Object Teams 59.30% 58.76% 41.51% 56.76% 11.81% 74.12% 77.63% 49.87% 72.37% 22.47% 79.25% 82.21% 56.87% 78.08% 32.72%
MPS 46.91% 43.83% 45.06% 49.04% 18.52% 63.58% 51.85% 62.35% 68.15% 31.60% 66.05% 70.37% 72.22% 71.34% 45.93%
Ignite 63.06% 61.56% 37.54% 52.58% 13.09% 71.47% 68.17% 52.85% 65.96% 24.44% 75.68% 72.37% 68.47% 75.68% 33.21%
CloudStack 87.63% 86.57% 65.37% 71.53% 20.42% 93.29% 94.35% 76.68% 91.24% 37.60% 95.05% 96.47% 81.98% 95.62% 52.30%

Overall 62.75% 61.34% 46.09% 55.33% 15.11% 74.78% 73.91% 60.61% 65.96% 28.26% 79.29% 79.78% 72.48% 75.68% 39.17%
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Fig. 5: Qualitative Analysis Examples

TABLE V: Exception Prone Tokens Prediction: MeanPrecision

Dataset k = 1 k = 2 k = 3

200k test set 75% 71% 69%

Unseen projects 57% 56% 56%

are ArrayAccess, ArrayAccessBinary and PLUS (pointing to

plus operator). We see that dir, used as index for accessing the

array, is a parameter whose value is determined at runtime, and

hence, using it to access the array index at line 3 can throw the

predicted exception. Even if the exception does not happen at

this line, it is possible to happen at line 5 when the array index

is accessed by doing an addition operation with dir. Thus, the

ArrayAccessBinary is also a true exception prone token.

Figure 5(b) presents a method susceptible to ClassCastEx-
ception. The top 1 predicted token is Cast (a derived token

corresponding to the type casting implemented at line 4) which

is a true prediction. The next two predicted exception prone

tokens are getIdMap() and get(). At first look, they both seem to

be false positive predictions, however, a close look shows that

the second predicted exception type is NullPointerException
(although with low probability) and these tokens can throw

such exception. This case shows that although the focus is

often on the top 1 predicted exception prone token, the next

predictions give insights to the developer as well.

We also looked at examples where the top 1 predicted

exception prone token is incorrect, as in Figure 5(c). This

method is prone to DateTimeParseException with the top 2

exception prone tokens predicted as: gets() and parse(). The

second prediction, parse(), is directly related to the exception

and gets() is not. A reason can be that DateTimeParseException
is a rare exception, with only 357 appearances in the 200k

dataset. As a result, D-REX has not seen many examples of the

tokens accompanied by this exception. Although it predicted

the true token responsible for the exception, this token is in the

second rank. An important note here is that the top 1 and top

2 predicted tokens have a close predicted probability showing

that they were close choices for D-REX.



The above examples suggest that D-REX is able to produce
meaningful predictions favoring the potentially exception prone
tokens. Therefore, it can help the developer in making better
judgements on the causes for exceptions in their code. During
inference, on average, it takes 0.1s to produce both exception
type and exception prone token predictions for each sample
tested on an 8-core Intel(R) Xeon(R) E5-2620 v4 CPU.

VI. RELATED WORK

Java exceptions and exception handling. A very recent
related work is FuzzyCatch [2], [10], which focuses on
recommending both exception types and exception handling
code in the Android ecosystem. The recommendation of
exception types is based on the co-occurrences of API method
calls and exception types in their dataset. D-REX is different
than FuzzyCatch as D-REX works for Java (in general) and can
predict exception prone tokens as well. Also, we do not focus on
recommending exception handling code. Barbosa et al. [1], [33]
propose heuristic strategies based on the code context (structural
information of code ) to search for exception handling code.
Rahman et al.’s approach [17] recommends exception handling
code by doing a code search on a number of popular GitHub
open source repositories. EH-Recommender [18] leverages
program context in recommending exception handling code,
where program context can be exceptional, architectural or
functional. Maestro [34] recommends the StackOverflow post
mostly related to a runtime exception using a special code
representation, called Abstract Program Graph. Our work
is different than these as we recommend relevant runtime
exception types and exception prone code elements, not the
exception handling code or post. Nakshatri et al. [5] studied
practices and patterns of handling checked exceptions revealing
exception types higher in the class hierarchy being handled
more than the concrete ones. Sena et al. [14] studied exception
handling practices on a set of 656 Java libraries, finding a large
portion of undocumented runtime exceptions in the studied
libraries, and finding API runtime exception handling to be
more frequent than API checked exception handling. Nguyen et
al. [3] studied 246 exception related bugs from Android apps,
finding 51% of them to be thrown by Android API method calls
and that runtime exception are more prevalent than checked
ones. Nexgen [19] is a neural network-based approach for
predicting the location of try blocks and generating exception
handling code. NexGen’s try block location prediction is done
at the statement level, while D-REX produces more fine-grained
predictions at token level, which can be more helpful in finding
the root cause of an exception. Another difference is that D-
REX only focuses on predicting harder to predict runtime
exceptions and delegates the task of dealing with the exceptions
to the developer (to catch the exception or to prevent it).

Source code representation learning. Another line of re-
lated work is source code representation learning. As discussed
by Chen et al. [35], these approaches can largely be divided into
learning token level and function (or method) level embeddings.
In Code2Vec [36] and Code2Seq [37], authors propose to learn
the ’code embedding’ as continuous distributed vectors, which

is similar to our goal. However, they rely on decomposing the
method into a collection of paths in its abstract syntax tree
(AST), and learn the representation vector for each path, as
well as the the amount of attention to put on each paths. D-
REX simplifies this process and only needs to pre-process the
code into a single sequence, then it leverages the representation
learning ability of the Transformer model to summarize the
context of the source code. Moreover, since one of our goals
is to predict the exception prone likelihood of each token in
the input sequence, a finer grained embedding at the token
level is needed. Therefore the AST path level embedding may
be less effective to infer whether each token is exception
prone. Another recent work in building contextual embeddings
of source code is CuBERT [38], which directly uses the
architecture of Transformer [11] and hence, is similar to our
plain Transformer model. However, CuBERT is not specifically
adapted for exception type recommendation in Java. Moreover,
it does not leverage the information about the tokens in the try
block and does not recommend exception prone tokens.

VII. THREATS TO VALIDITY

Runtime exceptions and try blocks used in training and
evaluation of this work are extracted from a set of Java open
source repositories from GitHub. We did not validate these
exceptions and their associated try blocks with respect to
their correctness, however, we used enough projects (200k)
to address for any inaccuracies in the projects. We used the
JavaParser to parse these projects and any errors in this tool may
affect the results. We aimed for comparing D-REX with the
state-of-the-art tool, FuzzyCatch, however, since FuzzyCatch
is exclusively trained on Android ecosystem, we were not able
to perform a direct comparison. We implemented a baseline
inspired by FuzzyCatch’s approach to mitigate this issue.

VIII. CONCLUSIONS AND FUTURE WORK

Runtime exception handling is an important and challenging
task that requires understanding the runtime state of programs.
We proposed D-REX to ease this task by simultaneously
achieving two goals: 1) prediction of the relevant exception
types given un-labeled code, and 2) prediction of the exception
prone parts of the code. These two objectives are optimized
at the same time by training D-REX from end to end. For
training and evaluation of D-REX, we created a benchmark
dataset which will be made publicly available. We demonstrated
through experiments that D-REX significantly outperforms
multiple non-Transformer baselines on two separate datasets.

Our next step is to package D-REX as an IDE plugin:
developers will be able to ask for possible exceptions as they
code and the corresponding exception prone code elements
will be highlighted. Further, it is interesting to explore other
tasks that can utilize the location awareness of LA-Transformer.
One example is code refactoring where the location awareness
can be used to find parts of code that need refactoring. More
generally, D-REX provides a way to leverage any kind of
extra information in the training data, and its application is not
limited to using the try block information from training data.
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