
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

HAWatcher: Semantics-Aware Anomaly Detection
for Appified Smart Homes

Chenglong Fu, Temple University; Qiang Zeng, University of South Carolina;
Xiaojiang Du, Temple University

https://www.usenix.org/conference/usenixsecurity21/presentation/fu-chenglong

HAWatcher: Semantics-Aware Anomaly Detection for Appified Smart Homes

Chenglong Fu
Temple University

chenglong.fu@temple.edu

Qiang Zeng
University of South Carolina

zeng1@cse.sc.edu

Xiaojiang Du
Temple University
xjdu@temple.edu

Abstract

As IoT devices are integrated via automation and coupled
with the physical environment, anomalies in an appified
smart home, whether due to attacks or device malfunctions,
may lead to severe consequences. Priorworks that utilize data
mining techniques to detect anomalies suffer from high false
alarm rates and missing many real anomalies. Our observa-
tion is that data mining-based approaches miss a large chunk
of information about automation programs (also called smart
apps) and devices. We propose Home Automation Watcher
(HAWatcher), a semantics-aware anomaly detection system
for appified smart homes. HAWatcher models a smart home’s
normal behaviors based on both event logs and semantics.
Given a home, HAWatcher generates hypothetical correla-
tions according to semantic information, such as apps, device
types, relations and installation locations, and verifies them
with event logs. The mined correlations are refined using
correlations extracted from the installed smart apps. The
refined correlations are used by a Shadow Execution engine
to simulate the smart home’s normal behaviors. During run-
time, inconsistencies between devices’ real-world states and
simulated states are reported as anomalies. We evaluate our
prototype on the SmartThings platform in four real-world
testbeds and test it against totally 62 different anomaly cases.
The results show that HAWatcher achieves high accuracy,
significantly outperforming prior approaches.

1 Introduction

With the rapid growth of Internet of Things (IoT), smart
homes gain booming popularity. As predicted by Gartner,
there will be more than 500 IoT devices deployed in a typical
household by 2022 [72]. IoT devices become increasingly in-
tegrated, thanks to IoT platforms such as SmartThings [21],
Homekit [47], and OpenHAB [55]. These platforms provide
interoperability among home IoT devices by different ven-
dors, and allow them to work according to user-specified
automation programs (also called smart apps).

Figure 1: Examples of anomalies in a smart home.

Despite advances in appified smart home, there are grow-
ing concerns about its safety and security [41]. First, IoT de-
vices make it possible for cyber-space attacks to be extended
to the physical world. As shown in Figure 1(a), the command
of “close the valve” is maliciously intercepted, which may
cause room flooding. Second, very often a device malfunc-
tion is hardly noticeable until certain consequences arise. As
shown in Figure 1(b), an electronic heater controlled by a
smart app “It’s too cold” [15] could result in fires because of a
broken relay (an electronically operated switch), which pre-
vents the plug from shutting the power for the heater. Third,
as IoT devices are chained together via automation [28,29,39],
abnormal behaviors of one device might trigger undesired
actions of another, which further exaggerates the impact of
anomalies. As shown in Figure 1(c), a smart lock that auto-
matically unlocks upon the resident’s presence is unlocked
due to a fake event of the presence sensor.

To address these concerns, many anomaly detection sys-
tems [30,35,54,56,60,68,76] utilize data mining techniques to
profile the system’s normal behaviors and report events that
deviate from profiles as anomalies. However, these works
usually take event logs as inputs without fully considering
each event’s semantics, which actually may be acquired from
smart apps, device types, and device functionalities. The lim-

USENIX Association 30th USENIX Security Symposium 4223

itations are threefold. First, the logic of some smart apps is
too complex to be mined accurately, causing false negatives
and positives. For example, the event pattern introduced by
the smart app logic “Turn off a smart plug 30 minutes after
two motion sensors in the living room are both motionless" is
difficult to be mined considering the ‘AND’ logic between
two motion sensors and the 30 minutes action delay. As a re-
sult, an anomaly “the smart plug fails to turn off ” may not be
detected. Second, the learning results are typically difficult
to interpret; thus, they can hardly be explained and often
confuse users. Third, the learning results cannot be updated
quickly when smart apps or configuration changes. A long
re-training process is then needed to adapt to the changes
and many false alarms arise before the re-training is done.
Intuitively, incorporating semantic information, such as

automation logic, device types, relations and installation lo-
cations, can help improve the accuracy of anomaly detection.
However, there are a number of challenges to overcome in
order to realize this idea: 1) Standard data mining methods
take event logs as inputs; however, it is unknown how to
represent the diverse semantic information in the form of
event logs. 2) System behavior patterns derived from smart
apps and those mined from events logs may conflict. It is
challenging to identify and resolve these conflicts. 3) When
smart apps change, there are no effective methods to update
the system profiling accordingly.
To fill the gap, we present Home Automation Watcher

(HAWatcher), a novel anomaly detection system for appified
home automation systems. We propose a semantics-assisted
mining method that exploits diverse semantic information
to construct hypothetical correlations (where a correlation de-
scribes how a device state or event correlates with another),
and use event logs as evidence to verify them. Second, as
the correlations are explainable according to the semantics,
they can be easily refined to resolve conflicts with smart
apps. Third, still thanks to explainability, they can be up-
dated conveniently according to smart app changes. The
correlations are then used by our shadow execution module
to simulate normal behaviors in the virtual world. The simu-
lated states are compared to those in the real world through
both contextual checking and consequential checking, and
inconsistencies during comparison are reported as anomalies.
We make the following contributions.

• We propose a novel anomaly detection solution for appi-
fied smart homes. It meets the emerging need of detect-
ing anomalies caused by IoT malfunctions or attacks.

• We propose a semantics-assisted mining method, which
infuses various semantic information (smart apps, con-
figuration, device types, installation locations) into the
mining process. An NLP-based approach is developed
to describe device relations for generating hypothetical
correlations. The mined correlations are explainable,

Figure 2: The SmartThings architecture.

and can be refined easily to resolve conflicts with smart
apps and updated conveniently when apps change.

• We propose the notion of shadow execution for smart
homes, which simulates the normal behaviors of a home
according to the learned correlations and detects anoma-
lies at a fine granularity, i.e., IoT events.

• We implement a prototype HAWatcher and evaluate it
on four real-world testbeds. HAWatcher reaches a high
precision of 97.83% and a recall of 94.12%, significantly
outperforming prior approaches.

The rest of the paper is organized as follows. In Section 2,
we describe background about appified smart homes. In Sec-
tion 3, we survey IoT device anomalies and present the threat
model. In Section 4, we describe three correlation channels
and the representation of correlations. We present the design
details in Section 5. The evaluation is presented in Section 6.
We discuss related work in Section 7, and limitations and
future work in Section 8. The paper is concluded in Section 9.

2 Background: Appified Smart Homes

IoT devices in smart homes have become increasingly inte-
grated via IoT platforms for rich automation. IoT integration
platforms, such as SmartThings, Amazon Alexa, and Open-
HAB, support trigger-action automation programs. On these
platforms, despite the huge number of IoT devices, they are
abstracted into a small number of abstract devices. For ex-
ample, a smart light, regardless of its brand, shape, size, and
wireless technology, is abstracted into the same abstract de-
vice, light. Each abstract device has its associated events and
commands. Device vendors can have their products support
integration by realizing the events and commands.
We choose SmartThings [21] as an example IoT integra-

tion platform to present our design, as SmartThings is one of
the leading platforms and supports sophisticated automation
logic. Other integration platforms, such as Amazon Alexa,
have similar structures. As illustrated in Figure 2, a typical
SmartThings deployment has a cloud-centric architecture of
four layers. On the top is the SmartThings cloud,where smart
apps run and interact with abstracted capabilities. The cloud

4224 30th USENIX Security Symposium USENIX Association

communicates with IoT devices through the network con-
nection layer that uses various communication techniques
such as WiFi, Zigbee, and ZWave. An IoT devices can be
partitioned into the cyber part and the physical part. The
cyber part manages interfaces for humans and bridges the
communication between the cloud and the physical part, and
the latter fulfills its functions in the physical world. Taking
the Philips’ Hue smart light bulb as an example, the physical
part is the LED light bulb and the cyber part is the embedded
micro-controller with a built-in wireless component.
Next, we describe some terms used in SmartThings. A

device has one or multiple capabilities, each categorized as
an actuator or sensor. Each capability defines one or more
attributes. For example, a smart plug device has an attribute
“switch” and, optionally, an attribute “power.” Each attribute’s
state (i.e., value) is stored on the cloud and updated due to
events sent from the IoT device. For example, the Smart-
Things multipurpose sensor has a capability contact sensor,
whose attribute “contact” changes from “open” to “closed”
when SmartThings receives an event of “contact closed” from
the sensor. In addition, the state of an actuator’s attribute is
updated due to a feedback event, which is sent by the device
after a command is executed by the actuator.

3 Motivation, Goals and Threat Model

IoT devices are notorious for their unreliability and insecu-
rity [25,40,46]. Numerous anomalies in appified homes have
been reported by users [4]. Below, we first discuss anomalies
due to IoT device malfunctions and attacks as the motivation,
and then present our goals and threat model.

3.1 IoT Device Malfunctions
We survey real-world anomalies frequently reported in the
SmartThings user forum [4]. IoT devices interact with the IoT
platform via events and commands; thus, we categorize mal-
functions according to problematic events and commands.

Faulty Events. Faulty events refer to incorrect values re-
ported by IoT devices. They can be caused by sensor defects
or physical interference, such as mysterious door-knocking
events [3] and motion events [9,17,46]. Faulty events may in-
correctly trigger actuator actions and cause user confusions.

Ghost Commands. They are widely discussed in Smart-
Things’ user forum, dubbed ‘poltergeists’ [6,12,13]. For exam-
ple, a smart plug was turned on itself at night, which over-
heated the connected waffle maker and electrical grill [5].
Users frequently reported their lights were turned on during
midnight mysteriously [13].

Event Losses (or Large Delays). They refer to events that
fail to be reported to the IoT cloud (in a timely manner). For
example, mobile phone presence sensors were reported to
suffer from a large delay on status update [8], which was
confirmed by SmartThings [20]. Event lossesmay prevent the
execution of related automation and leave the home in risky

states. For example, the loss of a presence-off event could
leave the door unlocked after the resident leaves home.

Command Failures. They correspond to commands issued
by the IoT platforms that fail to be executed by the target
devices. Command failures may be caused by malfunctions
of a cyber part or physical part. (1) Cyber-part malfunc-
tions that cause commands to fail to execute, such as system
crashes and unstable network connections, are considered
in our work. For example, the TP-Link smart plug often goes
irresponsive [11]. (2) A physical-part malfunction is equiv-
alent to a malfunction in a traditional (i.e., non-smart) device.
For example, a broken electrical relay inside a smart plug
can prevent the plug from cutting off the power supply [18],
although from the perspective of the IoT platform, the plug
has been turned off.

3.2 Attacks on IoT Devices
We survey the recent work on attacks against IoT devices,
and find HAWatcher has the potential to detect the following
five different types of attacks.

Fake Events. They are events maliciously injected by at-
tackers. Fake events [80] may cause severe consequences by
triggering actuator’s actions. As illustrated in Figure 1(c), a
fake presence-on event can unlock the door.

Fake Commands. An attacker may inject fake commands
to IoT devices. For example, Sonos smart speaker [52] and
WeMo Smart switch [62] accept commands from the local
network without authenticating their origins [58, 70].

Event Interceptions. Events can be intercepted and dis-
carded by attackers. E.g., the home security system can be
muted by intercepting the window and door sensors’ wireless
connections to stop them from sending sensor events [66].

Command Interceptions. Similar to event interceptions,
an attacker can also intercept a command and prevents it
from being delivered to the device [43].

Compromised Devices. An attacker can compromise an
IoT device and, at least, launch the following attacks. (1)
Stealthy Commands. The attacker can control the device
to execute commands [65] and, to keep stealthy, stops the cor-
responding feedback events from being sent out.1 (2) Denial
of Executions (DoE).When a legitimate command is sent to
the device, it does not execute the command but sends back
a feedback event reporting the command has been executed.

3.3 Goals and Threat Model
We aim to detect both IoT device malfunctions described
in Section 3.1 and attacks in Section 3.2. We clarify that
HAWatcher can only detect attacks that violate correlations.
Attackers who have knowledge of the correlations may con-
struct attacks that do not violate any correlations and thus
evade our detection, which is discussed in Section 8.

1If feedback events are not muted, it is much like a Fake Command.

USENIX Association 30th USENIX Security Symposium 4225

Figure 3: Correlation channels.

We assume the IoT platform is not compromised. Like
other anomaly detection work [35, 51, 76], we assume there
are no or very few anomalies during training. We assume
there are no malicious or conflicting rules in the installed
smart apps; how to detect malicious logic [71] and conflicting
rules [28, 34] are two separate research problems, and there
are existing solutions to them [28, 71], including our prior
work [33,34]. Gartner predicts that a typical household could
have more than 500 IoT devices by 2022 [72]. Given the
dense deployment in the near future, we exploit scenarios
where an IoT device has one or more other devices nearby
to interact with, and propose to leverage them to detect
a device’s anomalous physical behaviors. We discuss the
case of no interactive devices nearby in Section 8. Jamming
that blocks communications reporting IoT events can be
easily detected due to session timeout or missing sequence
numbers; we thus do not further discuss it.

4 Correlations

Devices deployed in the same home may correlate in the
form of co-present or temporally related events [35,39,45,68].
These correlations can be attributed to the execution of smart
apps [29], physical interactions [39] or users’ activities [45].
As shown in Figure 3, we investigate the causes of these
correlations and categorize them into three channels below.

4.1 Correlation Channels

Smart App Channel. Smart apps not only directly cause
correlations between triggers and actions as programmed,
but also imply some extra correlations that should be consid-
ered. For example, the smart App “light follows me” [2] leads
to the correlation between the motion sensor and the light,
and also implies a possible correlation worth verification,
that is, “if the light is turned on, then the motion should be in
the active state”. The implied correlation is true if the light is
exclusively turned on by the smart app.

Physical Channel. Two devices can correlate via a cer-
tain physical property. First, an actuator device’s action can
change a physical property, which is captured by nearby
sensor devices observing that property. For example, a smart
light’s action can affect an illuminance sensor nearby. Second,
different sensor devices can be affected by the same physi-
cal event and generate temporally correlated IoT events. For

instance, opening a door inevitably involves the door’s move-
ment, which could be captured by both a contact sensor and
an acceleration sensor installed on the door and results in
two consecutive events. With increasing types of IoT devices
deployed, physical-channel correlations can be pervasively
observed on many physical properties, such as illuminance,
power, sound, and temperature [39].

User Activity Channel. While user activities impose
changes on devices, device states also reflect user activities.
Thus, the user activity channel causes correlations between
devices. For example, a TV being turned on typically implies
that the user is nearby, which should be captured by the
motion sensor. When a user returns home, there should be
consecutive events, such as “presence on” showing the user’s
proximity and “contact-sensor open” for door opening.

4.2 Representation of Correlations

An event reporting that the device A’s attribute α should

be changed to the value a is denoted as Eα(A)
a , while a state

which indicates that the device B’s attribute β has the value

b is denoted as S β(B)
b .2 We define two types of correlations.

• The event-to-event (e2e) correlation. It means that one
event should be followed by (denoted as→) another. For
example, given a motion sensor A and a light B, the e2e
correlation 〈Emotion(A)

active → E switch(B)
on 〉 means the event

Emotion(A)
active should be followed by the event E switch(B)

on .

• The event-to-state (e2s) correlation. It means that
one event arising implies (denoted as �) a state

is true. For example, 〈E power(plug)
high � S switch(heater)

on 〉
means that, when the event E power(plug)

high arises, the state

S switch(heater)
on should be true.

For the representation of a correlation involving condi-
tions, its anterior event is combined with the conditions
using the “∧” symbol. For example, 〈EMotion

active ∧ S Presence
present →

E switch(Light)
on 〉 means the event EMotion

active , if the condition

S Presence
present is true, should be followed by E switch(Light)

on .
We show in Section 5 that the two types of correlations,

despite their simplicity, are very effective in capturing rich
semantic information and modeling the relations of devices
that correlate via different channels.

5 HAWatcher Design and Implementation

We first introduce the workflow of anomaly detection (Sec-
tion 5.1), and then describe the major modules in HAWatcher,
as shown in Figure 4: 1) Semantic Analysis (Section 5.2), 2)
Correlation Mining (Section 5.3), 3) Correlation Refining
(Section 5.4), and 4) Anomaly Detection (Section 5.5).

2For simplicity of description, without causing confusion we sometimes

omit the device IDs and use the simplified notations Eα
a and S β

b .

4226 30th USENIX Security Symposium USENIX Association

Figure 4: Architecture of HAWatcher.

5.1 Workflow of Anomaly Detection

The Anomaly Detection module runs parallel with the appi-
fied home automation, and checks the events received from
IoT devices against the learned correlations to detect anoma-
lies. Figure 5 illustrates how this module detects anomalies,
using anomalies depicted in Figure 1 as examples.
In case (a), the smart app automatically shuts the valve

when water is detected. By applying semantic analysis to
the app, HAWatcher extracts an e2e correlation 〈Ewater

detected →
E valve

closed〉. Since attackers intentionally intercept the command
“close the valve” towards the valve, there is no feedback event
E valve

closed , which contradicts the correlation. Furthermore, if
it is a Command Failure caused by the valve’s cyber-part
malfunction, HAWatcher can detect it the same way.
In case (b), the hypothetical e2s correlation 〈E power

high �
S switch

on 〉 is first proposed based on the physical channel and
then gets confirmed using the training event logs. After a
turning-off command is sent to the plug and executed by
its cyber part (hence, its Switch=off), however, due to its
broken relay, the plug still supplies power and thus the power
meter reports events of high power usage, which violates the
aforementioned correlation and triggers an alarm.

In case (c), as the resident does not actually return home,
there is no eventE contact

open that follows the fake eventE presence
present .

This deviates from the user activity channel correlation
〈E presence

present → E contact
open 〉 and is thus reported as an anomaly.

5.2 Semantic Analysis

The Semantic Analysis module executes two steps: (1) extract
semantics from smart apps and their configuration, such as
the temperature threshold for turning on AC and which IoT
devices are bound towhich app, and (2) convert the semantics
to correlations.
Semantic analysis has been used to detect malicious or

risky smart apps as in [41, 50, 79]. We use the method de-
scribed in our prior work [33,34] to extract semantics in Step

Figure 5: Detecting anomalies depicted in Figure 1.

Figure 6: Code snippet of the app LightUpTheNight.

(1). It applies symbolic execution to the Intermediate Repre-
sentation of apps and captures the configuration information,
achieving precise semantics extraction. The extracted seman-
tics of each app is represented as one or more rules, each in
the form of a tuple trigger(T)-condition(C)-action(A), which
means that “if T occurs, when C is true, execute A.”
Step (2), which converts rules to correlations, is straight-

forward. Assuming T is reflected by the event E1, and E2
is the feedback event due to executing A, the rule above is
converted to a correlation 〈E1 ∧C → E2〉.
Taking a SmartThings official app LightUpTheNight [16]

shown in Figure 6 as an example, the Semantic Analysis
module converts it into two e2e correlations: 〈E Illuminance

<30 →
ELight

on 〉 and 〈E Illuminance
>50 →ELight

o f f 〉. Here, note that the condi-
tion (“Illuminance < 30” or “Illuminance >50”) and the trigger
event in each rule refer to the same attribute of the same
device; we thus merge the trigger and the condition to derive
a concise representation of the trigger events.

Moreover, as described in Section 4.1, given an e2e correla-

tion 〈Eα(A)
a → Eβ(B)

b 〉 extracted from the smart app, we fur-

ther propose a hypothetical e2s correlation 〈Eβ(B)
b � S α(A)

a 〉,
which means that the event Eβ(B)

b only arises when S α(A)
a is

USENIX Association 30th USENIX Security Symposium 4227

true. Such hypothetical e2s correlations are not necessarily
true, and have to be verified using event logs (Section 5.3).

5.3 Correlation Mining

While there exist many pattern mining methods, few achieve
both good usability and high accuracy in the context of appi-
fied home automation. Supervised mining methods [51, 77]
are more accurate but require well annotated datasets or
users’ interventions. Unsupervised methods [31, 35, 60, 68]
can be applied to unannotated data, but are less accurate.
Instead of relying on annotated datasets, we propose a

semantic-based mining method. Semantic information in-
cludes devices’ types and installation locations, which can
be obtained from home automation platforms. Based on this
information, HAWatcher proposes hypothetical correlations
(in addition to those e2s correlations from smart apps) cor-
responding to physical channels and user activity channels.
Each hypothetical correlation is then verified independently.
Like other anomaly detection works [35, 51, 76], we assume
there are no or very few anomalies during the training phase.

5.3.1 Prepossessing Event Logs

Prepossessing of event logs is necessary for two reasons: 1)
Raw event logs are noisy with repetitive sensor readings. For
example, some power meters periodically report similar (but
slightly fluctuating) readings. 2) Devices’ numeric readings
cannot be incorporated into logical calculations. We thus
design a preprocessing scheme for redundancy removal and
numeric-to-binary conversion.

For each device that generates numeric readings,we add up
its readings from the entire training dataset and calculate its
mean μ and standard deviation σ. Readings that fall outside
the range [μ− 3σ,μ+ 3σ] are excluded as extreme values
(i.e., the three-sigma rule [64]).3 Then, we apply the Jenks
natural breaks classification algorithm [49]4 to the remaining
readings and classify them as either ‘low’ or ‘high’. Next, for
each device’s given attribute, we traverse the events and
remove those that do not change the state (e.g., consecutive
E Illuminance

high). Now, each two temporally adjacent events about
the same attribute of a device have opposite values.

5.3.2 Hypothetical Correlation Generation

Besides those generated from the smart app channel, hypo-
thetical correlations can be generated from the physical and
user activity channels with other semantic information, such
as device attributes and relations between attributes. We first
utilize the semantic information to construct a table marking
correlated attribute pairs; then, we fill each pair with de-
vices that have matching attributes to generate hypothetical
correlations.

3Event exclusion is for training only; the anomaly detection module
does not eliminate events.

4Jenks natural breaks algorithm and K-means algorithm give the same
results for one-dimension data [38]

Table 1: Part of the adjacency table. A cell marked with
�means the corresponding attribute in the column may cor-
relate with the one in the row head. The full table of 73*73
is in our technical report [44]

A
cce

le
ra
tio

n

C
a
rb
o
n
D
io
x
id
e

C
o
n
ta
ct

Illu
m
in
a
n
ce

M
o
tio

n

P
o
w
e
r

P
re
se
n
ce

H
u
m
id
ity

S
o
u
n
d

B
u
tto

n

S
w
itch

Acceleration � � � � �
CarbonDioxide � � �

Contact � � � � �
Illuminance � � �

Motion � � � � � � � � � �
Power � � �

Presence � � � � � � � � � �
Humidity � � �

Sound � � � � �
Button � � �
Switch � � � � � � � � � �

For physical channel correlations, we consider seven phys-
ical properties that are related to many smart home IoT de-
vices: illuminance, sound, temperature, humidity, vibration,
power, and air quality. To determine whether two IoT device
attributes may relate via a physical property, we develop an
NLP (Natural Language Processing) based approach. Specifi-
cally, for each attribute of an abstract IoT device, we obtain
its description from the SmartThings’ developer website [19]
and parse it into a list of separate words. To objectively eval-
uate the relatedness between an attribute and a physical
property, we use Google’s pre-trained word2vec model [59]
to calculate the semantic similarity scores between eachword
in the list and the physical property, and use the highest score
as the relatedness score between the physical property and
the attribute. For each physical property, we select the top
ten attributes with the highest scores, which are considered
mutually correlated via that physical property.

This way, we are able to find all correlated attribute pairs
and mark them in an adjacency table, part of which is shown
in Table 1. As SmartThings stipulates 73 attributes [19], the
table is 73*73. A cell with �means that the attributes in its
row head and column head correlate.

While most of the cells are automatically generated, an
exception is the switch attribute: as all actuator devices have
the switch attribute, we mark it as correlated with all other
attributes. For user activity channel correlations, we use pres-
ence and motion as the two special attributes that directly
reflect users’ activities. As a user’s activity may affect all
the attributes, in the adjacency table we mark presence and
motion as correlated with all other attributes.

For a specific smart home, all attributes of the installed
devices are checked against this adjacency table to find pairs
that may correlate. Given a pair of correlated attributes
α and β in the adjacency table, the device A with the at-
tribute α, and B with β, we generate four hypothetical e2e
correlations 〈Eα(A)

a → Eβ(B)
b 〉, 〈Eα(A)

a′ → Eβ(B)
b 〉, 〈Eα(A)

a →

4228 30th USENIX Security Symposium USENIX Association

Eβ(B)
b′ 〉, 〈Eα(A)

a′ →Eβ(B)
b′ 〉, and four e2s ones (〈Eα(A)

a → S β(B)
b 〉,

〈Eα(A)
a′ → S β(B)

b 〉, 〈Eα(A)
a → S β(B)

b′ 〉, 〈Eα(A)
a′ → S β(B)

b′ 〉, where
a and a′ (b and b′, resp.) are values of the attribute α (β, resp.)
after numeric-to-binary conversion; symmetrically, we gen-
erate another eight hypothetical correlations with the events
of B as anteriors.
Moreover, we propose to combine semantics from smart

apps with semantics from the adjacency table. The intuition
behind the combination is that when an action command in a
smart app is executed, it usually imposes certain changes on
one or more attributes. Given an e2e correlation containing
a condition extracted from a smart app, we create a virtual
device, which reports an event when both the trigger event
arises and the condition is true. For instance, a virtual mo-
tion sensor is created according to the conditional trigger

EMotion(M)
active ∧S presence(PS)

present , which becomes active only when

EMotion(M)
active arises and PS is present. Next, the virtual device

is used, just like the corresponding real device, to generate
hypothetical correlations according to the adjacency table.
Our current prototype only considers devices installed

in the same room for generating hypothetical correlations.
While this can be relaxed by considering any two devices
in the home, our current implementation makes a trade-off
between the comprehensiveness of hypothetical correlations
and the meaningfulness of the mined correlations.

5.3.3 Hypothesis Testing

It is worth emphasizing that hypothetical correlations are not
necessarily true. That is why we need hypothesis testing, the
process of verifying hypothetical correlations using event
logs. Given a hypothetical correlation, we traverse event logs
to find all events thatmatch its anterior, and take each of them
as a testing case. Then, we check whether the hypothetical
correlation’s posterior event or state is consistent with the
physical ground truth as recorded in event logs. For example,
an event instance of EMotion

active constitutes a testing case for

the hypothetical correlation 〈EMotion
active → E switch(Light)

on 〉. This
case is counted as a success if E switch(Light)

on occurs within a
short duration d after EMotion

active . In our implementation, d =
60s, which is long enough to wait for the feedback event to
arrive but not too long as to accept an event not related to
EMotion

active . Note the scheduling granularity of SmartThings is
at per-minute level [1].
Checking these testing cases can be considered as a se-

quence of independent Bernoulli trails. We use the one-tail
test [42] to evaluate each hypothetical correlation’s correct-
ness. For a given correlation, we set the alternative hypothe-
sis Hα as “the correlation succeeds with a probability higher
than P0”. Correspondingly, the null hypothesis H0 is “the
correlation succeeds with a probability no higher than P0”.
We choose the 95% fiducial probability as in common prac-
tices [27], which means that the correlation can only be
accepted if the null hypothesis’s p-value is smaller than 5%.

5.4 Correlation Refining

The accepted hypothetical correlations should not be used
directly for two reasons. First, conditions of smart apps may
be overlooked if they remain unchanged during training.
For instance, assume there is a smart app that, upon the
front door opening, turns on the porch light after sunset.
If the residents always come back home after sunset, the

inaccurate correlation 〈E contact
open → E switch(PorchLight)

on 〉 could
be accepted by hypothesis testing and cause false alarms of
“porch light not turned on” when the residents return before
sunset. Second, when apps change, accepted hypothetical
correlations may become outdated and contradict with the
e2e correlations newly derived from apps. This can also cause
false alarms, as confirmed by our experiments (Section 6.5).
We thus propose to refine mined correlations using e2e

correlations extracted from smart apps, and launch the re-
fining process whenever smart app changes or there are
hypothetical correlations accepted by hypothesis testing.
We first define the cover relation between two correlations:
an e2e correlation Cs = 〈Eα(A)

a → Eβ(B)
b 〉 extracted from a

smart app covers a correlation Ch = 〈E γ(C)
c → Eδ(D)

d 〉 that
passes hypothesis testing if they meet two conditions: 1)

they have the same posterior event (i.e., Eβ(B)
b = Eδ(D)

d); and

2) Eα(A)
a (logically) implies E γ(C)

c (i.e., Eα(A)
a ⇒ E γ(C)

c). If
Cs covers Ch, the latter is removed. In the example men-
tioned above, a smart app derived e2e correlation 〈E contact

open ∧
S location

sunset → E switch(PorchLight)
on 〉 covers the mined correlation

〈E contact
open → E switch(PorchLight)

on 〉 because they have the same

posterior event and (E contact
open ∧S location

sunset)⇒ E contact
open ; thus, the

latter correlation is removed.

5.5 Anomaly Detection

SmartThings does not provide access to its internal content,
such as device states. To overcome the barrier, we design a
shadow execution engine, which subscribes to the events of
the installed IoT devices. It keeps track of all devices’ states
and simulates a smart home’s legitimate behaviors based on
obtained correlations.
For each incoming event, the shadow execution engine

performs the Contextual and Consequential checking succes-
sively. The contextual checking verifies whether the event
occurs in a valid context specified in e2s correlations. After
that, the consequential checking searches for its consequen-
tial events as predicted by e2e correlations.
Below, we use the same example correlation (between a

motion sensor and a light) as in Section 4.2. When an event

EMotion(A)
active is received, the shadow execution engine first con-

ducts the contextual checking. It traverses all e2s correlations

and locates those with the event EMotion(A)
active at their anterior

places. Among the located e2s correlations, if any of them
have states in their posterior places that are inconsistent

USENIX Association 30th USENIX Security Symposium 4229

Table 2: Numbers of rooms, devices and apps in each testbed.

Testbed #Rooms #Devices #Smart apps

1 5 23 17
2 4 19 11
3 1 6 7
4 1 6 4

with the real-world devices’ states, an alarm is raised report-

ing the event EMotion(A)
active as invalid. Otherwise, the event is

accepted and the shadow execution engine changes its simu-
lated motion sensor’s state to “active” accordingly. Then, for
each accepted event (motion A turns “active” in the example),
the shadow execution engine performs the consequential

checking. It searches all e2e correlations that have EMotion(A)
active

at their anterior places and caches events at their posterior
places in a waiting list. If any event in the list is not received
within 60 seconds (consistent with d in hypothesis testing),
the shadow execution engine reports an anomaly of amissing
event. Moreover, an event from a real device also induces an
event from its derived virtual device (defined in Section 5.3.2)
if the involved condition is true, and the event of the virtual
device is handled in the same way as that from the real device
through contextual and consequential checking.

6 Evaluation

We evaluate HAWatcher with datasets collected from 4 dif-
ferent real-world testbeds as shown in Figure 7. On each
testbed, we spend three weeks collecting dataset for train-
ing and one week for testing. We apply collected correla-
tions to each event from the testing datasets to evaluate
HAWatcher’s performance. We compare HAWatcher with
other anomaly detectors. Here, we mainly present evalua-
tion results of Testbed 1. The results of other testbeds are
presented in Appendix A.2.

6.1 Experimental Setup

While there are several existing datasets from smart homes
or home activity learning researches, such as [36,37], none of
these are collected from appified home testbeds. In addition,
these testbeds contain mainly sensor devices but very few
actuator devices. These make them unsuitable for evaluating
HAWatcher, which is designed to work with appified homes.
Next, we describe how we set up our testbeds.

Testbeds and Participants. We deploy SmartThings sys-
tems in four homes and Table 2 lists their basic information.
Testbeds 1 and 2 each have two residents, and testbeds 3 and
4 have one resident each. The six (6) participants consist of
5 graduate students and 1 undergraduate student including
two females and four males. Two of them are members of
our research lab and none paper authors. None of them had
prior experience of using home automation systems. For each

Table 3: IoT devices used in the four testbeds, their abbrevia-
tion labels, attributes and deployment information.

Abbr. Device Name Attributes Deployment

M SmartThings
Motion Sensor

motion on wall

MS Zooz 4-in-1
Sensor

motion,
illuminance,
humidity

on wall

W SmartThings
Waterleak Sensor

water on bathroom floor

C SmartThings
Contact Sensor

contact,
acceleration

on doors

B SmartThings
Button

button bedside

L SmartThings
Light Bulb

switch as ceiling light, lamp

PS SmartThings
Arrival sensor

presence in wallet

P SmarThings
Smart Plug

switch, power to control fan,
computer, and lamp

A Netatmo
Air Station

carbonDioxide,
sound, humidity

on kitchen
countertop

V ThreeReality
Smart Switch

switch to control fan

Table 4: Automation rules used in Testbed 1.
Index Smart app rules

R1 If M1(active) when Mode(home), then P3(on)
R2 If M2(active) when Mode(home), then P4(on)
R3 If MS1(active), then L1(on) and L2(on)
R4 If MS1(inactive) for 15 minutes, then L1(off) and L2(off)
R5 If MS2(active), then L3(on)
R6 If MS2(inactive) for 10 minutes, then L3(off)
R7 If MS3(active), then L4(on)
R8 If MS3(inactive) for 5 minutes, then L4(off)
R9 If MS4(active), then L5(on)

R10 If MS4(inactive) for 15 minutes, then L5(off)
R11 If B(pressed), then toggle P3 and P4
R12 If B(held), then turn off all L and P and Mode(night)
R13 If B(double pressed), turn on P3 and P4 and Mode(home)
R14 If A(CO2 ≥ 950), then P2(on)
R15 If A(CO2 ≤ 950), then P2(off)
R16 If PS1 and PS2 (away), then turn off all L and P and Mode(away)
R17 If PS1 or PS2 (present), then turn on L1, L2, and P1 and Mode(home)

testbed, we let the resident(s) propose desired automation,
which is fulfilled by us with off-the-shelf IoT devices and
smart apps from the SmartThings official repository. We then
give them sufficient time to get familiar with the installed
home automation before starting data collection.

Device Deployment. The device deployment is depicted
in Figure 7. We deploy 10 different types of IoT devices as
listed in Table 3, including their abbreviation labels. Note
that the ThreeReality Smart Switch (denoted as V) can be
attached to a wall switch to control traditional devices, such
as lights and fans. The smart plug (denoted as P) can be
used to control electrical appliances with power plugs; for
example, in Testbed 1, P1 and P2 are connected to a TV and
a fan, respectively, and P3 and P4 are connected to lamps.

Automation Rules.We extract automation rules from the
installed smart apps in the form of “If trigger when condition,
then action”. The extracted rules of Testbed 1 are listed in Ta-
ble 4 (rules of other testbeds are presented in Appendix A.1).

Ethical Concerns and Mitigation. We obtained the IRB

4230 30th USENIX Security Symposium USENIX Association

Figure 7: Floor plans of four testbeds and device deployment layouts (the device abbreviation labels are illustrated in Table 3).

approval for the study. All participants are fully aware of
all the installed devices and apps. We do not use any sensi-
tive devices such as cameras and microphones. The sound
sensor of Device A in Table 3 only reports the sound level
rather than the raw audio. All data is considered sensitive
and personal identifiable information (PII) is removed right
after collection for long-term storage. We store all the data in
an encrypted hard drive mounted to our lab’s server, which
is only accessible to accounts of the paper authors.

For the purpose of testing, we need to inject anomalies (see
Section 6.3). To avoid safety issues, the injected anomalies
do not target any safety-sensitive devices, such as heaters.
We notify participants of incoming testing one day ahead
but do not disclose the details (e.g., device and time) of the
anomaly cases. We also ask participants to keep their normal
living habits and do not panic if they notice any anomalies.
The purpose is to avoid their behavioral bias during testing.
Details of the injected anomalies are presented to participants
after the testing.

6.2 Training

Training HAWatcher. From Testbed 1, we generate 46 e2e
correlations from the automation rules. In addition, we gen-
erate totally 2,398 hypothetical correlations, including 46
e2s correlations from the smart app channel, 544 from the
physical channel, and 1,808 from the user activity channel.
Then, the hypothetical correlations are checked using 22,655
events collected from the three weeks’ training phase. In
total, 146 correlations are accepted by hypothesis testing,
and 130 remain after refining. On other three testbeds, the
portion of smart app channel correlations are 32/109, 15/55,
and 8/26, respectively. Table 5 lists a portion of the corre-
lations after refining. Some correlations reveal interesting
facts that are confirmed by the residents.

Observation 1:While C1 and C3 are both contact sensors,

C1 has one additional correlation C11 = 〈Eacceleration(C1)
active →

E contact(C1)
closed 〉, which means the event Eacceleration(C1)

active should

be followed by E contact(C1)
closed . This is because the front door

(with C1) is typically closed right after being opened, while

the bedroom door (with C3) does not have this pattern.

Observation 2: The e2s correlation C23 means that MS3’s
illuminance goes high only when L4 is on. This is because
there are no other light sources nearMS3. Other illuminance
sensors do not have such a correlation as the high illumi-
nance value can be caused by multiple lights or natural lights.

Observation 3: Smart plugs P2 and P4 are to turn on/off a
fan and a lamp, respectively. Whenever P2 and P4 are turned
on, higher power use is observed (see e2e correlations C16
and C10 in Table 5). However, for P1 that is connected to a

TV, E switch(P1)
on is not followed by a power-high event, as the

TV needs to be further turned on manually by the residents.

Observation 4: Physical- and user activity-channel correla-
tions cannot be obtained without mining, since they are not
included in any smart apps. On the other hand, some corre-
lations can be easily extracted from smart apps but difficult
to mine. For example, correlations that involve delays are
difficult to be mined accurately, but can be precisely derived
from rules, such as R4, R6, R8, and R10.

Training Baseline Approaches.We select the Association
Rule Mining (ARM) [24] and the One-class Support Vec-
tor Machine (OCSVM) [67] based detectors as two base-
line approaches. We choose OCSVM because it is wiedly
used for anomaly detection and trained with one class of
input data, which is suitable for our training data containing
no or few anomalies [53]. ARM is selected because it is a
well-established method for mining correlations/rules, and
HAWatcher is also based on correlation mining.
We perform ARM [24] on the same training dataset for

comparison. Since ARM algorithms require transaction-form
inputs, we segment the training dataset at places where the
time interval between two consecutive events is longer than
60s (the same as the threshold d used for hypothesis testing).
By using the library pymining [22], we mine 221 association
rules with the confidence threshold of 0.95. Unlike our cor-
relation mining method that covers various attributes and
devices, rules produced by the association rule mining are
dominated by motion sensorsMS3 andMS4. All the 221 rules
have either MS3 or MS4’s motion attributes in their conse-

USENIX Association 30th USENIX Security Symposium 4231

Table 5: A portion of refined correlations acquired from Testbed 1.
ID Correlation ID Correlation ID Correlation ID Correlation

C1 〈E illuminance(MS3)
low � S switch(L4)

o f f 〉 C2 〈Emotion(MS1)
active → E switch(L1)

on 〉 C3 〈E presence(PS1)
present → E contact(C1)

open 〉 C4 〈E presence(PS1)
present → E contact(C1)

closed 〉
C5 〈E presence(PS2)

present → E contact(C1)
open 〉 C6 〈E power(P2)

high � S switch(P2)
on 〉 C7 〈E presence(PS2)

present → Emotion(MS1)
active 〉 C8 〈Ebutton(B)

pushed → Emotion(M1)
active 〉

C9 〈E contact(C1)
open → Eacceleration(C1)

active 〉 C10 〈E switch(P4)
on → E power(P4)

high 〉 C11 〈Eacceleration(C1)
active → E contact(C1)

closed 〉 C12 〈E switch(L4)
on → E illuminance(MS3)

high 〉
C13 〈E switch(L4)

o f f → E illuminance(MS3)
low 〉 C14 〈E switch(L3)

on � S motion(MS2)
active 〉 C15 〈E switch(L3)

on → E illuminance(MS2)
high 〉 C16 〈E switch(P2)

on → E power(P2)
high 〉

C17 〈Eacceleration(C3)
active → Emotion(MS3)

active 〉 C18 〈E contact(C1)
closed � S motion(MS1)

active 〉 C19 〈E switch(L4)
on � S motion(MS3)

active 〉 C20 〈E contact(C1)
closed � S acceleration(C1)

active 〉
C21 〈E contact(C3)

closed � S acceleration(C3)
active 〉 C22 〈Emotion(MS3)

active → E switch(L4)
on 〉 C23 〈E illuminance(MS3)

high � S switch(L4)
on 〉 C24 〈E illuminance(MS1)

low � S switch(L1)
o f f 〉

C25 〈E presence(PS1)
present → Emotion(MS1)

active 〉 C26 〈Emotion(MS1)
active � S switch(P1)

on 〉 C27 〈Eacceleration(C1)
active � S contact(C1)

open 〉 C28 〈Eacceleration(C2)
active � S motion(MS2)

active 〉
C29 〈E switch(L5)

on → E illuminance(MS4)
high 〉 C30 〈E switch(P2)

on � SCO2(A)
>950 〉 C31 〈E switch(P3)

on � S motion(M1)
active 〉 C32 〈E power(P3)

high � S switch(P3)
on 〉

C33 〈E contact(C2)
open � S motion(MS2)

active 〉 C34 〈ECO2(A)
>950 → E switch(P2)

on 〉 C35 〈ECO2(A)
high � S motion(MS2)

active 〉 C36 〈E sound(A)
high � S motion(MS2)

active 〉
C37 〈E contact(C1)

open � S presence(PS1)
present ∨S presence(PS2)

present 〉 C38 〈Emotion(M2)
active ∧S mode

home → E switch(P4)
on 〉

Table 6: Impact of Different Training-Phase Duration
Training phase

(days)
Precision Recall # of false alarms # of correlations

3 63.63% 78.69% 212 183
6 75.35% 85.78% 147 141
9 94.57% 94.12% 15 135
12 97.25% 94.12% 8 132
15 97.83% 94.12% 4 130
18 97.83% 94.12% 4 130
21 97.83% 94.12% 4 130

quent event set and 214 of them have that in their antecedent
event set. There are 80 rules involving lights L4 and L5, 32
with illuminance sensors in MS3 and MS4, and 14 with the
CO2 sensor in A. Other attributes are not seen in any rules,
as events involving them are overshadowed by those involv-
ing the four aforementioned attributes. In contrast, with our
mining method, each attribute is involved in at least four (4)
correlations and has an average of 10.5 correlations.
For the OCSVM-based detector, it takes a snapshot of all

devices’ states as a frame each time a new event arises and
concatenates four consecutive frames as one input data vec-
tor [48]. We use the open source OCSVM implemetation in
sklearn [63] and the default kernel (Radial Basis Function).

Impact of Training-Phase DurationWe study the impact
of the duration of the training phase on the performance of
HAWatcher. As Testbed 1 is the most complex one among the
four testbeds, we select it in this experiment. As illustrated
in Table 6, we start from using the first three (3) days of data
as a training dataset, and then use the first six (6) days by
increasing three days of data, and so on until we use all the
21 days of data. With each of the seven (7) training datasets,
we train a system and evaluate its performance using the
fourth week of testing data.
Based on the study and the results shown in Table 6, we

have the following observations. (1) Nine (9) days of training
data is enough for HAWatcher to achieve the highest detec-
tion recall, but its number of false alarms has not reached the
lowest, which means some false correlations are obtained. (2)
For the first two training datasets, although they lead to more
correlations than the subsequent ones, the overall quality
of correlations is not high. The reason is that we use the

one-tail test (Section 5.3.3), which has two impacts. On the
one hand, even a very small number of abnormal behaviors
in the small datasets will cause some true correlations to be
rejected. On the other hand, due to the small amount of data,
many false correlations are not rejected yet. (3) Starting from
the dataset of 15 days, the performance (including the num-
ber of false alarms) does not change anymore, which means
that amount of data is sufficient for the testbed. (4) Those true
correlations which have been rejected in the small datasets
are recovered in the larger datasets. This shows the robust-
ness of the design of HAWatcher. Even if very few anomalies
arise during the training phase, true correlations can survive
given sufficient training data. (5) We examine the different
sets of correlations mined based on different duration and
find that some false correlations remain there until more
data is available. For example, 〈Ehumidity(MS3)

high � S contact(C3)
closed 〉

remains until behaviors that fail the correlation appear on
Days 11 and 12.

6.3 Anomaly Generation

To evaluate HAWatcher, we simulate 24 cases of anomalies
on Testbed 1 listed in Table 7 (totally 62 cases on the four
testbeds). We follow two criteria to select anomaly cases:
(1) the attacks are discussed in the literature about IoT at-
tacks; and (2) the malfunctions are frequently discussed in
the SmartThings community. To simulate an anomaly case,
we either modify the testing event logs (collected in the
fourth week) or interfere with the home automation, and the
resulting logs are used for anomaly detection. For each case,
multiple instances (see the “#inst.” column) are injected.
If an attack has the same impact on the event logs as a

malfunction,we group and simulate them as one case. Taking
Case 1 as an example, we randomly inject a total of 50 motion
events ofMS1 into the testing event logs to simulate the effect
of both Faulty Events (due to sensor malfunctions) and Fake
Events (due to attacks).

Faulty/Fake Events.We simulate them by inserting events
of devices, such as motion sensors [17], presence sensor [14],
and contact sensors [3], as they are reportedly unreliable.

4232 30th USENIX Security Symposium USENIX Association

Table 7: HAWatcher’s detection performance on Tesbed 1. “#inst.” indicates the number of instances for one testing case. As
switch is a common attribute for all actuators, we point out the specific appliance controlled by each switch after the colon.

Case Type Anomaly Description Anomaly Creation Method #inst. Precision Recall Correlations Violated

1

Faulty/Fake
Events

false motion(MS1) active

insert events into the dataset

50 97.77% 86.00% C26
2 false contact(C1) open 50 100.00% 100.00% C9
3 false acceleration(C1) active 50 97.87% 92.00% C27
4 false presence(PS1,PS2) present 50 96.15% 100.00% C3,C5,C25,C7
5 false button(B) pushed 50 100.00% 100.00% C8
6

Event Losses/
Interceptions

missing motion(MS2) active

remove events from the dataset

57 100.00% 92.98% C28,C35,C36,C14
7 missing motion(MS3) active 38 100.00% 100.00% C17
8 missing contact(C1) open 11 78.57% 100.00% C3, C5, C27
9 missing presence(PS1,PS2) present 9 77.78% 77.78% C37
10 missing illuminance(MS3) events 46 100.00% 43.47% C12,C13
11

Ghost/Fake
Commands

turn on switch(P2):fan
toggle from the ghost smart app

50 100.00% 100.00% C30
12 turn on switch(P3):lamp 50 100.00% 100.00% C31
13 turn on switch(L4):light 50 100.00% 100.00% C19
14

Stealthy
Commands

stealthily turn on switch(P2):fan toggle from the ghost smart app
and
remove feedback events

50 100.00% 100.00% C6
15 stealthily turn on switch(P3):lamp 50 100.00% 100.00% C32
16 stealthily turn on switch(L4):light 50 100.00% 100.00% C23
17 Command

Failures (cyber)/
Command
Interceptions

fail to turn on switch(L1):light

cut off devices’ power supply

9 100.00% 100.00% C2
18 fail to turn on switch(L4):light 12 100.00% 100.00% C22
19 fail to turn on switch(P2):fan 10 100.00% 100.00% C34
20 fail to turn on switch(P4):lamp 53 100.00% 100.00% C38
21 Command

Failures (physical)/
Denial of
Executions

fail to turn on switch(L1):light
cover bulbs with paper

9 100.00% 66.67% C24
22 fail to turn on switch(L4):light 12 100.00% 100.00% C12, C1
23 fail to turn on switch(P2):fan

unplug connected appliances
10 100.00% 100.00% C16

24 fail to turn on switch(P4):lamp 53 100.00% 100.00% C10
Avg - - - - 97.83% 94.12% -

Event Losses/Interceptions. To simulate them, we ran-
domly remove events of some devices from the testing event
logs. We select various types of devices that users complain
about event losses, such as presence sensors [20], contact
sensors [23], and motion sensors [10].

Ghost/Fake Commands Both smart lights and plugs have
been frequently reported by users for turning on/off unex-
pectedly [5, 6, 12]. We write a ghost smart app, which is not
known by HAWatcher, and use the app randomly issue com-
mands to turn on smart lights and plugs.

Stealthy Commands With compromised smart lights [65]
and plugs [58], attackers can control them to make stealthy
but hazardous actions. We simulate this type of attacks using
the same method as ghost/fake commands but remove the
feedback event of each fake command.

Command Failures (cyber)/Command Interceptions

We simulate Command Failures (cyber-part malfunctions)
and Command Interceptions on smart plugs [11] and smart
lights [7]. We cut the power of target devices to make them
irresponsive. For each target device, we conduct the experi-
ment multiple times during one day.

Command Failures (physical)/Denial of Executions

Command Failures (physical partmalfunctions) andDenial of
Executions are simulated on lights [65] and smart plugs [18].
We cover smart lights with a lightproof paper, and unplug
appliances from smart plugs. The smart lights and plugs still
respond to commands with feedback events, but those com-
mands would not have any physical effect. For each case, we
conduct the experiment multiple times during one day.

6.4 Performance of Anomaly Detection

We first evaluate HAWatcher’s precision and recall in detect-
ing anomalies, and compare themwith two baseline detectors.
We then measure the false alarm rate of HAWatcher.

Evaluation Metrics. Given an anomaly case (see Table 7),
precision is the number of correctly detected instances of
that case divided by the number of alarms reporting that
anomaly case (i.e., ratio of true anomalies to alarms), recall
is the number of correctly detected instances of that case
divided by the number of injected instances of that case (i.e.,
percentage of anomalies that can be detected), and the false
alarm rate is the number of false positives divided by the
number of IoT events.

Precision =
True Positive

True Positive+False Positive

Recall =
True Positive

True Positive+False Negative

False Alarm Rate =
False Positive

All Events

(1)

Detectors for Comparison. We compare the performance
ofHAWatcherwith that of two baseline approaches described
in Section 6.2,ARM andOCSVM. For the ARM-based detector,
we segment the testing dataset as during the training phase,
and check each segment against all mined rules to detect
anomalies. For the OCSVM-based detector, as in [48], we
take a snapshot of all devices’ states as a frame each time a
new event arises and concatenate four consecutive frames
as one data vector, which is fed into the trained OCSVM for
detecting anomalies.
In addition, to evaluate the effect of semantic analysis of

smart apps and correlation mining each and also to measure

USENIX Association 30th USENIX Security Symposium 4233

the benefit brought by the combination of the two, we build
two variants of HAWatcher: HAWatcher (Apps Only), which
extracts correlations from smart apps only, and HAWatcher
(Mining Only), which mines correlations without using apps.

Detection Results of HAWatcher. As shown in Table 7,
HAWatcher has an average detection precision of 97.83% and
a recall of 94.12% across the 24 diverse anomaly cases. For
18 out of 24 cases, HAWatcher successfully detects all the
instances. Below we describe some examples to illustrate
how HAWatcher detects anomalies.

Detecting Case 7. Residents entering/leaving the bedroom
open the door, which is installed with an acceleration sen-
sor C3, and cause the motion-active event of MS3. How-
ever, as motion-active events of MS3 are intercepted/lost,

the user activity e2e correlation C17 = 〈Eacceleration(C3)
active →

Emotion(MS3)
active 〉 is violated and the anomaly is hence detected.

Detecting Case 11. Ghost/Fake Commands that try to turn
on P2 are detected due to a violation of the correlation
C30 = 〈E switch(P2)

on � SCO2(A)
>950 〉, which is derived from the

smart app rule R14 and accepted by the hypothesis testing.
The threshold 950 is easily extracted via semantic analysis
of apps, but it would be difficult, if not impossible, for pure
mining based approaches to learn it.

Detecting Case 14. A stealthy command in Case 14 tries
to turn on the plug P2 to start the connected fan, which

causes the event E power(P2)
high . However, Since the feedback

event E switch(P2)
on is intercepted by attackers, the switch of P2

is still at the state S switch(P2)
o f f . Thus, the physical channel e2s

correlation C6 = 〈E power(P2)
high � S switch(P2)

on 〉 is violated.
Detecting Case 20. Command Failures (cyber)/Command
Interceptions are detected because of violation of the smart

app channel e2e correlation C38 = 〈Emotion(M2)
active ∧S mode

home →
E switch(P4)

on 〉: the commands are intercepted or not processed

by the cyber part, so there are no feedback events E switch(P4)
on .

In contrast, HAWatcher (Mining Only) cannot learn this cor-
relation and thus misses all instances of this case.

Detecting Case 21. L1 accepts the turning-on command
and sends the feedback event, but due to a physical-part
failure or DoE, the light is not on. While most of the instances
of Case 21 can be detected as violation of the correlation
C24= 〈E illuminance(MS1)

low � S switch(L1)
o f f 〉 (since the illuminance

keeps low but the light-switch state is on), 3 instances are
missed, because the room has been brightened up by natural
light (hence, illuminance has already been high) when the
anomaly arises.

For Cases 1, 3, 6, 9, and 10, some instances are missed,
which should be attributed to imperfection of anomaly sim-
ulation (rather than the inability of HAWatcher). For exam-
ple, seven instances of Case 1 are missed, because the fake
motion-active events of MS1 happen to be injected during

the time when there are real events of Emotion(MS1)
active ; such

missed instances should not impose hazards, as the events
are consistent with the fact that the residents are active dur-
ing the time. Similarly, the 26 missed instances of Case 10
are illuminance readings which have similar values with real
readings at the time. For Case 9, two instances are missed
because two residents are back home together when one of
their presence sensors’ events get intercepted. In this situa-
tion, smart app R17 will be triggered without difference by
the other presence sensor and no hazard is caused.

Comparison. (1) As shown in Figure 8,HAWatcher achieves
the best performance across all the 24 cases. (2) HAWatcher
(Apps Only) merely obtains e2e correlations from smart apps,
and can only detect anomalies, such as Command Failures
(cyber)/Command Interceptions. It gets 16.67% for both the
average precision and recall. (3) HAWatcher (Mining Only)
has the second best performance. On average, its precision
is 88.42% and recall 88.62%, showing the effectiveness and
importance of our mining approach. However, due to the
lack of knowledge of smart apps, it misses many instances
of Cases 2, 11, 12, and 20. (4) The ARM-based detector has
an average precision 2.03% and recall 7.79%. It fails to detect
any anomaly instances for 17 of the 24 cases, as its rules
cover very few attributes (Section 6.2). (5) OCSVM performs
slightly better with precision 17.15% and recall 45.19%. It fails
for Cases 4, 9, 10, and 18, as events related to these cases do
not fall inside the same input vector.

False Alarm Rate. We measure the false alarm rate of
HAWatcher using the testing event logs (collected during the
fourth week). We consider any alarms that are not due to our
anomaly injection and cannot be categorized as any of the
anomaly types listed in Section 3 as false alarms. HAWatcher
reports totally 13 anomalies other than those injected by
us. Among them, six (6) are due to violations of correla-
tions C12,C13,C29, andC15, because of the large delays of
some events from the illuminance sensors; three (3) are due
to violations of correlations C20 and C21, because of the
large delays of some events from the acceleration sensors.
Such anomalies are categorized as true positives due to Event
Losses or Large Delays (Section 3.1). They should be reported
to users, as the large delay may confuse users and even cause
undesired automation (e.g., an unlock-door command arrives
late after the user has locked the door).

The other four (4) are due to user behavioral deviations:
two are due to violation of C4 and C5, because there is one
time that the residents stayed outside the door for a while
(longer than 60 seconds) before opening the front door; C11
and C18 each cause one false alarm, and the reason is that
the residents left the front door open for quite a while and
then closed it. While it is arguable whether anomalies due
to user behavioral deviations should be categorized as false
alarms, we consider them false alarms, as they are not due
to attacks or device malfunctions.

In total,HAWatcher reports four (4) false alarms from 9,756

4234 30th USENIX Security Symposium USENIX Association

Figure 8: Recall and precision of HAWatcher and four other detectors for comparison purposes.

events collected during aweek,whichmakes 0.57 false alarms
per day and a false alarm rate of 0.04%. In comparison, ARM
and OCSVM cause 722 and 1,116 false alarms, respectively;
that is, 103 and 159 per day and false alarm rates 7.40% and
11.44%, respectively.

6.5 Performance upon Smart App Changes

In an appified home, it is common that users change the
smart apps, such as installing new apps and changing the
configuration. However, traditional mining based anomaly
detection needs a long time to adapt to the changes and,
during the adaptation time, may trigger many false alarms.
Handling such changes for anomaly detection in appified
homes has been challenging. We conduct smart app change
experiments to evaluate HAWatcher’s performance and com-
pare it with other systems, OCSVM and ARM.
As listed in Table 8, we create five cases of smart app

changes, which cover changes of trigger, condition, action,
and the whole rule. For each case, we use one day to collect
the data, and then apply HAWatcher, OCSVM, and ARM to
the collected data. The results show that HAWatcher does
not trigger any alarms, while OCSVM triggers many alarms
for all the five cases and ARM for the changes of R8 and
R10. We manually inspect the alarms and confirm that they
are all false alarms caused by app changes.

ARM does not trigger false alarms for the changes of R3,
R5, and R14 because it does not include any association
rules covering the devices, such as L1 and L3, involved in the
updated rules. For the OCSVM-based detector, each vector
contains four consecutive snapshots of device states. In the

case of R3, for example, themissingE switch(L1)
on causes unseen

vectors and thus triggers false alarms. For HAWatcher, upon
app changes, the semantics of the updated apps are extracted
and an updated set of correlations obtained. Thus, it is able
to handle the changes without triggering false alarms.

7 Related Work

With the emerging development of IoT devices and appified
home automation, their security and privacy issues have
drawn great attention [28, 29, 34, 50, 57, 61, 73, 74, 78, 79].
Most of them are focused on detecting threats, attacks and

malware, rather than IoT malfunctions. For example, Home-
Guard [33, 34] presents the first systematic categorization
of threats due to interference between different automation
apps, dubbed cross-app interference (CAI) threats, such as
automation conflicts, chained execution, and loop triggering;
it is also the first that uses SMT solvers to systematically de-
tect such threats. It conducts symbolic execution to extract
automation rules from apps, which is used in this work.

PFirewall [32] is a unique work that notices excessive IoT
device data continuously flows to IoT automation platforms.
It enforces data minimization, without changing IoT devices
or platforms, to protect user privacy from platforms.
IoTSan [61] statically analyzes smart apps to predict

whether the resulting automation may violate any safety
properties. IoTGuard [29] instruments smart apps. Before
an app issues a sensitive command, the action has to pass
the policies defined by users. Both rely on pre-defined poli-
cies, while HAWatcher does not. Unlike our work, which
detects IoT device anomalies, HoMonit [79] is focused on
detecting misbehaving smart apps. Given a physical event,
Orpheus [31] checks the system call trace due to the event
against an automaton to detect attacks; it cannot detect
anomalies such as fake events, event interceptions, etc.

Many anomaly detection detectors learn normal behaviors
of a smart home from its historical data [26, 35, 51, 54, 60, 69,
75, 76]. For example, SMART [51] trains multiple user activ-
ity classifiers based on different subsets of sensor readings,
and further trains another classifier that takes the vector
of activity-classification results as its input to detect sensor
failures. DICE [35] detects anomalies during state transitions
by checking the context. Peeves [26] makes use of data from
an ensemble of sensors to detect spoofed events.
The main difference of these existing anomaly detectors

and our work is that HAWatcher extracts various semantics
(device types, device relations, smart apps and their configu-
ration), and infuses the semantics into the mining process.
Not only is the detection more accurate, but each detected
anomaly can be interpreted as a violation of a correlation,
which itself is explainable. Prior to our work, it is unclear
how a mining based approach is able to accurately learn
complex behaviors in an appified home (e.g., Testbed 1 with
17 apps). HAWatcher provides an effective solution.

USENIX Association 30th USENIX Security Symposium 4235

Table 8: The number of false alarms caused by smart app changes.
Original Rule Type Rule after change HAWatcher OCSVM ARM

R3 Action change If MS1(active), then L2(on) and L1(on) 0 14 0
R5 New rule If MS2(active) B2(click), then L3(on) L3(toggle) 0 10 0
R8 Condition change If MS3(inactive) for 5 15 minutes, then L4(off) 0 30 67
R10 Condition change If MS4(inactive) for 15 30 minutes, then L5(off) 0 17 75
R14 Trigger change If A(CO2 > 950 1000), then P2(on) for 15 minutes 0 17 0

8 Limitations and Future Work

While the evaluation results are very promising, we consider
this work a first step towards semantics-aware anomaly de-
tection in appified smart homes. HAWatcher has some limi-
tations that we plan to address.

User Activity Deviations. Correlations due to the user ac-
tivity channel are useful for detecting anomalies, but they
can cause false alarms when there are user-activity devia-
tions. We already find such cases during our evaluation (see
False AlarmRate in Section 6.4), although they occur rarely.
Some alarms help remind users of unusual situations (e.g.,
the front door is left open), while others may be annoying.
For example, one day a resident wants to read a book in her
bedroom and turns on extra lights, which causes illuminance
high. If this never or rarely occurs during training, it can
cause a false alarm. One potential solution is to ask for users’
feedback when raising alarms, and deactivate or re-test cor-
relations that have caused negative feedback. Generally, how
to continuously update correlations to adapt to changes of
IoT devices and user activities is an important problem.

Long-term Correlations. HAWatcher can only mine cor-
relations whose anterior and posterior events arise within
short intervals. Long-interval correlations, such as the rela-
tion between turning on AC and temperature events, cannot
be mined yet. We can annotate the corresponding cells in the
adjacency table with long intervals and use the information
during hypothesis testing.

AttackerswithMoreKnowledge.An attackerwho knows
the correlations may construct attacks that do not violate any
correlations in order to evade detection. The bottom line of
running HAWatcher is that it imposes extra constraints on at-
tackers. In Testbe 1, each attribute is involved in at least four
(4) correlations and has an average of 10.5 correlations (Sec-
tion 6.2). It is a barrier to attack an device without violating
any of the correlations. For example, given the correlation

〈E lock(f rontdoor)
unlocked � S presence

present 〉 (i.e., the front door unlock event
can only arise when the presence sensor is on), if an attacker
has compromised the door lock, an alarm will be triggered if
the attacker unlocks the door when nobody is home.

Sparsely Deployed IoT Devices. Some IoT devices might
be sparsely deployed, and physical-channel correlations
among them might be very few. A promising solution is
to explore the correlations in the entire home, rather than
in separate rooms, which can hopefully derive more correla-
tions among devices. Moreover, it is a trend that IoT devices
are deployed with increasing density.

9 Conclusion
In an appified smart home, there exists rich semantic infor-
mation, such as smart apps, configurations, device types, and
installation locations. It is a promising direction to combine
such semantic information with mining for anomaly detec-
tion. We presented a viable and effective approach in this
direction: it exploits semantics on different channels (smart-
app, physical, and user-activity) to propose explainable hy-
pothetical correlations, which are tested using event logs and
refined by smart apps. We built a prototype HAWatcher and
evaluated it on four real-world testbeds against various (to-
tally 62) anomaly cases, demonstrating its high accuracy and
low false alarm rate. We view this work as a first step, rather
than the final solution, in the direction of semantics-aware
anomaly detection for appified smart homes.

Acknowledgement

We thank the reviewers for their invaluable suggestions. This
work was supported in part by the US National Science Foun-
dation (NSF) under grants CNS-1828363, CNS-1564128, CNS-
1824440, CNS-2016589, CNS-1856380 and CNS-2016415.

References

[1] Smartapp execution scheduling. https://docs.
smartthings.com/en/latest/ref-docs/smartapp-ref.
html#smartapp-run-in.

[2] Lights follows me, 2015. https://github.com/
SmartThingsCommunity/SmartThingsPublic/tree/
master/smartapps/smartthings/light-follows-me.src.

[3] Door knocker going crazy, 2016. https://community.
smartthings.com/t/door-knocker-going-crazy/55570.

[4] Tons of issues with smartthings, 2016. https:
//www.reddit.com/r/SmartThings/comments/
4463eo/anyone_else_having_tons_of_issues_with_
smartthings/.

[5] When st glitches become major safety fire haz-
ard, 2016. https://community.smartthings.com/t/
when-st-glitches-become-major-safety-fire-hazard/
43109.

[6] Are the poltergeists back?, 2017.
https://community.smartthings.com/t/october-
2017-are-the-poltergeists-back-devices-randomly-
turning-on/101402.

4236 30th USENIX Security Symposium USENIX Association

[7] Command received but not executed,
2017. https://community.smartthings.com/t/
command-received-but-not-executed/112045.

[8] Mobile device presence update delay,
2017. https://community.smartthings.com/t/
mobile-device-presence-update-delay/98672.

[9] Motion sensor stuck on motion, 2017.
https://community.smartthings.com/t/
motion-sensors-stuck-on-motion/46761.

[10] Motion sensors losing connectivity, 2017.
https://community.smartthings.com/t/smartthings-
motion-multi-sensors-losing-connectivity-on-a-daily-
basis/84512.

[11] Tplink smart wi-fi plug fail, 2017. https:
//www.h3-digital.com/smarthomeblog/2017/5/
23/tplink-smart-wi-fi-plug-fail.

[12] Undesired poltergeist lighting effect, 2017.
https://community.smartthings.com/t/undesired-
poltergeist-lighting-effect/24132.

[13] What’s wrong with smartthings now?,
2017. https://community.smartthings.com/t/
whats-wrong-with-smartthings-now-poltergeist-events/
83889.

[14] Your hotspot is a presence detector. http:
//ficara.altervista.org/?p=3744&doing_wp_cron=
1591921359.5108020305633544921875, 2017.

[15] It’s too cold, 2018. https://github.com/
SmartThingsCommunity/SmartThingsPublic/tree/
master/smartapps/smartthings/its-too-cold.src.

[16] Light up the night, 2018. https://github.com/
infinitywings/SmartThingsPublic/blob/master/
smartapps/smartthings/light-up-the-night.src/
light-up-the-night.groovy.

[17] Motion detection false positive, 2018.
https://community.smartthings.com/t/
motion-detection-false-positive/119816.

[18] Smart plug clicks but no power, 2018.
https://community.smartthings.com/t/
smart-plug-clicks-but-no-power/115252.

[19] Smartthings capabilities, 2018. https://smartthings.
developer.samsung.com/docs/api-ref/capabilities.
html.

[20] Known mobile presence issues and faq, 2019.
https://support.smartthings.com/hc/en-us/articles/
204744424-Known-mobile-presence-issues-and-FAQ.

[21] Smartthings, 2019. https://www.smartthings.com.

[22] Pymining - a collection of data mining algorithms in
python, 2020. https://github.com/bartdag/pymining.

[23] Troubleshooting: Smartthings multipur-
pose sensor is stuck on "open" or "closed",
2020. https://support.smartthings.com/hc/en-
us/articles/200955940-Troubleshooting-SmartThings-
Multipurpose-Sensor-is-stuck-on-open-or-closed-.

[24] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast
algorithms for mining association rules. In Proceedings
of 20th International Conference of Very Large Data Bases
(VLDB), volume 1215, pages 487–499, 1994.

[25] Omar Alrawi, Chaz Lever, Manos Antonakakis, and
Fabian Monrose. Sok: Security evaluation of home-
based iot deployments. In Proceedings of the IEEE Sym-
posium on Security and Privacy (S&P), 2019.

[26] Simon Birnbach, Simon Eberz, and Ivan Martinovic.
Peeves: Physical event verification in smart homes. In
Proceedings of the ACM Conference on Computer & Com-
munications Security (CCS), pages 1455–1467, 2019.

[27] Kate Calder. Statistical inference. New York: Holt, 1953.

[28] Z Berkay Celik, Patrick McDaniel, and Gang Tan. Sote-
ria: Automated iot safety and security analysis. In 2018
USENIX Annual Technical Conference (USENIX ATC),
pages 147–158, 2018.

[29] Z Berkay Celik, Gang Tan, and Patrick D McDaniel.
Iotguard: Dynamic enforcement of security and safety
policy in commodity iot. In Network and Distributed
System Security Symposium (NDSS), 2019.

[30] Varun Chandola, Arindam Banerjee, and Vipin Kumar.
Anomaly detection: A survey. ACM computing surveys
(CSUR), 41(3):15, 2009.

[31] Long Cheng, Ke Tian, and Danfeng Daphne Yao. Or-
pheus: Enforcing cyber-physical execution semantics
to defend against data-oriented attacks. In Proceed-
ings of the 33rd Annual Computer Security Applications
Conference (ACSAC), pages 315–326, 2017.

[32] Haotian Chi, Qiang Zeng, Xiaojiang Du, and Lannan
Luo. PFirewall: Semantics-aware customizable data
flow control for home automation systems. arXiv
preprint arXiv:1910.07987, 2019.

[33] Haotian Chi, Qiang Zeng, Xiaojiang Du, and Jiaping
Yu. Cross-app interference threats in smart homes:
Categorization, detection and handling. arXiv, pages
arXiv–1808, 2018.

USENIX Association 30th USENIX Security Symposium 4237

[34] Haotian Chi, Qiang Zeng, Xiaojiang Du, and Jiaping
Yu. Cross-app interference threats in smart homes:
Categorization, detection and handling. In 50th An-
nual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 411–423, 2020.

[35] Jiwon Choi, Hayoung Jeoung, Jihun Kim, Youngjoo Ko,
Wonup Jung, Hanjun Kim, and Jong Kim. Detecting and
identifying faulty iot devices in smart home with con-
text extraction. In 48th IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN), 2018.

[36] Diane J Cook, Aaron S Crandall, Brian L Thomas, and
Narayanan C Krishnan. Casas: A smart home in a box.
Computer, 46(7):62–69, 2013.

[37] Diane J Cook, Michael Youngblood, Edwin O Heier-
man, Karthik Gopalratnam, Sira Rao, Andrey Litvin,
and Farhan Khawaja. Mavhome: An agent-based smart
home. In Proceedings of the First IEEE International Con-
ference on Pervasive Computing and Communications
(PerCom), pages 521–524, 2003.

[38] Borden Dent. Cartography–thematic map design. 1999.
pages 147–149.

[39] Wenbo Ding and Hongxin Hu. On the safety of iot
device physical interaction control. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer & Com-
munications Security (CCS), pages 832–846, 2018.

[40] Nancy ElHady and Julien Provost. A systematic sur-
vey on sensor failure detection and fault-tolerance in
ambient assisted living. Sensors, 18(7):1991, 2018.

[41] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash.
Security analysis of emerging smart home applications.
In IEEE Symposium on Security and Privacy (S&P), pages
636–654, 2016.

[42] Ronald Aylmer Fisher. Statistical methods for research
workers. In Breakthroughs in statistics, pages 66–70.
Springer, 1992.

[43] Milan Fránik and Miloš Čermák. Seri-
ous flaws found in multiple smart home
hubs: Is your device among them?, 2020.
https://www.welivesecurity.com/2020/04/22/serious-
flaws-smart-home-hubs-is-your-device-among-
them/.

[44] Chenglong Fu, Qiang Zeng, and Xiaojiang Du.
Hawatcher: Semantics-aware anomaly detection
for appified smart homes (technical report), 2020.
https://github.com/infinitywings/HAWatcher.git.

[45] Jun Han, Albert Jin Chung, Manal Kumar Sinha, Mad-
humitha Harishankar, Shijia Pan, Hae Young Noh, Pei

Zhang, and Patrick Tague. Do you feel what i hear?
enabling autonomous iot device pairing using different
sensor types. In 2018 IEEE Symposium on Security and
Privacy (S&P), pages 836–852, 2018.

[46] TimothyWHnat, Vijay Srinivasan, Jiakang Lu, Tamim I
Sookoor, Raymond Dawson, John Stankovic, and Kamin
Whitehouse. The hitchhiker’s guide to successful resi-
dential sensing deployments. In Proceedings of the 9th
ACMConference on EmbeddedNetworked Sensor Systems
(SenSys), pages 232–245, 2011.

[47] Apple Homekit. Homekit-apple developer, 2019.
https://www.apple.com/ios/home/.

[48] Jun Inoue, Yoriyuki Yamagata, Yuqi Chen, Christo-
pher M Poskitt, and Jun Sun. Anomaly detection for a
water treatment system using unsupervised machine
learning. In 2017 IEEE International Conference on Data
Mining Workshops (ICDMW), pages 1058–1065, 2017.

[49] George F Jenks. The data model concept in statistical
mapping. International yearbook of cartography, 7:186–
190, 1967.

[50] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rah-
mati, Earlence Fernandes, Z Morley Mao, Atul Prakash,
and Shanghai JiaoTong Unviersity. Contexiot: Towards
providing contextual integrity to appified iot platforms.
In Proceedings of The Network and Distributed System
Security Symposium (NDSS), 2017.

[51] Krasimira Kapitanova, Enamul Hoque, John A
Stankovic, Kamin Whitehouse, and Sang H Son.
Being smart about failures: assessing repairs in smart
homes. In Proceedings of the 2012 ACM Conference on
Ubiquitous Computing (UbiComp), pages 51–60, 2012.

[52] Stylianos P Kavalaris and Emmanouil Serrelis. Security
issues of contemporary multimedia implementations:
The case of sonos and sonosnet. In The International
Conference in Information Security and Digital Forensics
(ISDF), pages 63–74, 2014.

[53] Shehroz S Khan and Michael G Madden. One-class clas-
sification: taxonomy of study and review of techniques.
The Knowledge Engineering Review, 29(3):345–374, 2014.

[54] Palanivel A Kodeswaran, Ravi Kokku, Sayandeep Sen,
and Mudhakar Srivatsa. Idea: A system for efficient
failure management in smart iot environments. In Pro-
ceedings of the 14th Annual International Conference
on Mobile Systems, Applications, and Services (MobiSys),
pages 43–56, 2016.

[55] K Kreuzer. Openhab-empowering the smart home,
2013.

4238 30th USENIX Security Symposium USENIX Association

[56] Wenke Lee, Salvatore J Stolfo, and Kui W Mok. A
data mining framework for building intrusion detec-
tion models. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), pages 120–132, 1999.

[57] Xiaopeng Li, Qiang Zeng, Lannan Luo, and Tongbo Luo.
T2Pair: Secure and Usable Pairing for Heterogeneous
IoT Devices. In Proceedings of the ACM Conference on
Computer & Communications Security (CCS), 2020.

[58] Haoyu Liu, Tom Spink, and Paul Patras. Uncovering
security vulnerabilities in the belkin wemo home au-
tomation ecosystem. In 2019 IEEE International Con-
ference on Pervasive Computing and Communications
Workshops (PerCom Workshops), pages 894–899, 2019.

[59] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. Distributed representations of
words and phrases and their compositionality. In
Advances in neural information processing systems
(NeurIPS), pages 3111–3119, 2013.

[60] Sirajum Munir and John A Stankovic. Failuresense:
Detecting sensor failure using electrical appliances in
the home. In 11th International Conference on Mobile Ad
Hoc and Sensor Systems (MobiHoc), pages 73–81, 2014.

[61] Dang Tu Nguyen, Chengyu Song, Zhiyun Qian,
Srikanth V Krishnamurthy, Edward JM Colbert, and
PatrickMcDaniel. Iotsan: fortifying the safety of iot sys-
tems. In Proceedings of the 14th International Conference
on emerging Networking Experiments and Technologies
(CoNEXT), pages 191–203, 2018.

[62] Sukhvir Notra, Muhammad Siddiqi, Hassan Habibi
Gharakheili, Vijay Sivaraman, and Roksana Boreli. An
experimental study of security and privacy risks with
emerging household appliances. In IEEE conference on
communications and network security (CNS), 2014.

[63] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau,M. Brucher,M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[64] Friedrich Pukelsheim. The three sigma rule. The Amer-
ican Statistician, 48(2):88–91, 1994.

[65] Eyal Ronen,Adi Shamir, Achi-OrWeingarten, and Colin
O’Flynn. Iot goes nuclear: Creating a zigbee chain reac-
tion. In 2017 IEEE Symposium on Security and Privacy
(S&P), pages 195–212, 2017.

[66] Lee Russell. Wireless security monitoring versus a
cellular jammer. 2014.

[67] Bernhard Schölkopf, John C Platt, John Shawe-Taylor,
Alex J Smola, and Robert C Williamson. Estimating
the support of a high-dimensional distribution. Neural
computation, 13(7):1443–1471, 2001.

[68] Amit Kumar Sikder, Hidayet Aksu, and A Selcuk Ulu-
agac. 6thsense: A context-aware sensor-based attack
detector for smart devices. In 26th USENIX Security
Symposium (USENIX Security), pages 397–414, 2017.

[69] Amit Kumar Sikder, Leonardo Babun, Hidayet Aksu,
and A Selcuk Uluagac. Aegis: a context-aware security
framework for smart home systems. In Proceedings of
the 35th Annual Computer Security Applications Confer-
ence (ACSAC), pages 28–41, 2019.

[70] Vijay Sivaraman, Dominic Chan, Dylan Earl, and
Roksana Boreli. Smart-phones attacking smart-homes.
In Proceedings of the 9th ACM Conference on Security &
Privacy in Wireless and Mobile Networks (WiSec), pages
195–200, 2016.

[71] Yuan Tian,Nan Zhang, Yueh-Hsun Lin,XiaoFengWang,
Blase Ur, Xianzheng Guo, and Patrick Tague. Smartauth:
User-centered authorization for the internet of things.
In 26th USENIX Security Symposium (USENIX Security),
pages 361–378, 2017.

[72] Rob van der Meulen and Janessa Rivera. Gartner says
a typical family home could contain more than 500
smart devices by 2022. Technical report, 2014. http:
//www.gartner.com/newsroom/id/2839717.

[73] Qi Wang, Wajih Ul Hassan, Adam Bates, and Carl
Gunter. Fear and logging in the internet of things. In
Network and Distributed System Security Symposium
(NDSS), 2018.

[74] Rixin Xu, Qiang Zeng, Liehuang Zhu, Haotian Chi, Xi-
aojiang Du, and Mohsen Guizani. Privacy leakage in
smart homes and its mitigation: Ifttt as a case study.
IEEE Access, 7:63457–63471, 2019.

[75] Moosa Yahyazadeh, Proyash Podder, Endadul Hoque,
and Omar Chowdhury. Expat: Expectation-based pol-
icy analysis and enforcement for appified smart-home
platforms. In Proceedings of the 24th ACM Symposium
on Access Control Models and Technologies (SACMAT),
pages 61–72, 2019.

[76] Juan Ye, Graeme Stevenson, and Simon Dobson. Fault
detection for binary sensors in smart home environ-
ments. In Pervasive Computing and Communications
(PerCom), pages 20–28, 2015.

[77] Juan Ye, Graeme Stevenson, and Simon Dobson. De-
tecting abnormal events on binary sensors in smart
home environments. In Pervasive and Mobile Comput-
ing, pages 32–49, 2016.

USENIX Association 30th USENIX Security Symposium 4239

[78] Qiang Zeng, Jianhai Su, Chenglong Fu, Golam Kayas,
Lannan Luo, Xiaojiang Du, Chiu C Tan, and Jie Wu.
A multiversion programming inspired approach to de-
tecting audio adversarial examples. In 49th Annual
IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN), pages 39–51, 2019.

[79] Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang,
Yinqian Zhang, and Haojin Zhu. Homonit: Monitor-
ing smart home apps from encrypted traffic. In ACM
SIGSAC Conference on Computer & Communications Se-
curity (CCS), pages 1074–1088, 2018.

[80] Wei Zhou, Yan Jia, Yao Yao, Lipeng Zhu, Le Guan,
Yuhang Mao, Peng Liu, and Yuqing Zhang. Discovering
and understanding the security hazards in the inter-
actions between iot devices, mobile apps, and clouds
on smart home platforms. In 28th USENIX Security
Symposium (USENIX Security), pages 1133–1150, 2019.

A Experimental Results of Testbeds 2 to 4

Table 9: Smart apps deployed on Tesbeds 2 ∼ 4. R2.1, for
example, means the first smart app rule on Testbed 2.

Index Smart app rules

R2.1 If MS2(active), then P1(on) and L1(on)
R2.2 If MS2(inactive) for 30 minutes,

then P1(off), L1(off), L2(off), L3(off)
R2.3 If MS3(active), then L4(on)
R2.4 If MS3(inactive) for 10 minutes, then L4(off)
R2.5 If W(wet) or MS3(humidity≥55), then V(on)
R2.6 If V(on) for 15 minutes, then V(off)
R2.7 If PS1(present) or PS2(present),

then turn on L1, L2, L5, P1
R2.8 If PS1(away) and PS2(away),

then turn off L1, L2, L3, L4, L5, V, P1
R2.9 If B(pressed), toggle L5
R2.10 If B(held), then turn off all L and P
R2.11 If B(double pressed), turn on L1 and L5 and P1

R3.1 If MS1(active) and Mode(home), then L1(on)
R3.2 If MS1(inactive) for 60 minutes, then L1(off)
R3.3 If B(pressed), toggle L1
R3.4 If B(held), then L1(off) and Mode(night)
R3.5 If B(double pressed), then L1(on) Mode(home)
R3.6 If PS(away), then L1(off), P1(off), and Mode(away)
R3.7 If PS(present), then L1(on), P1(on), and Mode(home)

R4.1 If PS(away), then P1(off) and P2(off)
R4.2 If PS(present) then P1(on), P2(on)
R4.3 If B(pressed), toggle P1
R4.4 If B(held), toggle P2

A.1 Deployment

We list the smart apps deployed on Testbeds 2, 3, and 4 in
Table 9. On Testbed 3, the mode is used as a condition to
control the behavior of the light, while Testbeds 2 and 4 do
not use the mode. Since Testbed 2 has two residents, lights
and plugs are only turned off when both residents are away
(R2.8). Testbeds 3 and 4 have one resident each, and all lights
and plugs are turned off when the resident leaves home.

A.2 Training and Testing Results

On Testbed 2, we extract 32 e2e correlation from smart apps
and pass 98 correlations from 2064 hypothetical correla-
tions. In total, we get 109 correlations after refining. The
difference of correlations regarding contact sensors, as ob-
served on Testbed 1, is also observed on Testbed 2: C1 on
the front door always gets closed right after the accelera-
tion is detected, while C2 and C3 are usually left open for

a long time. The inaccurate correlation 〈E presence(PS2)
away →

E switch(L1)
o f f 〉 is accepted by the hypothesis testing. If not re-

fined by the smart app rule R2.8, it causes 4 false alarms
for HAWatcher (Mining Only) on case 2.3 and 2.6 when
only the resident taking PS2 leaves home. As detailed in
our technical report [44], HAWatcher achieves an aver-
age detection precision of 94.85% and recall of 96.86%. In
terms of the false alarm test, HAWatcher raises 13 false
alarms among 6721 events collected within one week’s test-
ing period, which causes a false alarm rate (FAR) of 0.19%
and 1.86 false alarms per day. Among the 13 false alarms,

four (4) are raised by the correlations 〈Eacceleration(C1)
active →

Emotion(MS1)
active 〉 and 〈Eacceleration(C2)

active → Emotion(MS2)
active 〉 because

of strong vibrations in the neighborhood that trigger events
of the acceleration sensor C1 and C2. Three (3) are raised

by 〈E illuminance(L4)
low � S motion(MS3)

inactive 〉 because there are three
times that a resident remains active in the study room after

the light is turned off. Four (4) are caused by 〈E contact(C3)
closed �

S motion(MS3)
active 〉 because residents close the door from outside.

In contrast, the OCSVM-based detector has an average pre-
cision of 11.11% and recall of 35.41% with 968 false alarms
raised. The ARM-based detector has an average precision of
3.76% and a recall of 9.96%, and raises 370 false alarms.

On Testbed 3, HAWatcher accepts 50 correlations from 527
hypotheses, and 15 e2e correlations from smart apps. After re-
fining, there are 55 correlations left. HAWatcher achieves an
average detection precision of 92.74% and a recall of 93.36%.
Among the testing period, ten (10) false alarms are raised
by HAWatcher among 2411 events, which leads to 1.42 false
alarms per day on average and a FAR of 0.42%. In contrast, the
OCSVM-based detector has an average precision of 31.01%
and a recall of 42.33%, and raises 379 false alarms. The ARM-
based detector has an average precision of 9.89% and an
average recall of 14.10%, and raises 152 false alarms.

On Testbed 4, only 26 correlations are acquired because of
the low density of IoT devices and smart apps. HAWatcher
gets an average detection precision of 96.62% and a recall of
90.17%. Five (5) false alarms are raised on this testbed among
1674 events, that is, 0.71 false alarms per day and a FAR of
0.30%. In contrast, the OCSVM-based detector has an average
precision of 28.80% and a recall of 42.37%, and raises 168 false
alarms. The ARM-based detector has an average precision
of 3.60% and a recall of 7.38%, and raises 108 false alarms.

4240 30th USENIX Security Symposium USENIX Association

