
Decision-Tree Based Root Cause Localization for 
Anomalies in Smart IoT Systems

Michael Wang 
Methacton High School 
1005 Kriebel Mill Rd  

Eagleville, PA 19403, USA 
MW668@student.methacton.org 

 

Chenglong Fu, Xiaojiang Du  
Dept. of Computer and Information Sciences 

Temple University 
Philadelphia, PA, 19122, USA 

{chenglong.fu, dux}@temple.edu

   

Abstract—With the rapid growth of Internet of Things 
(IoTs), Internet-connected devices and home appliances gain 
popularity on the consumer electronic market. New home IoT 
products with built-in network connections and intelligent 
functionalities are quickly rolled out to the market. As predicted 
by Gartner, there will be more than 500 IoT devices deployed in 
a typical household by 2022. The easy device integration and 
advanced automation logic also brings new challenges with 
regard to security and privacy. IoT devices have been reported 
as unreliable because of the constraints in costs and resources. 
Anomalies of IoT devices include malfunctions of the physical 
part or the cyber part of an IoT device, as well as abnormal 
behaviors due to malicious attacks. Abnormal IoT devices could 
cause severe consequences, because they reside in the home 
environment and have critical functions that can change the 
physical world, such as door (smart lock) opening, smart oven 
burning (which could cause fire), or smart water valve opening 
(which could cause flooding). In this paper, we study the 
important issue of localizing the root cause of anomalies in a 
smart environment (e.g., smart homes and smart offices). We 
propose to use decision trees for efficient and effective anomaly 
root cause localization. We construct decision trees from 
automation rules that control the operations of smart IoT 
devices in a smart environment. Our performance evaluation on 
data collected from real smart homes demonstrate the 
effectiveness of our proposed approach.    
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I. INTRODUCTION  
Along with the rapid growth of the Internet of Things 

(IoTs), Internet-connected devices and home appliances gain 
popularity in the consumer electronics market. New home IoT 
products with built-in network connections and intelligent 
functionalities are quickly rolled out to the market. Traditional 
home electronic devices can also be easily converted to IoT 
devices by connecting them to smart plugs. As predicted by 
Gartner, there will be more than 500 IoT devices in a typical 
household [2] by 2022. The increasing number of IoT devices 
facilitate the process of smart homes evolving from isolated 
devices for remote monitoring and controlling to integrated 
platforms such as SmartThings, Homekit, and Alexa. These 
platforms not only provide universal interoperability among 
heterogeneous IoT devices from different manufacturers, but 
also allow home IoT devices to work autonomously according 
to user-specified trigger-action programs. 

Despite the development of the smart home, the easy 
device integration and advanced automation logic also brings 
new challenges with regard to security and privacy which have 

been studied by many recent research works [3,11,12]. IoT 
devices have been reported as unreliable because of the 
constraints in costs and resources [15,18]. On one hand, IoT 
devices make it possible for cyber space anomalies to affect 
the physical world and induce severe consequences to home 
safety. For example, the loss of network packets that carry the 
command towards a smart valve may cause the room flood. 
On the other hand, users can pay less attention to their home 
electrical device by relying on the home automation system, 
which makes the device anomalies harder to be noticed until 
they cause severe damages. For instance, the connection loss 
of a smart plug could prevent it from cutting off the power to 
a connected radiation heater. This greatly increase the risk of 
fire hazard because the user may think the plug should have 
already been turned off automatically. Moreover, due to the 
interoperability, IoT devices with different sensing and 
actuating capabilities are chained together, which further 
exaggerates the impact of anomalies because abnormal 
behaviors of one device could trigger inappropriate actions of 
other chained devices according to various automation logic. 

 Localizing the root cause of smart home devices is a 
challenging task due to the complexity of situations of device 
malfunctions. When a user reports a device anomaly, it could 
either be caused by the reported device itself or by other 
devices that are associated with it through automation rules. 
Some prior works have explored the possible solution of 
anomaly localization by using Random Forest or Naïve Bayes 
[1]. However, they all require long periods of training and are 
not efficient enough to deal with real-world anomalies, which 
need to be handled quickly to avoid further damage.  

In this paper, we propose a root cause localization system 
that utilizes home automation rules to infer possible root cause 
devices of each reported anomaly and localize the final root 
cause device by getting their intersection. More specifically, 
we build decision trees from automation rules that are 
associated with each reported anomaly. We go through the 
tree by checking the history devices event log and get the 
output of possible root causes. Since a single device 
malfunction could cause anomalies of multiple other devices, 
the root cause could be accurately identified by comparing the 
output of decision trees from these associated devices. The 
proposed system is tested on a real-world testbed and is 
proved to be accurate and efficient in identifying the root 
cause of anomalies.  

Contributions of this paper can be summarized as: 



1) We propose a novel anomaly root cause localization 
system that utilizes semantic information of home 
automation rules. 

2) We design a method to automatically build and traverse 
decision trees according to home automation rules and 
smart home event logs. The root cause localizing process 
requires no user intervention. 

3) We evaluate our proposed system with data collected from 
the real-world smart home automation deployment.   

The rest of the paper is organized as follows. In Section Ⅱ, 
we discuss related works. In Section Ⅲ, we describe our 
design of anomaly localization system with details of building 
and traversing decision trees. In Section Ⅳ, we present the 
procedure and results of evaluation of our proposed system on 
the real-world testbed. Finally, we conclude in Section Ⅴ. 

II. RELATED WORKS 
Despite the popularity of smart home automation systems, 

many vulnerabilities are discovered that can cause critical 
threats to users’ security and safety. In [11], authors find 
security vulnerabilities of a smart app’s over-privileged and 
weak authorization of third-party cloud interface, which can 
be exploited to retrieve sensitive user data and inject spoof 
device events. In [15], Ronen et al. shows the vulnerabilities 
in smart light bulb's communication protocol and firmware 
and show the possibility of compromising a large number of 
devices by spreading a worm virus among them. [3] analyzes 
the large-scale botnet attack targeting consumer IoT devices 
caused by malware 'Mirai'. 

As a result, a reliable anomaly detection and localization 
mechanism is required to protect home automation systems 
against possible cyber-attacks and system deficiencies. There 
are a series of research works published on this topic in recent 
years. Some works use ensemble methods to detect and 
localize anomalies by searching for violations of system 
invariants. [6] proposes methods to detect data injection 
attacks by comparing the system states' signatures with those 
generated from pre-created anomalous cases. CLEAN [17] 
implements a clustering-based outlier detector. It uses the 
Least Common Subsumer (LCS) to measure the similarity 
among data points (events) and reports isolated data points as 
outliers. IDEA [13] studies the impact of sensor failure on 
recognizing different activities. It leverages the redundancy 
of sensors on recognizing activities and reports the absence 
of an expected event as the sensor's failure. While some other 
works concentrate on incorporating semantic information of 
automation rules to detect and localize anomalies, 
HomeGuard [8,9] is the first work to study anomalies caused 
by Cross-App Interference (CAI) of home automation 
systems. The authors develop a semantic analysis tool to 
extract rules from automation apps with symbolic execution 
and program instrumentation. Celik et al. propose the 
mechanism of tracking sensitive data flow using taint analysis 
and discovering security violations via static code analysis in 
[4] and [5], respectively. In [12] and [14], authors utilize the 
same method to extract automation rules as the context of 
home automation systems. Based on it, the authors develop a 
context-based permission system and user-centric 
authorization system. 

Prior to choosing decision trees as the main method to 
determine the root cause of anomalies, we research several 

other possible methods for root cause analysis. We find that 
Random Forest or Naïve Bayes [1] could be used. While both 
have their advantages and disadvantages, ultimately, we find 
that they are not as efficient as decision trees, in our case. As 
the possible methods that have been considered by us, we 
briefly discuss them below.  

 Random Forest is essentially a collective decision based 
on multiple decision trees. The anomaly root cause 
localization is found using different decision trees based 
on the feature vector. (Device, device capability 
malfunctioning, time of malfunction) Since there are 
multiple decision trees that are trained using data, 
random forest would work as it is essentially the average 
decision of multiple decision trees. 

 Naive Bayes is based on the concept of conditional 
probability. It can be summarized in the statement, 
“What is the probability of something happening given 
something.” However, Naive Bayes can also have 
multiple conditions so the statement can also be, “What 
is the probability of something happening given 
something, something else, etc.” You can characterise 
the localization of the root cause of an anomaly as “What 
is the probability that a device is the root cause given this 
device is malfunctions, etc.” Essentially, for example, if 
trying to find a root cause, the algorithm says, “Because 
device 1 is not working, and device 2 connected to it is 
not working, and device 1 can only work if device 2 is 
on, device 2 is the root cause of the anomaly.” The 
decision tree is more deterministic, but Naive Bayes uses 
the same basic concept but with probability instead. 

III. DECISION-TREE BASED ROOT CAUSE LOCALIZATION 
Home automation rules provide very useful semantic 

information for identifying the root cause of reported 
anomalies within the home automation systems. Normally, the 
malfunction of a smart home device could cause anomalies of 
multiple other smart home IoT devices via different 
automation rules. For each reported anomaly, we can infer  
possible devices that cause anomalies by checking its related 
automation rules. Then, the real root cause device can be 
identified from the intersection of suspected devices derived 
from different anomalies. To automate this checking 
procedure, we propose a decision tree-based approach that 
encode a device’s related automation rules into decision trees. 
In this section, we illustrate the procedures to build decision 
trees from automation rules and utilize those trees to localize 
the root cause of anomalies.  

Table Ⅰ. Example rules that are related to the living room light 

 

 

 

Case1 R1.1 <MS=inactive, CS = closed, L=off> 

R1.2 <PS=away, --, L=off> 

Case2 R2.1 <MS=active, CS=closed, L=on> 

R2.2 <CS-open, IS<30lux, L=on> 



A. Decision Tree Construction 

 
Fig. 1. Steps to build and stack subtrees. 

A reported anomaly includes the anomalous actuator 
device’s name and its abnormal status. For example, users 
could report an anomaly of “the living room light is falsely in 
the ‘on’ state”. This can be either be caused by the failure of 
execution of an automation rule that turns the light off or the 
false action of an automation rule that turns the light on. For 
each case, we build a decision tree to localize the possible root 
cause device. 

Fig. 2. Decision Trees for two cases 

For the first case, we collect all rules 𝑅1, 𝑅2, 𝑅3, ⋯ , 𝑅𝑛 
that have the action of “turning the living room light off”, 
which possibly fails to execute. We consider standard trigger-
action rules with optional conditions. We denote the trigger 
event as 𝑇 =  𝑡, which means the trigger device 𝑇’s states 
change to 𝑡. The 𝑖th rule 𝑅𝑖 in the collection is represented 
as ⟨𝑇𝑖 = 𝑡𝑖 , 𝐶𝑖 = 𝑐𝑖 , 𝐴𝑖 = 𝑎𝑖⟩. As illustrated in Figure 1, the 
construction of the decision tree can be summarized as the 
following three steps: 

1) For each rule, we build a right-chain subtree with its 
trigger being the root node, which is followed by the 
condition and action. The undefined leaf nodes 
(marked as ?) are left blank.  

2) After getting all subtrees, we stack them by placing 
the subtree of 𝑅𝑖+1 to the blank nodes of subtree of 
the previous rule 𝑅𝑖.  

3) For each leaf node that remains blank in the last two 
levels, we find the path from it to the root node and 
set its value to be the ‘OR’ combination of nodes in 
the path that have the decision of ‘False’. 

For the second case, we collect all rules that have the 
action of “turning on the living room light” as the suspected 
triggering rules. Then, the decision tree is built with similar 
procedures as the first case except for the following 
differences: 1) when build the subtrees for a rule, the leaf node 
is set as the “OR” combination of its ancestor nodes instead of 
the action of the rule; 2) After stacking all subtrees, blank 
nodes are set as the common action of all rules. 

Take the example anomaly, “the living room light is 
falsely on”, as an instance, we assume the living room light 
can be controlled by the following four automation rules as 
listed in the Table Ⅰ. For simplicity, we use the abbreviations 
of 𝑀𝑆, 𝐶𝑆, 𝑃𝑆, 𝐼𝑆, 𝑎𝑛𝑑 𝐿 to represent the motion sensor, the 
contact sensor, the presence sensor, the illuminance sensor, 
and the light in the living room. Rule 𝑅1.1 and 𝑅1.2 have the 
action of “turning off L” and are for case1. Rule 𝑅2.1 and 
𝑅2.2 have the action of “turning on L” and are for case2. Then, 
we can build a decision tree for each case as shown in Fig. 2 
in the aforementioned steps.  

B. Root Cause Localization 
We generate two decision trees for each reported anomaly. 

The first tree is used to look for possible failing rules, and the 
second tree is used to find unexpectedly executing rules. On 
receiving an anomaly at time 𝑡0, we backtrack the event log 
of the home automation system to find the latest time (𝑡1) that 
the reported device changes to the current state. Then, we 
collect all events in the period of [𝑡1, 𝑡0]  to form the 
searching event set. Then, we traverse the decision tree. At 
each node, a decision is made by checking whether the event 
of the node is in the searching event set. Finally, the leaf node 
we reach indicates the possible missing events that can cause 
the anomaly. The second tree is used for finding faulty events 
that trigger the last device status change at 𝑡1 unexpectedly.  

For this purpose, we collect events within 10 seconds before 
𝑡1  to form the search event set. We empirically select 10 
seconds as the length of the time window because most home 
automation system can guarantee the finish of automation rule 
execution within 10 seconds. Then, we traverse the second 
decision tree in the same way as the first one. The leaf node 
we finally reach indicates the unexpected events that possibly 
triggers the anomaly.   



 In the example trees as shown in Figure 2, if no event of 
the motion sensor and the contact sensor happens since the last 
time the light is turned on, we can get the result of “PS = away 
or Contact = closed missing” by traversing the decision tree of 
case1. Then, assuming the last time the light is turned on by 
the user’s manual operation, the decision tree of case2 is 
traversed with two consecutive false decisions and gets the 
result of “L = on”, meaning the anomaly is possibly caused by 
the malfunction of the light which turns itself on unexpectedly.  

IV. PERFORMANCE EVALUATION 

A. Automation Rules 
In order to determine the root cause of any anomaly that 

generates within the system. There needs to be a 
comprehensive set of rules and interactions that govern each 
Internet of Things device that we use. The rules are created by 
the user and form the basis of much of the project. This allows 
us to essentially find out what is the ground truth of an 
anomaly as it violates the rules and possible interactions that 
we have determined. For this project, we have created this list 
and collectively refer to it as the automation rules.  

B. Anomaly Generation 
For the decision trees to be of any use, they need the 

generated anomalies. These anomalies are created when some 
device causes it. Thus, the anomalies are generated when the 
user inserts a root cause. However, as mentioned before, the 
outcomes of only some trees may be deterministic, meaning 
that the resulting root cause from the decision tree is for sure 
one device, but there may be a case when a tree’s root cause 
is one device out of several, it is simply unknown to that tree. 
Solving these cases are crucial and we need specific 
anomalies in order to bring about such a situation. For 
example, looking at Table II, we can simulate an anomaly that 
is caused by the missing event of cs1: off. This is to affect 
both rules that use cs1: off as an input, rule 1-6 and rule 1-9. 
Thus, forcing two trees to be used to find the root cause when 
it is unknown to the trees individually. 
Table II. A part of the automation rules that were determined for this 
project. Each rule is given a designation, an input, and a root cause. 
 

C. Decision Tree Construction and Root Cause 
Localization 
The creation of the decision trees is rather simple as each 

rule is essentially the result of a device state. Thus, many 
decision trees come down to one step trees. If it is not one 
device, it is the other from the rule. One example, not related 
to the previous rules, is given in Fig. 3: 

 
Fig. 3. A basic one-step decision tree that only incorporates one decision and 
only deterministic outcomes. 

However, there are more complex trees that are created 
when there is ambiguity regarding the true root cause. There 
is ambiguity due to multiple rules having the same conditions 
but different results. For example, rules 1-9 and 1-16 have 
cs1:off as a root cause, but connect to different devices.  

 
Fig. 4(a) 

 
Fig. 4(b) 

Fig. 4. A set of two decision trees. They are needed for the aforementioned 
ambiguous case. As seen for both trees, there is an end result on the tree 
that can be one of the devices. 

As shown in Fig. 4, the two trees are used to check whether 
the expected automation rule fails to run properly due to a 
missing event. For the devices o1 and bulb2, we check events 
from the time of the alarm of an anomaly to the last state 
change. Once we gather this information, we go through the 



decision tree by checking whether the event in the node 
happens. Since, for example, there are no instances of ms1 or 
ps2 in the two devices’ searching periods, both trees output 
the leaf node at the bottom left. Then, we take the intersection 
of the two sets, which is cs1: closed. 

However, in a different situation, the two anomalies could 
be because of an unexpected trigger event. One example of 
this is the anomaly of o1 not turned off. In this case, we used 
rules 1-12 and 1-13 to find the root cause, and the decision tree 
is given in Fig. 5(a). For the first tree, we check events that 
happened within 10 seconds before the last state change of o1. 
This is because the automation rule is guaranteed to be 
finished executing in 10 seconds. Since there are no events 
from ts1 and ms1, going through the decision tree yields o1 as 
the root cause of the anomaly. As shown in Fig. 5(b), the 
second tree is built using rules 1-1 and 1-7, meant for the 
anomaly of bulb2: off. Similarly, we check within 10 seconds 
of the last state change of the bulb2 device. The result is that 
the only matched event is ms2: no motion. By getting the 
intersection of suspected root causes generated by two 
decision trees, we get an empty set, which means the reported 
anomalies are not falsely triggered by any unexpected device 
events. As a result, combining the results from decision trees 
in Figure 4, we can localize the root cause to be the missing 
event of the contact sensor turns closed (cs1:closed). 

 
Fig. 5(a) 

 
Fig. 5(b) 

Fig. 5. The trees based on the automation rules, more specifically, rules 1-12 
and 1-13 for the first tree and rules 1-1 and 1-7 for the second tree. 

V. CONCLUSION 
IoT devices are unreliable due to the constraints in costs 

and resources. Furthermore, IoT devices are vulnerable to and 
are targets for malicious attacks because these devices are 
directly connected to the physical world, such as smart homes 
and smart offices. Abnormal IoT devices could cause severe 
consequences, which may affect the safety of home residents 
or cause damage to property. In this paper, we studied the 
important issue of localizing the root cause of anomalies in a 
smart environment. We chose decision trees for efficient and 

effective anomaly root cause localization. The decision trees 
are constructed from automation rules of smart IoT devices, 
hence our approach is explainable, unlike a black-box style 
solution, such as neural networks or deep neural networks. We 
evaluated the performance of the decision-tree based approach 
on data collected from real smart homes, and the results 
showed that the proposed approach is very effective in 
localizing the root cause of anomalies. 
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