
Decision-Tree Based Root Cause Localization for
Anomalies in Smart IoT Systems

Michael Wang
Methacton High School
1005 Kriebel Mill Rd

Eagleville, PA 19403, USA
MW668@student.methacton.org

Chenglong Fu, Xiaojiang Du
Dept. of Computer and Information Sciences

Temple University
Philadelphia, PA, 19122, USA

{chenglong.fu, dux}@temple.edu

Abstract—With the rapid growth of Internet of Things
(IoTs), Internet-connected devices and home appliances gain
popularity on the consumer electronic market. New home IoT
products with built-in network connections and intelligent
functionalities are quickly rolled out to the market. As predicted
by Gartner, there will be more than 500 IoT devices deployed in
a typical household by 2022. The easy device integration and
advanced automation logic also brings new challenges with
regard to security and privacy. IoT devices have been reported
as unreliable because of the constraints in costs and resources.
Anomalies of IoT devices include malfunctions of the physical
part or the cyber part of an IoT device, as well as abnormal
behaviors due to malicious attacks. Abnormal IoT devices could
cause severe consequences, because they reside in the home
environment and have critical functions that can change the
physical world, such as door (smart lock) opening, smart oven
burning (which could cause fire), or smart water valve opening
(which could cause flooding). In this paper, we study the
important issue of localizing the root cause of anomalies in a
smart environment (e.g., smart homes and smart offices). We
propose to use decision trees for efficient and effective anomaly
root cause localization. We construct decision trees from
automation rules that control the operations of smart IoT
devices in a smart environment. Our performance evaluation on
data collected from real smart homes demonstrate the
effectiveness of our proposed approach.

Keywords—IoT, smart home, smart environment, anomaly,
root cause localization, decision trees

I. INTRODUCTION
Along with the rapid growth of the Internet of Things

(IoTs), Internet-connected devices and home appliances gain
popularity in the consumer electronics market. New home IoT
products with built-in network connections and intelligent
functionalities are quickly rolled out to the market. Traditional
home electronic devices can also be easily converted to IoT
devices by connecting them to smart plugs. As predicted by
Gartner, there will be more than 500 IoT devices in a typical
household [2] by 2022. The increasing number of IoT devices
facilitate the process of smart homes evolving from isolated
devices for remote monitoring and controlling to integrated
platforms such as SmartThings, Homekit, and Alexa. These
platforms not only provide universal interoperability among
heterogeneous IoT devices from different manufacturers, but
also allow home IoT devices to work autonomously according
to user-specified trigger-action programs.

Despite the development of the smart home, the easy
device integration and advanced automation logic also brings
new challenges with regard to security and privacy which have

been studied by many recent research works [3,11,12]. IoT
devices have been reported as unreliable because of the
constraints in costs and resources [15,18]. On one hand, IoT
devices make it possible for cyber space anomalies to affect
the physical world and induce severe consequences to home
safety. For example, the loss of network packets that carry the
command towards a smart valve may cause the room flood.
On the other hand, users can pay less attention to their home
electrical device by relying on the home automation system,
which makes the device anomalies harder to be noticed until
they cause severe damages. For instance, the connection loss
of a smart plug could prevent it from cutting off the power to
a connected radiation heater. This greatly increase the risk of
fire hazard because the user may think the plug should have
already been turned off automatically. Moreover, due to the
interoperability, IoT devices with different sensing and
actuating capabilities are chained together, which further
exaggerates the impact of anomalies because abnormal
behaviors of one device could trigger inappropriate actions of
other chained devices according to various automation logic.

 Localizing the root cause of smart home devices is a
challenging task due to the complexity of situations of device
malfunctions. When a user reports a device anomaly, it could
either be caused by the reported device itself or by other
devices that are associated with it through automation rules.
Some prior works have explored the possible solution of
anomaly localization by using Random Forest or Naïve Bayes
[1]. However, they all require long periods of training and are
not efficient enough to deal with real-world anomalies, which
need to be handled quickly to avoid further damage.

In this paper, we propose a root cause localization system
that utilizes home automation rules to infer possible root cause
devices of each reported anomaly and localize the final root
cause device by getting their intersection. More specifically,
we build decision trees from automation rules that are
associated with each reported anomaly. We go through the
tree by checking the history devices event log and get the
output of possible root causes. Since a single device
malfunction could cause anomalies of multiple other devices,
the root cause could be accurately identified by comparing the
output of decision trees from these associated devices. The
proposed system is tested on a real-world testbed and is
proved to be accurate and efficient in identifying the root
cause of anomalies.

Contributions of this paper can be summarized as:

1) We propose a novel anomaly root cause localization
system that utilizes semantic information of home
automation rules.

2) We design a method to automatically build and traverse
decision trees according to home automation rules and
smart home event logs. The root cause localizing process
requires no user intervention.

3) We evaluate our proposed system with data collected from
the real-world smart home automation deployment.

The rest of the paper is organized as follows. In Section Ⅱ,
we discuss related works. In Section Ⅲ, we describe our
design of anomaly localization system with details of building
and traversing decision trees. In Section Ⅳ, we present the
procedure and results of evaluation of our proposed system on
the real-world testbed. Finally, we conclude in Section Ⅴ.

II. RELATED WORKS
Despite the popularity of smart home automation systems,

many vulnerabilities are discovered that can cause critical
threats to users’ security and safety. In [11], authors find
security vulnerabilities of a smart app’s over-privileged and
weak authorization of third-party cloud interface, which can
be exploited to retrieve sensitive user data and inject spoof
device events. In [15], Ronen et al. shows the vulnerabilities
in smart light bulb's communication protocol and firmware
and show the possibility of compromising a large number of
devices by spreading a worm virus among them. [3] analyzes
the large-scale botnet attack targeting consumer IoT devices
caused by malware 'Mirai'.

As a result, a reliable anomaly detection and localization
mechanism is required to protect home automation systems
against possible cyber-attacks and system deficiencies. There
are a series of research works published on this topic in recent
years. Some works use ensemble methods to detect and
localize anomalies by searching for violations of system
invariants. [6] proposes methods to detect data injection
attacks by comparing the system states' signatures with those
generated from pre-created anomalous cases. CLEAN [17]
implements a clustering-based outlier detector. It uses the
Least Common Subsumer (LCS) to measure the similarity
among data points (events) and reports isolated data points as
outliers. IDEA [13] studies the impact of sensor failure on
recognizing different activities. It leverages the redundancy
of sensors on recognizing activities and reports the absence
of an expected event as the sensor's failure. While some other
works concentrate on incorporating semantic information of
automation rules to detect and localize anomalies,
HomeGuard [8,9] is the first work to study anomalies caused
by Cross-App Interference (CAI) of home automation
systems. The authors develop a semantic analysis tool to
extract rules from automation apps with symbolic execution
and program instrumentation. Celik et al. propose the
mechanism of tracking sensitive data flow using taint analysis
and discovering security violations via static code analysis in
[4] and [5], respectively. In [12] and [14], authors utilize the
same method to extract automation rules as the context of
home automation systems. Based on it, the authors develop a
context-based permission system and user-centric
authorization system.

Prior to choosing decision trees as the main method to
determine the root cause of anomalies, we research several

other possible methods for root cause analysis. We find that
Random Forest or Naïve Bayes [1] could be used. While both
have their advantages and disadvantages, ultimately, we find
that they are not as efficient as decision trees, in our case. As
the possible methods that have been considered by us, we
briefly discuss them below.

 Random Forest is essentially a collective decision based
on multiple decision trees. The anomaly root cause
localization is found using different decision trees based
on the feature vector. (Device, device capability
malfunctioning, time of malfunction) Since there are
multiple decision trees that are trained using data,
random forest would work as it is essentially the average
decision of multiple decision trees.

 Naive Bayes is based on the concept of conditional
probability. It can be summarized in the statement,
“What is the probability of something happening given
something.” However, Naive Bayes can also have
multiple conditions so the statement can also be, “What
is the probability of something happening given
something, something else, etc.” You can characterise
the localization of the root cause of an anomaly as “What
is the probability that a device is the root cause given this
device is malfunctions, etc.” Essentially, for example, if
trying to find a root cause, the algorithm says, “Because
device 1 is not working, and device 2 connected to it is
not working, and device 1 can only work if device 2 is
on, device 2 is the root cause of the anomaly.” The
decision tree is more deterministic, but Naive Bayes uses
the same basic concept but with probability instead.

III. DECISION-TREE BASED ROOT CAUSE LOCALIZATION
Home automation rules provide very useful semantic

information for identifying the root cause of reported
anomalies within the home automation systems. Normally, the
malfunction of a smart home device could cause anomalies of
multiple other smart home IoT devices via different
automation rules. For each reported anomaly, we can infer
possible devices that cause anomalies by checking its related
automation rules. Then, the real root cause device can be
identified from the intersection of suspected devices derived
from different anomalies. To automate this checking
procedure, we propose a decision tree-based approach that
encode a device’s related automation rules into decision trees.
In this section, we illustrate the procedures to build decision
trees from automation rules and utilize those trees to localize
the root cause of anomalies.

Table Ⅰ. Example rules that are related to the living room light

Case1 R1.1 <MS=inactive, CS = closed, L=off>

R1.2 <PS=away, --, L=off>

Case2 R2.1 <MS=active, CS=closed, L=on>

R2.2 <CS-open, IS<30lux, L=on>

A. Decision Tree Construction

Fig. 1. Steps to build and stack subtrees.

A reported anomaly includes the anomalous actuator
device’s name and its abnormal status. For example, users
could report an anomaly of “the living room light is falsely in
the ‘on’ state”. This can be either be caused by the failure of
execution of an automation rule that turns the light off or the
false action of an automation rule that turns the light on. For
each case, we build a decision tree to localize the possible root
cause device.

Fig. 2. Decision Trees for two cases

For the first case, we collect all rules 𝑅1, 𝑅2, 𝑅3, ⋯ , 𝑅𝑛
that have the action of “turning the living room light off”,
which possibly fails to execute. We consider standard trigger-
action rules with optional conditions. We denote the trigger
event as 𝑇 = 𝑡, which means the trigger device 𝑇’s states
change to 𝑡. The 𝑖th rule 𝑅𝑖 in the collection is represented
as ⟨𝑇𝑖 = 𝑡𝑖 , 𝐶𝑖 = 𝑐𝑖 , 𝐴𝑖 = 𝑎𝑖⟩. As illustrated in Figure 1, the
construction of the decision tree can be summarized as the
following three steps:

1) For each rule, we build a right-chain subtree with its
trigger being the root node, which is followed by the
condition and action. The undefined leaf nodes
(marked as ?) are left blank.

2) After getting all subtrees, we stack them by placing
the subtree of 𝑅𝑖+1 to the blank nodes of subtree of
the previous rule 𝑅𝑖.

3) For each leaf node that remains blank in the last two
levels, we find the path from it to the root node and
set its value to be the ‘OR’ combination of nodes in
the path that have the decision of ‘False’.

For the second case, we collect all rules that have the
action of “turning on the living room light” as the suspected
triggering rules. Then, the decision tree is built with similar
procedures as the first case except for the following
differences: 1) when build the subtrees for a rule, the leaf node
is set as the “OR” combination of its ancestor nodes instead of
the action of the rule; 2) After stacking all subtrees, blank
nodes are set as the common action of all rules.

Take the example anomaly, “the living room light is
falsely on”, as an instance, we assume the living room light
can be controlled by the following four automation rules as
listed in the Table Ⅰ. For simplicity, we use the abbreviations
of 𝑀𝑆, 𝐶𝑆, 𝑃𝑆, 𝐼𝑆, 𝑎𝑛𝑑 𝐿 to represent the motion sensor, the
contact sensor, the presence sensor, the illuminance sensor,
and the light in the living room. Rule 𝑅1.1 and 𝑅1.2 have the
action of “turning off L” and are for case1. Rule 𝑅2.1 and
𝑅2.2 have the action of “turning on L” and are for case2. Then,
we can build a decision tree for each case as shown in Fig. 2
in the aforementioned steps.

B. Root Cause Localization
We generate two decision trees for each reported anomaly.

The first tree is used to look for possible failing rules, and the
second tree is used to find unexpectedly executing rules. On
receiving an anomaly at time 𝑡0, we backtrack the event log
of the home automation system to find the latest time (𝑡1) that
the reported device changes to the current state. Then, we
collect all events in the period of [𝑡1, 𝑡0] to form the
searching event set. Then, we traverse the decision tree. At
each node, a decision is made by checking whether the event
of the node is in the searching event set. Finally, the leaf node
we reach indicates the possible missing events that can cause
the anomaly. The second tree is used for finding faulty events
that trigger the last device status change at 𝑡1 unexpectedly.

For this purpose, we collect events within 10 seconds before
𝑡1 to form the search event set. We empirically select 10
seconds as the length of the time window because most home
automation system can guarantee the finish of automation rule
execution within 10 seconds. Then, we traverse the second
decision tree in the same way as the first one. The leaf node
we finally reach indicates the unexpected events that possibly
triggers the anomaly.

 In the example trees as shown in Figure 2, if no event of
the motion sensor and the contact sensor happens since the last
time the light is turned on, we can get the result of “PS = away
or Contact = closed missing” by traversing the decision tree of
case1. Then, assuming the last time the light is turned on by
the user’s manual operation, the decision tree of case2 is
traversed with two consecutive false decisions and gets the
result of “L = on”, meaning the anomaly is possibly caused by
the malfunction of the light which turns itself on unexpectedly.

IV. PERFORMANCE EVALUATION

A. Automation Rules
In order to determine the root cause of any anomaly that

generates within the system. There needs to be a
comprehensive set of rules and interactions that govern each
Internet of Things device that we use. The rules are created by
the user and form the basis of much of the project. This allows
us to essentially find out what is the ground truth of an
anomaly as it violates the rules and possible interactions that
we have determined. For this project, we have created this list
and collectively refer to it as the automation rules.

B. Anomaly Generation
For the decision trees to be of any use, they need the

generated anomalies. These anomalies are created when some
device causes it. Thus, the anomalies are generated when the
user inserts a root cause. However, as mentioned before, the
outcomes of only some trees may be deterministic, meaning
that the resulting root cause from the decision tree is for sure
one device, but there may be a case when a tree’s root cause
is one device out of several, it is simply unknown to that tree.
Solving these cases are crucial and we need specific
anomalies in order to bring about such a situation. For
example, looking at Table II, we can simulate an anomaly that
is caused by the missing event of cs1: off. This is to affect
both rules that use cs1: off as an input, rule 1-6 and rule 1-9.
Thus, forcing two trees to be used to find the root cause when
it is unknown to the trees individually.
Table II. A part of the automation rules that were determined for this
project. Each rule is given a designation, an input, and a root cause.

C. Decision Tree Construction and Root Cause
Localization
The creation of the decision trees is rather simple as each

rule is essentially the result of a device state. Thus, many
decision trees come down to one step trees. If it is not one
device, it is the other from the rule. One example, not related
to the previous rules, is given in Fig. 3:

Fig. 3. A basic one-step decision tree that only incorporates one decision and
only deterministic outcomes.

However, there are more complex trees that are created
when there is ambiguity regarding the true root cause. There
is ambiguity due to multiple rules having the same conditions
but different results. For example, rules 1-9 and 1-16 have
cs1:off as a root cause, but connect to different devices.

Fig. 4(a)

Fig. 4(b)

Fig. 4. A set of two decision trees. They are needed for the aforementioned
ambiguous case. As seen for both trees, there is an end result on the tree
that can be one of the devices.

As shown in Fig. 4, the two trees are used to check whether
the expected automation rule fails to run properly due to a
missing event. For the devices o1 and bulb2, we check events
from the time of the alarm of an anomaly to the last state
change. Once we gather this information, we go through the

decision tree by checking whether the event in the node
happens. Since, for example, there are no instances of ms1 or
ps2 in the two devices’ searching periods, both trees output
the leaf node at the bottom left. Then, we take the intersection
of the two sets, which is cs1: closed.

However, in a different situation, the two anomalies could
be because of an unexpected trigger event. One example of
this is the anomaly of o1 not turned off. In this case, we used
rules 1-12 and 1-13 to find the root cause, and the decision tree
is given in Fig. 5(a). For the first tree, we check events that
happened within 10 seconds before the last state change of o1.
This is because the automation rule is guaranteed to be
finished executing in 10 seconds. Since there are no events
from ts1 and ms1, going through the decision tree yields o1 as
the root cause of the anomaly. As shown in Fig. 5(b), the
second tree is built using rules 1-1 and 1-7, meant for the
anomaly of bulb2: off. Similarly, we check within 10 seconds
of the last state change of the bulb2 device. The result is that
the only matched event is ms2: no motion. By getting the
intersection of suspected root causes generated by two
decision trees, we get an empty set, which means the reported
anomalies are not falsely triggered by any unexpected device
events. As a result, combining the results from decision trees
in Figure 4, we can localize the root cause to be the missing
event of the contact sensor turns closed (cs1:closed).

Fig. 5(a)

Fig. 5(b)

Fig. 5. The trees based on the automation rules, more specifically, rules 1-12
and 1-13 for the first tree and rules 1-1 and 1-7 for the second tree.

V. CONCLUSION
IoT devices are unreliable due to the constraints in costs

and resources. Furthermore, IoT devices are vulnerable to and
are targets for malicious attacks because these devices are
directly connected to the physical world, such as smart homes
and smart offices. Abnormal IoT devices could cause severe
consequences, which may affect the safety of home residents
or cause damage to property. In this paper, we studied the
important issue of localizing the root cause of anomalies in a
smart environment. We chose decision trees for efficient and

effective anomaly root cause localization. The decision trees
are constructed from automation rules of smart IoT devices,
hence our approach is explainable, unlike a black-box style
solution, such as neural networks or deep neural networks. We
evaluated the performance of the decision-tree based approach
on data collected from real smart homes, and the results
showed that the proposed approach is very effective in
localizing the root cause of anomalies.

Acknowledgement: This work was supported in part by
the US National Science Foundation (NSF) under grants CNS-
1828363, and CNS-2016589.. In our m

REFERENCES
[1] Random trees and Naïve Bayes, https://www.edureka.co/blog/artificial-

intelligence-algorithms/ n
[2] Van der Meulen and J. Rivera,2014 “Gartner says a typical family home

could contain more than 500 smart devices by 2022”
[3] Antonakakis, Manos, Tim April, Michael Bailey, Matt Bernhard, Elie

Bursztein, Jaime Cochran, Zakir Durumeric, et al. 2017. "Understanding
the mirai botnet." USENIX Security Symposium (USENIX Security).

[4] Celik, Z. Berkay, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu,
Gang Tan, Patrick McDaniel, and A. Selcuk Uluagac. 2018. "Sensitive
information tracking in commodity IoT." 27th USENIX Security
Symposium (USENIX Security 18). 1687–1704.

[5] Celik, Z. Berkay, Patrick McDaniel, and Gang Tan. 2018. "Soteria:
Automated iot safety and security analysis." 2018 USENIX Annual
Technical Conference (USENIX ATC 18). 147–158.

[6] Chen, Yuqi, Christopher M. Poskitt, and Jun Sun. 2018. "Learning from
mutants: Using code mutation to learn and monitor invariants of a cyber-
physical system." 648–660.

[7] Cheng, Long, Ke Tian, and Danfeng Daphne Yao. 2017. "Orpheus:
Enforcing cyber-physical execution semantics to defend against data-
oriented attacks." Proceedings of the 33rd Annual Computer Security
Applications Conference. 315–326.

[8] Chi, Haotian, Qiang Zeng, Xiaojiang Du, and Jiaping Yu. 2020. "Cross-
app interference threats in smart homes: Categorization, detection and
handling." 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). 411–423.

[9] Chi, Haotian, Qiang Zeng, Xiaojiang Du, and Jiaping Yu. 2018. "Cross-
App Interference Threats in Smart Homes: Categorization, Detection
and Handling." arXiv arXiv–1808.

[10] Ding, Wenbo, and Hongxin Hu. 2018. "On the Safety of IoT Device
Physical Interaction Control." Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. 832–846.

[11] Fernandes, Earlence, Jaeyeon Jung, and Atul Prakash. 2016. "Security
analysis of emerging smart home applications." 2016 IEEE Symposium
on Security and Privacy (SP). 636–654.

[12] Jia, Yunhan Jack, Qi Alfred Chen, et al. "ContexIoT: Towards providing
contextual integrity to appified IoT platforms." Proceedings of The
Network and Distributed System Security Symposium, 2017.

[13] Kodeswaran, Palanivel A., Ravi Kokku, Sayandeep Sen, and Mudhakar
Srivatsa. 2016. "Idea: A system for efficient failure management in
smart iot environments." Proceedings of the 14th MobiSys. 43–56.

[14] Preuveneers, Davy, and Wouter Joosen. 2015. "SmartAuth: dynamic
context fingerprinting for continuous user authentication." Proc. of the
30th Annual ACM Symposium on Applied Computing. 2185–2191.

[15] Ronen, Eyal, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn.
2017. "IoT goes nuclear: Creating a ZigBee chain reaction." Security
and Privacy (SP), 2017 IEEE Symposium on. 195–212.

[16] Sikder, Amit Kumar, Hidayet Aksu, and A. Selcuk Uluagac. 2017.
"6thsense: A context-aware sensor-based attack detector for smart
devices." 26th USENIX Security. 397–414.

[17] Ye, Juan, Graeme Stevenson, and Simon Dobson. 2015. "Fault detection
for binary sensors in smart home environments." Pervasive Computing
and Communications (PerCom). 20–28.

[18] Pa, Yin Minn Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu
Matsumoto, Takahiro Kasama, and Christian Rossow. 2015. "IoTPOT:
analysing the rise of IoT compromises." In 9th USENIX Workshop on
Offensive Technologies (WOOT 15).

https://www.edureka.co/blog/artificial-intelligence-algorithms/
https://www.edureka.co/blog/artificial-intelligence-algorithms/

