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Abstract

This paper studies adversarial bandits with corruptions. In the basic adversarial
bandit setting, the reward of arms is predetermined by an adversary who is oblivious
to the learner’s policy. In this paper, we consider an extended setting in which
an attacker sits in-between the environment and the learner, and is endowed with
a limited budget to corrupt the reward of the selected arm. We have two main
results. First, we derive a lower bound on the regret of any bandit algorithm that
is aware of the budget of the attacker. Also, for budget-agnostic algorithms, we
characterize an impossibility result demonstrating that even when the attacker
has a sublinear budget, i.e., a budget growing sublinearly with time horizon T ,
they fail to achieve a sublinear regret. Second, we propose ExpRb, a bandit
algorithm that incorporates a biased estimator and a robustness parameter to deal
with corruption. We characterize the regret of ExpRb and show that for the case of
a known corruption budget, the regret of ExpRb is tight.

1 Introduction

Multi-armed bandits (MABs) [23] present a powerful online learning framework that is applicable to
a broad range of application domains including medical trials, web search advertisement, datacenter
design, and recommender systems; see, e.g., [5, 24] and references therein. In the basic MAB
problem, in each round a learner pulls an arm (corresponding to selecting an action) from a finite
set of arms, and observes the reward associated to the selected arm, but not for the other unselected
arms. The goal of the learner is to maximize the rewards accumulated in the course of her interaction.
MAB problems are typically categorized into stochastic and non-stochastic (or adversarial) problems
depending on how the reward sequences are generated. In stochastic bandits [23, 14], rewards are
drawn from fixed but unknown distributions, whereas in non-stochastic bandits [3], no statistical
assumption on rewards are made and rewards are arbitrary as if they were generated by an adversary.

Motivated by malicious activities in bandit-related applications such as click fraud via malware [26,
22], fake reviews and ratings in recommender systems [11, 17, 27], and email spam [13, 6], there
have been recent effort on studying bandit problems under some notion of corruption [12, 28, 16, 18,
9, 15, 8, 19]. In the case of click fraud, for example, botnets maliciously simulate users clicking on an
ad to mislead learning algorithms. More specifically, there are some rewards (click rates) associated
to each arm (ad), and an attacker (the botnet) corrupts the rewards based on the learner’s action. The
majority of past efforts, however, are limited to studying stochastic bandits with corruption, either on
understanding the vulnerability of existing algorithms and designing attacks [12, 28, 16, 15, 8, 19],
or developing algorithms that are robust against corruption [18, 9, 30]. In those works, stochastic
patterns are corrupted by an attacker and bandit algorithms strive to be robust against the corruption.
A detailed literature review is provided in §A of the supplementary material.
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Table 1: Summary of prior literature and this work

Stochastic Bandits Non-stochastic Bandits
Reference Oblivious Targeted Vulnerability Robustness Targeted Vulnerability Robustness

Lykouris et al. [18] X X X
Gupta et al. [9] X X X
Jun et al. [12] X X
Liu et al. [16] X X X

This work X X X X X

In contrast, this paper is the first, to the best of our knowledge, that studies non-stochastic bandits
with corruptions. In some application domains such as shortest path routing [21] and inventory
control problem [7], the reward functions are very complex to model using stochastic bandits, and
hence, from a practical perspective, non-stochastic bandits are relevant for such intrinsically involved
applications.

A concrete example of non-stochastic bandits with corruptions is the Online Shortest Path Routing
(OSPR) problem under the denial of service (DoS) attacks. OSPR is a classic example of MAB
problems that has been studied in both stochastic and adversarial settings [4, 21, 25]. And there is
also extensive research on routing under DoS attacks, including the recent work [29] focusing on
bandit modeling of this scenario. OSPR could be reasonably modeled as non-stochastic bandits when
the delays on the links change dynamically in an predictable manner [10], or in situations where
the combined distribution of a path including multiple links is difficult to characterize [21]. In this
non-stochastic scenario, the DoS attack could be modeled by our bandit with targeted corruptions.
Specifically, the DoS attacker can be aware of the selected paths by detecting the transmitted packets
over the path and manipulate the latency of the selected path by flooding the path with dummy
packets. Also, the budget of the attacker is simply the available resources for the DoS attacker to
keep her undetectable. Arguably, none of “non-stochastic bandits” and “stochastic bandits with
corruption” models alone would suffice to fully characterize the underlying model here. In addition,
this problem is interesting with unique challenges different from stochastic bandits with corruptions
and calls for non-trivial algorithm design and regret analysis. Consequently, studying the vulnerability
and robustness of non-stochastic bandit algorithms with corruption becomes important as well. We
formally define the corruption model in the following.

1.1 The Corruption Model

Consider a K-armed non-stocahstic bandit, similar to the model in [3], where the rewards are
generated by an adversary obliviously, namely they are generated before the game starts. At each
round t ∈ [T ], the learner selects an arm It ∈ [K] with the primary reward xIt(t) ∈ [0, 1]. In the
corruption model, there is an attacker that sits in-between the environment and the learner, observes
the arm chosen by the learner, and corrupts its rewards aiming to mislead the learner to select
sub-optimal arms. More specifically, the attacker manipulates the reward into x̃It(t) = xIt(t)− a(t),
where a(t) ∈ [xIt(t)− 1, xIt(t)] denotes the attack in round t. The learner receives x̃It(t) without
knowing the original reward xIt(t). The attacker is aware of the selected arm, and can set the value
of a(t) to attack the learner to end up with selecting a sub-optimal arm. Further, similar to existing
work on stochastic bandits with corruptions [9, 18], the total budget of the attacker is upper bounded
by Φ. The formal statement of the model is given in §2. We emphasize that while considering an
oblivious adversary, in this model the attacker manipulates the reward adaptively to the learner’s
chosen arm; hence, the attacker is different from the adaptive adversary in which the rewards is
determined right before the learner’s action. We refer to this attack as targeted. In contrast, the prior
literature on stochastic bandits with corruption [18, 9] assume an oblivious attacker who manipulates
the rewards before observing the learner’s chosen arm. We call these attacks oblivious. Last, we refer
to the algorithms that are unaware of the existence of the attacker (or its budget) as attach-agnostic
algorithms, and attack-aware algorithms know the attacker and its budget.

1.2 Summary of Contributions

In addition to introducing the above non-stochastic bandits with targeted corruptions, this paper
investigates the vulnerability of attack-agnostic algorithms and establishes a regret lower bound for

2



attack-aware algorithms. Then, as the main contribution, this paper presents a robust bandit algorithm
in the corrupted setting. Table 1 highlights the high-level contributions of this work as compared to
the related literature.

1.2.1 Vulnerability and Regret Lower Bound

We first derive an impossibility result for obtaining a sublinear regret for attack-agnostic algorithms
for non-stochastic bandits with a sublinear attacker. Our results, presented in Theorem 1 in §3, show
that even when an attacker has a sublinear budget, any attack-agnostic bandit algorithm fails to achieve
a sublinear regret. This impossibility result applies to stochastic bandit algorithms with targeted
corruptions as well. Our impossibility result does not contradict the attack-agnostic algorithms
in [18, 9] that develop no-regret algorithms for oblivious attackers.

1.2.2 Robust Algorithm Design and Regret Analysis

As the main contribution, in §4, we then propose ExpRb, that if aware of Φ, achieves a sublinear
regret given sublinear Φ, hence robust. The key ideas of ExpRb is to first identify the most vulnerable
arms against attacker as a function of selection probabilities; a piece of information that is available
to the learner. Then, ExpRb constructs a robust estimator that biases (possibly) corrupted reward of
the vulnerable arms to mitigate the risk of underestimating the actual reward. Our robust estimator
is carefully designed to bias the observed rewards just enough to prevent overestimating the actual
reward as well. The impossibility result in Theorem 1 shows that a no-regret algorithm should be
attack-aware, which may not be possible in practice. Hence, we adapt a middle-ground approach
such that the robustness power of ExpRb against corruption is controlled by a robustness parameter γ,
which impacts the design of the robust estimator. Last, in §5, we analyze the regret of ExpRb and in
Theorem 3 and show that if γ = Φ, the regret of ExpRb is O(

√
T + Φ log T ).

2 Preliminaries and Problem Statement

2.1 The Classical Adversarial MAB Problem

The adversarial (or non-stochastic, used interchangeably) MAB problem, initially introduced in [3],
is a game in which a learner repeatedly chooses an arm from a set [K] := {1, . . . ,K} of arms in
each round. Let xi(t) ∈ [0, 1] denote the reward associated to arm i ∈ [K] in round t. For each i, the
reward sequence (xi(t))t∈[T ] is determined by an adversary before the game starts.1 At each round
t ∈ [T ], the learner chooses an arm It ∈ [K] and receives xIt(t) as feedback. The objective of the
learner is to devise an arm selection algorithm A maximizing the cumulative rewards over T steps.
The performance of the algorithm A is measured through the notion of pseudo-regret (regret, for
short), which is defined as the difference between the cumulative rewards attained by always taking
an optimal static decision (in hindsight) and that of A, i.e.,

REGRET(T,A) = max
i∈[K]

T∑
t=1

xi(t)− E

[
T∑
t=1

xIt(t)

]
, (1)

where the expectation is taken with respect to possible internal randomizations of A. The Exp3

algorithm [3] is the first proposed algorithm achieving a regret of O(
√
KT log(K)) for the classical

adversarial bandit problem described above, and whose advent has led to several other learning
strategies with improved regret bounds or applicable to more general settings; see, e.g., [1, 2] and
references in [24]. In the following, we introduce a new extended model in which an attacker sits
in-between the environment and the learner and corrupts the reward of the selected arm.

2.2 Adversarial Bandits with Corruptions

Consider an adversarial bandit problem, where an adversary and an attacker with more powerful
ability to manipulate the reward coexist. Similarly to the classical adversarial bandit described above,

1Some literature consider loss formulation of adversarial bandits, where the learner receives a loss
`i(t) ∈ [0, 1] upon choosing arm i in round t. Here we consider the reward formulation. We note how-
ever that most results for reward formulation can be translated to the corresponding loss formulation via the
relation `i(t) = 1− xi(t); see [5].
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the adversary determines the reward in an arbitrary way prior to the first round. In runtime, after the
learner commits to an arm, the attacker is able to corrupt the reward of the selected arm It, and the
learner receives the corrupted reward. Specifically speaking, the attacker manipulates the reward
xIt(t) of the selected arm It into

x̃It(t) = xIt(t)− a(t), a(t) ∈ [xIt(t)− 1, xIt(t)], (2)

where a(t) is the injected corruption (or corruption, for short) at round t. Note that the feasible range
of corruption at round t implies x̃It(t) ∈ [0, 1]. The learner receives x̃It(t) without knowing the
original reward xIt(t) or the corruption a(t).

The value of a(t) in Eq. (2) determines the design space of the attacker in each round to mislead the
learner to end up with selecting a suboptimal arm. However, we assume that the attacker is endowed
with a predetermined corruption budget. Let Φ(T ) represent the budget of the attacker, so that
cumulative exerted corruption (magnitude-wise) over all rounds must statisfy

∑T
t=1 |a(t)| ≤ Φ(T ).

We further refer to such an attacker as a Φ(T )-attacker. Clearly, the performance of algorithms
degrades more for larger values of Φ(T ). Hereafter, we denote Φ := Φ(T ) for brevity.

In the following definition, we formally characterize the notion of robustness of a bandit algorithm
against corruptions.

Definition 1 An algorithm A is said to be Φ-robust if REGRET(T,A) = Õ(
√
T + Φ) against any

Φ-attacker, where the Õ(·) notation hides multiplicative terms that are poly-logarithmic in T .

We finally turn to introducing the notion of regret for the adversarial bandits with corruptions. The
regret of the algorithm A is defined as

REGRET(T,A) = max
i∈[K]

T∑
t=1

xi(t)− E

[
T∑
t=1

x̃It(t)

]
, (3)

where the second term in the right-hand side corresponds to the expected return in terms of corrupted
values. We remark that it is plausible to consider a slightly different version of the attack model,
which only changes the observation of the learner without changing the actual accrued reward. In
this case, the definition of regret coincides with that in Eq. (1). Our regret analysis for the notion of
regret in Eq. (3) could be straightforwardly applied to that of Eq. (1). Details in Remark 5.1 in §5.
Unless stated otherwise, the term “regret” in this paper refers to the notion formalized in Eq. (3).

Remark 2.1 We mention that there is growing literature on oblivious attack models for stochastic
bandit problems; see, e.g., [18, 9]. These papers target at a middle ground of a mixed stochastic
and adversarial model that aim to achieve the best of both worlds. Different from these works, our
work focuses on targeted attack models for adversarial bandits, since an oblivious attacker can be
intrinsically captured in the basic setting of adversarial bandits.

Remark 2.2 There is a rich literature on non-stochastic bandits with adaptive adversaries [24],
where the adversary is able to see the past actions of the learner and determines the reward right
before the current action. The attacker in our model is more powerful than an adaptive adversary,
since it observes the action of the learner and perturbs the reward before revealing it to the learner.

3 Vulnerability and Regret Lower Bound

In this section, we present a regret lower bound for attack-agnostic algorithms, i.e., algorithms that
are unaware of the existence of an attacker.

We begin with the following theorem establishing a linear regret for attack-agnostic algorithms
against a Φ-attacker with Φ = o(T ):

Theorem 1 Consider an attack-agnostic bandit algorithm A satistfying the following property: For
any two-armed problem instance, the expected regret of A is O(

√
T ). Then, for any ε ∈ (0, 1

8 ), there
exists a Φ-attacker with Φ = O(T 1/2+2ε) such that the regret of A (without knowing the attack) is
Ω(T 1−ε) with high probability.

4



The above theorem demonstrates an impossibility result for attack-agnostic bandit algorithms to
achieve a sublinear regret. We stress that this result is applicable to stochastic MABs with targeted
corruptions as well. We however stress that Theorem 1 has no conflict with the results in [18, 9]
where robust corruption-agnostic algorithms designed for stochastic MABs with oblivious corruption.
In fact, the proof of this theorem, provided in §B in the supplementary, constructs an instance of a
stochastic bandit problem and considers the setting that the reward on each arm is subject to a fixed
and unknown distribution. In order to attain a sublinear regret, the learning algorithm can only sample
a “sub-optimal” arm for sublinear number of times. Otherwise, the learning algorithm fails to attain a
sublinear regret even without attacks. Thus, the attacker can mislead the algorithm by manipulating
the reward on the optimal arm for sublinear number of times. Consequently, the optimal arm is
sampled for only sublinear number of times, and the regret of any attack-agnostic bandit algorithm
can thus be made arbitrarily close to linear (by choosing small enough ε).

As a concrete example, in the following we show that the classic Exp3 algorithm2 cannot achieve a
sublinear regret against an O(

√
T )-corrupted attacker.

Corollary 2 (Vulnerability of Exp3) ε ∈ (0, 1
8 ). There exists a Φ-attacker with Φ = O(T 1/2+2ε)

such that the regret under Exp3 is Ω(T 1−ε).

Theorem 1 demonstrates that to develop a robust algorithm for non-stochastic bandits with corruptions,
it is inevitable to provide the algorithm with the information of the existence of the attacker. We call
these algorithms attack-aware algorithms. However, it remains open whether the knowledge of the
attacker’s budget is necessary to attain a sublinear regret.

4 The ExpRb Algorithm

In this section, we propose ExpRb, a bandit algorithm that is robust to corruption from a targeted
attacker. The logical flow of ExpRb follows the rationality of the Exp3 algorithm with an additional
novel biased estimator to make the algorithm robust against corruption. In round t ∈ [T ], ExpRb
draws arm It according to the following distribution

pi(t) = (1− η)
wi(t− 1)∑K
j=1 wj(t− 1)

+
η

K
, i ∈ [K], (4)

which is a weighted combination (parameterized by η ∈ (0, 1]) of a uniform distribution and a
weighted distribution determined by the weights wi(t − 1) maintained for each arm. The weight
parameter wi(t) is defined for each arm with initial values of 1. The intuition behind selecting this
mixed distribution is to make sure that all arms are chosen [3].

Once the algorithm selects arm It the estimated reward is calculated as follows.

x̂i(t) = 1{It=i}
x̃i(t) + δ(t)

pi(t)
, i ∈ [K], (5)

where 1A denotes the indicator function of an event A, and where δ(t) is a compensate variable
explained in details in §4.1. Finally, the algorithm updates the weight of the various arms as

wi(t) = wi(t− 1) exp (ηx̂i(t)/K) , i ∈ [K]. (6)
In the next section, we explain the details of the robust estimator as the key novelty of the ExpRb
algorithm.

4.1 Robust Estimator and Intuitions

Once the arm It is selected the main step of ExpRb toward robustification of the observed reward x̃It(t)
begins. The high-level idea of robustification is two-fold: (i) we introduce a compensate variable
δ(t) to augment the estimated reward of the selected arm and mitigate the risks of underestimation
and overestimation of the actual reward; and (ii) we introduce a robustness parameter γ that could
be tuned based on the budget of the attacker, to determine the design space of learner in biasing the
estimated reward.

2We refer the reader to [3] for the detailed explanation of the Exp3 algorithm. The Exp3 algorithm, however,
could be recovered from Algorithm 1 in this paper by simply setting x̃i(t) = xi(t) and δ(t) = 0 for all i, t.
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Algorithm 1 The ExpRb Algorithm
1: Initialization: η ∈ (0, 1], robustness parameter γ, wi(0) = 1 and qi(0) = 1 for all i ∈ [K]
2: for t = 1 to T do
3: Set

pi(t) = (1− η)
wi(t− 1)∑K
j=1 wj(t− 1)

+
η

K
, i ∈ [K]

4: Draw arm It randomly according to the probabilities p1(t), . . . , pK(t)
5: Observe reward x̃It(t)
6: Set δ(t) = 0
7: if pIt(t) < qIt(t− 1) then
8: Set δ(t) = min {γ (1− pIt(t)/qIt(t− 1)) , 1}

9: Update qIt(t) =

{
max

{
pi(t), (1− 1/γ)qi(t− 1)

}
i = It

qi(t− 1) i 6= It
10: end if
11: Set the reward estimates

x̂i(t) = 1{It=i}
x̃i(t) + δ(t)

pi(t)
, i ∈ [K]

12: Update the weights

wi(t) = wi(t− 1) exp (ηx̂i(t)/K) , i ∈ [K]

13: end for

Now, we proceed to explain the details of the robust estimator. As Eq. (5) indicates, if pIt(t), the
selection probability of the selected arm It, is small, the attacker is able to greatly impact the estimated
reward of It with small corruption. In other words, when the selection probability for the selected
arm is small, the required budget for the attacker to trick the learning algorithm to “underestimate”
the arm is also small. This leads us to set the value of compensate variable as a function of selection
probability. However, the learner should be able to track the historical evolution of compensate
variable for each arm to prevent “overestimation” of the corruption. Hence, we initiate an auxiliary
variable qi(0) = 1, i ∈ [K], to record the smallest selection probability of each arm (if chosen) so far.
The value of compensate variable is set as follows.

δ(t) = min

{
γ

(
1− pIt(t)

qIt(t− 1)

)
, 1

}
. (7)

The algorithmic nuggets of setting the compensate variable are as follows: (i) as in Line 7 of ExpRb,
δ(t) is set only when pIt(t) < qIt(t − 1), since otherwise, the algorithm has already biased the
estimated reward of It in previous rounds; (ii) δ(t) is capped to at most 1, since the value of a(t),
i.e., the attacker’s corruption, is at most 1; (iii) δ(t) is a function of γ that determines how much bias
is required; γ has a direct relationship to the budget of attacker, i.e., the greater the budget of the
attacker, the greater the robustness parameter γ; and last (iv) the larger the difference between pIt(t)
and qIt(t− 1), the greater the δ(t). And finally, we update qi, i ∈ [K] to either pIt(t) (once the first
term in Eq. (7) is active) or the value of pIt(t) at which γ (1− pIt(t)/qIt(t− 1)) = 1, representing
the second term in Eq. (7) in which δ(t) = 1. More compactly, we have

qIt(t) = max
{
pIt(t),

(
1− 1/γ

)
qIt(t− 1)

}
. (8)

The running time of ExpRb is similar to Exp3 which is O(K). The pseudocode of ExpRb is summa-
rized as Algorithm 1.3 Last, it is worth noting that the idea of compensate variable (a.k.a. biased
estimator) has been used for a variety of reasons in the non-stochastic bandits, e.g., in Exp3.P [3] and
Exp3.IX [20] the idea of biased reward-estimates is leveraged to achieve improved high-probability
regret bounds for non-stochastic bandits. Although the high-level idea of “robust estimator” is the
same, our design in this work is to make the algorithm robust against corruption.

3In the paper, the algorithm is presented with fixed parameters with respect to the length of time horizon.
One can extend the proposed algorithm to the anytime version by using the doubling trick policy [3].

6



Remark 4.1 We remark that [31] presents the Tsallis-INF algorithm for the so-called ‘best of both
worlds’ setting. Tsallis-INF is shown to be robust to adversarial corruptions not only in stochastic
bandits but also in a class of adversarial bandits with stochastically-constrained adversaries; we
refer to Corollary 8 in [31] for the corresponding regret bound of Tsallis-INF for such adversarial
bandits with corruptions. As such, Tsallis-INF is guaranteed to achieve a sublinear regret in
a restricted class of adversarial problems with corruptions. In contrast to [31], in this paper we
consider adversarial bandits with corruptions with no such restrictions. However, we would like to
note that when applied to the adversarial bandits with corruptions with stochastically-constrained
adversaries, Tsallis-INF is expected to attain a tighter regret bound and without requring the
knowledge of Φ.

5 Regret Analysis

Finally, we analyze the regret of ExpRb, and specifically demonstrate it matches the lower bound (up
to a logarithmic factor) for the case where the corruption budget is upper bounded.

5.1 Summary and Highlights of the Results

The main result is summarized in the following theorem.

Theorem 3 The regret under ExpRb, when it is run with parameters γ = Φ and η =

O(
√

(K logK)/T ), satisfies

REGRET(T, ExpRb) ≤ O
(√

K logKT +KΦ log T
)
. (9)

The above theorem asserts that the regret upper bound of ExpRb scales as Õ(
√
T + Φ). In view of

Definition 1, this implies that ExpRb is Φ-robust.

Remark 5.1 The result in Theorem 3 uses the modified definition of regret in Eq. (3), where the
attacker corrupts the actual reward observed by the learner. However, this result can be straightfor-
wardly translated to the original definition of regret in Eq. (1), where the attacker only manipulates
the observations of the learner (i.e., feedback), not her actually accrued rewards. A closer look
reveals that the difference between the notions of regret in Eq. (1) and (3) is always upper bounded
by Φ, which does not dominate the regret upper bound of Theorem 3.

In the following, we proceed to highlight the key steps to prove the regret result in Theorem 3.

5.2 Regret Analysis of ExpRb

The full proof of the theorem appears in §C of the supplementary material. We split the regret
analysis of ExpRb into two parts. First, we analyze the properties of the robust estimator of ExpRb
as a function of the robustness parameter γ. These properties then is further applied to analyze the
regret of ExpRb with respect to γ and Φ.

Recall that the robustness parameter γ impacts the amount of compensate variable δ(t) in ExpRb. We
first characterize an upper bound on the cumulative amount of compensate variable with respect to
γ in Lemma 4. This result could be interpreted as an upper bound on “overestimation” of rewards.
Then, in Lemma 5, we derive a lower bound on the difference between the expected value of the
cumulative estimated rewards of arms in ExpRb and the actual rewards of the arms. This result could
be represented as a lower bound on the “underestimation” of rewards.

The following lemma provides an upper bound on the cumulative compensate variable δ(t):

Lemma 4 Under ExpRb, we have:
∑T
t=1 δ(t) ≤ γK log(K/η).

This result provides an upper bound for the cumulative value of compensate variable, which is
O(γ log(1/η)). The proof of this result follows by re-expressing the value of δ(t) as a function of

7



γ and the auxiliary parameter qi, and then applying straightforward calculus to derive the bound.
Details in §C in the supplementary.

The following result characterizes the performance of the robust estimator as a function of γ and φ.

Lemma 5 When ExpRb is run with γ ≥ Φ against a Φ-attacker, we have:

T∑
t=1

x̂i(t) ≥
T∑
t=1

xi/pi(t), ∀i ∈ [K].

This implies that when γ ≥ Φ, i.e., the robustness parameter is large enough to be able to com-
pensate the corruption, the estimator can effectively avoid underestimation, thus guaranteeing that∑T
t=1 E[x̂i(t)] ≥

∑T
t=1 xi(t).

We are ready to sketch the proof of Theorem 3. The proof of Theorem 3 follows similar steps as in
the proof of Exp3 in [3]. We stress, however, that the proof here relies on more involved steps as
one has to take into account the impact of compensate variable δ(t) on the final regret. By applying
similar analysis for the proof of Exp3, we have

E

[
T∑
t=1

x̂i(t)

]
− E

[
T∑
t=1

x̃It(t)

]
≤ (e2 − 1)ηT +

K logK

η
+ E

[
T∑
t=1

δ(t)

]
, i ∈ [K].

Compared to the basic setting, our algorithm introduces an additional term
∑T
t=1 E[δ(t)], which

corresponds to the long-term sum of the compensate variable. Lemma 4 implies that the sum of
the compensate variable is upper bounded by O(γK log(K/η)). In addition, in Lemma 5, we have
characterized an upper bound on the difference between the cumulative reward

∑T
t=1 xi(t) and the

estimation
∑T
t=1 E[x̂i(t)]. Finally, applying the upper bounds in Lemma 5 concludes the proof of

Theorem 3. A detailed proof is given in §C in the supplementary.

6 Concluding Remarks

Motivated by the recent interests in making the online learning algorithms robust against manipulation
attacks, this paper studied non-stochastic multi-armed bandit problems with targeted corruptions. It
first showed that under targeted corruptions, existing attack-agnostic algorithms for non-stochastic
bandits, e.g., Exp3, are vulnerable against targeted corruptions with limited budget, and fail to achieve
a sublinear regret. Second, it proposed ExpRb, as a robust algorithm against targeted corruptions
and characterized its regret as a function of a parameter that determines the robustness budget of
the algorithm against targeted corruptions. The regret analysis shows that if the corruption budget is
sublinear and ExpRb is aware of this budget, it achieves a sublinear regret. While there are several
recent studies that focus on stochastic MAB problems with corruptions, to the best of our knowledge,
this paper is the first that tackles non-stochastic MABs with targeted corruptions.

7 Broader Impacts

Our work fits within the broad direction of research concerning safety issues in AI/ML at large. With
the recent radical advances in machine learning, ML-assisted decision making is fast becoming an
intrinsic part of the design of systems and services that billions of people around the world use every
day. And not surprisingly, investigating the vulnerability of existing learning models and robustness
against manipulation attacks are becoming critically important in the light of trustworthy learning
paradigm. Hence, there has been a surge of interest in making learning models that are robust against
adversarial attacks for both applied ML such as supervised learning and deep learning, and theoretical
ML such as reinforcement learning and multi-armed bandits. This is critically important for society,
since the ML algorithms are being adopted more and more in safety-critical domains across sciences,
businesses, and governments that impact people’s daily lives. Last, we see no ethical concerns related
to this paper.
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A Related Work

The basic MAB problems have been extensively extended to several other settings. Our literature
review, however, is centered on MABs with corruptions. The existing literature on MAB with
adversarial corruptions could be categorized based on the corruption model into two categories
of oblivious and targeted corruption models. Further the existing literature could be categorized
into those work that study the vulnerability of existing algorithms versus those that develop robust
algorithms against corruptions. Based on these four criteria, Table 1 summarizes the settings of the
existing work and this work. In short, the majority of the existing works focus on either oblivious or
targeted corruptions for stochastic MAB problems, and this work, to the best of our knowledge, is the
first that studies corruption models for non-stochastic bandits.

A.1 MAB Problems with Oblivious Corruptions

In the oblivious corruption model, an attacker, oblivious to the behavior of the bandit algorithm,
corrupts the stochastic patterns of some arms in each round. Specifically, this corruption model
targets stochastic bandit problems in which the reward of each arm follows a stochastic distribution.
The goal of the attacker is to adversarially manipulate the rewards of some arms to trick the algorithm
to choose sub-optimal arms. This model targets a middle ground of a mixed stochastic and adversarial
model that aims to achieve the best of both worlds. The oblivious corruption model is intrinsically
captured in the basic setting of non-stochastic MAB, since the adversary determines the reward in
adversarial manner, however, oblivious to the learner’s algorithm [3, 5]. In the following, then, we
focus on reviewing the related works on stochastic MABs with oblivious corruptions.

Ma et al. [19] introduced an attack framework based on a convex optimization formulation that shows
by slightly manipulation of the rewards, existing MAB algorithms are highly vulnerable against
oblivious corruption models. In [16], the framework has been extended to develop attack strategies
to a broad range of stochastic bandit algorithms. Both works, however, focus on designing attack
strategies to show the vulnerability of existing algorithms.

In another category [9, 18], the goal is to develop robust algorithms against oblivious corruptions.
The high-level idea is to expand the confidence bounds of the existing algorithms to be robust against
manipulation attacks on rewards. This setting was first proposed by Lykouris et al. [18] and a sublinear
regret algorithm with respect to the corruption budget was proposed. Specifically, the proposed
algorithm in [18] achieves the regret of Õ(KG

∑
i6=i∗ 1/∆i), where K is the number of arms, G is

the corruption budget, i∗ is the optimal arm, and ∆i is the gap between µ∗, the expected reward of
the optimal arm and µi, the expected reward of arm i, i.e., ∆i = µ∗ − µi, and notation Õ suppresses
all dependence on logarithmic terms. This bound is O(KG) times worse than the standard bound
achievable by existing algorithms like UCB in uncorrupted setting. This result has been improved to
an algorithm with the regret of O(KG) + Õ(

∑
i6=i∗ 1/∆i) in [9]. That is, the new algorithm in [9]

attains a regret bound which removes the multiplicative dependence on G in [18] and replace it with
an additive term. When the corruption is more powerful, i.e., larger G, the reward pattern is more
like that of the adversarial model, thereby the performance of the online algorithm is expected to be
degraded to fully non-stochastic setting. Last, Zimmert and Seldin [30] study the problem of optimal
algorithms for stochastic and adversarial bandits that includes [18, 9] as special case.

A.2 MAB Problems with Targeted Corruptions

In the targeted corruption model, which is mainly the focus of this paper, the adversary sits in-between
the environment and the learner, observes the selected arm by the learner, corrupts its reward, and
the learner just observes the corrupted reward. That means the corruption policy targets the action
of the player, and hence, the corruption is more powerful than the oblivious corruption model.
Different from the previous setting, this corruption model could be considered in both stochastic and
non-stochastic models.

The prior work in this direction [12, 16] studied the vulnerability of existing stochastic MAB
algorithms against targeted corruptions. The authors in [12] design specific targeted attacks with
logarithmic budget that hijack two popular stochastic bandit algorithms, i.e., ε-greedy and UCB
algorithms, by failing to achieve sublinear regret. A more comprehensive vulnerability study is
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conducted in [16] where a targeted corruption strategy is proposed that can hijack any stochastic
bandit algorithm without knowing the bandit algorithm.

Our work, to the best of our knowledge, is the first that focuses on non-stochastic bandits with targeted
corruptions. Similar to [12, 16], it investigates the vulnerability of existing bandit algorithms, however,
different from [12, 16] for non-stochastic setting, e.g., Exp3. Similar to [9, 18], it develops a robust
algorithm, called ExpRb for corrupted bandits, however, different form [9, 18] for non-stochastic
setting. Last, our analysis on vulnerability is applicable to both stochastic and non-stochastic bandit
algorithms.

B Proof of Theorem 1

We consider a two-armed bandit problem with Bernoulli arms with means (µ1, µ2) = ( 1
2 ,

1
2 + ∆),

for some ∆ that we specify later. The rewards of each arm are i.i.d. and the rewards are independent
across arms.

Consider a learning algorithm A. Further, consider an attacker, which adds a randomly generated
noise with mean −2∆ to the rewards of the second arm (i.e., the optimal arm) whenever it is selected
by the algorithm. Thus, from the learner’s view, arm 2 has mean 1/2 − ∆. We assume that the
adversary has enough budget to do so over T rounds. The algorithm is unaware of the attacker’s
existence.

Let N1 and N2 denote the number of pulls of arm 1 and arm 2 after T rounds, respectively. Thus,
N1 +N2 = T . The regret on the corrupted problem is R(T ) = ∆E[N2]. Since we assume that A
attains a regret of at most O(

√
T ) for any T , we have ∆E[N2] ≤ O(

√
T ), or E[N2] ≤ O(

√
T )/∆.

Hence, using N1 +N2 = T , we get

E[N1] ≥ T − O(
√
T )

∆
,

and thus, the regret of A on the corrupted problem is at least

R(T ) = ∆E[N1] ≥ ∆T − O(
√
T )

∆
.

Next we find a high probability upper bound on the budget Φ of the attacker. Observe that Φ < N2,
so we need to find a high probability upper bound on N2. For X > 0, we have:

XP(N2 > X) ≤ E[N2] ≤ O(
√
T )

∆

Hence, P(N2 < X) ≥ 1 − O(
√
T )

X∆ and thus, P(Φ < X) ≥ 1 − O(
√
T )/(X∆). Now choosing

∆ = T−ε, ε ∈ (0, 1
8 ) yields

R(T ) = ∆E[N1] ≥ ∆T − O(
√
T )

∆
= T 1−ε −O(T 1/2+ε) .

Hence, R(T ) = Ω(T 1−ε). Furthermore, choose X = T 1/2+2ε. Then, with high probability,
Φ ≤ O(T 1/2+2ε). �

C Regret Analysis of ExpRb: Proof of Theorem 3

Let T > 1. For any arm i, we let Ti ⊆ [T ] denote the set of time slots where arm i is selected and the
selection probability for arm i is lower than all previous ones:

Ti =

{
t ∈ [T ] : It = i and pi(t) ≤ min

t′<t:It′=i
pi(t
′)

}
.

We denote the size of Ti by Ni. Alternatively, we may write Ti = {ti(n), n ∈ [Ni]}. Note that ti(n),
n = 1, 2, . . . , Ni correspond to the time slots that arm i is selected by ExpRb and the maintained
probability is updated.

We first provide the following lemmas, which we prove later:
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Lemma 6 For all j ∈ [K],

(1− η)
T∑
t=1

x̂j(t) ≤
T∑
t=1

x̃It(t) +
T∑
t=1

δ(t) +
η

K

T∑
t=1

K∑
i=1

x̂i(t) +
K logK

η

Lemma 4 (restated) We have:
∑T
t=1 δ(t) ≤ γK log(K/η).

Using the above lemmas and taking expectations, we get

(1− η)
T∑
t=1

E[x̂j(t)] ≤
T∑
t=1

E[x̃It(t)] + γK log
K

η
+

η

K

T∑
t=1

K∑
i=1

E[x̂i(t)] +
K logK

η

=
T∑
t=1

E[x̃It(t)] + γK log
K

η
+ 2ηT +

K logK

η
,

where we used the fact that

E[x̂j(t)] = E[E[pIt(t)(x̃It(t) + δ(t))/pIt(t)|Ft−1]] ≤ 2 ,

where Ft−1 denotes the history of the game up to time slot t. We will be using the following lemma
to simplify the left-hand side of the inequality:

Lemma 5 (restated) For all i ∈ [K], and γ ≥ Φ, we have:
∑T
t=1 x̂i(t) ≥

∑T
t=1 xi(t)/pi(t).

We therefore obtain:

max
j

T∑
t=1

xj(t)−
T∑
t=1

E[x̃It(t)] ≤ γK log
K

η
+ 3ηT +

K logK

η
.

Finally, the proof is completed by setting γ = Φ and η = O(
√
K logK/T ). �

C.1 Proof of Lemma 6

For t ≥ 1, denote Wt :=
∑K
i=1 wi(t). We derive upper and lower bounds on log WT+1

W1
.

Lower Bound. Note that W1 = K. Then,

log
WT+1

W1
≥ log

wj(T + 1)

K
=

η

K

T∑
t=1

x̂j(t)− logK , (10)

where j ∈ [K] is arbitrary.

Upper Bound. First observe that log WT+1

W1
=
∑T
t=1 log Wt+1

Wt
. Next we derive an upper bound on

Wt+1/Wt. We have:

Wt+1

Wt
=

K∑
i=1

wi(t)

Wt
eηx̂i(t)/K

≤
K∑
i=1

(pi(t)− η/K
1− η

)(
1 +

η

K
x̂i(t) +

η2

2K2
x̂i(t)

2
)

=
K∑
i=1

pi(t)− η/K
1− η︸ ︷︷ ︸
=1

+
η

K(1− η)

K∑
i=1

pi(t)x̂i(t) +
η2

2K2(1− η)

K∑
i=1

pi(t)x̂i(t)
2

where in the second line, we have used the inequality ez ≤ 1 + z + 1
2z

2 valid for all z > 0.

Note that
∑K
i=1 pi(t)x̂i(t) = x̃It(t) + δ(t) and

K∑
i=1

pi(t)x̂i(t)
2 = pIt(t)x̂It(t)

2 = (x̃It(t) + δ(t))x̂It(t) ≤ 2x̂It(t) = 2
K∑
i=1

x̂i(t)
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Hence,

Wt+1

Wt
≤ 1 +

η

K(1− η)
(x̃It(t) + δ(t)) +

η2

K2(1− η)

K∑
i=1

x̂i(t)

Taking logarthim from both sides and using the inequality log(1 + z) ≤ z valid for all z > −1, we
obtain:

log
Wt+1

Wt
≤ η

K(1− η)
(x̃It(t) + δ(t)) +

η2

K2(1− η)

K∑
i=1

x̂i(t) ,

which further gives:

log
WT+1

W1
=

T∑
t=1

log
Wt+1

Wt
≤ η

K(1− η)

T∑
t=1

x̃It(t) +
η

K(1− η)

T∑
t=1

δ(t) +
η2

K2(1− η)

T∑
t=1

K∑
i=1

x̂i(t) .

Putting the upper and lower bounds together, we obtain: For all j ∈ [K],

η

K

T∑
t=1

x̂j(t)− logK ≤ η

K(1− η)

T∑
t=1

x̃It(t) +
η

K(1− η)

T∑
t=1

δ(t) +
η2

K2(1− η)

T∑
t=1

K∑
i=1

x̂i(t)

which concludes the proof. �

C.2 Proof of Lemma 4

By the design of ExpRb, the value of δ(t) is set to a non-zero value only when the current selection
probability of the selected arm, i.e., pIt(t) is smaller than qIt(t−1). Fix an arm i ∈ [K], and consider
time slots ti(n), n = 1, 2, . . . , Ni, where i is selected. We can show that

δ(ti(n)) = γ

(
1− qi(ti(n))

qi(ti(n− 1))

)
, n = 1, 2, . . . , Ni. (11)

To prove this claim, we consider all possible cases a time slot ti(n) as follows:

Case (i): pi(t) ≥ qi(ti(n− 1)). In this case, qi(ti(n)) will be set to qi(ti(n− 1)). Then, the value
of δ(ti(n)) from Eq. (11) will be 0, complying with Line 6 of ExpRb.

Case (ii): qi(ti(n− 1)) ≥ pi(t) ≥ (1− 1/γ)qIt(ti(n− 1)). Here, qi(ti(n)) will be set to pi(ti(n)).
Based on Eq. (11), the value of δ(ti(n)) will be set to γ (1− pi(ti(n))/qi(ti(n− 1))). This case
complies with Eq. (7), since pi(t) satisfies γ (1− pIt(t)/qIt(ti(n− 1))) ≤ 1.

Case (iii): pi(t) < (1− 1/γ)qIt(ti(n− 1)). In this case, qi(ti(n)) will be set to (1−1/γ)qIt(ti(n−
1)). In this case, δ(ti(n)) based on Eq. (11) will be equal to 1. Moreover, when pi(t) < (1 −
1/γ)qIt(ti(n − 1)), we have γ (1− pIt(t)/qIt) > 1, which implies that δ(ti(n)) complies with
Eq. (7).

Putting these together proves the claim in Eq. (11).∑
n∈[Ni]

δ(ti(n)) =
∑
n∈[Ni]

γ

(
1− qi(ti(n))

qi(ti(n− 1))

)
=
∑
n∈[Ni]

γ
1

qi(ti(n− 1))

(
qi(ti(n− 1))− qi(ti(n))

)
≤− γ

∫ qi(ti(Ni))

qi(ti(1))

1

z
dz = −γ log z

∣∣∣qi(ti(Ni))

1
= −γ log qi(ti(Ni)) .

Moreover, by the design of ExpRb, pi(t) ≥ η/K for all i and t, which further implies qi(ti(Ni)) ≥
η/K. Hence, ∑

t∈[T ]

δ(t) =
K∑
i=1

∑
n∈[Ni]

δ(ti(n)) ≤ γK log(K/η),

thus completing the proof. �
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C.3 Proof of Lemma 5

Let i ∈ [K]. Due to using compensate variables, the estimation on arm i at time slot t will be
increased by δ(t)/pi(t). Specifically, by the design of the algorithm, we have∑

t∈Ti

δ(t)

pi(t)
=
∑
n∈[Ni]

1

pi(ti(n))

[
min

{
1, γ

(
1− pi(ti(n))

qi(ti(n− 1))

)}]
.

To further simplify the above equation, we consider the following two possibilities for a time slot
ti(n), i ∈ [Ni]:

(i) If γ
(

1− pi(ti(n))
qi(ti(n−1))

)
≤ 1, then qi(ti(n)) = pi(ti(n)) (see Eq. ((8))) and

1

pi(ti(n))

[
min

{
1, γ

(
1− pi(ti(n))

qi(ti(n− 1))

)}]
=

γ

qi(ti(n))

(
1− qi(ti(n))

qi(ti(n− 1))

)
=

1

qi(ti(n))
γ

(
1− qi(ti(n))

qi(ti(n− 1))

)
+

(
1

pi(ti(n))
− 1

qi(ti(n))

)
.

(ii) If γ
(

1− pi(ti(n))
qi(ti(n−1))

)
> 1, according to Eq. ((8)), we have qi(ti(n)) = (γ − 1)/γqi(ti(n− 1)),

so that γ
(

1− qi(ti(n))
qi(ti(n−1))

)
= 1. Hence,

1

pi(ti(n))

[
min

{
1, γ

(
1− pi(ti(n))

qi(ti(n− 1))

)}]
=

1

pi(ti(n))

=
1

qi(ti(n))
+

1

pi(ti(n))
− 1

qi(ti(n))

=
γ

qi(ti(n))

(
1− qi(ti(n))

qi(ti(n− 1))

)
+

(
1

pi(ti(n))
− 1

qi(ti(n))

)
.

Putting together both cases yields∑
t∈Ti

δ(t)

pi(t)
=
∑
n∈[Ni]

γ

qi(ti(n))

(
1− qi(ti(n))

qi(ti(n− 1))

)
+
∑
n∈[Ni]

(
1

pi(ti(n))
− 1

qi(ti(n))

)
(12)

Then, we have∑
t∈[T ]

x̂i(t) =
∑
t∈Ti

x̃i(t) + δ(t)

pi(t)

=
∑
t∈Ti

x̃i(t)

pi(t)
+
∑
n∈[Ni]

γ

qi(ti(n))

(
1− qi(ti(n))

qi(ti(n− 1))

)
+
∑
n∈[Ni]

(
1

pi(ti(n))
− 1

qi(ti(n))

)

=
∑
t∈Ti

x̃i(t)

pi(t)
+
∑
n∈[Ni]

γ

(
1

qi(ti(n))
− 1

qi(ti(n− 1))

)
+
∑
n∈[Ni]

(
1

pi(ti(n))
− 1

qi(ti(n))

)

=
∑
t∈Ti

x̃i(t)

pi(t)
+

γ

qi(ti(Ni))
+
∑
n∈[Ni]

(
1

pi(ti(n))
− 1

qi(ti(n))

)
. (13)

Now, assuming γ ≥ Φ, we have∑
t∈[T ]

x̂i(t) =
∑
t∈Ti

x̃i(t)

pi(t)
+

γ

qi(ti(Ni))
+
∑
n∈[Ni]

(
1

pi(ti(n))
− 1

qi(ti(n))

)

=
∑
t∈Ti

x̃i(t)

pi(t)
+

γ − Φ

qi(ti(Ni))
+

Φ

qi(ti(Ni))
+
∑
n∈[Ni]

(
1

pi(ti(n))
− 1

qi(ti(n))

)

≥
∑
t∈Ti

x̃i(t)

pi(t)
+

γ − Φ

qi(ti(Ni))
+

1

qi(ti(Ni))

∑
t∈Ti

|a(t)|+
∑
n∈[Ni]

(
1

pi(ti(n))
− 1

qi(ti(n))

)
.
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Using qi(ti(Ni)) ≤ qi(t) for any t, and rewriting some terms in the above equation, we have∑
t∈[T ]

x̂i(t) ≥
∑
t∈Ti

x̃i(t)

pi(t)
+

γ − Φ

qi(ti(Ni))
+
∑
t∈Ti

|a(t)|
qi(t)

+
∑
t∈Ti

(
1

pi(t)
− 1

qi(t)

)
. (14)

In view of 0 ≤ |a(t)| ≤ 1, the last two terms in the right-hand side satisfy∑
t∈Ti

|a(t)|
qi(t)

+
∑
t∈Ti

(
1

pi(t)
− 1

qi(t)

)
≥
∑
t∈Ti

|a(t)|
qi(t)

+
∑
t∈Ti

|a(t)|
(

1

pi(t)
− 1

qi(t)

)
=
∑
t∈Ti

|a(t)|
pi(t)

≥
∑
t∈Ti

a(t)

pi(t)

Putting this together with the fact that qi(ti(Ni)) ≤ 1/K, we thus the desired result:∑
t∈[T ]

x̂i(t) ≥
∑
t∈Ti

x̃i(t)

pi(t)
+

γ − Φ

qi(ti(Ni))
+
∑
t∈Ti

a(t)

pi(t)
≥
∑
t∈Ti

xi(t)

pi(t)
+ (γ − Φ)K .
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Figure 1: Experimental results

In the simulation, we evaluate the performance of ExpRb and compare it with the Exp3 algorithm
in different scenarios. In order to evaluate our algorithm under adversarial corruptions, we assume
the attacker follows the so-called attack-optimal-arms policy introduced in Section 2. The attack-
optimal-arms policy can efficiently attack the empirical reward estimation of the optimal arm and
trick the learning algorithm to select a suboptimal arm.

The experimental scenario is as follows. Consider an environment with one high-reward arm and
K − 1 low-reward arms. The attacker aims to decrease the observed reward when the online learner
chooses the optimal arm. When the budget is available, the attacker will always set the reward on
the optimal arm to be zero when it was chosen. We report the average regret obtained by collecting
the actual regret of 100 execution of this scenario. The first scenario involves an attacker with
attack budget of O(

√
T ). The simulation results shown in Figure 1(a) imply that the performance

of the Exp3 algorithm is largely degraded with the attack. The ExpRb algorithm, however, achieves
a sublinear regret. In the second scenario, we compare the performance of two algorithms under
different amount of budget of attacker. Toward this, we vary the available budget of the attacker in 10
levels. The corresponding budget for the l-th level is T 0.2+l/20. Figure 1(b) shows the performance
comparison between the Exp3 algorithm and the ExpRb algorithm. One can find that the performance
of Exp3 is largely degraded when the attacker budget reaches T 1/2, while the ExpRb algorithm can
tolerate heavier attacks.
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