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Non-Newtonian fluid flows, especially in three dimensions (3D), arise in numerous settings of interest
to physics. Prior studies using the lattice Boltzmann method (LBM) of such flows have so far been
limited mainly to two dimensions and used less robust collision models. In this paper, we develop
a new 3D cascaded LBM based on central moments and multiple relaxation times (MRT) on a three-
dimensional, nineteen velocity (D3Q19) lattice for simulation of generalized Newtonian (power law)
fluid flows. The relaxation times of the second order moments are varied locally based on the local
shear rate and parameterized by the consistency coefficient and the power law index of the nonlinear
constitutive relation of the power law fluid. Numerical validation study of the 3D cascaded LBM for
various benchmark problems, including the complex 3D non-Newtonian flow in a cubic cavity at
different Reynolds numbers and power law index magnitudes encompassing shear thinning and shear
thickening fluids, are presented. Furthermore, in order to demonstrate the advantages of the proposed
3D cascaded LBM based on central moments, numerical stability comparisons against the LBMs based
on a single relaxation time model and a MRT model using raw moments are made. Numerical results
demonstrate the accuracy, second order grid convergence and significant improvements in numerical
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1. Introduction

In the last few decades, the lattice Boltzmann Method (LBM)
has become a preferred method for simulating complicated phys-
ical, chemical, and fluid mechanics problems [1-5]. It is a kinetic-
based approach for fluid flow computations. This is why it is
especially useful for computing fluid flows with multiple com-
ponents involving interfacial dynamics, nonlinear constitutive
models and complex boundaries. In particular, see the earliest
review [1], which remains a source of original ideas and has
contributed towards number of advances in this field. Because
the LBM lies on the scale of mesoscopic level, challenges that
have been encountered with using conventional CFD methods
are not found with the LBM. The lattice Boltzmann Equation
(LBE) can be constructed through several ways. A pioneering
top-down formulation of the LBE with the desired macroscopic
behavior for efficient flow simulations was presented in [6].
Alternatively, one can derive the LBE through a dramatically
simplified version of the Boltzmann kinetic equation. In addition,
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there are several approaches to perform mathematical analy-
sis and derive the Navier-Stokes equations from the LBE. With
Chapman-Enskog expansion being more popular among the rest,
other approaches include the asymptotic expansion, extended
Taylor series expansion and order of magnitude analysis.

The lattice Boltzmann methods are comprised of two funda-
mental steps, which are the streaming step and collision step. The
streaming step is the same in various models of the LBM. How-
ever, because the collision step is more complicated, researchers
have been devoting considerable efforts into finding the most
suitable collision model for the lattice Boltzmann method. Among
those different collision models, the simplest and commonly used
is the so-called single-relaxation-time (SRT) model [7], which is
based on the Bhatnagar-Gross-Krook (BGK) approximation [8].
On the other hand, a multiple-relaxation-time (MRT) model has
been developed in order to improve numerical stability [9]. MRT
has been confirmed as a more stable collision model in vari-
ous problems. In the MRT collision model, various moments are
relaxed to their equilibrium states at different rates during the
collision step. Alternatively, nonlinear stability can be achieved
by the H-theorem compliant entropic lattice Boltzmann methods
(see e.g., [10-13]). The equilibrium distribution of the particle
populations is constructed to minimize a convex entropy function
by subjecting it to the constraints of the local conservation laws of
mass and momentum. The use of entropy estimates to construct
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the post-collision states provides one of the most efficient LB
methods for simulating low viscous flows.

More recently, a new class of collision model, the so-called
cascaded LBM, has been introduced by Geier et al. [14]. Later
on, Asinari [15] reinterpreted this approach based on relaxation
to a generalized equilibrium. Premnath and Banerjee [16] incor-
porated forcing terms in the cascaded LBM by the method of
central moments and systematically derived it and demonstrated
its consistency to the Navier-Stokes equations via a Chapman-
Enskog expansion. In such an approach, Galilean invariance is
naturally enforced to the lattice Boltzmann equation (LBE) based
on the relaxation of central moments. This involves computing
moments which are shifted by the macroscopic fluid velocity. In
another words, the moments are prescribed in a moving frame of
reference. Comparatively, the moments in the prior approaches
are computed in a rest frame of reference, which are termed as
the raw moments.

In various recent studies [17,18], the cascaded LBM based on
central moments and multiple relaxation times has been shown
to be significantly more stable when compared to the SRT col-
lision model based LBM for the simulation of Newtonian fluid
flows. Three-dimensional central moment LBMs including the
forcing terms for D3Q15 and D3Q27 lattices were systematically
derived in [19]. A variant of such a formulation involving dis-
crete moment equilibria rather than the continuous Maxwellian
equilibria is presented in [20]. A preconditioned cascaded LBM to
accelerate steady flow simulations with improved accuracy was
recently developed by [21]. Furthermore, the cascaded LBM has
recently been extended to simulate thermal convective flows in
two-dimensions (2D) [22,23] and three-dimensions (3D) [24]. In
addition, a modified forcing formulation and implementation of
the central moment LBM has been presented in [25]. A systematic
survey of various forcing approaches, which were categorized
according to their being either split or unsplit formulations were
made recently in [26], which also developed an efficient and
second order accurate method to include sources in the cas-
caded LBM based on symmetric operator or Strang splitting. In
general, the cascaded LB formulation is able to handle low vis-
cous regions or flows at high Reynolds number quite well (see
e.g., [17,18,27,28]) by performing the relaxation process under
collision in the moving frame of reference. While naturally pre-
serving the Galilean invariance of the moments independently
supported by the lattice, it also leads to the use of higher or-
der terms in the fluid velocity in the equilibria when compared
to the standard SRT or MRT formulations thereby contributing
to its superior stability characteristics. Furthermore, by tuning
the various relaxation times independently, the damping of the
non-hydrodynamic Kinetic quantities can be achieved [18,27,28].

Complex non-Newtonian fluid flows with nonlinear constitu-
tive relations represent an important class of flows with numer-
ous applications in various scenarios including in engineering,
materials and food processing, and geophysical processes [29,30].
The extension of LBM to non-Newtonian fluid flows has received
significant but limited attention so far, which has been reviewed
in [31], and some more recent examples of such studies include
the works of [32-35]. While most of the prior studies have
demonstrated the applications of different LB schemes to 2D non-
Newtonian fluid flows, including a recent investigation based
on a 2D cascaded LB approach [35], very little focus has been
given to the development and validation of LBM, particularly
with using advanced collision models, for 3D non-Newtonian
fluid flows involving well defined benchmark problems. Indeed,
due to complexity of handling nonlinear rheological behavior
via more general constitutive relations with attendant numeri-
cal stability issues and the need for high grid resolutions with
relatively higher computational demands, there are only very
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few studies in 3D even in the context of computational fluid
dynamics (CFD) using conventional numerical schemes. For the
well-defined problem of 3D non-Newtonian cubic cavity flow,
Refs. [36,37] presented some results at coarse grid resolutions
and, recently, Ref. [38] reported benchmark quality results using
a fractional step based finite volume method.

In the present work, we will present a new cascaded LBM in
3D for the simulation of non-Newtonian flows represented by
power law fluid based rheology. In this regard, we construct a
collision model based on central moments and multiple relax-
ation times, on a three-dimensional nineteen velocity (D3Q19)
lattice. Prior versions of the ‘cascaded’ formulations of the central
moment LBM, where the changes in the higher moments depend
successively on those preceding lower moments, were developed
for Newtonian flows for the D3Q27 or D3Q15 lattice [14,19]. In
this work, we will present a derivation of the cascaded LBM for
the D3Q19 lattice, which is a compromise between stability and
efficiency, to handle nonlinear constitutive relations. Here, the
relaxation times for the second order moments that emulate the
nonlinear viscous behavior of the fluid are adjusted by the local
shear rate and parameterized by the consistency coefficient and
the power law index of the generalized Newtonian (i.e., power
law) fluid. Expressions for computing the shear rates based on
estimating the components of the strain rate tensor locally via the
non-equilibrium moments will be provided for this formulation.
The implementation strategy for the sources corresponding to the
applied body forces for our 3D cascaded LBM will be according
to the operator splitting strategy presented in [26], and will not
be discussed further here as the present focus is on developing
a modified collision term based on central moments for non-
Newtonian flows. However, we will present details on how to
implement our cascaded collision formulation, especially some
optimization strategies, for efficient LB simulations of 3D non-
Newtonian flows. Compared to the conventional schemes for
CFD, our 3D LB algorithm is local and is thus naturally suitable
for efficient implementation on large scale parallel computers.
Moreover, our approach is based on advanced formulation of
the collision terms, which is expected to be more stable when
compared to other LB models for 3D non-Newtonian flows. We
will present a validation study of our 3D cascaded LB scheme for
the non-Newtonian flow in a channel, duct and a cubic cavity.
In particular, for the latter case involving complex nonlinear
fluid motion with power-law rheology in a cubic cavity, we will
make direct comparisons of the velocity profiles against the re-
cent benchmark solution [38] for various Reynolds numbers and
power law index magnitudes encompassing both shear thinning
and shear thickening fluid behavior. We will also assess the
order of accuracy of grid convergence of our new 3D scheme
for non-Newtonian flow simulations. Finally, we will present a
comparative study of the present 3D cascaded LBM using central
moments against the LB schemes based on a SRT model and a
MRT formulation based on raw moments for the simulation of
non-Newtonian fluid flows with different power law index values
and demonstrate improvements in numerical stability achieved
by the former when compared to the latter approaches.

It may be noted that recently, Ref. [39] introduced a so-called
simplified LBM for the simulation of non-Newtonian flows and
used a 3D cavity flow as a test case. Here, we compare and con-
trast our approach with this recent work. The method proposed
in Ref. [39] invokes several approximations in formulating the nu-
merical scheme and involves a time-split predictor and corrector
steps, which may be subject to splitting errors. Also, the boundary
conditions need to be imposed separately for the predictor and
corrector steps, with the latter step requiring the use of a linear
extrapolation scheme. These may compromise the overall accu-
racy and mass conservation properties, while our approach is not
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subjected to these issues as it is based on standard LB discretiza-
tions. While we demonstrate our method to be second order
accurate in grid convergence (see in Section 4), Ref. [39] does
not present such a numerical convergence study. Moreover, the
scheme presented in Ref. [39] does not have enough additional
degrees of freedom to account for additional features, such as the
ability to independently adjust the bulk viscosity and shear vis-
cosity to handle more general class of flows, which are naturally
accounted for in our approach based on using multiple relaxation
times and central moments. In addition, the method relies on
using a non-local finite difference scheme to determine the shear
rate in implementing the constitutive relation for non-Newtonian
fluids, which compromises its parallelization properties; by con-
trast, our formulation computes the strain rate tensor locally
based on non-equilibrium moments for 3D non-Newtonian flows
(see Section 3). Furthermore, Ref. [39], in presenting some results
related to 3D cavity flows of non-Newtonian fluids, does not make
any comparison with benchmark quality data obtained using
well-established Navier-Stokes based solvers, while this work
makes such a comparison using the results presented in a recent
work [38]. Finally, unlike this work (see Section 5), Ref. [39] does
not provide any explicit comparisons of numerical stability with
other LB schemes.

This paper is organized as follows. In the next section (Sec-
tion 2), we present an overview of the macroscopic governing
equations for generalized non-Newtonian fluid flows and list the
attendant non-linear constitutive relation. A detailed exposition
of the construction of the 3D cascaded LBM for the D3Q19 lattice
is given in Section 3. This includes the changes of different mo-
ments under cascaded collision and the specification of the local
relaxation times for the second order moments parameterized for
the power law fluid, where the shear rate is related to the non-
equilibrium moments, as well as their implementation strategy.
Validation studies involving various canonical non-Newtonian
fluid flow problems, including those in a cubic cavity are pre-
sented and discussed in Section 4. Section 5 makes numerical
stability comparisons of our 3D central moment LBM against a
SRT-LBM and a MRT-LBM based on raw moments for the sim-
ulation of power law fluid flows in a shear driven problem. In
addition, it will present performance data related to computa-
tional cost comparisons. The conclusions are finally summarized
in Section 6.

2. Governing equations for three-dimensional generalized
non-Newtonian fluid flows

In the present work, we consider the simulation of three-
dimensional (3D) generalized Newtonian flows (GNF). The math-
ematical model, which is given in terms of the continuity and
momentum equations, can be written as

ap d

— + — i)=20, 1

o T aXj(,ou,) (1a)
d d aP 3(7,']'
— i —_— iuj) = —— F; 1b
at(put)‘i' axj(puluj) ax; + 3Xj + Fi (1b)

where p and u; are the local fluid density and the velocity field,
respectively, with i € (x,y,z). Here, P, F; and oy represent
the pressure, Cartesian component of the imposed body force,
and deviatoric viscous stress tensor induced within the GNF,
respectively. The viscous stress tensor can be represented as

oij = vV, (2)

where y; is the shear rate tensor. It is related to the strain rate
tensor S; by

. 1
Vi = 25,»j, S,‘j = 5 (ajui + aju]‘) R 3)
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Fig. 1. Three-dimensional, nineteen particle velocity (D3Q19) lattice.

and u(]yy|) is assumed to be an effective or apparent dynamic
viscosity of the GNF, where the magnitude of the shear rate |y;]| is
related to the second invariant of the symmetric strain rate tensor
Sij as

Vil = v/ 25;Sij- (4)
Here, the usual convention of the summation of the repeated
indices is assumed. Thus,

il = 2 [S2 + 52, + 52 + 283, + 52 + 52)]. (5)

In this study, we consider the constitutive relations for the power
law fluid as a representative of a class of GNF for their numerical
solution using the 3D cascaded LB method presented in the next
section. The constitutive relation for the power law fluid can be
described mathematically as follows:

o = tplil" Vi (6)
where the model parameter u, and the exponent n are known
as the consistency coefficient and power law index of the fluid,
respectively. Based on the values of the power-law index n, the
following three different types of non-Newtonian fluids can be
represented: n < 1 corresponds to shear thinning or pseudo-
plastic fluid, whereas n > 1 models shear thickening fluids, and
n = 1 reduces to the Newtonian constitutive relation. Comparing

Egs. (2) and (6), the effective viscosity for the power-law model
is given by the following expression

Mpower('yijn = Mp|7./ij|n71~ (7)

3. Three-dimensional cascaded LBM for non-Newtonian fluid
flows

We will formulate our non-Newtonian fluid flow solver based
on a cascaded LB approach using the three-dimensional nine-
teen velocity (D3Q19) lattice, which is shown in Fig. 1. The
corresponding particle velocity e, is represented as

(0,0,0), a=0
e, = 1(£1,0,0),(0,%1,0), (0,0, £1), a=1,...,6
(£1,41,0), (£1,0, £1), (0, £1, £1), a=7,...,18

(8)

In this work, the Greek and Latin subscripts are used for the
particle velocity directions and Cartesian coordinate directions,
respectively. The bare or raw moments in the LBM are defined in
terms of the distribution function f, as 2;8:0 em el ebfa, where
m, n and p are integers, and (m + n + p) represents the order
of the corresponding moment component. We use the Dirac’s
bra-ket notation in this paper to denote the basis vectors. For
example, if (a] and |b) represent a row vector and a column
vector, respectively, then their inner product is given by (a|b).
Now, the nineteen non-orthogonal basis vectors based on the
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combination of the monomials ef]xegyeﬁz in an ascending order
supported by the D3Q19 lattice can be listed as follows:

To) = (1), [Th) =lex), [T2) =ley), [|T3)=le),

ITs) = lexey), |Ts) = lexez), |Ts) = leye,),

IT7) = lex” — %), |Ts) = |ex” —e,%),

To) = |ex” + ey” + €,%),

ITio) = lex (&x” + & + &), [Ti1) = ley (e + ey” + &),
ITi2) = le; (ex” + ey +e,%)),

ITis) = lex (&y° —e.%)), |Tua) = ley (e, — &%),

ITis) = le; (ex” —ey?)),

2,2

|T16> = |ex ey +ex ez +ey €; >a
2,2 2,2 2,2

|T17> = |ex ey + ex"e; —€y'e; >s
2,2 2,2

|T18> = |ex €y —ex'e )

Here, the components of the basis vectors |1), |ex), |ey) and |e;)
corresponding to the conserved moments based on which the
moment basis can be constructed are given by

m=qa,111111111,1,11,11,1,1,1, D,

lex) = (0,1,-1,0,0,0,0,1,—-1,1,—1,1,—-1,1,-1,0,0,0,0)",
ley) = (0,0,0,1, ,—1,0,0,0,0,1,—1,1, =1,
le;) = (0,0,0,0,0,1, —1,-1D",

-1,0,0,1,1, -1
-1,0,0,0,0,1,1,-1,-1,1, 1,

where t is the transpose operator. As in our previous work [19], in
order to formulate a ‘cascaded’ LB formulation, where the changes
in higher order moments successively depend on those of the
preceding lower order ones, for the D3Q19 lattice, the above
|T;) vectors, where j = 0,1, 2,..., 18, can be transformed into
the following equivalent set of orthogonal basis vectors via the
standard Gram-Schmidt procedure, which then read as

Ko) = 1), K1) =lex), [Ka) =ley), |Ks)=ley),
Ka) = lexey), |Ks) = |exes), [|Ke) = |eye,),
IK7) = lex” —ey®), |Ks) = e’ + ey° + e,°) — 3e?),
IKo) = 19]e,* + ey + €,%) — 30[1),

) =

|K10 - 5|ex (ex +ey +e12)> _9|ex>7

K1) = 5ley (ex” + ey + ;%)) — 9ley),

|K12 - 5|ez( + ey2 + e22)> - 9|ez>,
2

IKi3) = lexey” — exe,”), [Kia) = |e,”ey — eye®),
Kis) = lex’e, — ey’e;),
IKis) = 21jes’e,” + es’e,” + ey’e,?)

—16le,” + e,% + e,%) + 12|1),
|Ki7) = 3|ex2ey2 + ele,” — 28y2e12) —2|2e,% — ey2 —e?),
IKis) = 3lex’ey” — ex’e,”) — 2|ey,” — e,%).

These vectors can be used to form an orthogonal matrix K that
maps changes in moments under cascaded collision as

K = [|Ko), IK1), [K2), . .., [K1s)] 9)
whose elements are given by

K=
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1.0 0 0 0OOO O 0O-3 00 0 0 0 012 00
11 0 0 0 0 0 1 1-11-4 0 0 O O 0-4-4 0
1-1 0 0 000 1 1-11 4 0 0 0 0 0-4-40
1 01 0 0 0 0-1 1-11 0-4 0 0 0 0-4 2-2
1 0-1 0 0O0 0-1 1-11 0 4 0 0 0 0-4 2-=-2
1 0 0 1.0 00O 0-2-11 0 0-4 0 0 0-4 2 2
1 0 0-1 0 OO 0-2-11 0 0 4 0 0 0-4 2 2
11 1 0 1 0 0 0 2 g§ 1.1 0 1-1 0 1 1 1
1-1 1. 0-1 0 0 0 2 8-1 1 0-1-1 0 1 1 1
1 1-1 0-1 0 O O 2 8§ 1-1. 0 1.1 0 1 1 1
1-1-1 0 1 0 0 0 2 8§ -1-1 0-1 1 0 1 1 1
1 1 0 1 0 1 0 1-1 8§ 1.0 1-1 0 1 1 1-1
1-1 0 1 0-1 0 1-1 §8-1 0 1 1 0 1 1 1-1
1 1. 0-1 0-1 0 1-1 8§ 1. 0-1-1 0-1 1 1-1
1-1 0-1 0 1 0 1-1 8-1 0-1 1 0-1 1 1-1
10 1.1 0 0 1-1-1 8§ 0 1.1 0-1-1 1-2 0
1 0-1 1 0 0-1-1-1 8§ 0-1 1 0-1-1 1-2 0
1 0 1-1 0 O0-1-1-1 8§ 0 1-1 0 1 1 1-2 0
1 0-1-1 0 0 1-1-1 8§ 0-1-1 0-1 1 1-2 0

Next, we define the continuous central moment of the particle
distribution function f and its attractor or the local equilibrium
f shifted by the local fluid velocity of order (m + n + p) as

ﬁxmynzp
n)((]’%ynzp / / / fat
x(& —u, pdgxdgydgz (10)

Here, and in the rest of this paper, we employ “hat” over a symbol
to represent the values in the space of moments. One possibility
is to consider the local Maxwell-Boltzmann distribution function
in the continuous particle velocity space (§ = (&, &, &)) as the
attractor

=M= e[ @ -w? /)], D

where we typically choose ¢2 = 1/3, and its central moments
follow via the definition given in Eq. (10), which can be written

as follows:

a3 = p,

M=o,

ot = cp.

=0, i#j

it =0, i#j,

il =0, i#j#k

It =clp, i#ij. (12)

In the above equation and the one that follows, for ease of rep-
resentation, we do not assume the summation over the repeated
indices. More generally, as suggested in Ref. [40], we consider the
factorized form of attractors that guide the collision process, i.e.,

e =1 =o,

AY =M =0, i#]

A% = [0 =0,

A% = T, =0,

A = My, (13)

where ‘tilde’ denote the post-collision values and ﬁxmynzp repre-
sents the central moments of order (m-n+p) of the post-collision
distribution function f:

Fingnan = / / f Tt — u) () — (& — u Pty .
(14)

Nevertheless, the diagonal components of the lower second-order
central moments of the attractor should be obtained from the
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Maxwellian central moments, i.e., ﬁnM = cszp in order to cor-
rectly recover the pressure and momentum flux in the macro-
scopic flow equations [40]. Then, the 19 independent compo-
nents of the central moment attractors based on the factorized
formulation can be written as

g =010 =" =1 =0,

e — ﬁ}‘}; = ﬁzazt = Cszp,

e — ﬁat _ ﬁat =0,

ﬁat — nat _Hat _Hat _Hat _Hat _Hat =0,

xyy "z xxy yyz xyz
fo[yy = Hxxnyy’
ﬁf,fzz = ﬁxxﬁzp
o, = Myl,. (15)

Based on the above, we will now construct a 3D cascaded
LBM by defining a discrete distribution function supported by
the discrete particle velocity set e, as f = (fo, fi,f2, ..., fig)!
and its collision term as Q° = |25) = (2§, 25, 25, ..., 25,),
which will be based on the relaxation of various central moments
to their attractors. The cascaded LBE results from a special dis-
cretization of the continuous Boltzmann equation by integrating
along the particle characteristics as

t)+ 25(x. t) (16)

Here, the collision term §2¢ is a function of the unknown changes
in various moments under collision § = (8,81,82,...,818)
resulting from the state f, which are then mapped to the changes
in the distribution functions via the orthogonal mapping matrix
K as [14]

2, = 2,(£8) = (K-8, (17)

For convenience, the above cascaded LBE (Eq. (16)) can refor-
mulated as an algorithm in the form of the usual collision and
streaming steps, respectively, as

Jaul®, £) = fulx, ) + 8%, 1), (18)
fo(® +eg, t + 1) = fo(x, 0). (19)
The fluid dynamical variables, i.e., the local density and momen-

tum, and the pressure field P are determined from the updated
distribution functions as

18

fa(x+ €y, L+ 1) =fot(x!

p=7 fu=(M), P=pc (20a)
a=0
pu; = Zfozem = (fle;),iexy.z (20b)

In order to derive the expressions for the change of mo-
ments under collision g for the cascaded LBM, we need to also
define the following discrete central moments of the distribu-
tion functions f = (fy,f1,f2, ..., fig)!, their attractors ff* =

i 1‘", 2‘“,.. fis ), and the post-collision distribution func-

tions f=(fo, fi, for ..., f1s):

TC\xmy”zP = ((ex - uxl)m(ey - uyl)n(ez - uzl)p|f>7
,K\;?rglyﬂzp = ((ex - uxl)m(ey - uyl)n( — Uz 1)p|fat>
Tgxmy”zl’ = ((ex — uxl)m(ey - uyl)n( —u, 1P |f> (21)

For achieving highest possible accuracy, we match the discrete
central moments of the attractors supported by the D3Q19 lattice
with the corresponding continuous central moments, i.e., Kynyn,»
= ﬁxnﬂynzp. As a result, the discrete central moments of the
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attractors can be listed as follows:

’I?gt — O,AatZTC\at:AatZO,

7(\;(1; = 7(\)?; yz = 0
’E)(cl;y = ”Z)?ztz = k\)?;y = )K\;/lz[z = "?)?;z = )’E;/l;z = )K\f)fz =0,
’K\)?)fyy = ;’?XX?{(YY >
o _m
A;;zz = ’K\J’J/TC\ZZ (22)

We also require the raw moments in order to relate to the results
obtained in terms of the central moments in the construction of
the cascaded collision term in what follows, which we define as

Kunynp = (exey"e;|f), (23)

where the superscript ‘prime’ (") is used for the various raw
moments in order to distinguish the raw moments from the
central moments that are designated without the primes.

3.1. Change of moments under cascaded collision for D3Q19 lattice

We now need the various moments of the cascaded collision
term, i.e.,

(K ‘§)|exmeynezp> (24)

to proceed further. Since the zeroth and first order moments are
collision invariants, it follows that the correspondlng moment
changes under collision are zero, i.e, gy = g = & = &3 =
0. In view of the fact that K is orthogonal, the expressions for
the various non-conserved components can be readily evaluated,
which read as

(K-8)lexey) = 42y,
(K -8)lexe;) = 4gs,
(K-B)leye,) = 4gs,
(K-B)lex”) = 687 + 685 + 428,
(K-B)ley’) = —68; + 685 + 428,
(K-Ble,”) = —128s + 428,
(K- A)|exey2) = 410 + 4813,
(K-B)lexe,’) = 4810 — 4813,
(K-B)le’ey) = 4811 — 48ua,
(K -B)leye,”) = 4811 + 4814,
(K-B)les’e;) = 481> + 481,
(K-B)ley’e;) = 481, — 481,
(K-B)lex’ey®) = + 3285 + 4816 + 4817 + 4815,
(K-B)lee,”) = — 4gg + 3289 + 4816 + 4817 — 4813,
(K-B)ley’e,”) = —4g7 485 + 328 + 4816 — 8817.

Then, the expressions for the change of different moments
under collision g of the 3D cascaded LBE appearing in the term
K - g can be derived as follows. In essence, the procedure starts
from the lowest order, non-conserved, central moments (i.e., Ky,
Kxz» Ky, and higher), and their post-collision central moments

(ie., fxy,’;}z, ?yz and higher) are successively set equal to the
corresponding attractors given in Eq. (22) (i, iy, ky; and &y,
and higher). This intermediate step can provide tentative ex-
pressions for g based on an equilibrium assumption, which are
then modified to allow for collision as a relaxation process. They
are multiplied with a corresponding relaxation parameter that

results in the final expressions for the change of moments under
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collision g, for a given order [14]. In this step, the relaxation
parameter needs to multiply only with those terms that are not
yet in post-collision states. In other words, the relaxation of
different central moments to their corresponding attractors may
be formally represented as

((ex — uxUm(ey - uyl)n(ez —u 1P|(K E))
= Wy (TC\Erglynzp _TC\ny”zP) ) (25)

where w, represents the relaxation parameter for the central
moment of order (m 4+ n + p). In simplifying the above equation
(Eq. (25)) for different combinations of m, n and p representing
the independent moments supported by the D3Q19 lattice, we
use the expressions of Eq. (24) given above, which then lead to
a cascaded structure, i.e., the change of moments under cascaded
collision depends successively on those of the preceding lower
order moment changes. The final results, after transforming the
central moments to raw moments (see Eq. (23) for definition) for
convenience, can then be summarized as follows:

~ (%)

&=y [~y + puxty] . (26)
- w
& = IS [—K + puxitz]. @7)
~ wWe
&= [—?}’,Z + puyi;]. (28)
-~ w7 ~ ~ 2 2
=1 [—(® —&)y) + pluy —up)] . (29)
P wg
B = 3¢ [~®u +75 = 20,) + p(uf + 15 — 23)]. (30)
~ wg
8= e [®u R +RL) o0+ )+ 0] (31)
o~ w10 ~ o~
810 = ? [_(nyy +,K\;<zz) + z(uy?;zy + Uzgz) + ux(Kyy +7<\;z)

—2pu(uy + 7)) + (1,84 + u.85)

3 o~ Py

+Zux(—(g7 +8s) + 148), (32)
~ @ —~
B = g [~(R + Ry) + 2y, + 1:8),) + Uy (R, + 1)

—ZpUy(u,z( + Ug)] + (ux8s + 1:86)

3 . Py

+Zuy(g7 —gs + 1489), (33)
~ w12 ~
82 = o [—(Rae +75y2) + 2(uxicy, + wyk;,) + (K, +55,)

—~ 3

_ZPuz(ui + ui)] + (Uxgs + uygs) + Euz(gS +78), (34)
~ w13 ~
g13 = ? [_(Tc:l(y - 7(\)222) + Z(U}/ay - uzk\;cz) + uX(TC\),/y - Kzz)

—~ ~, 3 —~

—2pux(uy — )] + (&8s — u8s) + U8 + 38). (35)
~ W14 ~ ~ ~ ~ ~ -~
14 = '8 [_(Kyzz — Ky 2uizkey, — Unicyy) + Uy (K, — )

7

3
=2puy (2 —u))] + (—uaa + 1685) + Juy(—87 — 38:)(36)

-~ w -~ -~
gis = — [, )+ 2(uis,

s oz~ Koy — uy?}’,z) + u,(icy, — ﬁ)’,y)
—2pu (1} — u)) + (85 — uy8s) + %uzfg?, (37)
Bio = 25 [~(Rhgy + R + Ryper) + 20a(Ray + Bi) + 20 (@1
FRy) + 22U (K, +K5,) — U (), +KL,) — Up (K, +Ky)
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2
_uz(”a{x+@y)_
2.2 2.2 2.2 = = = = = =
+3:0(uxuy + ueu; + uyuz) + (KxkCyy + Koxxkzz + Knyzz)]
4 4 2

. 4 1, .
— Ul 8a — SUUz85 — SlyUgs + E(u" —uy)g7

1 ~
+5 (0 + Uy — 20708

-~ -~ -~
Auxuykey, + Uxlizicy, + Uylizky,)

4 4
+ (=7} +up +u2) — 8)Z + Zuio + 3tén

3
4 _
+§Uzg12, (38)
~ w17
g7 = ﬁ [_(axyy +’K\;<xzz - Z’K\},/yzz)
+2 ((uxﬁ)’cyy + uXTC\);zz + uy?xxy + uZ’K\)chz)_
Z(UyTC\},,ZZ + ulk\)liyz )) - u)z((f(\}:y +Tc\z,z) - ujzl(?xx - 27{\2/2)
_uf(k\;(x - 276\;0,)
—A(uxly iy, + UxllKy, — 2UylU K, )
+(7<\xx7(\yy + ?xxk\zz - 27(\yyk\zz)
+3p(uiul + upu — 2uju?)]
2 2 4 - 1,
~ Ul 8a — SULz85 + S lyUgs + Z(ux
- 1
—uy —3u} —2)g + Z(uﬁ —5u) +ul — 2)gs
7 ~
+ (2 4 Uy + )R
2 1 1 ~ —~
+ guxglo - §Uyg11 - §U2g12 — Uyg14 + Uz&15, (39)
~ w18 o~ —~ —~
&is = ? [_(?xxyy - Kxxzz) + 2 (uXK)/(yy - uXK)/(zz + uy”g)/cxy - uZ?xxz)
_u)zc(k\;/y - k\zlz) - u)Z/TC\)’(x + ugk\:(x - 4(uxuy7c\>,<y - uxulk\lxz)

+(/;\xx7?\yy - %xx%zz) +3P(u)2(u52/ - uf”?)] - 2Uxuyj:‘:{} + 2”x”z§5

3 2 3 ~
+=(uf — ) Ul + 20+ —(—3u; —u 4 ul — 2)gs

4 3 4
21 —

+ (s

+ U811 — U812 + 2,813 — UyB1a — UsZ15. (40)

In the above, wy, ws ... and wig are relaxation parameters of
the central moments of different orders. Similar to the 2D central
moment LBE [16], we can apply the Chapman-Enskog expan-
sion [41] to the above 3D cascaded LBE to show that it represents
the Navier-Stokes equations. Some of the relaxation parameters
in the collision model can be related to the transport coefficients
of the momentum transfer. For example, those corresponding to
the second-order moments control the shear viscosity v and those
related to the trace of the diagonal components (isotropic part) of
such moments determine the bulk viscosity ¢ of the fluid. That
is, v = ¢ (% — 3) where 0’ = w; where j = 4,5,6,7,8 and
¢ = 3c2 (% — 3) where o = wo. The rest of the parameters can
be set either to 1 (i.e., equilibration) or adjusted independently
to carefully control and improve numerical stability by means of
a linear stability analysis, while all satisfying the usual bounds
0 < wg < 2. In this work, for simplicity, we set the relaxation
parameters for higher order moments to unity, i.e., w; = 1, where
j=29,10,11,...,18.

3.2. Nonlinear constitutive relations via local variations of relaxation
times and local computation of strain rate tensor

Then, for the simulation of non-Newtonian flows of power law
fluids using the above 3D cascaded LBM, where the nonlinear
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constitutive relation prescribe the apparent viscosity dependent
on the shear rate |y, i.e., u(1%51) = pv(ly;l) (see Section 2), the
relaxation times of the second order moments w4, ws, wg, w7 and
wg are adjusted locally as follows:

m(1vil)

2
pc;

—1
w”(x,t)=w4=w5=a)6=a)7=w8=|: —i—;] , (41)
where u(|y;|) can be obtained from Eq. (7), which is parameter-
ized by the consistency coefficient u, and the power law index
n. The magnitude of the shear rate |y is related to the second
invariant of the strain rate tensor S; via Eq. (5). The strain rate
tensor components Sy, Syy, Sz, Sxy, Sy, and Sy, can be obtained
locally using non-equilibrium moments as follows.

A Chapman-Enskog analysis [41] of the 3D cascaded LBE,
whose details are omitted here for brevity but follows as an
extension of those presented in [16,21], relates the components
of the second order non-equilibrium moments to the components
of the symmetric part of the velocity gradient tensor. The results
can be summarized as follows:

my) ~ —%p(ayux + o), My~ —%%p(azux + dyuy),

) ~ _%%p(azuy + o), MY A — == p(dyuy — dyuy),

~(1) 2

mg’ ~ _ﬂp(axux — 0;Uz),

~(1) 2

my’ ~ —ﬂp(axux -+ dylUy + 9,U;),

where the non-equilibrium moments m( ) m“) ‘..,ﬁ(g” are

given by

ﬁﬁf) = Ky — Plxlly, (42a)

) = %, — puy, (42b)

Ag) = Ty, — plyllz, (42¢)

) = (€ = 15,) = o — u3), (42d)
my) = (&, — &) — p(ul — ), (42e)

my) = (K, + 8y, + 1) — (p(u2 +u2 +u2) + p). (42f)

From the above, and considering Eq. (41) and invoking the def-
inition of the strain rate tensor S; = %(aju,- + d;u;), its compo-

ne(n)ts c(a)n be sol(v)ed in terms of the non-equilibrium moments
~(1

m,’,mg’, ..., My’ as

Sy = —%w x, OmY, (43a)
Se = —%w“(x, t)ms", (43b)
S,z = —%w x, ", (43¢)
S = _% o, 0[P + 7]+ of ] (43d)
Sy = —% {w“(x, t) [—Zm“) + m ] + ot (1)} , (43e)
s, = —%{ '(x, t)[ 2m“)] +w¢mg)]. (43f)

The above two sets of equations enable local computation of the
strain rate tensor in simulating non-Newtonian flows and they
are naturally suitable for parallel computing, as opposed to using
finite difference approximations.
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3.3. Post-collision distribution functions

Finally, evaluating the elements of (K -g), in the collision step
of the 3D cascaded LBM (see Eqs. (17) and (18)), the post collision
distribution functions can be obtained. These are summarized as
follows:

fo = fo + [8o — 308 + 128361,
fi=f+[8 +8& +8& +8 — 118 — 4810 — 4816 — 48171
h=h+[8 —8 +8& +8 — 118 + 4810 — 4816 — 48171,
h=fit[Bo+8 —8 +8 — 118 — 4811 — 4816 + 2817 — 281s) ,
fo=fa+ 18— 8 —8 +8 — 118 + 4811 — 4816 + 2817 — 281s) ,
fs = fs + (8o + & — 283 — 1180 — 4812 — 4816 + 2817 + 281s],
Jo = fo + (80 — 8 — 28 — 118 + 4812 — 4816 + 2817 + 2818,
Fr=F+[8+8 +8 +8 +28 +88 +80+8n

+813 — 814 + 816 + 817 + Zisl
fo=fo+18 —8 +8 — 8+ 28 +88 — B0 +8n — 8

—Z14 + 816 + 817 +Zisl,
fo="Ffo+[8 +8 —8 —8a+ 285 + 88 + 80 —En + 813

+814 + 816 + 817 + Zisl»

fio = fio+ (80 — 81 — & + 8 + 285 + 88 — 810 — 811 — 813
+814+ 816 + 817 + 818,

Fo=fu+B+8 +8+8 +8 — 8 +88 +80 +8n
—813 + 815 + 816 + 817 — sl

fio =fra+[8 —8 +8 —8 +8 — 8 + 88 — &0 + 82
+813 + 815 + 816 + 817 — 18l

fis = fis+[Bo+8 —8 — 8 +8 — 8 + 88 + 8o

—812 — 813 — 815 + 816 + 817 — Zisl,

fis=fuu+[8—8 —8 +8 +8 — 8 +88 — 8o — Bz
+813 — 15 + 816 + &17 — Zisl

fis = fis +[Bo+8 +8 — 8 — & — 8 + 88 + &8 + 81
+814 — 815 + 816 — 2817)

fie = fis + 80— 8 +8 —8 — 8 — 8 + 88 — 811 + 82
—Z14 — 815 + 816 — 2817]

fir =fir+[Bo+8 —8 —8 — 8 — 8 +88 + 81 — &2

+814 + 15 + 816 — 28171,
s =fis+ B —-&—-B+8& -8
—Z1a + 815 + 816 — 2817

T — 85+ 88 — 811 — 812

—_

This is then followed by the streaming step via Eq. (19), after
which the hydrodynamic fields of the 3D non-Newtonian fluid
flow can be obtained from Eqgs. (20a) and (20b).

3.4. Implementation strategy of the algorithm

The streaming step (Eq. (19)) is a perfect shift operation of
the distribution functions involving data transfer (in memory)
to adjacent lattice nodes along the particle velocity directions.
As such, this operation remains the same regardless of the col-
lision model employed. The main computational effort involving
floating point operations is related to the collision step (Eq. (18)
via Eq. (17)). In particular, this latter step involves (i) the com-
putation of the various raw moments (Eq. (23)), (ii) change of
moments under cascaded collision via central moment relax-
ation (i.e., the components of g as given in Eqgs. (26)-(40)), and
(iii) mapping the changes in moments to obtain the post-collision
distribution function (via (K - ), as given in the section above to
compute f,, where ¢« = 0,1,2,...,18). In this regard, various
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Fig. 2. Schematics of the non-Newtonian benchmark flow problems. (a) Power
law fluid flow in a lid-driven cubic cavity, (b) 3D fully developed flow in a
square duct.
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Fig. 3. Comparison of the normalized velocity profiles of power law fluids in
a channel computed using 3D Cascaded LBM against the analytical solution for
power law index n = 0.8, 1.0, and 1.5 at Re = 100.

optimization strategies should be fully utilized in implementing
each of these substeps.

For example, the computation of the raw moments as ex-
pressed by Eq. (23) needs to be implemented by only involv-
ing the non-zero elements after grouping the common factors
present in the basis vectors (ex"ey"e,”| in performing the inner
product with the distribution function |f). In the computation of
the changes in moments under collision g the common subex-
pressions are evaluated once and then stored as separate scalar
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Fig. 4. Relative global error against the variation in the grid spacing, plotted
in log-log scales, for the simulation of power law fluid flow in a channel at
n = 0.8, n = 1.0 and 1.5 obtained using the 3D cascaded LBM. The solid line
(black) represents an ideal slope of —2.0.

variables and reused. Moreover, all common numerical constants
appearing as coefficients involving multiplications and divisions
are to be computed once and assigned to additional variables at
the beginning of simulations. In this substep, for implementing
the non-linear constitutive relationships for non-Newtonian flu-
ids via the local variations of the relaxation times, the required
strain rate tensor S; is obtained locally as shown in Section 3.2
by reusing the already available second order non-equilibrium
moments, which are needed in calculating g, through go. Then,
in order to map back the moment changes to the distribution
functions as represented by (K - €),, no direct matrix-vector
multiplication should be performed. Rather, the nature of the
elements of the mapping matrix K involving integers, especially
the presence of many zeros and various common factors, should
be fully exploited. In other words, only the relevant subexpres-
sions with non-zero elements, by grouping terms with common
factors, need to be computed and reused when possible. When
these optimization strategies are employed, as discussed later
in Section 5, it only incurs a moderate additional computa-
tional overhead when compared to the common SRT-LB formu-
lation, while delivering significant improvements in numerical
stability.

4. Results and discussion

To validate our 3D cascaded LBM for non-Newtonian flows,
we consider the following benchmark problems for which ei-
ther the analytical solutions and/or numerical benchmark results
available: (i) non-Newtonian Poiseuille flow of a power law fluid,
(ii) three-dimensional fully developed flow in a square duct, and
(iii) power-law fluid flow in a cubic lid-driven cavity (see Fig. 2).
For the first two problems, there exist analytical solutions, while
for the third problem, we use the recent benchmark numerical
data of [38] for comparison.

4.1. Poiseuille flow of power-law fluid

First, we consider the flow of power-law fluids between two
parallel plates separated by a height H and driven by a constant
body force. Periodic boundary conditions along the streamwise
direction and spanwise directions and a half-way bounce-back
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Fig. 5. Flow through a square duct with side length 2a subjected to a constant
body force: Comparison of surface contours of the velocity field for Reynolds
number Re = 80 (a) computed by the D3Q19 formulation of the cascaded LBM
with forcing term with (b) analytical solution.

boundary condition is applied on the fixed walls. The flow is
driven by a body force of F, = 1.0 x 107, which repre-
sents the pressure gradient — % The characteristic dimensionless
Reynolds number Re for this problem may be written as Re =
p(5)' U2t/ p, Where Upgy is the maximum velocity of the flow
occurring midway between the two plates (see below). We con-
sider a grid resolution of 3 x 3 x 101 for resolving the domain
of the flow of power law fluids with Re = 100 and n = 0.8, 1.0
and 1.5, thereby encompassing both shear thinning and shear
thickening fluids. The analytical solution for this non-Newtonian

flow problem is given by

1/n (n+1)/n
u(z) — n _i@ E — |z|(n+])/n
n+1\ upox 2 '

where the maximum fluid velocity is obtained using

n 1 9P 1/n H (n+1)/n
u = — |\ - .
i) (3)
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0.14

y=-a/2

Fig. 6. Flow through a square duct with side length 2a subjected to a constant
body force: Comparison of velocity profiles computed by the D3Q19 formulation
of the cascaded LBM with forcing term (symbols) with analytical solution (lines)
at different locations in the duct cross-section for Reynolds number Re = 80.

Fig. 7. Iso-speed contours of the duct velocity field for Reynolds number Re =
80.

Fig. 3 presents a comparison between the computed velocity
profiles for different values of the power law index obtained
using the 3D cascaded LBM implemented on a D3Q19 lattice with
the analytical solution. It is clear that the numerical simulation
results for different power law fluids are in very good agreement
with the analytical solution.

In addition, Fig. 4 demonstrates that our 3D cascaded LBM
is second order accurate for the simulation of power law fluids.
In this grid convergence test, we have used diffusive scaling
to establish asymptotic convergence of our scheme to the in-
compressible macroscopic non-Newtonian fluid flow equations of
shear thinning, Newtonian and shear thickening fluids.

4.2. Three-dimensional fully developed flow in a square duct

The fluid flow through a 3D square duct (see Fig. 2b) is con-
sidered as the next example. While an analytical solution for such
a problem does not exist for power law fluid at all values of the
power law index, an exact solution for the Newtonian fluid flow
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y=-a/2

u(y,z)

Fig. 8. Flow through a square duct with side length 2a subjected to a constant
body force: Comparison of velocity profiles computed by the D3Q19 formulation
of the cascaded LBM with forcing term (symbols) with analytical solution (lines)
at different locations in the duct cross-section for Reynolds number Re = 20.

case (n = 1) exists (see below), which could be used to test our
3D cascaded LB formulation on a D3Q19 lattice. The cross section

0 0.2 0.4 0.6 0.8
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Fig. 9.
20.

Iso-speed contours of the duct velocity field for Reynolds number Re

of the square duct is defined by —a <y <aand —a <z < q,
where a is the half width of the duct, and x is the streamwise flow
direction. Periodic boundary conditions are applied at the inlet

0 0.2 0.4 0.6 0.8

1 0.2 1 0.3
0.8 0.8 0.2
0.1
0.6 V—profile 0.6 0.1
0 V-profile
04 - 0.4 - o
s U-profile 2 g U-profile :
0 0 -0.2
\E\S\ 02 \s\
-0.2 Present (n=1.5)  \ -0.2 Present (n=1.5) \ -0.3
o Jinetal (2017) (n=1.5) o Jinetal (2017) (n=1.5)
—0.4 -0.3 -0.4 -0.4
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
u/u u/J
P P
(a) Re=100 (b) Re=400
10 0.2 0.4 0.6 0.8 03
0.8 0.2
0.1
06 V-profile
- 0
0.4
g o U-profile -0.1 g
' < -0.2
0 -03
-0.2 Present (n=1.5) -0.4
o Jinetal (2017) (n=1.5)
-0.4 0.5
0 0.2 0.4 0.6 0.8 1
U
P
(c) Re=1000

Fig. 10. Computed velocity component u/U, along the vertical centerline and component v/U, along the horizontal centerline obtained using the cascaded LB
method (lines) and compared with the benchmark solution of Jin et al. (2017) (symbols) for lid-driven cubic cavity flow of power law fluids. Reynolds number

Re = 100, 400, 1000 and the power law index n = 1.5.
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Fig. 11.

Computed velocity component u/U, along the vertical centerline and component v/U, along the horizontal centerline obtained using the cascaded LB

method (lines) and compared with the benchmark solution of Jin et al. (2017) (symbols) for lid-driven cubic cavity flow of power law fluids. Reynolds number

Re = 100, 400, 1000 and the power law index n = 1.0.

and outlet, whereas a no-slip boundary condition is adopted on
the wall boundaries by using the standard half-way bounce back
approach. The Reynolds number Re for this problem is defined
based on the maximum fluid velocity and the duct half width.
The flow is driven by applying a body force of F, = 1.0 x 1076,
and a grid resolution of 3 x 45 x 45 is employed to represent
the flow domain. The body force implementation is discussed in
Ref. [26], which is adopted for the D3Q19 lattice. The analytical
solution for the velocity field of the fully developed square duct
flow can be expressed in terms of the following infinite series
based on harmonic functions [42]:
cos (- 1my)

|:1 B cosh (
(2n—1)3

cosh (
Figs. 5a and 5b show the comparison of the surface contours of
the velocity field computed using the 3D cascaded LBM using a
D3Q19 lattice for a Reynolds number of 80 and the analytical
solution (see the equation above). It is clear that the computed
results are in good agreement with the exact solution, which
shows a paraboloid distribution for the velocity profile. In order
to get a better perspective for comparison, Figs. 6 and 8 show the
comparisons of the computed velocity profiles at different loca-
tions in the duct for Re = 80 and 20, respectively, which show

(2n—1)nz)
2a
(2n;l)n)

1602F, —

(n—1)
3 Z(_l)
L —

u(y, z)

11

excellent agreement of our 3D cascaded LBM with the analytical
solution. In addition, the iso-speed contours of the velocity field
at these two Re are presented in Figs. 7 and 9, respectively, which
are consistent with expectations.

4.3. 3D Power-law fluid flow in a lid-driven cubic cavity

The 3D lid-driven flow of non-Newtonian fluids in a cubic
cavity is a classic benchmark problem with complex flow features
and is a stringent test to validate numerical methods. The geo-
metric configuration of this problem is shown in Fig. 2a, where a
power-law fluid is enclosed within a cubic cavity of side length
H. The upper surface of the cavity or the lid is subjected to a
uniform velocity Uy, while all the remaining walls of the cavity
are maintained stationary. As noted in the introduction, only
very few studies exist on the 3D non-Newtonian flows of power
law fluids in cubic cavities driven by its top lid. A recent work
reported by [38] presented high quality results based on fine
enough grid resolutions using a finite volume method, which will
be used as a benchmark solution for comparison.

We employ a grid resolution of 128 x 128 x 128 in our
simulations, which was found to lead to grid independent re-
sults for the Reynolds number cases considered in this regard.
The no-slip boundary conditions on the walls are imposed using
the standard half-way bounce back scheme, with the motion of
the lid represented by applying a momentum correction to the
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Fig. 12. Computed velocity component u/U, along the vertical centerline and component v/U, along the horizontal centerline obtained using the cascaded LB
method (lines) and compared with the benchmark solution of Jin et al. (2017) (symbols) for lid-driven cubic cavity flow of power law fluids. Reynolds number

Re = 100, 400, 1000 and the power law index n = 0.8.

respective bounce back condition. The characteristic Reynolds
number for this problem is defined by Re = pH"Ug‘”/up. We
consider the simulation of cubic cavity flow at three different
Reynolds numbers of Re = 100, 400 and 1000. In each case, we
consider three types of non-Newtonian fluids with power law
index n = 1.5, 1.0 and 0.8, thereby encompassing both shear
thickening and shear thinning cases. In all these cases the flow
was found to be stationary and hence all the simulations were
run until the steady state was reached.

The numerical results for the computed profiles of the velocity
components along the horizontal and vertical centerlines in the
plane z 0.5H at the above three Re for the power law n =
1.5, 1.0 and 0.8 are shown in Figs. 10-12, respectively. While
for the Newtonian fluid, the viscosity is a constant, the local
viscosity varies appreciably depending on the strain rate tensor
components that changes due to variations in the vortical flow
structures inside the cubic cavity. As a result, in the case of shear
thickening fluid, as the flow encounters high shear zones near the
moving lid, its effective viscosity increases in these regions, dif-
fusing its momentum (and conversely for the shear thinning case)
and altering the velocity profiles in the respective cases. Hence,
the boundary layer becomes thicker for fluid with n > 1 when
compared to the case where n < 1. In addition, it is found that
as the power law index n increases, the peak magnitude of the
velocity component v along the horizontal centerline increases.
These observations are consistent with the recent findings of [38].
Overall, the computed results obtained using the present 3D
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central moment LBM are in good quantitative agreement with the
benchmark results of [38].

5. Comparison of numerical stability and computational per-
formance of different collision models

We now make a direct comparison of the numerical stability of
our cascaded LB scheme with other LB formulations for the sim-
ulation of 3D lid-driven cubic cavity flow. Due to it being a shear
driven flow and accompanied by geometric singularity around
the corners, this flow configuration serves as a good benchmark
problem to test the stability of the numerical schemes.

In the first case study, we consider our approach and the
popular SRT-LBM both implemented using the D3Q19 lattice,
where for a chosen grid resolution and a fixed lid velocity, the
relaxation parameter for the second order moments that con-
trols viscosity was decreased gradually until the computation
becomes unstable. It may be noted that in the case of cascaded
LBM, as mentioned earlier, the relaxation parameters of higher
kinetic moments are set to unity for simplicity. Then, the nu-
merical instability is deemed to occur when the global error
of the velocity field becomes exponentially large. Fig. 13 shows
the maximum Reynolds number that could be attained before
the computations become unstable for both the collision models.
Results are presented for three different values of the power law
index (n = 0.8, 1.0 and 1.5) encompassing both shear thinning
and shear thickening fluids at various set of grid resolutions (483,
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Fig. 13. Comparison of the maximum Reynolds number for numerical stability of the 3D SRT-LBM and the 3D cascaded LBM based on central moments for simulation

of non-Newtonian lid driven cubic cavity flow with n = 0.8, 1.0, 1.5.

643, 96 and 1283). It is evident that the cascaded LBM computa-
tions achieve significantly higher Reynolds numbers than the SRT
model for the same grid resolution and for a given type of fluid or
a power law index, and thus is more stable. Here, a note regarding
the associated computational cost is in order. When the imple-
mentation strategy involving various optimizations as discussed
in Section 3.4 are fully exploited, the additional computational
overhead of using the cascaded LB formulation when compared to
the SRT-LBM is moderate. In particular, it was found that the time
required to update a node for the cascaded LBM is about 30%-40%
more than that for the SRT-LBM, which is consistent with other
related studies (e.g., [18,43]). On the other hand, the cascaded
LBM is significantly more stable. For example, when n = 1, the
SRT-LBM requires a finer grid with a resolution of 963 to achieve
a similar Reynolds number as that of the cascaded LBM, which
utilizes a coarser grid with a resolution of 643. In other words, this
means that the SRT-LBM uses about 3.4 times greater number of
grid nodes than the cascaded LBM to achieve similar Reynolds
number while maintaining numerical stability. It is thus clear
that the cascaded LBM delivers an overall superior computational
performance when compared to the SRT-LBM, even for the special
case where we have set their relaxation times for the higher
order moments to unity. On the other hand, as demonstrated in a
previous 2D study [18], the stability characteristics of the cas-
caded LB formulation is enhanced further by tuning the relax-
ation time for the trace of the second order moments, which
controls the bulk viscosity, and/or the relaxation times of the
third and higher order kinetic moments. Hence, it is expected
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that further improvements in stability and overall computational
performance are possible by optimizing the relaxation parame-
ters of the higher kinetic moments of the 3D cascaded LBM for
non-Newtonian flow simulations.

We will now present a second case study involving a nu-
merical stability test that determines the maximum threshold
velocity of the lid at a chosen grid resolution using different LB
formulations, viz., the SRT-LBM, standard MRT-LBM based on raw
moments and the present cascaded MRT-LBM based on central
moments, for simulation of the 3D cubic cavity flow at different
values of the consistency coefficient u, and the index n of the
power law fluid (see Eq. (6)). In this regard, a fixed grid resolution
of 643 is used and the consistency coefficient Hp is chosen equiv-
alently via specifying a parameter 7, using u, = csz(rp —1/2), and
for each LB scheme, following the strategy given in Refs. [18,44],
the maximum lid velocity U, that can maintain stable compu-
tations for 50,000 time steps is determined. In the SRT-LBM, all
the distribution functions relax at the same rate; the standard
MRT-LBM based on raw moments [9] is adapted for non-
Newtonian flow simulations by locally adjusting the relaxation
rates of the second order moments, while the relaxation param-
eters for the higher order kinetic moments are chosen based on
the values given in Ref. [9]; in the case of the cascaded MRT-LBM
based on central moments, the relaxation rates for the second
order moments vary locally as before, while those for the higher
order moments are set to unity. Fig. 14 presents the compar-
isons of the threshold lid velocity obtained using the various LB
schemes for the simulation of power law fluids with index n
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Fig. 14. Numerical stability test results showing the maximum threshold velocity of the top plate (lid) U, in a 3D cubic cavity flow of non-Newtonian fluids for
a grid resolution of 64° at different values of the consistency coefficient of the power law fluid u, defined in Eq. (6) (or equivalently 7, via y, = c2(t, — 1/2)).
Comparisons are made between the SRT-LBM, standard MRT-LBM based on raw moments and the present cascaded MRT-LBM based on central moments for different

values of the power law index n = 0.8, 1.0 and 1.5.

equal to 0.8, 1.0 and 1.5 for this alternate stability test. In general,
for all the values of the power law index, encompassing shear
thinning and shear thickening fluids, the maximum lid velocities
for stability achieved using the cascaded MRT-LBM are found to
be considerably higher than those compared to the other collision
models. Equivalently, this means that it can sustain stable simu-
lations of non-Newtonian flows at significantly higher Reynolds
numbers. This is consistent with the observation that the use of
central moments in the cascaded LBM naturally preserves the
Galilean invariance of the moments supported independently by
the lattice and involving higher order fluid velocity terms in its
equilibria when compared to the SRT or the standard MRT-LBM
based on raw moments, whose equilibria are generally based on
the fluid velocity terms up to the second order. As a result, the
use of the 3D cascaded LBM presents significant advantages for
simulations of non-Newtonian flows of power law fluids.

6. Summary and conclusions

Complex fluid flows satisfying nonlinear constitutive relation-
ships arise in numerous engineering, chemical and materials pro-
cessing applications and geophysical situations. Simulations of
such flows pose numerical challenges especially in 3D, whose
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adequate resolution is associated with high computational de-
mands. Lattice Boltzmann methods (LBM) are inherently parallel
approaches for flow simulations. Prior efforts in using such ki-
netic schemes have mainly focused on computing non-Newtonian
flows in 2D, and generally utilizing less robust underlying colli-
sion models. In this work, we present a new 3D cascaded LBM for
the simulation of non-Newtonian power law fluids on a D3Q19
lattice. The effect of collisions is prescribed in terms of changes
in different central moments using multiple relaxation times,
whose derivation is given in detail. In particular, the relaxation
times of the second order moments are related to the local shear
rate and parameterized by the model coefficient and exponent
representing the power law fluids. We performed a validation
of our 3D central moment LBM for various benchmark problems
including the complex non-Newtonian flow inside a cubic cavity
driven by its top lid at Reynolds numbers of 100, 400 and 1000,
and with the power law index specified to be equal to 0.8,
1.0 and 1.5. Comparisons against recent numerical benchmark
solutions showed very good agreement. We demonstrated signifi-
cant improvements in numerical stability allowing simulations of
3D shear driven flows of non-Newtonian fluids (i.e., shear thin-
ning and shear thickening) at higher fluid velocities or Reynolds
numbers with the use of the 3D cascaded LBM when compared
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to other common LB formulations, such as the SRT-LBM and
the standard MRT-LBM based on raw moments. Performing re-
laxations of central moments during the collision step naturally
enforces the Galilean invariance of the independent moments
supported by the lattice with higher order velocity terms in its
equilibria which contributes to its superior stability character-
istics. The new expressions for the strain rate tensor (Eq. (43))
based on the non-equilibrium moments for the 3D cascaded LBM
presented in this work for prescribing the constitutive relations
are local in nature, unlike those for a recent LB scheme for 3D
non-Newtonian flows [39] which are based on finite difference
schemes, and hence facilitates parallel computation. Moreover,
our approach avoids the various approximations made in Ref. [39]
that can compromise its overall accuracy, is shown to be second
order accurate, and has additional degrees of freedom in terms
of relaxation parameters to independently adjust the various
transport coefficients (i.e., shear and bulk viscosities) for non-
Newtonian fluid flows. It may be noted that the 3D cascaded
LBM presented in this work (Section 3) along with the local
expressions for the strain rate tensor (Eq. (43)) for robust simu-
lation of non-Newtonian flows readily generalizes to other types
of essentially 3D flow problems involving spatial variations in
effective viscosity such as those involving subgrid scale models
dependent on the strain rate tensor.
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